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Abstract 
Background:  Living organisms need to allocate their limited resources in a manner that 
optimizes their overall fitness by simultaneously achieving several different biological 
objectives. Examination of these biological trade-offs can provide invaluable information 
regarding the biophysical and biochemical bases behind observed cellular phenotypes.  A 
quantitative knowledge of a cell system’s critical objectives is also needed for 
engineering of cellular metabolism, where there is interest in mitigating the fitness costs 
that may result from human manipulation.     
Results:  To study metabolism in photoheterotrophs, we developed and validated a 
genome-scale model of metabolism in Rhodopseudomonas palustris, a metabolically 
versatile gram-negative purple non-sulfur bacterium capable of growing phototrophically 
on various carbons sources, including inorganic carbon and aromatic compounds. To 
quantitatively assess trade-offs among a set of important biological objectives during 
different metabolic growth modes, we used our new model to conduct an 8-dimensional 
multi-objective flux analysis of metabolism in R. palustris.  Our results revealed that 
phototrophic metabolism in R. palustris is a light-limited growth mode under anaerobic 
conditions, regardless of the available carbon source. Under photoheterotrophic 
conditions, R. Palustris prioritizes the optimization of carbon efficiency, followed by 
ATP production and biomass production rate, in a Pareto-optimal manner.  To achieve 
maximum carbon fixation, cells appear to divert limited energy resources away from 
growth and toward CO2 fixation, even in presence of excess reduced carbon.  We also 
found that to achieve the theoretical maximum rate of biomass production, anaerobic 
metabolism requires import of additional compounds (such as protons) to serve as 
electron acceptors. Finally, we found that production of hydrogen gas, of potential 
interest as a candidate biofuel, lowers the cellular growth rates under all circumstances. 
Conclusions:  Photoheterotrophic metabolism of R. palustris is primarily regulated by 
the amount of light it can absorb and not the availability of carbon.  However, despite 
carbon’s secondary role as a regulating factor, R. palustris’ metabolism strives for 
maximum carbon efficiency, even when this increased efficiency leads to slightly lower 
growth rates. 
 
Background 
The high-throughput “omics” revolution has resulted in a deluge of system-level 
information about the components of living organisms.  Optimally, integration and 
interpretation of these data can provide mechanistic insights about cellular behaviors and 
function.  This new information can also be used by synthetic biologists to manipulate the 
biochemical processes within select (primarily microbial) organisms in order to achieve 
desired outcomes such as production of valuable compounds like drugs or biofuels. 
Biofuels generated via microbial metabolism are of significant interest because they 
could theoretically serve as a primary source of energy for industry and transportation, 
thus supplanting fossil fuels and mitigating the harmful effects of global climate change. 
These positive attributes have resulted in a significant interest in conducting system-level 
analyses of modes of metabolism that use renewable resources and release part of the 
generated energy in useful forms.  Metabolism in phototrophic organisms, as well as 
those that can catabolize aromatic compounds (a major component of plant biomass), are 
such modes of metabolism.   
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To manipulate cellular metabolism to achieve a desired biological task (or objective), 
while simultaneously mitigating the fitness costs that may result from human tampering, 
it is necessary to have quantitative knowledge of the cellular system’s critical objectives.  
This can ensure that engineering goals do not significantly alter the natural balance of 
system for a given environment.  Life is based on a series of trade-offs that represent the 
fitness price that organisms pay when improvement in one of their traits results in 
detrimental change for another; a system state referred to as “Pareto efficient”[1].  
Evolution ensures that all living organisms are Pareto efficient; otherwise, on an 
evolutionary timescale the non-efficient would be outcompeted and outlasted by 
organisms with better performance in all or some biological tasks.  
Knowing the nature and magnitude of biological trade-offs can help to establish the 
biophysical and biochemical underpinnings of observed cellular phenotypes.  This type of 
knowledge can be gained from genome-scale models (GSMs) and system-level multi-
objective analyses of cellular processes.  Genome-scale mathematical modeling of 
metabolic networks is a key tool that has been used in systems biology studies of 
microbes ranging from model organisms such as E. coli[2, 3] and baker’s yeast[4], to 
those of ecological and industrial interest[5-8], as well as pathogens[9, 10].  A number of 
models have also been developed for photosynthetic organisms, such as the purple non-
sulfur bacterium Rhodobacter sphaeroides[11] and the cyanobacterium Synechococcus 
sp. PCC 7002[12]. When used with constraint-based methods like flux balance analysis 
(FBA)[13, 14], GSMs can quantitatively describe a metabolic network’s fluxes under a 
steady state assumption.  This permits analyses of different types of so-called ‘omics data 
via in silico simulation of all processes of interest following assorted genetic and 
environmental perturbations [15].  
Despite its many uses[15, 16], the standard FBA approach is insufficient for analysis of 
trade-offs between large numbers of system objectives. FBA examines the feasible flux 
patterns in a system while optimizing a single biological objective function. To examine 
trade-offs between different objectives of a system, a ‘multi-objective flux analysis’ 
(MOFA) approach is needed.  MOFA is based on the widely used multi-objective 
optimization (MO) method; a critical tool in fields where decision makers need to 
consider trade-offs between various conflicting objectives. The desired outcomes of MO 
simulations are called Pareto-optimal (PO) solutions. A PO solution of a problem is one 
for which any improvement in value of one objective will lead to diminishment of 
another[17, 18].  
To date, a number of important MO analyses of biological processes have been 
developed using constraint-based models [19-24].  For example, phenotype phase plane 
analysis is one such method that has been used to study the optimal utilization of a 
system’s metabolic network as a function of variations of two environmental 
constraints[25, 26].  Thus, this method examines the interactions between three system 
objectives (growth and the two constraints). Other MO-based studies have provided 
important insights for systems bioengineering, including the relationships between 
environments and regulatory mechanisms [27-29], the minimal number and combination 
of augmentations to a system that would result in greatest amount of strain optimization 
[30, 31], and guidelines for tuning synthetic biology devices [32].   
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Recently Shuetz et al.[33] showed that when examining trade-offs between double and 
triple combinations of different biological objectives in microbes, a PO combination of 
three tasks – maximum biomass yield, maximum yield of ATP, and optimal allocation of 
resources – best explains the measured flux distribution for a variety of organisms and 
conditions.  While these are the top three evolutionarily important objectives and their 
combined optimization best describes observed metabolic fluxes among all examined 
trios of objectives, the match is not exact.  To improve the match between optimization 
predictions and flux measurements, Pareto optimization of other biological objectives 
(pertinent to specific organisms and growth conditions) could help.  Examination of other 
objectives also provides us with quantitative insights into how their activities influence 
cellular workings.   
In this study, we examined energy and carbon trade-offs for different types of 
phototrophic metabolism. So, in order to gain a more complete understanding of the 
system, besides the three classical objectives noted above, we examined objectives 
related to environmental nutritional conditions as well as production of compounds of 
interest (such as H2 gas). 

The modeled organism, Rhodopseudomonas palustris (RP), is a purple non-sulfur (PNS) 
proteobacterium from the Rhodospirillaceae family.  RP’s metabolism is extremely 
versatile and serves as a model for several important biological phenomena, including 
biodegradation of industrial waste[34, 35], electricity generation[36], and production of 
hydrogen gas (H2)[37-39]. RP has the capacity to switch between four different types of 
metabolism (photoautotrophy, photoheterotrophy, chemoautotrophy, and 
chemoheterotrophy). It can grow in both aerobic and anaerobic conditions while using 
light and organic compounds as energy sources, and organic or inorganic[39-41] 
compounds as electron sources.  RP can also fix both carbon dioxide (CO2) and nitrogen 
gas (N2)[42, 43].   
Finally, RP can metabolize aromatic compounds; using them as a carbon source in a 
light-dependent fashion under anaerobic conditions (LN).  New insights gained through 
our MO system-level analyses of this type of RP metabolism are important for industrial 
and environmental reasons--since microbial production of biofuels as well as 
bioremediation of aromatic pollutants may sometimes occur in low oxygen environments.  
To determine carbon and energy fluxes among RP’s different metabolic modes, we 
developed a GSM of metabolism in RP.  Although a model of RP’s central carbon 
metabolism had been previously developed[44], that model did not account for a 
significant fraction of the metabolic reactions in the system and did not use an RP-
specific biomass composition. Our model incorporates most of the metabolic reactions 
that are catalyzed by enzymes encoded in RP’s genome, as well as orphan reactions that 
are needed for growth in experimentally tested media.  The model also uses an RP-
specific biomass composition.  Our model has been extensively curated to ensure mass 
balance, particularly with regards to protons, because as we discovered (and others have 
noted[45, 46]) poor accounting of protons can result in erroneous outcomes.  Specific 
details of our model building process are described in the methods section.     
Although system-level MOFA analyses of metabolism have expanded analyses of 
biosystems beyond FBA’s canonical single objective optimization, to date, the maximum 
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number of objective trade-offs that have been simultaneously examined has not exceeded 
eight[28].  For example, in one of the more detailed of these analyses, Schuetz et al. 
studied trade-offs among a suite of objectives in nine bacteria by examining trade-offs 
among different combinations of 3-5 objectives [33].  While their approach would work 
for analysis of a small set of objectives; when analyzing larger sets of objectives, in order 
to avoid incomplete considerations of feasible functional capabilities of the system, one 
would need to analyze an ever-increasing number of small subsets of objectives.   
Given RP’s versatile metabolism, system-level MOFA analysis of its metabolism 
necessitated examination of trade-offs among greater than five interdependent biological 
objectives and environmental constraints. To this end, we developed a computational 
algorithm for MOFA similar to the one used by Nagrath et al.[20], which uses the 
Normalized Normal Constraint (NNC) method [47] to generate multidimensional Pareto 
solutions for our analyses.  In our approach, the number of objectives that can be 
analyzed simultaneously is unlimited.  However, as the number of examined objectives 
increases, we caution that the computational resources needed for the calculations will 
increase nonlinearly.    
In addition to our MOFA analyses of metabolic objective trade-offs, we used the RP 
GSM to: a) investigate RP’s metabolism of different carbon sources, b) examine the role 
of proton availability in affecting mode of metabolism, and c) study RP’s capacity to 
produce H2.  

Results & Discussion 
We used existing RP flux measurements[48] of photoheterotrophic acetate metabolism to 
validate our model’s predictions, and constrain our model based on an experimentally 
observed metabolic phenotype.  This allowed us to assess the metabolic limitations of the 
system.  Using this new-found insight and MOFA, we then examined the relative 
importance of different biological objectives during different forms of mixotrophic 
metabolism.  The results of these analyses are detailed below.  We also used FBA to 
examine the robustness of RP’s metabolism to genetic perturbations (see supplementary 
materials).   

Metabolic trade-offs during mixotrophic growth 
1. Light-anaerobic metabolism of acetate 
To quantify the extent to which some biological objectives of RP dictate the behavior of 
the system under anaerobic mixotrophic conditions, we conducted a system-level MOFA 
analysis of LN metabolism of acetate[48], assuming that the system operated in a Pareto 
efficient manner (Fig. 1).  LN acetate metabolism was chosen as the test case due to the 
availability of experimental flux measurements for this mode of metabolism[48].  In 
order to quantitatively examine how RP allocates its limited resources, we mapped the 
experimental flux measurements within an 8-dimensional MOFA solution space, 
including: 1) biomass production (growth), 2) CO2 export, 3) ATP production, 4) nutrient 
allocation (minimal metabolite transport), 5) H2 export, 6) pyruvate export, 7) succinate 
export, and 8) a-ketoglutarate export.  The latter three objectives were included to 
examine the role of carbon fixation as a sink for excess electrons.     

Condition 1:  Fixed import of acetate 
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Archetype is a termed coined by Shoval et al. [49], and used by others (e.g. [50-52]), to 
describe a phenotype that optimizes a single task.  When FBA optimizes growth as its 
sole objective function, it solves for a flux pattern that results in the theoretical growth 
archetype.  For our analyses, we first used FBA to identify the theoretical growth 
archetype under carbon-limited conditions.  At a fixed acetate uptake rate that matched 
experimental flux measurements (1.96 mmol.gDW-1.hr-1), the modeled cell did not 
produce any small carbon byproducts (Row A, Fig. 1).  This means that all the CO2 
generated from acetate consumption was fixed and used for production of biomass. For 
the theoretical growth archetype, FBA flux predictions indicate that the Calvin-Benson-
Bassham (CBB) process fixed the majority of the produced CO2 (>70%).  Conversion to 
bicarbonate by carbonate anhydrase (E.C. 4.2.1.1), and pyruvate via pyruvate synthase 
(E.C. 1.2.7.1), fixed the remaining CO2. However, the predicted growth rate for the 
carbon-limited growth archetype was higher than experimentally measured values (the 
model predicted a doubling time of 6.4 h vs. measured 8.4 h[53]).  This suggests that the 
amount of carbon imported exceeded the growth demands of RP.  Thus, we conclude that 
under the experimental conditions outlined by McKinlay and Harwood[48], RP’s 
metabolism was not carbon limited.     
To test the significance of carbon fixation toward maximizing cellular growth, we in 
silico inactivated CBB (by fixing the reaction rate for RuBisCO at zero).  Elimination of 
CBB increased the predicted doubling time to 7.2 h, still less than the experimentally 
measured value (Row C, Fig. 1).  In the absence of CBB, the predicted rate of CO2 export 
was 21% of the rate of acetate uptake.  This value matches the measured total amount of 
CO2 produced (22% of acetate flux[48]); suggesting that the FBA correctly predicted the 
LN carbon metabolism pathways. 
Given that experimentally observed phenotype includes export of CO2, we set the rate of 
CO2 export equal to the measured value (0.23 mmol.gDW-1.h-1.  With unlimited light, the 
predicted doubling time (6.8 h) was still smaller than the measured value (Row B, Fig. 1).  
Thus, we found that if light is available and the upper limit for the enzymatic capacity of 
system to fix carbon has not been reached, CO2 would be fixed for systems where 
maximization of growth is the sole objective of the system. 

Condition 2: Fixed import of acetate, varying absorption of light 
We next examined the effect of light-absorption on the rate of biomass production.  
Decreasing the amount of light absorbed by RP increased its doubling time, and 
improved the agreement between model predictions and experimental observations. 
However, when the rate of light absorption decreased, the rate of CO2 export began to 
rise above experimentally observed values.  To examine what caused these observations, 
we explored two scenarios:  

1. At the measured CO2 export rate, we reduced the rate of light absorption until the 
doubling time matched the experimentally measured value.  This was achieved at 
the photon uptake rate of 36.6 mmol.gDW-1.h-1, suggesting a light-limited 
metabolism.  This is consistent with studies of another phototrophic organism 
[54], Synechocystis sp PCC6803, and also what is known about RP’s primary 
ecological niche--light-limited environments where it grows beneath 
cyanobacteria in microbial mats[55]. As we decreased the level of absorbed light, 
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the model predicted that RP begins to export succinate (Row E, Fig. 1; 
representing 18% of the carbon imported as acetate. 

2. When succinate export is blocked, we found a 1% reduction in maximum growth 
rate and instead pyruvate is exported (Row F, Fig. 1).  The reduced growth rate is 
likely due to higher energy costs associated with the production of pyruvate from 
acetate, relative to succinate. 

Condition 3:  Fixed light import, fixed CO2 export 
At a fixed rate of photon absorption, with no limit to acetate uptake, the model predicted 
that 17% less acetate consumption results in a slightly (1%) higher growth rate.  This 
result suggests that the measured rate of acetate import is higher than the amount needed 
to achieve the experimentally measured growth rate. 
Condition 4: Fixed acetate and light import 
Finally, the model showed that at a fixed rate of photon and acetate uptake, if the limit on 
CO2 export is removed, CO2 export increases, growth rate increases by ~3%, and the rate 
of small organic acid export drops to ~13% of imported carbon (Row D, Fig. 1).  This 
outcome implies that the measured CO2 export rate is lower than what is needed to 
achieve the theoretically predicted growth archetype.  This prediction also implies that 
the cell uses processes other than CO2 export to expunge excess carbon.  Instead, the cells 
divert a fraction of their absorbed and metabolically generated energy towards production 
and export of small organic acids, likely driven by redox balance or regulatory 
constraints. 
This result slightly differs from what Hadicke et al. found in their in silico analysis of 
redox balancing and biohydrogen production in purple non-sulfur bacteria (PNS)[44].  In 
their study, Hadicke et al. were able to grow PNS photoheterotrophically by only 
exporting CO2 and biomass[44].  The differences we observe in our analyses are likely 
because we constrained the model with three measured values (growth, CO2 export rate, 
and acetate import rate) simultaneously and allowed for export of small organic 
compounds.  In contrast, Hadicke et al.[44] blocked the export of all byproducts other 
than CO2 and did not fix the rates of light absorption or CO2 export.  Thus, they were able 
to predict photoheterotrophic growth with only CO2 and biomass as byproducts (similar 
to our outcome for condition 1), whereas our model with fixed experimental 
measurements and light absorption, required export of excess imported carbon via means 
other than CO2.  
Mapping the flux measurements[48] for LN growth of RP on acetate within our 8-
dimensional MOFA-derived phenotype solution space revealed a pattern consistent with 
Schuetz et al.[33], i.e., maximizing efficient resource allocation (97% of optimal value), 
ATP production (84% of maximum value), and growth (the main FBA assumption, 79% 
of its theoretical maximum value) are the top 3 biological objectives that are optimized.  
However, our results also suggest that a fourth objective — production of small organic 
acids while light energy is available — is also optimized.   
Optimization of this fourth objective diminishes the ability of the cell to achieve the 
growth archetype for the amount of resources that are imported.  Model predictions 
suggest that RP diverts some of its absorbed light energy toward the production of 
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reduced organic compounds.  We can gain a better understanding of this process by 
examining the degree of reduction of various carbon-based compounds imported and 
exported by the system.  The degree of reduction for a compound per carbon atom (k) 
can be quantified using the concept developed by Roels[56].   
As noted above, our predictions indicate that the cell imports extra carbon and electrons 
in the form of acetate (k=4), uses some of this resource for biomass production (k=4.19) 
and then uses light energy to export the remaining electrons as organic compounds like 
succinate (k=3.5), that although more oxidized than acetate are significantly more 
reduced than CO2 (k=0).  One possible explanation for this behavior could be that the cell 
stores some of the available energy as easily metabolized compounds for consumption 
during dark periods, a behavior that has been observed in cyanobacteria[57].  However, 
the amount of light and carbon the model predicts to be used for the production of 
reduced byproducts is small and well within the range of uncertainties of experimental 
measurements.  Sensitive experimental analyses to identify and quantify the metabolic 
byproducts of LN metabolism could either validate our MOFA prediction of organic 
carbon export or support the previous assumption that CO2 is the sole byproduct[44].   

2. Differences between RP’s metabolism of aliphatic and aromatic carbon sources 
Our result for aliphatic metabolism of RP, and previous analyses[44], highlights the 
importance of carbon fixation for achieving the growth archetype in phototrophs like RP.  
Interestingly, transcriptomic measurements suggest that RP upregulates genes associated 
with CBB after switching from growth on an aliphatic carbon source (succinate) to 
aromatic compounds like 4-coumarate or benzoate[58].  Given our prediction that CBB is 
the primary pathway of carbon fixation during aliphatic metabolism in RP, the increased 
use of CBB for aromatic metabolism warranted further investigation.  To this end, we 
used GX-FBA[59], an in silico method that uses transcriptomic data to constrain GSMs 
(see methods), and makes it possible to examine metabolic changes as an organism 
transitions from one environment to another.   
We used previously-collected transcriptomic data[58] to explore RP’s metabolism as it 
switches from aromatic to aliphatic carbon sources. Figure 2 illustrates changes in 
metabolic pathway fluxes as RP’s carbon source shifted from 4-coumarate to succinate.  
GX-FBA predicts that this transition results in a reduction of CBB activity, consistent 
with measurements that suggest downregulation of genes associated with this 
pathway[58].  We (and others[58]) attribute this to the fact that the examined aromatic 
compounds are more reduced (k>4.1) than succinate (k=3.5) and hence need greater use 
of CBB as an electron sink.  In addition, GX-FBA predicted that switching to an aliphatic 
carbon source results in an increase in fluxes through cysteine (k=5.67), methionine 
(k=6), and pyruvate metabolic pathways.  Given the highly reduced nature of these 
sulfur-based amino acids, it is curious that a switch from the more-reduced aromatic to 
less-reduced aliphatic carbon source results in increased production of these compounds, 
and indicates that there is a reason beyond redox balance associated with these metabolic 
changes.   
The aromatic to aliphatic change in carbon source also results in a decrease in fatty acid 
(k>4.67) metabolism, metabolism of lysine (k=4.67) and tryptophan (k=4.18), and 
activity of the benzoate degradation pathway.  The reduced activity of the benzoate 
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pathway would be expected and could be linked to reduced production of the aromatic 
amino acids.  Reduced availability of electrons following the switch could explain why 
production of highly reduced fatty acid compounds is predicted.   
3. Light-anaerobic metabolism of aromatic compounds 
We conducted MOFA analyses to examine the metabolic trade-offs of different 
biological objectives for RP consuming various aromatic compounds (Table 1). Under 
light-limited anaerobic conditions with 4-coumarate as the sole carbon source, a small 
fraction (4.6%) of the imported carbon was exported as CO2, while the majority of the 
produced CO2 (83%) was incorporated into biomass. Unexpectedly, at the growth 
archetype for this environment, our model predicted that the CBB cycle was not the 
primary route of carbon fixation. Instead, a large fraction (~61%) of CO2 was fixed by 
the enzymes pyruvate:ferredoxin oxidoreductase (E.C. 1.2.7.1) and 2-oxoglutarate 
synthase (E.C. 1.2.7.3). Both of these enzymes are associated with the reductive citric 
acid cycle (rTCA) which is a pathway for carbon fixation in some photoautotrophic 
organisms such as green-sulfur bacterium Chlorobium limicola[60] and 
chemolithoautotrophic archaea[61].  
The presence of rTCA in RP is intriguing since it is not present in another well-studied, 
closely related species, Rhodobacter sphaeroides.  One advantage of using rTCA for 
carbon fixation is that it requires less energy than CBB[61].  Thus, given the energy-
limited state of RP cells when light absorption is restricted, using this mode of carbon 
fixation may be essential for achieving the growth archetype for this condition.  
However, the rTCA-based optimum theoretical growth rate for RP was 4% higher than 
the measured value.  While this difference is well within the range of experimental 
variation for measuring doubling times, we still examined MOFA results at the growth 
rate that matches experimental measurements (Fig. 3, F). At this lower growth rate, the 
system can use CBB for carbon fixation (accounting for ~56% of the produced CO2). The 
switch to CBB also resulted in a 5% improvement in carbon utilization efficiency. Gene 
expression analyses have verified extensive use of CBB during LN metabolism of 4-
coumarate[58].  Thus, our results indicate that under light-limited conditions, RP does not 
achieve the theoretical growth archetype and instead the primary objective during LN 
metabolism of 4-coumarate is maximum growth while striving to achieve maximum 
metabolic efficiency. 
Similar analyses of growth archetype with benzoate as the sole carbon source, under 
light-limited anaerobic conditions (Fig. 3, A), predicted that only 3% of the imported 
carbon was exported as CO2 while approximately 90% of the produced CO2 was fixed 
into biomass. However, as we found for 4-coumarate, due to energy considerations, 67% 
of CO2 was fixed by rTCA.  MOFA results at the experimental measured growth rate 
(Fig. 3, D) showed that the system can switch to CBB for CO2 fixation (~50% of 
generated CO2).  This mode of metabolism is about 2% more carbon efficient than the 
metabolism at the optimum theoretical growth rate.  
We used the model to examine flux patterns in the growth archetype when RP consumes 
4-hydroxybenzoate (4HBZ) under light-limited anaerobic conditions (Fig. 3, B), and 
found that 8% of the imported carbon was exported as CO2. Only about half of the CO2 
that was produced was fixed via activity of rTCA, while around 20% was fixed through 
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formation of carbonic acid. The results at the measured growth rate (which was 
significantly smaller than the predicted growth archetype value) identify a likely change 
in the mode of carbon fixation. At the measured growth rate (Fig. 3, H), the carbon 
efficient CBB pathway can become the primary route of CO2 fixation (83% of produced 
CO2). This mode of metabolism is 8% more carbon efficient than the one used to achieve 
the theoretical optimum growth rate. 
Overall, when simulating light-limited (absorption values similar to those calculated for 
acetate metabolism, 36.6 mmol.gDW-1.h-1) photoheterotrophic growth of RP on aromatic 
compounds, with exception of metabolism on 4HBZ, the model predicts growth rates that 
are reasonably close to measured values.  This can be viewed as further proof of light-
limited nature of RP’s phototrophic metabolism.  
Also, if one assumes that RP’s enzymatic capacity to fix CO2 by rTCA is comparable to 
that of CBB, then it appears that optimum growth is not the sole objective that controls 
LN metabolism of aromatics in RP. Our results indicate that the cell grows at the 
maximum growth rate that also optimizes carbon efficiency.  Hence, the cell uses the 
more energy-expensive CBB carbon fixation pathway, which results in a lower growth 
rate relative to the theoretical growth archetype, but minimizes carbon waste.        
4. Proton economy of light-anaerobic metabolism 
Our simulations of RP acetate metabolism under LN conditions indicate that RP must 
import protons from the surrounding medium in order to achieve the measured growth 
rate. This is congruent with previous studies that have showed exchange of protons with 
the growth medium is important for maximizing cellular growth[2].  It also has been 
shown that in other species of Rhodopseudomonas, lower pH values in the surrounding 
medium result in increased rate of biomass production[62].   
Compared to biomass, acetate has a higher oxygen to carbon atoms ratio (acetate=1, 
biomass=0.54).  The model predicts that during RP’s LN acetate metabolism, the 
imported protons bind to excess oxygen atoms of acetate and are exported as water; and 
without proton uptake, the growth rate is 13% lower (9.7 h doubling time) due to excess 
oxygen being exported as a-ketoglutarate, wasting carbon and electrons that could 
otherwise be used for growth. a-ketoglutarate is exported because it has a low degree of 
reduction (k=3.2).  If we eliminate export of a-ketoglutarate, this further reduces the 
growth rate (10.5 h doubling time), presumably because alternative oxygen carriers (e.g., 
pyruvate and succinate (k=3.5)) contain more reduced carbon than a-ketoglutarate. Our 
model’s prediction that RP imports protons during LN acetate metabolism suggests that 
an increase in pH of should occur.  This consistent with our experimental observations;  
phototrophic growth of RP on acetate in poorly buffered minimal media leads to a 
medium pH increase (from 6.7 to 7.2) (Fig. 4). 
Examining the proton economy of LN metabolism of aromatic compounds, the model 
predicts that unlike metabolism of acetate, breakdown of some compounds (e.g., 
benzoate and 4-coumarate) result in production of protons that are exported. This is due 
to the low (compared to biomass) hydrogen and oxygen content of these aromatic 
compounds. The reactions for metabolism of 4-coumarate and benzoate are: 

CH0.78O0.33 + 0.22 NH4+ + 0.21 H2O � CH1.93O0.54N0.22 + 0.15 H+               (1) 
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CH0.71O0.29 + 0.22 NH4+ + 0.25 H2O � CH1.93O0.54N0.22 + 0.16 H+                      (2) 

Each carbon that is imported into the cell carries fewer protons and oxygen atoms than 
acetate (CH1.5O) and thus water needs to be used to make up for this shortcoming. Our 
experiments verified that LN metabolism of benzoate indeed reduces the pH of the 
growth medium (Fig. 4).   
Under light limited conditions, at the measured growth rate, the model predicts that 
metabolism of 4HBZ should result in import of protons from the medium.  This is 
because the amount of water imported satisfies the oxygen difference between 4HBZ and 
biomass but not the hydrogen difference.  The 4HBZ metabolism equation is: 

CH0.71O0.43 + 0.22 NH4+ + 0.11 H2O + 0.12 H+ � CH1.93O0.54N0.22                     (3) 
However, our laboratory experiments indicate that LN metabolism of 4HBZ reduces the 
pH of the medium (Fig. 4).  We attribute this discrepancy to the fact that the model-
predicted metabolism utilizes the theoretical minimum amount of carbon necessary to 
achieve the growth archetype. If the 4HBZ metabolism of RP is any less carbon efficient 
than the model prediction, then the proton metabolism of the system would change. This 
is because production and export of CO2 would increase the amount of H2O that needs to 
be imported to maintain the elemental balance of oxygen.  Breakdown of water would 
result in greater production of protons.  For example, if like acetate[48] 10% of the 
imported carbon is exported as CO2, the metabolic process becomes proton producing 
and the metabolic equation becomes: 

CH0.71O0.43 + 0.2 NH4+ + 0.26 H2O � 0.9 CH1.93O0.54N0.22 + 0.1 CO2 + 0.29 H+     (4) 
Yet as with acetate, when we compared our experimental observations with the model, it 
appeared that the behavior of the cell did not solely optimize a single biological 
objective--such as growth or maximum nutrient use efficiency--but rather a combination 
of multiple objectives. 
5. Hydrogen gas production by R. palustris 
Converting solar energy into H2 gas, a clean-burning alternative fuel, is an 
environmentally sound means of replacing the use of polluting and finite fossil fuels.  RP 
is a model organism capable of phototrophic production of H2.  As part of our analysis of 
RP’s metabolism, we were interested to assess if it is possible to improve its H2 
production with minimal perturbations of the normal workings of the cell. Examining 
hydrogen gas production that resulted from R. palustris’ LN metabolism of acetate, our 
model predicted a maximum H2 production yield of 4 moles H2/mole acetate, matching 
the previously published value[44].  The model also suggests that at both theoretical 
maximum and observed growth rates, RP should not produce H2 gas (Rows A and E, Fig. 
1), in agreement with previous experimental observations[48]. MOFA results showed that 
H2 production negatively effects RP’s growth rate and carbon efficiency (i.e., carbon 
fixation via CBB pathway) (Fig. 1, G).  While production of small amounts of H2 was 
necessary for the production of small organic acids like pyruvate and a-ketoglutarate, 
only CO2 production was positively affected by H2 production.  In solely carbon limited 
conditions, achieving the maximum theoretical H2 production required that RP fully 
oxidize acetate to CO2 and use all the energy generated from this process, as well as 
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photon absorption, to produce H2 gas (Row G, Fig. 1). 
Simulating nitrogen starvation while growing on acetate, our model predicts that RP will 
produce the subunits (C4H6O2) of polyhydroxybutyrate (PHB), if this compound is 
allowed to be exported as a metabolic byproduct.  When we optimized PHB production 
while minimizing the total exchange of nutrients and byproducts (at fixed rates of carbon 
and photon import), RP produced water, PHB (1 PHB/6 acetate), and succinate.  Previous 
studies have shown that nitrogen starved, non-growing RP cells produce H2 gas along 
with PHB and a-ketoglutarate and CO2 as metabolic byproducts[63].  To test whether we 
could predict the same metabolic phenotype for the nitrogen-starved and non-growing 
condition, we blocked export of succinate.  This constraint resulted in export of a-
ketoglutarate as a byproduct.   We also observed that while the total amount of PHB 
produced was lower than when succinate was exuded as a byproduct, the efficiency of 
PHB production increased (1 PHB/5 acetate). Thus, it appears that nitrogen-starved RP 
cells simultaneously maximize PHB production and carbon efficiency while minimizing 
transport fluxes.  
MOFA analyses of H2 production during LN metabolism of three aromatic compounds 
indicate that regardless of carbon source, at the theoretical growth archetypes, RP would 
not produce H2 gas (Fig.3, A, B, C). Although the examined aromatic compounds 
(average k=4.17) are more reduced than acetate (k=4) and usually carry extra protons 
(Equations 1 & 2); at the growth archetypes, the available energy and reducing 
equivalents are used to fix CO2.  When RP grows at the experimentally measured rates 
(which are lower than the predicted growth archetype rates), cells can use excess energy 
that is not used for production of biomass to produce H2.  
Production of H2 can be induced if the objective of RP’s metabolism is changed from 
maximized carbon efficiency to one where extra carbon is imported and wasted as CO2. 
For example, when growing on 4-coumarate at the measured growth rate, the model 
predicts that RP can produce 1.1 mole of H2 for every mole of 4-coumarate metabolized 
(Row G, Fig. 3). This number is similar to that for benzoate (1.14 H2/benzoate) (Row E, 
Fig. 3), both of which are significantly smaller than the ratio for 4HBZ (4.6 H2/4HBZ, 
Row I, Fig. 3). This significantly higher ability to produce H2 while metabolizing 4HBZ 
is due to the fact that the measured growth rate for 4HBZ is ~25% slower than for 
benzoate and 4-coumarate[64]. Thus, in theory, to produce 5 molecules of H2 per 4HBZ, 
the cell imports 45% more carbon and does not use the extra energy available from 
absorbing light to fix CO2 via CBB. The available excess energy is instead used to 
produce H2 gas. However, as with acetate metabolism, for maximum H2 production, 
MOFA analyses predicted absolute cessation of growth (Rows J, K, L, Fig. 3). 
Overall, when we examined H2 production via phototrophic metabolism of RP, our 
results consistently showed that production of H2 diminishes the activity of other 
important biological objectives such as optimum growth or metabolic efficiency (Figs. 1 
& 3).  This is consistent with previous proposals that H2 production competes with 
biomass generation for resources such as energy, protons, and electrons[63, 65].  Thus, 
while H2 production can serve as an electron sink similar to CBB; the important 
difference between them is that the latter conserves cellular resources while the former 
(due to absence of uptake hydrogenase activity[66] in RP) wastes it. 
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It appears that expression of nitrogenase automatically results in H2 production as long as 
the redox state of the system provides the needed reducing agents[63, 67].  To lower the 
cost of nitrogenase activity, RP regulates nitrogenase expression through nitrogen sensing 
and post-translational modification[68].  We expect that under normal (i.e., not nitrogen-
limited) conditions, nitrogenase activity is extremely deleterious to cellular growth as 
well as a number of other cellular objectives.  The enzyme’s main function is to fix 
nitrogen under limiting conditions, and given the importance of this task, we hypothesize 
that it has a very high affinity for its essential substrates, namely reduced ferredoxin and 
protons. In support of this, computational analyses have shown that the active site of the 
nitrogenase enzyme has more affinity for protons and electrons than the platinum-based 
catalysts that are used for abiotic production of H2[69]. Hence, if nitrogenase is 
expressed, irrespective of the primary objective of the cellular metabolism, it will siphon 
reduced ferredoxin and protons from other important metabolic processes and (depending 
on the redox state of the system) produce H2.   
However, these resources are essential for a variety of other important functions. This 
could explain why layers of transcriptional control (e.g., nifA[70]) and post-translational 
regulation exist to tightly control nitrogenase activity. 
Conclusions 
We used a multi-objective metabolic flux analysis approach, MOFA, to describe 
phototrophic metabolism of Rhodopseudomonas palustris; simultaneously examining 
more cellular objectives than any previous metabolic flux analysis study.  Our results 
indicate that the rate of light absorption limits cellular growth.  While our analyses 
indicate that RP primarily optimizes growth, ATP production, and metabolic efficiency, 
they also suggest that RP’s phototrophic metabolism is energy limited and this has 
defined the order of importance of these objectives.  Our results show that during LN 
phototrophic metabolism in RP, optimum allocation of resources and ATP production are 
more important than growth.  Our results also hint at a preference for a fourth cellular 
objective during phototrophic growth, i.e., production and excretion of reduced carbon 
compounds that may be used as an energy source during dark periods. We also found that 
proton metabolism plays a key role in shaping the observed growth phenotypes.  Under 
anaerobic conditions, the ratio of carbon, oxygen and hydrogen of RP’s carbon source in 
comparison to its biomass, and the overall carbon efficiency of phototrophic metabolism, 
determines whether the system prefers a more basic or acidic medium for growth.        
  

Methods 
Metabolic network reconstruction 
Our metabolic network reconstruction for Rhodopseudomonas palustris (model 
iAN1128) is based on the annotated genome of Rhodopseudomas palustris CGA009[42]. 
Of the 4836 predicted genes present in the genome, 1514 are related to cellular 
metabolism and biosynthesis. Our model accounts for the activity of 1128 of these genes 
(75%), resulting in 1000 enzymatic reactions. Additional literature surveys identified the 
activity of 37 local orphan enzymes (13-critical for biomass production, 20-based on 
literature, 4-pathway hole-filling) and 14 non-enzymatic reactions, resulting in a final 
model of 1037 reactions and 949 metabolites.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2018. ; https://doi.org/10.1101/430751doi: bioRxiv preprint 

https://doi.org/10.1101/430751
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

In cases where the roles of essential regulatory genes were known, such as the need for 
hbaR (RPA0673) and aadR (RPA4234) for growth with 4-hydroxybenzoate as the carbon 
source[71, 72], these associations were incorporated in the model’s gene-protein-reaction 
(GPR) basis. But for situations where deletion of a gene reduces RP’s growth rate only 
under specific media conditions (e.g., badR (RPA0655) mutants grow slowly on 
benzoate[73]), then the gene was not included in the GPR. 
The biomass equation for RP was developed using a variety of data sources.  The overall 
breakdown of cellular components is drawn from McKinlay and Harwood[48]. The 
amino acid, nucleotide, cofactors, carotenoids and phospholipid composition of the 
biomass are unique to RP.   It has been shown that the composition of RP’s cellular 
membrane changes when the cell transitions between dark-aerobic environments to LN 
environments[74, 75]. We implemented this change in our model by developing two 
separate biomass compositions, with bacteriochlorophyll composition of LN biomass 
drawn from Firsow et al[76] and composition of lipids and fatty acids (both dark and 
light conditions) drawn from Wood et al[74]. The composition of the polysaccharide 
moiety of lipopolysaccharides is from Weckesser and Drews[77]. Although in most 
photosynthetic organisms, genes for carotenoid biosynthesis are simultaneously 
expressed with other genes involved in chlorophyll biosynthesis and light harvesting 
process[78], and overall carotenoid concentrations greatly increase between dark and 
light conditions[79], we did not remove carotenoids from the biomass composition in 
dark aerobic conditions. This is because carotenoids have other functions in dark 
conditions, such as quenching free radicals and roles in overall cellular response to 
environmental stress [80].   
It is known that oxygen is not required for the oxidative reactions that are involved in 
biosynthesis of carotenoids, different forms of quinones, nicotinates, and 
nicotinamides[81-83]. However, the enzymes associated with these anaerobic 
transformations are not known. In our RP model, anoxygenic reactions for production of 
these compounds were drawn from the Model SEED database[84], and were used as 
orphan reactions without any GPR association. 
One significant challenge encountered during the course of our RP GSM development 
was the unique structure of RP’s Lipid A. The lipid A base of lipopolysaccharides (LPS) 
in RP has been shown to be composed of 2,3-diamino-2,3-dideoxyglucose[85]; however, 
the metabolic pathway for production of this compound is unknown. We used microarray 
analyses to measure the expression of genes known to be associated with usual pathways 
of LPS production to test whether common pathways for glucosamine-based lipid A 
synthesis were active in RP. Our analyses showed that most of these genes were 
prominently expressed in RP. Given this information, we used a number of in silico 
methods such as AS2TS[86] protein structure modeling tool and tools for identification 
of catalytic sites[87] and protein function predictions (CATSID)[88] to assess whether 
any of these enzymes could catalyze production of diamino-glucose. However, based on 
our analyses of RP proteins, we could not find any enzyme able to catalyze the required 
chemical reactions. 
Our model’s biomass has an elemental composition of CH1.93O0.54N0.22. This formula is 
somewhat different from that measured for the elemental composition of RP strain 42OL 
(CH1.8O0.38N0.18)[89]. However, the model’s biomass is closer in composition and degree 
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of reduction per carbon mole (k=4.19) to the “standard” biomass formula of 
CH1.8O0.5N0.2[90] (k=4.2) than the composition for strain 42OL (k=4.5). Hence for our 
simulations the overall formula for conversion of acetate to biomass is: 

CH1.5O + 0.05 H+ + 0.17 NH4+�0.76 CH1.93O0.54N0.22 + 0.29 H2O + 0.06 CO2 + 0.18 CHO (5) 
We set the value for non-growth associated maintenance ATP usage to that previously 
used for Escherichia coli (7.6 mmol/gDW h-1)[91]. Variation of this value does not 
change the outcome of metabolic simulations since changing the rate of light absorption 
will account for any increase or decrease in this value. 
We curated the model extensively to ensure absolute mass balance, including proper 
proton balance under physiological pH values.  We also imposed the loop law on the 
model and eliminated all thermodynamically infeasible type III extreme pathways[92]. 
For the preprint, the model is included as an excel file with the supplementary materials.  
Please contact the corresponding author for an SBML version of the model.  An SBML 
file of the model will be included with the Supplementary Material upon publication.  At 
that time, the model can be also downloaded from bbs.llnl.gov/AliNavid.html and 
EMBL-EBI’s Biomodels Database[93]. 
Comparing the predicted metabolic phenotypes with experimental observations validated 
the model. We examined the model’s ability to consume a variety of different carbon 
sources as reported in the literature[40, 94]. It is known that strains of RP can consume a 
large array of different aromatic compounds[95-101]. However, while the mechanism for 
breakdown of the common intermediate in the process of anoxic aromatic catabolism 
(i.e., benzoyl-coa) [71, 102-107] has been extensively examined, the enzymatic process 
and associated genes for breakdown of some parent compounds are not known.  
Furthermore, strain CGA009 cannot consume some of the aromatic compounds that other 
strains catabolize.  For example, while strain CGA009 cannot use 3-chlorobenzoate[108],  
RP strain RCB100 uses this compound as a carbon source[109]. Thus, our model only 
accounts for metabolisms of aromatic compounds whose degradation pathways have been 
identified (benzoate, 4-hydroxybenzoate, phenol, cresol, coumarate, protocatechoate, 
vanillate, phenol, and cinnamate).  

Flux Balance Analysis 
The FBA modeling approach uses a genome-scale metabolic reconstruction as its basis.  
The reconstruction is developed using elementary functional information derived from 
annotated genomes and available knowledge of enzymology.  The reconstruction of an 
organism’s metabolic reactions is represented as a stoichiometric matrix, S(m×n), where 
m is the number of metabolites and n the number of different reactions.  Applying the 
assumptions of mass balance and metabolic steady-state, the following set of linear 
equations govern the system’s behavior: 

!"#
!$
= ∑ 𝑆()𝜈)) = 0, 

where Xi is the concentration of metabolite i.  For FBA, other limitations are imposed on 
the system based on experimental studies, including a limit on the amount of flux that 
courses through a reaction, as well as constraints on the amount of nutrients imported, and 
the waste products secreted from the system.  These constraints are formulated as:   

𝛼 ≤ 𝜈( ≤ 𝛽, 
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𝜒 ≤ 𝑏( ≤ 𝜑, 
where bi and ni are the export/import flux of metabolite species i, and the flux through 
internal reaction i respectively, and α, β, χ, and φ are the lower and upper limits for these 
fluxes.  Finally, FBA utilizes linear programming to determine a feasible steady-state flux 
vector that optimizes an objective function, most commonly chosen to be the production 
of biomass, i.e. cellular growth.  FBA was used with our RP GSM to analyze single gene 
knockout phenotypes for all the genes in the model.  Several reviews[110, 111] provide 
detailed description of this process. 
 
GX-FBA 
In order to assess differences in RP metabolism when growing on aliphatic and aromatic 
carbon sources, we used the GX-FBA modeling methodology[59] with available gene-
expression measurements[58] for RP growing on different carbon sources.  We combined 
mRNA expression data with a constraint-based framework using the multi-step approach 
previously detailed for GX-FBA[59].  Note that, for our analyses we chose to only take 
into account gene-expression changes of at least 50% (±0.5 fold change).  
 
A brief description of GX-FBA steps is: 

1. Generate the flux distribution 𝜈(3 for the starting condition (1) using an Interior 
Point optimization algorithm with biomass growth or any other appropriate goal 
as the objective function. 

2. For nutritional constraints associated with the post-transition environment 
(condition (2)), flux variability analysis (FVA)[112] with minimal flux for 
biomass production set to zero is utilized to calculate the lower and upper fluxes 
that each model reaction i ( and  respectively) can carry solely based on 
environmental limitations and network connectivity.  From these results, the mean 
possible flux value for each reaction ( ) and average flux carried by all active 
reactions ( ) is determined. 

3. Identify the set of reactions T for which an mRNA expression value can be 
associated. For protein complexes and reactions catalyzed by isozymes, the 
maximal up- or down-regulation value is used unless the mRNA expression 
values are inconsistent (mixture of up- and down-regulation). In the latter case, 
the reaction is excluded from T.   

4. Construct a new objective function: 
𝑍 = ∑ log89𝐶(;<=>?(∈A

B#
BC#

. 

If the flux value for condition 1 of a reaction i is zero, 𝜈(3and are set equal to the 
average value for all active reactions ( ).  For a more detailed description of this 
method see Navid and Almaas (2012)[59]. 

 

Catalytic site identification server 
The catalytic site identification (CATSID) web server[87, 88] rapidly identifies structural 
matches to a user-specified catalytic site among all Protein Data Bank proteins.  It also 
examines a user-specified protein structure or model to identify structural matches to a 

min
iv

max
iv

iv
allv

iv
allv
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library of catalytic sites. CATSID includes a database of pre-calculated matches between 
all Protein Data Bank proteins and the library of catalytic sites. The databank has been 
used to derive a set of theorized new enzymatic function annotations.  Matches and 
predicted binding sites can be visualized interactively online.  We used CATSID along 
with a number of other in silico methods for examining protein structure such as 
AS2TS[86] to determine if whether any of the enzymes encoded by RP genome could 
catalyze production of diamino-glucose, a key subunit of RP Lipid A. 
Multi-objective Flux analysis 
As with the effort by Nagrath et al.[20], our MOFA program uses the Normalized Normal 
Constraint (NNC) method[47] to map the n-dimensional Pareto front of the competing 
metabolic objectives.  NNC generates an even distribution of Pareto solutions on convex 
or non-convex Pareto frontiers for problems of n-objectives.  Additionally, NNC is usable 
for an arbitrary number of objectives and its results are entirely independent of the scales 
of the examined objectives scales.   

The mathematical representation of a generic multi-objective optimization problem is: 

min
G
{𝑧3(𝑥), 𝑧8(𝑥),… , 𝑧N(𝑥)}, (𝑛 ≥ 2) 

subject to: 

𝑔)(𝑥) ≤ 0, (1 ≤ 𝑗 ≤ 𝑟)      (a) 

ℎX(𝑥) = 0, (1 ≤ 𝑘 ≤ 𝑠)      (b) 

𝑥[ ≤ 𝑥( ≤ 𝑥\, (1 ≤ 𝑖 ≤ 𝑛G).         (c) 
Vector x denotes the design variables (fluxes) and zn denotes the nth objective function.  
Equations a-c denote the inequality, equality and side constraints. 
NNC can be briefly described as a method where an investigator’s choice of a set of n 
objectives defines an n-dimensional volume in which all Pareto solutions to the problem 
are found.  Next, n anchor points are identified.  Anchor Points are feasible solutions, in 
the objective space, that correspond to the best possible values for respective individual 
objectives.  The values of the anchor points are normalized to eliminate deficiencies 
associated with scales of individual objectives.  The solution space volume is then 
reduced through the use of an n-dimensional “Utopia” hyperplane.  The Utopia plane is 
defined such that it contains all n anchor points.  Finally, a set of evenly distributed points 
on the Utopia hyperplane serve to constrain the all but one of the objectives under 
consideration.  Solving for the optimal value of the lone objective at each one of these 
points will result in calculation of a Pareto solution. For a full mathematical description 
of NNC see the manuscripts by Dr. Achille Messac and coworkers[47, 113]. 
It is interesting to note that Shoval et al.[49] recently showed that best trade-off 
phenotypes for any organism are the weighted averages of archetypes.  In the NNC 
method anchor points represent these archetypes.  Results from Shoval et al. also indicate 
that experimentally observed phenotypes are contained within simple geometric shapes 
that are akin to the Utopia line, plane, or hyper-plane (depending on the dimension of 
MO analysis) in NNC – i.e., the geometric space defined by the anchor points.  

Analysis of growth-related pH changes in the medium 
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Rhodopseduomonas palustris CGA009 was grown in modified photosynthetic 
medium[114] with low phosphate under anaerobic conditions. To observe how pH of the 
growth media was affected by bacterial growth on various carbon sources, we lowered 
the phosphate concentration to 20% (5 mM) of the original concentration and adjusted 
the initial pH to 6.7 prior to cell inoculation. An organic source of acetate (10 mM), 
benzoate (3 mM), 4-hydroxylbenzoate (2.2 mM) or 4-coumarate (2 mM) was provided as 
the sole carbon source. Anaerobic cultures were placed 20 cm away from a 60 W 
incandescent light bulb under constant light, and optical density (OD at 660 nM) was 
monitored to calculate doubling time.  The pH of the spent media was measured after 
cultures reached late exponential phase.  Three biological replicates were included for 
each condition. 
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Aromatic 
substrate 

Predicted 
minimum 

doubling time 
(hours) 

Measured 
doubling time 

(hours)[64] 

Rate of 
substrate import 
(mmol/gDW.hr) 

Percent of 
imported 

carbon as CO2 

4-Coumarate 
4HBZ 
Benzoate 

9 
8.8 
8.7 

9.4 
12 
9.3 

0.33 
0.44 
0.43 

4.6 
8 
3 

 
Table 1.  Summary of model predicted characteristics of light anaerobic mixotrophic 
metabolism of three aromatic compounds.  In each case, the model predicted doubling time 
is smaller than the measured value.  To achieve the theoretical maximum growth rates, the 
cell must extensively use rTCA (a carbon inefficient pathway) to fix CO2.   
 

 
 
Figure 1.  Heat map of the 8-dimensional Pareto front from MOFA analysis (objectives:  
growth, carbon fixation/carbon efficiency, production of some small organic byproduct 
(succinate and a-ketoglutarate), and H2 production) of anaerobic mixotrophic metabolism 
of acetate in R. palustris.  The figure on left displays 1719 unique Pareto-optimal 
solutions identified during our analysis.  In the right panel, select Pareto-optimal 
solutions from same MOFA study are highlighted for discussion. Each biological 
objective was examined at intervals equaling 1/5 maximum normalized value.  The 
analyses show that the observed growth rate (E) is smaller than the maximum theoretical 
growth rate (A) in a carbon-limited system with unlimited light absorbing capability.  It 
also shows that H2 production competes with growth pathways for resources and that 
maximum theoretical H2 production (G) would result in cessation of growth.  This result 
is supported by experimental observations[63]. 
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Figure 2.  GX-FBA predicted change in metabolic pathway activity in 
Rhodopseudomonas palustris after changing the carbon source from 4-coumarate to 
succinate.  The transition leads to reduced carbon fixation via CBB.  Blue=flux decrease, 
red=flux increase, green=flux did not increase or decrease by at least a factor of 2. The 
graph is made using the iPath2 program[115] and the width of the lines (w) is set to: 𝑤 =
20 + log3a b

c#
deff

c#
ghiejk.  If the calculated w£0 for sake of being able to notice the change 

w=1. 
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Figure 3.  Select Pareto-optimal solutions from the MOFA analysis of growth, carbon 
fixation/carbon efficiency and H2 production in RP when growing on a variety of 
different aromatic compounds.  The analyses show that although the observed 
metabolisms of different compounds (D, E & F) are lower than the predicted maximum 
growth rates, they use lower amounts of carbon and fix greater amounts of CO2.  As with 
aliphatic metabolism, maximum production of H2 results in cessation of growth and full 
oxidation of the carbon source (G, H & I).  The complete set of Pareto solutions are 
available in the supplementary materials (Figure S1). 
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Figure 4.  Experimentally measured changes in pH of the growth medium following 
anaerobic metabolism of 4-hydroxybenzoate, acetate, and benzoate. 
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