Identification and *in silico* analysis of the origin recognition complex in the human fungal pathogen Candida albicans Sreedevi Padmanabhan¹, Kaustuv Sanyal^{2*}, Dharani Dhar Dubey^{1*} ¹Molecular Biology Laboratory, Department of Biotechnology, Veer Bahadur Singh Purvanchal University, Jaunpur 222 003, Uttar Pradesh, India, ²Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India. * Corresponding author Email address: sanyal@jncasr.ac.in; dddubey2003@gmail.com Telephone number: 91-80-22082878; 91-9453362949 Fax number: 91-80-22082766

19 Abstract

20 DNA replication in eukaryotes is initiated by the orchestrated assembly and association of initiator proteins (heterohexameric Origin Recognition Complex, ORC) on the replication 21 origins. These functionally conserved proteins play significant roles in diverse cellular processes 22 besides their central role in ignition of DNA replication at origins. While *Candida albicans*, a 23 24 major human fungal pathogen, is an ascomycetous, asexual, diploid budding yeast but it is significantly diverged from a much better studied model organism Saccharomyces cerevisiae. 25 The components of the DNA replication machinery in C. albicans remain largely 26 27 uncharacterized. Identification of factors required for DNA replication is essential for understanding the evolution of the DNA replication machinery. We identified the putative ORC 28 29 homologs in C. albicans and determined their relatedness with those of other eukaryotes including several yeast species. Our extensive in silico studies demonstrate that the domain 30 31 architecture of CaORC proteins share similarities with the ORC proteins of S. cerevisiae. We dissect the domain organization of ORC (trans-acting factors) proteins that seem to associate 32 with DNA replication origins in C. albicans. We present a model of the 3D structure of CaORC4 33 to gain further insights of this protein's function. 34

35 Introduction

36 DNA replication in eukaryotes is initiated by the orchestrated assembly and association of 37 initiator proteins on the replication origins. The hunt for initiator proteins in higher eukaryotes 38 picked up pace after the discovery of the Origin Recognition Complex (ORC) comprising of six 39 protein subunits of the ORC1-6 complex in budding yeast¹. Extensive studies in other organisms 40 showed that the initiator ORC proteins are functionally conserved in all eukaryotes and the

41 association of ORC proteins with DNA replication origins is critical for initiation of DNA replication, a fundamental process of life. The replicators, occupied by ORC proteins, fire 42 asynchronously in S phase. Replicators in different organisms have widely variable DNA 43 44 sequence requirements. In some organisms no obvious DNA sequence requirements could be detected. The sequential assembly of the pre-replication complex (pre-RC) proteins on the 45 origins is mediated by ORC. ORC orthologs have been identified in many eukaryotes like 46 Schizosaccharomyces pombe, Drosophila melanogaster, Xenopus laevis, and humans. Genetic 47 and biochemical investigations demonstrate the ORC proteins of these organisms to be essential 48 for DNA replication initiation². Although the replication origins in higher eukaryotes do not 49 share a consensus sequence as in bacteria or budding yeast, the proteins that are recruited to 50 origins in most metazoans are similar to those in bacteria and yeast suggesting replication-51 associated proteins are evolutionarily conserved³⁻⁴. ORC-mediated ATP hydrolysis is essential 52 for recruiting MCM (Mini Chromosome Maintenance) proteins⁵ which subsequently act as 53 54 helicases and unwind DNA double helix to facilitate initiation of DNA replication. Besides playing a central role in DNA replication initiation at discrete origin sites, ORC 55 proteins are also involved in a variety of cellular processes like heterochromatin formation, 56 transcriptional regulation, S-phase checkpoint regulation, mitotic chromosome assembly, sister 57 chromatid cohesion, cytokinesis, ribosome biogenesis and tissue specific gene regulation. ORC 58 mutations are seen in various human diseases⁶ such as Meier–Gorlin syndrome^{7,8}, EBV 59 (Epstein–Barr virus)-infected diseases⁹, American trypanosomiasis and African 60

61 $trypanosomiasis^{10}$.

62 There has been a wide prevalence of yeast infections over the years with Candida species that can cause superficial to fatal systemic infections. These fungal infections can be fatal for 63 immunocompromised individuals where the mortality rate is even higher¹¹. Availability of a 64 handful antifungal drugs and frequent isolation of drug-resistant isolates led to complications in 65 disease management and treatment procedures¹². Hence, to circumvent this malicious infection is 66 to find species-specific new drug targets to develop more effective and safer antifungals. C. 67 albicans is one such opportunistic fungal pathogens which is an asexual, diploid, budding 68 yeast¹³⁻¹⁴. Protein complexes involved in the DNA replication of C. albicans are not 69 characterized. As DNA replication is a rate limiting step in the propagation of the yeast and not 70 many anti-fungal drugs are available to curb *Candida* infection, in this study we sought to 71 identify and dissect the domain architecture of CaORC proteins with an aim to provide clues on 72 their evolutionary conservation/diversification across various species to explore their potential as 73 species-specific drug targets. 74

75 **Results**

76 Identification of preRC genes in *C. albicans* genome by *in silico* analysis

First, we identified the homologs of the preRC complex in *C. albicans*, determined relatedness of these proteins present in other species, compared the various domains such as the BAH domain, AAA+, AT-hook and Walker motifs in the ORC proteins of a number of species and predicted the structure of ORC4 in *C. albicans*, CaORC4. The CaORC1-6 genes were identified by a BLAST search with *S. cerevisiae* ScORC1-6 as the query sequences against the *C. albicans* genome database (CGD) (<u>http://www.candidagenome.org/cgi-bin/compute/blast-</u> sgd.pl) (Table 1 and Table 2).

84 ClustalW2 is a DNA or protein multiple sequence alignment program

85 for multiple sequences¹⁵. We performed a pair-wise amino acid sequence alignment of the

86 CaORC proteins with those of S. cerevisiae, S. pombe, Drosophila, Xenopus, Mouse and humans

individually and their respective clustalW scores are tabulated (Table 3). Although, in general,

the CaORC proteins show limited sequence similarities with their counterparts in various

species, CaORC1, 2 and 6 show maximum similarities to their *S. cerevisiae* counterparts while

90 CaORC3, 4 and 5 appear to be more similar to those of mammals which is evident from the

91 phylogenetic map (Figure 1A).

92 BAH domain in ORC proteins

The Expasy PROSITE consists of documentation entries describing protein domains,
families and functional sites as well as associated patterns and profiles to identify them. The
Expasy PROSITE tool predicts the presence of an evolutionarily conserved BAH_domain
spanning the region between 44th and 179th amino acids at the N-terminal of CaORC1 (Figure
1B). The BAH domain is involved in protein-protein interactions and has been found to be
important in DNA methylation, replication and transcriptional regulation¹⁶.

99 AAA+ domains in CaORC proteins

<u>A</u>TPases <u>a</u>ssociated with various cellular <u>a</u>ctivities (AAA+) domains¹⁷⁻¹⁸ are those that are activated by ATP binding and inactivated by ATP hydrolysis¹⁹⁻²³. The ATPase activity is indispensable for the origin-ORC association and henceforth for the establishment of the preinitiation complex. Preventing ORC ATP hydrolysis inhibits repeated MCM2-7 loading⁵. CaORC1 and CaORC4, each contains a consensus AAA+ domain (420-571 a.a. in CaORC1; 139-318 a.a. in CaORC4) (Figure 1B, 1C and 1D), which belongs to the AAA+ family that is pivotal to the initiation of eukaryotic DNA replication. There is an amino acid residue Tyr¹⁷⁴ in human ORC4 (Tyr²³² in *S. cerevisiae*) that is found between the Walker B motif and sensor I of the AAA+ domain which may be responsible for interacting with a conserved arginine residue on an adjacent helix structure of ORC4^{2, 6, 21,23-26}. This residue is present in CaORC4 (Tyr²⁷³) too probably doing a similar function.

Although the ScORC1-ORC5 all have AAA+ domains, there is a variation among the 111 subunits with respect to the catalytic core motifs within the Walker A and B motif regions both 112 within and between the species. It is reported with experimental evidence that only the ScORC1 113 and ScORC5 can bind ATP, of which only ScORC1 has a perfect signature to the Walker B 114 motif. By consensus, it is considered that the ORC1 would be the prime ATPase of all the 115 eukaryotes examined so far^{25, 26}. In metazoans too, although the ORC1, ORC4 and ORC5 bind 116 117 ATP, the Walker A signature is found to have perfect match with ORC4. A similar pattern is observed in CaORC proteins too demonstrating their close homology with the higher eukaryotes. 118 The Walker A motifs in ORC5 seem to be diverged (Table 4). 119

120 Walker A and B motifs in CaORC proteins

121 The motif GXXXXGKT (X, any residue) is a common nucleotide binding fold in the α - and 122 β -subunits of F1-ATPase, myosin and other ATP-requiring enzymes²⁷. This motif is present in 123 the shape of a loop around nucleotides and utilizes its highly conserved residues of lysine and 124 threonine to bind to their phosphate oxygen atoms. This consensus sequence of 125 GXXXXGKT(S), with serine substituting threonine in some cases, is more popularly known as 126 the Walker loop or P-loop (phosphate binding loop). The Walker B motif with the consensus

- sequence hhhhDE (a negatively charged residue followed by a stretch of hydrophobic a.a,,h) is
- essential for ATP hydrolysis. The Walker motifs are present in CaORC1, CaORC4 and CaORC5

	129	(Walker B is absent in CaORC5) (Table 4). Besides CaORC1, the perfect signature of the
131 Walker B motif (410-426 a.a) the amino acid sequences for which are shown in Table 5.	130	Walker motif is found in CaORC4 with a putative Walker A motif (147-153 a.a) and a putative
	131	Walker B motif (410-426 a.a) the amino acid sequences for which are shown in Table 5. These

- 132 motif signatures seem to be more closely related to the metazoan/higher eukaryotic sequences.
- 133 AT-hook motifs in CaORC proteins
- 134 AT hooks are DNA-binding motifs with a preference for A/T rich regions. These motifs
- are found in a variety of proteins, including the high mobility group (HMG) proteins. The AT-

136 hook is a small motif which has a typical sequence pattern centered on a glycine-arginine-proline

137 (GRP) tripeptide 28,29 . The importance of this short conserved sequence is that it is necessary and

sufficient for binding DNA and ori-ORC association. CaORC2 is found to have an AT-hook

139 motif (182-197a.a, Figure 1D, Table 6) indicative of its propensity to bind origins.

140 **PIP motif in CaORC proteins**

A conserved Proliferating Cell Nuclear Antigen (PCNA) binding motif called the PCNAinteracting protein (PIP) box (QXXMXXFFFY) is found in the CaORC1 protein (524-536 a.a).
Of the CaORC proteins, the PIP box is found to be unique to CaORC1.

144 MOD1 motif in CaORC3

Two independent domains in human ORC3, a coiled-coil domain at the N terminus and a second region containing a MOD1-interacting region (MIR; 213-218aa)³⁰, were found to be directly bound to the heterochromatin protein, HP1 α^{31} . A conserved peptide motif named MIR (MOD1 interacting region - PXVHH) which is essential for their interaction with MOD1, a serotonin-gated chloride channel that modulates locomotory behavior in *C. elegans*³² is found in CaORC3 protein (435-448 a.a).

Although the CaORC proteins share less amino acid sequence homology with the ORC proteins of *S. cerevisiae* and *S. pombe*, the other ORC associated proteins (MCM proteins) seem to have higher homology (Table 7). Interestingly, the predicted molecular weights of the ORC complexes are equal in these three yeasts (Table 8).

155 **PEST motif in CaORC proteins**

156 A PEST sequence is a peptide sequence that is rich in proline (P), glutamic

acid (E), serine (S), and threonine (T). This sequence is associated with proteins that have a short

intracellular half-life; hence, it is hypothesized that the PEST sequence acts as a signal

peptide for protein degradation. CaORC2 (130-172 a.a.) and CaORC3 (6-33 a.a.) contain PEST

160 motif. Analysis of PEST signals in human and mouse ORC proteins suggests that only ORC1 is

targeted for ubiquitination which is likely to hold good for all mammals³³. The domains of

162 CaORC proteins are compared with other eukaryotes and are tabulated in Table 6 and compared

163 with *S. cervevisiae* in Figure 1D. Recent studies have shown the evolution of the phospho

164 regulation pattern in replication proteins of various yeast species including C. $albicans^{34}$.

165 Evolutionary relationships of ORC proteins

Molecular Evolutionary Genetics Analysis (MEGA) is an integrated tool for conducting 166 sequence alignment, inferring phylogenetic trees, estimating divergence times, mining online 167 databases, estimating rates of molecular evolution, inferring ancestral sequences, and testing 168 evolutionary hypotheses³⁵. The evolutionary history was inferred using the Neighbor-Joining 169 method³⁶. The optimal tree with the sum of branch length = 29.06450731 is shown in Figure 1A. 170 171 The ORC1, ORC2 and ORC5 proteins from yeast to humans are found to have common nodes. Subsequently, the ORC proteins from the related species of *C. albicans* in the CTG clade were 172 also compared and a phylogenetic tree was constructed (Figure 2A). The time tree demonstrates 173

the diversification rate of these ORC proteins across the species of which ORC1 and ORC4 seem

to be older than their counterparts (Figure 2B). In order to understand the sequence identity of

the ORC sequences across various yeast species, Sequenceserver (<u>http://blast.wei.wisc.edu/</u>)^{37,38}

177 was used across 86 publicly available yeast genomes (Figure 3; Supplementary Table 1).

178 Structure prediction of CaORC proteins

179 Prediction of secondary structure using Phyre

Over the past few decades, a number of computational tools for protein structure prediction 180 have been developed. The protein homology/analogy recognition engine (Phyre) is one of the 181 widely used structure prediction systems providing a simple interface to results. The Phyre server 182 (http://www.imperial.ac.uk/phyre) uses a library of known protein structures taken from the 183 Structural Classification of Proteins (SCOP) database³⁹ and augmented with newer depositions in 184 the Protein Data Bank (PDB)⁴⁰. The sequence of each of these structures is scanned against a 185 non-redundant sequence database and a profile is generated and deposited in the 'fold library'. 186 The known and predicted secondary structure of these proteins is also stored in the fold library. 187 The popular web servers for fold recognition are Phyre, I-TASSER, SAM-T06, HHpred. 188 We used I-TASSER (Iterative Threading ASSEmbly Refinement⁴¹) for structure prediction 189 of CaORC proteins. Of all the CaORC proteins, CaORC4 was found to be one of the putative 190 candidates for further fine refinement studies of the protein structure due to its higher Cscore 191 (combined measure, See Methods section) which indicates a better confidence in predicting the 192 function using the template (Table 9). Hence, we proceeded for predicting the structure of 193 CaORC4 using Phyre. 194

195

197 Secondary structure and disorder prediction for CaORC4

The query sequence (CaORC4p) is scanned against the non-redundant sequence database and 198 a profile is constructed. Five iterations of PSI-BLAST are used to gather both close and remote 199 200 sequence homologs. The PSI-BLAST provides a means of detecting distance relationships between proteins. The pair-wise alignments generated by PSI-BLAST are combined into a single 201 alignment with the query sequence as the master. The secondary structure of CaORC4p is 202 predicted following profile construction. 203 Three independent secondary structure prediction programs are used in Phyre: Psi-Pred1⁴², 204 SSPro⁴³ and JNet⁴⁴. The output of each program is in the form of a three-state prediction: alpha 205 helix, beta strand and coil. Each of these three programs provides a confidence value at each 206 position of the query for each of the three secondary structure states. These confidence values are 207

averaged and a final, consensus prediction is calculated and displayed beneath the individual

209 predictions.

210 Fold recognition for CaORC4

The profile and secondary structure of CaORC4 is then scanned against the fold library using a profile–profile alignment algorithm detailed in⁴⁵. This alignment process returns a score on which the alignments are ranked. These scores are fitted to an extreme value distribution to generate an E-value. The top ten highest scoring alignments are then used to construct full 3D models of the CaORC4p (Figure 4A and Figure 4B).

Interactions of pre-RC proteins – SMART prediction

217 SMART (Simple Modular Architecture Research Tool) is a web-based tool

218 (<u>http://smart.embl.de/</u>) that allows rapid identification and annotation of protein domains and the

analysis of protein domain architectures. This provides the complete set of protein descriptions

220	allowing users to quickly find relevant information ⁴⁶⁻⁴⁷ . The predicted functional partners of the
221	preRC proteins in C. albicans are enlisted in the Table 10 and are also shown schematically in
222	the Figure 4C-H. In short, it is evident that although the size of the individual proteins in the
223	ORC complex across diverse yeast species is varied, the whole complex constitutes to ~412 KDa
224	(Table 8). Our in silico analysis suggests that although CaORC proteins share less sequence
225	homology with yeasts, Drosophila, Xenopus, mouse and humans (Table 7), some of the
226	characteristic functional motifs are retained in them (Figure 1D, Table 6). CaORC1 is found to
227	have the BAH domain and the PIP motif, CaORC2 has an AT-hook motif, and CaORC3 has a
228	MOD1-interacting region (MIR). The AAA ATPase is found in CaORC1 and CaORC4 and the
229	PEST motif is found in CaORC2 and CaORC3. We used Phyre to predict the secondary structure
230	and modeled the 3D structure of CaORC4 with walker A and B motifs and arginine finger motif.
231	We used SMART predictions to check the putative interactive partners of CaORC proteins of
232	which CaORC4 was found to have no direct interaction with any other CaORC protein.

233 Discussion

CaORC proteins (CaORC1-6) and their associated proteins were identified by a BLAST 234 235 analysis using the S. cerevisiae proteins as the query sequences in the Candida Genome Database (CGD). The phylogenetic analysis suggests that in spite of limited amino acid sequence 236 similarity with their counterparts in other organisms, the CaORC proteins share most of the 237 functional domains with them. Interestingly, the amino acid sequences of CaORC1, 2 and 4 238 239 share higher degree of similarities than CaORC3, 5 and 6 to those of S. cerevisiae. CaORC1, 4 and 5 tend to be homologous to the mammalian counterparts. Moreover, the CaORC proteins 240 241 are also compared across CTG clade and other yeast species to provide a robust roadmap for further comparative yeast subphylum analysis (Figure 2 and Figure 3). Of the other preRC 242

243 components compared here, Cdt1 has no apparent homolog in C. albicans, whereas, all other pre-RC proteins such as Cdc6 and Mcm2-7are very similar to their counterparts in other veasts. 244 The main function of ORC proteins is to associate specifically with origins and recruit 245 246 other factors including Cdc6 and MCM2-7 to form the preRC. In S. cerevisiae, the origins have a conserved stretch of 11 bp, the ARS consensus sequence, ACS, which is essential for ORC 247 binding and origin activity. The replication origins of C. albicans (based on limited available 248 data⁴⁸⁻⁵¹) appear to be similar to those of *S. pombe* and other higher eukaryotes in having no such 249 consensus sequence. In S. pombe, ORC4 binds with AT-rich origins via its 9 AT-hook motifs. 250 Moreover, the ORC-origin binding might be affected both by intrinsic factors such as the DNA 251 sequence that marks the ORC binding site and by extrinsic factors such as the chromatin 252 component that marks both the histone and non-histone proteins. The absence of conserved 253 sequences in C. albicans origins⁵⁰ along with our in silico analysis suggests that the CaORC-254 origin interactions would be largely chromatin dependent. In the genome-wide studies for 255 identification of replication origins in C. albicans by ChIP-microarray based approach using an 256 antibody against S. cerevisiae ORC complex, low nucleosome occupancy has been shown as 257 conserved landmark of replication origins in C. albicans⁵¹. 258

The BAH module found in several chromatin-associated proteins play important roles in gene silencing, replication and transcriptional regulation by promoting protein-protein interaction¹². The BAH domain of humanORC1 has been shown to bind to H4K20me2⁵² and abrogation of this binding causes impaired ORC1 loading onto origins, and cell cycle progression. The BAH domain present in CaORC1 along with the highly conserved basic residues (K-362 and R-367)⁵³ in its AAA domain is likely to play a key role in ORC-origin binding in *C. albicans*.

266	The AAA+ domains present in different ORC subunits (ORC1 and 5 in S. cerevisiae and
267	ORC1, 4, and 5 in metazoans) are important for the assembly of ORC at origins and those in
268	Cdc6 are critical for the loading of the MCM proteins (Table 6). Like metazoans, the CaORC
269	subunits 1, 4, and 5 and CaCdc6 containing AAA+ domains are likely to be engaged in ORC
270	assembly and consequent MCM recruitment although a perfect match to the Walker A and B
271	motifs are present only in CaORC4 (Table 4 and 5). In all tested organisms, ORC1 has been
272	found to be the major ATPase required for ORC assembly at origins. Experimental evidence
273	would be required to find out if some or all of these subunits are involved in ATP binding and
274	hydrolysis in C. albicans. Cdt1 helps in Cdc6 recruitment to origin bound ORC and is important
275	in cell cycle regulation of preRC assembly at origins and limiting replication to a single round
276	per cell cycle. The absence of a Cdt1 homolog in C. albicans suggests that this important task
277	may be accomplished by a different mechanism/factor (Table 6 and Table 7). The unique
278	presence of the PEST motif in CaORC2 and CaORC3 indicates that these components might be
279	degraded in a cell cycle specific manner facilitating ORC turnover. The unique sequence of nine
280	copies of AT hook motifs present in SpORC4 are critical for origin binding of ORC4 which is
281	ATP-independent in S. pombe ²⁴ . In S. cerevisiae, the origin binding of ORC is ATP-dependent
282	and the presence of single DNA-binding AT-hook motif (PRKRGRPRK) is identified in the
283	disordered regions of ScORC2 ¹⁹ . The presence of the small AT-hook motif in CaORC2 to be
284	another plausible motif for origin binding and their role in replication remains highly speculative.
285	Similarly, it remains elusive as to whether the presence of MIR domain in CaORC3 has any role
286	in silencing by binding to any heterochromatin component like HP1.
207	In Scarouising the SeORC proteins associate with origins in a sequence dependent

In *S. cerevisiae*, the ScORC proteins associate with origins in a sequence-dependent manner. Only ORC1, ORC2, ORC4 and ORC5 appear to make direct contacts to A and B1

289	domains of the replication origin ^{33, 54-55} . ScORC3 helps in forming the stable complex without
290	directly binding to the DNA whereas ORC6 does not bind to the DNA but helps in recruiting
291	multiple Cdt1 molecules ⁵⁶⁻⁵⁹ . The situation is very different in <i>Drosophila</i> cells where DNA
292	replication initiates at many sites, which are probably sequence independent, throughout the
293	genome at the same time ⁶⁰ . In contrast to ScORC6, which is not required for DNA binding,
294	DmORC6 is required for the DNA binding of DmORC and is an integral part of the DmORC
295	complex ⁶¹ . The DmORC6 alone has DNA binding activity, likely due to the predicted TFIIB-like
296	DNA binding domain in the smallest subunit ⁶² . DmORC binds DNA with little sequence
297	specificity. ORC proteins generally require ATP to interact specifically with origin DNA (except
298	in the case of SpORC). In all the species studied so far, ORC1, ORC4 and ORC5 contain
299	potential ATP binding sites. ATP hydrolysis by ORCs to regulate DNA binding is well studied in
300	ScORCs and DmORCs ^{26, 59} . The <i>in silico</i> predictions by Beltrao and colleagues ³⁴ showed the
301	increasing probability of CaORC2, CaORC4 and CaORC6 proteins to be phosphorylated by
302	Cdc28, a cyclin dependent protein kinase.
303	We were able to build the 3D protein structure of $C_{2}ORC_{4}$ only whereas the other

We were able to build the 3D protein structure of CaORC4 only whereas the other 303 304 CaORC proteins did not have good homology with the known PDB (Protein Data Bank) structures. From our *in silico* analysis of interactive studies, it is evident that CaORC3, CaORC5 305 and CaORC6 do not interact with the other ORC counterparts. It is possible that only CaORC1, 306 CaORC2 and CaORC4 would be involved in DNA binding during the process of DNA 307 308 replication and the other counterparts may aid in tethering or in conformational organization. CaCdc6 and Cdc54, the apparent common binding partners of CaORC1, CaORC2 and CaORC4 309 310 and many MCMs are also predicted to play important role(s) in preRC assembly and functioning. We also find a potential ATP binding site in CaORC4 which might help in the regulation of 311

312 origin binding. The mode of ORC assembly at origins in C. albicans might be different from that in other yeasts. The in silico detection of the presence of AAA+ ATPase and Walker motifs in 313 CaORC4 and its likely interaction with MCM proteins suggest that CaORC4 might be involved 314 in stable binding to origin DNA and loading MCM proteins to origins. While possibilities of a 315 physical association between CaORC4 and other CaORC proteins were not obvious, the role of 316 some unknown factors mediating ORC assembly in C. albicans is not ruled out. CDC6, CDC54 317 and MCM proteins interact with CaORC1, CaORC2 and CaORC4. In absence of a direct 318 interaction of CaORC4 with other ORC counterparts, these proteins might be mediating 319 interaction between them. Moreover, the absence of Cdt1 in C. albicans might provide an 320 additional role for CaORC4. 321

Recent studies demonstrate that besides the involvement of specific proteins that control 322 DNA replication, some enzymes with primary functions that are involved in various other 323 324 processes can also play a vital role in the regulation of genome duplication. There seems to be a direct link between central carbon metabolism and DNA replication regulation from prokaryotes 325 ⁶³⁻⁶⁵ to eukaryotes including humans⁶⁶⁻⁶⁷. A recent analysis⁶⁶ demonstrates that partial silencing 326 327 of genes encoding for the glycolytic and TCA enzymes affects the entry of human fibroblasts into the S-phase. It is also reported that ScORC proteins interact with some of the metabolic 328 genes that are associated with replication origins⁶⁸. One such example is the hexokinase (HXK2) 329 gene which at a decreased level causes substantial impairment in DNA synthesis. Our 330 preliminary reports from Co-IP studies (data not shown) also showed an interaction of CaORC4 331 with HXK2 by which it is speculated that CaORC4 might play a role in the regulation of central 332 carbon metabolism besides its cardinal role of DNA replication. This can be further supported by 333 the induced expression of CaORC4 in response to alpha pheromone in SpiderM medium⁶⁹. 334

335	From the above observations, we hypothesize that CaORC4 might be less tightly
336	associated with the core preRC complex but involved in cell cycle regulation and DNA
337	checkpoint activation. It is quite possible that CaORC4 may not be bound to chromatin
338	throughout the cell cycle as seen in <i>Drosophila</i> and yeast ³³ . Recent studies advocate a concerted
339	interaction between ORCs, nucleosomes and replication origin DNA that stabilizes ORC-origin
340	binding in yeast. The atomic force microscope (AFM) studies show that ORC establishes its
341	origin interaction by binding to both nucleosome-free origin DNA and neighboring nucleosomes
342	that are species-specific ⁷⁰ .

Recent reports suggest that Drg1, an AAA-ATPase protein is the potential target for the drug diazaborine. This drug is demonstrated to block ribosome biogenesis in yeast⁷¹. Similarly, a valosin containing AAA-ATPase protein, P97 is found to be a therapeutic target for CB-5083 in the cancer treatment⁷². A study on Trypanosoma ORC has raised possibilities on identifying novel drug targets demonstrating the drug potential of the pre-replication machinery⁷³.

Our *in silico* studies would form the basis for understanding the domain architecture and further characterization of CaORC proteins which can be validated by *in vitro* studies. It may ultimately provide clues about the potential drug targets helping curb Candida infection at the step of DNA replication.

352 Methods

353 Annotation of C. albicans pre-RC genes

The genome of *C. albicans* (http://www.candidagenome.org/) was searched for homologs of pre-RC complex genes using BLAST⁷⁴. Alignment of pre-RC gene sequences from Candida and its homologs in other eukaryotic organisms was carried out using the ClustalW algorithm¹⁵.

- 357 The pairwise ClustalW scores are calculated by the number of identities between the two
- sequences, divided by the alignment length in terms of percentage.
- 359 **Phylogenetic analysis**
- 360 Phylogenetic analysis was performed with the MEGA4 $program^{75}$.
- 361 *In silico* analysis
- 362 The putative protein sequences whose theoretical characteristics were obtained using
- 363 several programs in the ExPASy (Expert Protein Analysis System) server of the Swiss Institute
- of Bioinformatics (www.expasy.ch/tools/). Protein sequences were entered into MotifScan
- 365 (pattern searches), ProDOM (protein domain identification), Interpro (protein domain and pattern
- 366 search identification), NetPhos (prediction sites for phosphorylation) and PESTfind
- 367 (identification of PEST sequences), SMART (prediction of protein domain architecture) and
- 368 Phyre (secondary structure prediction). To determine the sequence identity of CaORC across 86
- 369 diverse publicly available yeast databases, a TBLASTN was performed in the Sequenceserver
- (http://blast.wei.wisc.edu/) with CaORC proteins as the query sequence³⁷⁻³⁸ and the percent
- identity was plotted against the species using Graphpad Prism 76 .
- 372 Phyre structure prediction parameters

373 Cscore^{GO} is a combined measure for evaluating global and local similarity between query 374 and template protein. This score ranges from 0-1 where a higher value indicates a better 375 confidence in predicting the function using the template. Cscore^{LB} is the confidence score of 376 predicted binding site of the protein with values ranging between 0-1. Higher the score more 377 reliable is the ligand binding prediction.

378 **References**

379	1.	Bell, S. P. & Stillman, B. ATP-dependent recognition of eukaryotic origins of DNA
380		replication by a multiprotein complex. <i>Nature</i> 357 , 128-134, doi:10.1038/357128a0
381		(1992).
382	2.	Bell, S. P. & Dutta, A. DNA replication in eukaryotic cells. Annu Rev Biochem 71, 333-
383		374, doi:10.1146/annurev.biochem.71.110601.135425 (2002).
384	3.	DePamphilis M. L. Replication origins in metazoan chromosomes: factor fiction?
385		<i>Bioessays</i> 21, 5-16, doi: 10.1002/(SICI)1521-1878(199901)21:1<5::AID-
386		BIES2>3.0.CO;2-6 (1999).
387	4.	Gilbert D. M. Making sense of eukaryotic DNA replication origins. Science 294, 96-100,
388		doi:10.1126/science.1061724 (2001).
389	5.	Bowers, J. L., Randell, J. C. W., Chen, S. Y. & Bell, S. P. ATP hydrolysis by ORC
390		catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. <i>Mol Cell</i> 16 ,
391	~	967-978, doi:DOI 10.1016/j.molcel.2004.11.038 (2004).
392	6.	Shen, Z. The origin recognition complex in human diseases. <i>Bioscience Rep</i> 33 , 475-483,
393	-	doi:ARTN e00044 10.1042/BSR20130036 (2013).
394	7.	Bicknell, L. S. et al. Mutations in the pre-replication complex cause Meier-Gorlin
395	0	syndrome. <i>Nat Genet</i> 43 , 356-U156, doi:10.1038/ng.775 (2011).
396	8.	Bicknell, L. S. et al. Mutations in ORC1, encoding the largest subunit of the origin
397		recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin
398	0	syndrome. <i>Nat Genet</i> 43 , 350-U103, doi:10.1038/ng.776 (2011).
399	9.	Tao Q, Young L.S, Woodman C.B et al. Epstein-Barr virus (EBV) and its associated
400		human cancers - Genetics, epigenetics, pathobiology and novel therapeutics. <i>Frontiers in</i>
401	10	Bioscience 11,2672-2713 (2006).
402	10	. Dang, H. Q. & Li, Z. The Cdc45.Mcm2-7.GINS protein complex in trypanosomes
403		regulates DNA replication and interacts with two Orc1-like proteins in the origin
404		recognition complex. <i>J Biol Chem</i> 286 , 32424-32435, doi:10.1074/jbc.M111.240143
405	11	(2011). Low C. V. & Pototoin, C. Emerging fungel infections in immunocompromised notionts
406	11.	Low, C. Y. & Rotstein, C. Emerging fungal infections in immunocompromised patients.
407		<i>F1000 Med Rep</i> 3 , 14, doi:10.3410/M3-14 (2011).
408	12	. Whaley, S. G. et al. Azole Antifungal Resistance in Candida albicans and Emerging Non-
409		albicans Candida Species. Front Microbiol 7, doi:ARTN 2173
410		10.3389/fmicb.2016.02173 (2017).
411	13	. Riggsby, W. S., Torres-Bauza, L. J., Wills, J. W. & Townes, T. M. DNA content, kinetic
412		complexity, and the ploidy question in Candida albicans. Mol Cell Biol 2, 853-862
413		(1982).
414	11	. Kabir, M. A., Hussain, M. A. & Ahmad, Z. Candida albicans: A Model Organism for
	14	
415		Studying Fungal Pathogens. <i>ISRN Microbiol</i> , 538694 , doi:10.5402/2012/538694 (2012).
416	15	. Thompson, J.D, Higgins, D.G, Gibson T.J. CLUSTAL W: improving the sensitivity of
417		progressive multiple sequence alignment through sequence weighting, position-specific
418		gap penalties and weight matrix choice. Nucleic Acids Res. 22,4673-4680 (1994).

419	16. Callebaut, I., Courvalin, J. C. & Mornon, J. P. The BAH (bromo-adjacent homology)
420	domain: a link between DNA methylation, replication and transcriptional regulation.
421	Febs Lett 446, 189-193, doi:Doi 10.1016/S0014-5793(99)00132-5 (1999).
422	17. Duderstadt, K. E. & Berger, J. M. AAA plus ATPases in the initiation of DNA
423	replication. Crit Rev Biochem Mol 43, 163-187, doi:10.1080/10409230802058296
424	(2008).
425	18. Wigley, D. B. ORC proteins: marking the start. Curr Opin Struc Biol 19, 72-78,
426	doi:10.1016/j.sbi.2008.12.010 (2009).
427	19. Duncker, B. P., Chesnokov, I. N. & McConkey, B. J. The origin recognition complex
428	protein family. Genome Biol 10, doi:ARTN 214 10.1186/gb-2009-10-3-214 (2009).
429	20. Kawakami, H. & Katayama, T. DnaA, ORC, and Cdc6: similarity beyond the domains of
430	life and diversity. Biochem Cell Biol 88, 49-62, doi:10.1139/O09-154 (2010).
431	21. Bell SP. The origin recognition complex: from simple origins to complex functions.
432	Genes Dev. 16, 659-672, doi: 10.1101/gad.969602 (2002).
433	22. Guernsey, D. L. et al. Mutations in origin recognition complex gene ORC4 cause Meier-
434	Gorlin syndrome. Nat Genet 43, 360-364, doi:10.1038/ng.777 (2011).
435	23. Iyer, L. M., Leipe, D. D., Koonin, E. V. & Aravind, L. Evolutionary history and higher
436	order classification of AAA+ ATPases. J Struct Biol 146, 11-31,
437	doi:10.1016/j.jsb.2003.10.010 (2004).
438	24. Chuang, R. Y. & Kelly, T. J. The fission yeast homologue of Orc4p binds to replication
439	origin DNA via multiple AT-hooks. Proc Natl Acad Sci USA 96, 2656-2661 (1999).
440	25. Speck, C., Chen, Z., Li, H. & Stillman, B. ATPase-dependent cooperative binding of
441	ORC and Cdc6 to origin DNA. Nat Struct Mol Biol 12, 965-971, doi:10.1038/nsmb1002
442	(2005).
443	26. Klemm, R. D., Austin, R. J. & Bell, S. P. Coordinate binding of ATP and origin DNA
444	regulates the ATPase activity of the origin recognition complex. Cell 88, 493-502 (1997).
445	27. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in
446	the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring
447	enzymes and a common nucleotide binding fold. EMBO J 1, 945-951 (1982).
448	28. Reeves, R. & Nissen, M. S. The A.T-DNA-binding domain of mammalian high mobility
449	group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J
450	<i>Biol Chem</i> 265 , 8573-8582 (1990).
451	29. Aravind, L. & Landsman, D. AT-hook motifs identified in a wide variety of DNA-
452	binding proteins. Nucleic Acids Res 26, 4413-4421 (1998).
453	30. Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse
454	cells: Interaction between chromatin assembly factor 1 and HP1 proteins. Mol Cell 4,
455	529-540, doi:Doi 10.1016/S1097-2765(00)80204-X (1999).
456	31. Prasanth, S. G., Shen, Z., Prasanth, K. V. & Stillman, B. Human origin recognition
457	complex is essential for HP1 binding to chromatin and heterochromatin organization. P
458	Natl Acad Sci USA 107, 15093-15098, doi:10.1073/pnas.1009945107 (2010).
459	32. Ranganathan, R., Cannon, S. C. & Horvitz, H. R. MOD-1 is a serotonin-gated chloride
460	channel that modulates locomotory behaviour in C. elegans. Nature 408, 470-475 (2000).
461	33. Li, C. J. & DePamphilis, M. L. Mammalian Orc1 protein is selectively released from
462	chromatin and ubiquitinated during the S-to-M transition in the cell division cycle. Mol
463	Cell Biol 22, 105-116, doi:Doi 10.1128/Mcb.22.1.105-116.2002 (2002).

464 465	34. Beltrao, P. et al. Evolution of Phosphoregulation: Comparison of Phosphorylation Patterns across Yeast Species. <i>Plos Biol</i> 7 , doi:ARTN e1000134
466	10.1371/journal.pbio.1000134 (2009).
467	35. Kumar, S., Tamura, K. & Nei, M. Mega - Molecular Evolutionary Genetics Analysis
468	Software for Microcomputers. Comput Appl Biosci 10, 189-191 (1994).
469	36. Saitou, N. & Nei, M. The Neighbor-Joining Method - a New Method for Reconstructing
470	Phylogenetic Trees. Mol Biol Evol 4, 406-425 (1987).
471	37. Priyam, A., B. J. Woodcroft, V. Rai, A. Munagala, I. Moghul et al.,
472	Sequenceserver: a modern graphical user interface for custom
473	BLAST databases bioRxiv http://biorxiv.org/lookup/doi/10.1101/033142(2015).
474	38. Shen, X. X.et al.Reconstructing the backbone of the saccharomycotina yeast phylogeny
475	using genome-scale data. Genes Genomes Genetics 6, 3927-3939 (2016).
476	39. Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. Scop - a Structural
477	Classification of Proteins Database for the Investigation of Sequences and Structures. J
478	<i>Mol Biol</i> 247 , 536-540, doi:Doi 10.1016/S0022-2836(05)80134-2 (1995).
479	40. Berman, H. M. et al. The Protein Data Bank and the challenge of structural genomics.
480	Nat Struct Biol 7, 957-959, doi:Doi 10.1038/80734 (2000).
481	41. Zhang, Y. I-TASSER server for protein 3D structure prediction. <i>BMC Bioinformatics</i> 9,
482	40, doi:10.1186/1471-2105-9-40 (2008).
483	42. McGuffin, L. J., Bryson, K. & Jones, D. T. The PSIPRED protein structure prediction
484	server. Bioinformatics 16, 404-405 (2000).
485	43. Pollastri, G., Przybylski, D., Rost, B. & Baldi, P. Improving the prediction of protein
486	secondary structure in three and eight classes using recurrent neural networks and
487	profiles. Proteins 47, 228-235, doi:10.1002/prot.10082 (2002).
488	44. Cole, C.J.D., Barber, J.D., Barton, G.J. The Jpred 3 secondary structure prediction
489	server. Nucleic Acids Res 36, W197-201, doi: 10.1093/nar/gkn238 (2008).
490	45. Bennet-Lovsey, R.M., Herbert, A.D., Sternberg, M.J. et al. Exploring the extremes of
491	sequence / structure space with ensemble fold recognition in the program Phyre. Proteins
492	: Structure, Function and Bioinformatics 70, 611-625, doi: 10.1002/prot.21688 (2008).
493	46. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture
494	research tool: Identification of signaling domains. P Natl Acad Sci USA 95, 5857-5864,
495	doi:DOI 10.1073/pnas.95.11.5857 (1998).
496	47. Letunic, I., Doerks, T. & Bork, P. SMART 7: recent updates to the protein domain
497	annotation resource. Nucleic Acids Research 40, D302-D305, doi:10.1093/nar/gkr931
498	(2012).
499	48. Cannon, R. D., Jenkinson, H. F. & Shepherd, M. G. Isolation and nucleotide sequence of
500	an autonomously replicating sequence (ARS) element functional in Candida albicans and
501	Saccharomyces cerevisiae. Mol Gen Genet 221, 210-218 (1990).
502	49. Beckerman, J., Chibana, H., Turner, J. & Magee, P. T. Single-copy IMH3 allele is
503	sufficient to confer resistance to mycophenolic acid in Candida albicans and to mediate
504	transformation of clinical candida species. Infect Immun 69, 108-114, doi:Doi
505	10.1128/Iai.69.1.108-114.2001 (2001).
506	50. Mitra, S., Gomez-Raja, J., Larriba, G., Dubey, D. D. & Sanyal, K. Rad51-Rad52
507	Mediated Maintenance of Centromeric Chromatin in Candida albicans. Plos Genet 10,
508	doi:ARTN e1004344 10.1371/journal.pgen.1004344 (2014).

509	51 Tea	i, H. J. et al. Origin replication complex binding, nucleosome depletion patterns, and
505 510		imary sequence motif can predict origins of replication in a genome with epigenetic
510	-	tromeres. <i>MBio</i> 5 , e01703-01714, doi:10.1128/mBio.01703-14 (2014).
512		b, A.J., Song, J., Cheung, P et al. The BAH domain of ORC1 links H4K20me2 to
512		A replication licensing and Meier-Gorlin syndrome, <i>Nature</i> 484 ,115-119, doi:
514		1038/nature10956 (2012).
515		vakami, H., Ohashi, E., Kanamoto, S., Tsurimoto, T. & Katayama, T. Specific
516		ding of eukaryotic ORC to DNA replication origins depends on highly conserved
517		ic residues. Sci Rep-Uk 5, doi:ARTN 14929 10.1038/srep14929 (2015).
518	54. Cla	rey, M. G. et al. Nucleotide-dependent conformational changes in the DnaA-like core
519		he origin recognition complex. <i>Nature Structural & Molecular Biology</i> 13 , 684-690,
520		10.1038/nsmb1121 (2006).
521		b, D. G. & Bell, S. P. Architecture of the yeast origin recognition complex bound to
522		gins of DNA replication. <i>Mol Cell Biol</i> 17 , 7159-7168 (1997).
523 524		no, T., Makise, M., Takehara, M. & Mizushima, T. Interaction between ORC and 1p of Saccharomyces cerevisiae. <i>Fems Yeast Res</i> 7 , 1256-1262, doi:10.1111/j.1567-
524 525		4.2007.00299.x (2007).
526		en, S., Bell, S.P. CDK prevents Mcm2-7 helicase loading by inhibiting Cdt1
527		Fraction with Orc6. Genes Dev 25, 363-372, doi: 10.1101/gad.2011511 (2011).
528		en S, de Vries MA, Bell SP. Orc6 is required for dynamic recruitment of Cdt1 during
529	repe	eated Mcm2-7 loading. Genes Dev 21, 2897-2907, doi: 10.1101/gad.1596807 (2007).
530	59. Tak	ara, T. J. & Bell, S. P. Multiple Cdt1 molecules act at each origin to load replication-
531		npetent Mcm2-7 helicases. Embo Journal 30, 4885-4896,
532		10.1038/emboj.2011.394 (2011).
533		menthal, A. B., Kriegstein, H. J. & Hogness, D. S. The units of DNA replication in
534 535		psophila melanogaster chromosomes. <i>Cold Spring Harb Symp Quant Biol</i> 38 , 205-223
535 536	(19' 61 Che	esnokov, I., Remus, D. & Botchan, M. Functional analysis of mutant and wild-type
537		psophila origin recognition complex. <i>Proc Natl Acad Sci U S A</i> 98 , 11997-12002,
538		10.1073/pnas.211342798 (2001).
539		, S. X. et al. Structural analysis of human Orc6 protein reveals a homology with
540		scription factor TFIIB. P Natl Acad Sci USA 108, 7373-7378,
541	doi:	:10.1073/pnas.1013676108 (2011).
542		niere, L. et al. Genetic Evidence for a Link Between Glycolysis and DNA Replication.
543		<i>s One</i> 2 , doi:ARTN e447 10.1371/journal.pone.0000447 (2007).
544		ciag, M., Nowicki, D., Janniere, L., Szalewska-Palasz, A. & Wegrzyn, G. Genetic
545		bonse to metabolic fluctuations: correlation between central carbon metabolism and
546 547		A replication in Escherichia coli. <i>Microb Cell Fact</i> 10 , doi:Artn 19 10.1186/1475- 9-10-19 (2011).
547 548		ciag-Dorszynska, M., Ignatowska, M., Janniere, L., Wegrzyn, G. & Szalewska-Palasz,
548 549		Mutations in central carbon metabolism genes suppress defects in nucleoid position
550		cell division of replication mutants in Escherichia coli. <i>Gene</i> 503 , 31-35,
551		10.1016/j.gene.2012.04.066 (2012).
552		nieczna, A., Szczepanska, A., Sawiuk, K., Lyzen, R. & Wegrzyn, G. Enzymes of the
553		tral carbon metabolism: Are they linkers between transcription, DNA replication, and
554	carc	cinogenesis? Med Hypotheses 84, 58-67, doi:10.1016/j.mehy.2014.11.016 (2015).

555	67. Lincet, H. & Icard, P. How do glycolytic enzymes favour cancer cell proliferation by
556	nonmetabolic functions? Oncogene 34 , 3751-3759, doi:10.1038/onc.2014.320 (2015).
557	68. Shor, E. et al. The Origin Recognition Complex Interacts with a Subset of Metabolic
558	Genes Tightly Linked to Origins of Replication. <i>Plos Genet</i> 5 , doi:ARTN e1000755
559	10.1371/journal.pgen.1000755 (2009).
560	69. Bennett, R. J. & Johnson, A. D. The role of nutrient regulation and the Gpa2 protein in
561	the mating pheromone response of C. albicans. <i>Mol Microbiol</i> 62 , 100-119,
562	doi:10.1111/j.1365-2958.2006.05367.x (2006).
563	70. Hizume, K., Yagura, M. & Araki, H. Concerted interaction between origin recognition
564	complex (ORC), nucleosomes and replication origin DNA ensures stable ORC-origin
565	binding. <i>Genes Cells</i> 18 , 764-779, doi:10.1111/gtc.12073 (2013).
566	71. Loibl, M., Klein, I., Prattes, M et al. The drug diazaborine blocks ribosome biogenesis by
500 567	inhibiting the AAA-ATPase Drg1, <i>J Biol Chem</i> 289 , 3913-3922, doi:
568	10.1074/jbc.M113.536110 (2014).
569	72. Anderson, D.J, Moigne, R.L, Djakovic, S et al. Targeting the AAA ATPase p97 as an
570	approach to treat cancer through disruption of protein homeostasis, <i>Cancer Cell</i> 28, 653-
571	665, doi: 10.1016/j.ccell.2015.10.002 (2015).
572	73. Calderano, S. G., de Melo Godoy, P. D., da Cunha, J. P. & Elias, M. C. Trypanosome
573	prereplication machinery: a potential new target for an old problem. <i>Enzyme Res</i> 2011,
574	518258, doi:10.4061/2011/518258 (2011).
575	74. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein
576	database search programs. <i>Nucleic Acids Res</i> 25 , 3389-3402 (1997).
577	75. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular evolutionary genetics
578	analysis (MEGA) software version 4.0. <i>Mol Biol Evol</i> 24 , 1596-1599, doi:10.1002/molbay/mam002 (2007)
579 580	doi:10.1093/molbev/msm092 (2007).
580 581	76. Mary, L. S. GraphPad Prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci 37 , 411-412 doi: 10.1021/ci960402j(1997).
581 582	77. Zuckerkandl, E., Pauling, L. Molecules as documents of evolutionary history. <i>J Theor</i>
582 583	Biol 8, 357-366 (1965).
585 584	78. Coletta, A. et al. Low-complexity regions within protein sequences have position-
585	dependent roles. <i>Bmc Syst Biol</i> 4 , doi:Artn 43 10.1186/1752-0509-4-43 (2010).
585	79. Jones, D.T., Taylor, W.R., Thornton, J.M. The rapid generation of mutation data matrices
580	from protein sequences, <i>Comput Appl Biosci</i> 8 , 275-282(1992).
588	80. Tamura, K. et al. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, <i>Mol</i>
589	<i>Biol Evol</i> 30 , 2725-2729, doi: 10.1093/molbev/mst197 (2013).
590	81. Tamura, K. et al. Estimating divergence times in large molecular phylogenies, <i>Proc Natl</i>
590 591	<i>Acad Sci USA</i> 109 ,19333-19338, doi: 10.1073/pnas.1213199109 (2012).
592	(2012).

593 Acknowledgements

594	This work was supported by Department of Biotechnology to KS and DDD
-----	--

595 (BT/PR13724/BRB/10/782/2010). The award of direct Senior Research Fellowships to SP from

- 596 Council of Scientific and Industrial Research (9/1014(0001)2K10-EMR-I) is greatly
- 597 acknowledged. We thank Dr. E.J.Woo, Korea for the 3D structural studies.

598 Author Contributions

599 S.P. performed experiments, analyzed data and wrote the paper. K.S. and D.D. designed 600 the study, analyzed data, and wrote the paper.

601 **Competing Interests**

The authors declare that they have no competing interests.

603 Figure legends

604 Figure. 1. Evolutionary relationship of CaORC proteins with other species and

605 comparative domain architecture of CaORC and ScORC proteins. (A) Phylogram of ORC

proteins. The tree is drawn to scale, with branch lengths in the same units as those of the
evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were
computed using the Poisson correction method⁷⁷ and are in the units of the number of amino acid
substitutions per site. All positions containing gaps and missing data were eliminated from the

610 dataset (Complete deletion option). There were a total of 116 positions in the final dataset.

611 Phylogenetic analyses were conducted in MEGA4³⁵. (**B**) The SMART (Simple Modular

612 Architecture Research Tool) prediction shows the presence of the BAH domain spanning

between 44th and 179th amino acids at the N-terminal of CaORC1 and (C) The AAA+ domain in

614 CaORC4 protein, the purple box represents the low complexity region (LCR). The LCR may be

615 involved in flexible binding associated with specific functions but also that their positions within

a sequence may be important in determining both their binding properties and their biological

roles 78 . (**D**) Comparative domain architecture of ORC proteins in *S. cerevisiae* and *C. albicans*. 617 The red box denotes the BAH domain, the grey box is the AAA+ domain, cyan bar represents 618 the AT-hook motif, black bar represents the Walker motifs, dark blue bar represents the PIP 619 620 motif, yellow bar represents the MIR motif and the green bar represents the PEST motif. Figure. 2. ORC phylogeny in CTG clade. (A) Molecular Phylogenetic analysis of ORC 621 proteins in the CTG clade by Maximum Likelihood method. The evolutionary history was 622 inferred by using the Maximum Likelihood method based on the JTT matrix-based model⁷⁵. The 623 tree with the highest log likelihood (-14518.9956) is shown. Initial tree(s) for the heuristic search 624 were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of 625 pairwise distances estimated using a JTT model, and then selecting the topology with superior 626 log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of 627 628 substitutions per site. The analysis involved 29 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 237 positions in the final dataset. 629 Evolutionary analyses were conducted in MEGA6 80 . (B) The time tree molecular Phylogenetic 630 analysis of ORC proteins in the CTG clade by the Maximum Likelihood method. The timetree 631 shown was generated using the RealTime method⁸¹. Divergence times for all branching points in 632 the topology were calculated using the Maximum Likelihood method based on the JTT matrix-633 based model⁷⁹. The estimated log likelihood value of the topology shown is -14518.9956. The 634 tree is drawn to scale, with branch lengths measured in the relative number of substitutions per 635 site. The analysis involved 29 amino acid sequences. All positions containing gaps and missing 636 data were eliminated. There were a total of 237 positions in the final dataset. Evolutionary 637 analyses were conducted in $MEGA6^{80}$. 638

639 Figure. 3. Comparative profile of percentage identity of CaORC proteins with other

- 640 yeasts. The hexameric ORC complex containing ORC1-6 protein sequences are compared
- 641 individually with diverse yeast species whose genome database is publicly available³⁷⁻³⁸ and their
- 642 percent identity is plotted using Graphpad Prism⁷⁶. (A) Percent identity of 104 hits of ORC1
- 643 sequences. (B) Percent identity of 86 hits of ORC2 sequences. (C) Percent identity of 90 hits of
- 644 ORC3 sequences (D). Percent identity of 104 hits of ORC4 sequences. (E)Percent identity of 88
- hits of ORC5 sequences. (F) Percent identity of 69 hits of ORC6 sequences.

646 Figure. 4. 3D model of CaORC4 and putative interactors of CaORC proteins. (A) 3D

- model of CaORC4 with DNA. (B) 3D model of CaORC4 with Walker A bound to ATP sphere,
- 648 Walker B and R finger motifs. (C-H) Protein interaction map of the *C. albicans* pre-RC
- 649 including CaORC1, CaORC2, CaORC4, CaMCM2, CaMCM3, CaMCM5 (CDC46) respectively
- (Table 10). The bright red circle is the query protein. The interaction map of CaMCM4 and
- 651 CaMCM6 are the same as CaMCM3.
- 652

Table 1. Putative pre-RC proteins coded by the *C. albicans* genome

Protein	ORF#	Chr#	Protein	ORF#	Chr#
CaORC1	Orf19.3000	1	CaMCM2	Orf19.4354	R
CaORC2	Orf19.5358	2	CaMCM3	Orf19.1901	2
CaORC3	Orf19.6942	3	CaMCM4	Orf19.3761	1
CaORC4	Orf19.4221	5	CaMCM5	Orf19.5487	2
CaORC5	Orf19.2369	R	CaMCM6	Orf19.2611	R

CaORC6	Orf19.3289	1	CaMCM7	Orf19.202	2
CaCDC6	Orf19.5242	1			

654

Table 2. Comparison of putative CaORC sequences with ORC sequences of S. cerevisiae

and *S. pombe*. The systematic names, ORF and protein length along with isoelectric pH of the

657 ORC1-6 in S. cerevisiae, S. pombe and C. albicans.

658

Gene		S.cerevisiae			S.pombe			C.albicans				
	Systematic name	Length (bp)	Protein length (a.a)	pI	Systematic name	Length (bp)	Protein length (a.a)	pI	Systematic name	Length (bp)	Protein length (a.a)	pI
ORC1	YML065W	2745	914	5.52	SPBC29A1 0.15	2124	709	7	ORF19.3000	2418	805	5.99
ORC2	YBR060C	1863	620	9.45	SPBC685.0 9	1608	535	5.51	ORF19.5358	2067	688	8.26
ORC3	YLL004W	1851	616	5.27	SPAC3H1. 01C	2073	690	5.59	ORF19.6942	2049	682	5.32
ORC4	YPR162C	1590	529	6.39	SPBP23A1 0.13	2919	972	9.31	ORF19.4221	1695	564	6.19
ORC5	YNL261W	1440	479	5.64	SPBC646.1 4C	1368	455	8.83	ORF19.2369	1491	496	6.22
ORC6	YHR118C	1308	435	8.16	SPBC2A9. 12	795	264	8.48	ORF19.3289	1092	363	9.2

659

660

661 Table 3.Pairwise alignment results of CaORC proteins with other eukaryotes

662

	Clustal W scores					Length of protein (a.a)							
Protein Name	Ca vs Sc	Ca vs Sp	Ca vs Dm	Ca vs Xl	Ca vs Mm	Ca vs Hs	Ca	Sc	Sp	Dm	Xl	Mm	Hs
ORC1	26	26	20	20	23	20	805	914	709	924	886	840	861
ORC2	25	21	19	16	20	19	688	620	535	618	558	576	577
ORC3	18	14	13	14	18	17	682	616	690	721	709	715	712
ORC4	25	24	21	23	25	23	564	529	972	459	432	433	436
ORC5	22	21	20	17	23	24	496	479	455	460	448	435	435
ORC6	17	12	6	15	9	11	363	435	264	257	225	262	252

- 664 *Sc Saccharomyces cerevisiae; Sp Schizosaccharomyces pombe; Ca Candida albicans; Dm*
- 665 Drosophila melanogaster; Xl Xenopus laevis; Mm Mus musculus; Hs Homo sapiens

666

- 667
- 668

669 Table 4. Comparison of Walker A and Walker B motifs of CaORC proteins with other

670 species

Protein name	Organism	Walker A motif	Walker B motif
		(GXXXXGKT/S)	(hhDE)
	S. cerevisiae	GTPGVGKT	LLDE
	S. pombe	GTPGTGKT	LMDE
	C. albicans	GVPGMGKT	LMDE
ORC1	C.elegans	GVPGTGKT	LI DE
	D. melanogaster	GVPGTGKT	LVDE
	M. musculus	GVPGTGKT	LVDE
	H. sapiens	GVPGTGKT	LVDE
	S. cerevisiae	GPRQSYKT	IFDE
	S. pombe	GPRGSGKS	VLEE
	C. albicans	GPRSSGKT	SDLE
ORC4	C.elegans	GERNCGRE	LVRD
	D. melanogaster	GPRGSGKT	ILEE
	M. musculus	GPRGSGKT	ILDE
	H. sapiens	GPRGSGKT	ILDE
	S. cerevisiae	GYSGTGKT	
	S. pombe	GVASTAKT	
	C. albicans	GYKSIGKT	
ORC5	C.elegans	GEDGSGRS	
	D. melanogaster	GHSGTGKT	
	M. musculus	GHTASGKT	
	H. sapiens	GHTASGKT	

Table 5. Putative signature of Walker motifs in CaORC proteins

Motif name	Functions Sequence		Motif and sequence position in CaORC
			proteins
Walker A	Motif associated with	GXXXXGK	GVPGMGK (428-434) – CaORC1
motif	phosphate binding		GPRSSGK (147-153) – CaORC4
			GYKSIGK (44-50) – CaORC5
Walker B	Essential for ATP	(R/K)XXXGXXXL/VhhhhD	RKPLVILMDE (506-515) – CaORC1
motif	hydrolysis		RTTGSNGVQDLVTSLSD (410-426) -
			CaORC4

Table 6. Domains of *C.albicans* **ORC proteins compared with other eukaryotes**

Protein	C.albicans	S.cerevisiae	S.pombe	D.melanogaster	X.laevis	M.musculus	H.sapiens	A.thaliana
ORC1	BAH domain, PIP motif, AAA ATPase, Walker A & B motifs	BAH domain, AAA ATPase	BAH domain	BAH domain, AAA ATPase	BAH domain, AAA ATPase, PEST motif	BAH domain, AAA ATPase, PEST motif	BAH domain, AAA ATPase, PEST motif	BAH domain, PHD zinc finger, AAA ATPase, PEST motif
ORC2	AT hook, PEST motif	AT hook	Not determined	No hits	No hits	No hits	No hits	PEST motif
ORC3	MIR, PEST motif	ND	Not determined	AAA ATPase (P loop)	Not determined	No hits	MIR	Domain 1 Cullins, PEST motif
ORC4	AAA ATPase, Walker A & B motifs	No hits	AT hook	AAA ATPase (P loop)	AAA ATPase (P loop)	AAA ATPase (P loop)	AAA ATPase (P loop)	AAA ATPase
ORC5	WalkerA motif	AAA ATPase (P loop)	Not determined	AAA ATPase (P loop)	Not determined	AAA ATPase (P loop)	AAA ATPase (P loop)	AAA ATPase, PEST motif
ORC6	No hits	No hits	Not determined	No hits	Not determined	No hits	No hits	No hits
CDC6	AAA ATPase	AAA ATPase	Not determined	Not determined	AAA ATPase	AAA ATPase	AAA ATPase	AAA ATPase
CDT1	No hits	Not determined	Not determined	No hits	No hits	No hits	No hits	PEST motif

- 680 Table 7. Comparison of the Clustal W scores and lengths of the ORC associated proteins in
- 681 S. cerevisiae and S. pombe with C. albicans.

682

	Clu	stal W sc	ores	Len	Length of protein (a.a)			
Protein Name	Ca vs Sc	Ca vs Sp	Sc vs Sp	Ca	Sc	Sp		
CDC6	27	10	8	480	513	1086		
CDT1	NA	NA	11	NA	604	444		
MCM2	67	58	60	903	868	830		
MCM3	56	49	49	878	971	879		
MCM4	62	56	56	912	933	911		
MCM5	67	60	61	728	775	720		
MCM6	65	55	53	880	1017	892		
MCM7	60	58	57	781	845	760		

683

- 684 *Sc Saccharomyces cerevisiae; Sp Schizosaccharomyces pombe; Ca Candida albicans*
- 685 NA-Not applicable
- 686
- **Table 8. Predicted molecular weight of the ORC proteins in** *C. albicans, S. cerevisiae* and *S.*
- 688 *pombe*

ORC proteins	M.W in S.cerevisiae	M.W in <i>S.pombe</i>	M.W in C.albicans
	(in KDa)	(in KDa)	(in KDa)
ORC1	120	80	91
ORC2	72	61	78.6
ORC3	62	80	79.2
ORC4	56	108	64
ORC5	53	52	57
ORC6	50	31	41
Total	~412	~412	~412

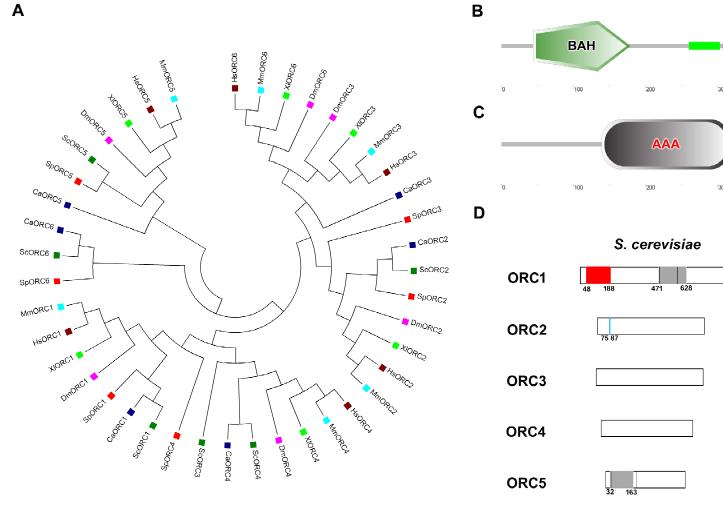
689

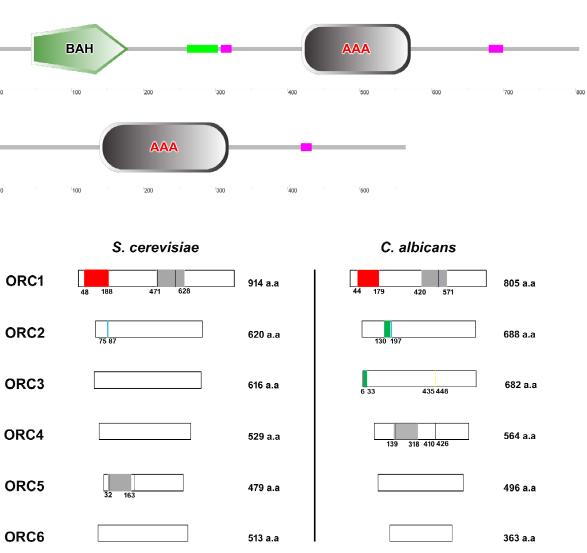
691 Table 9. Cscore values of CaORC proteins

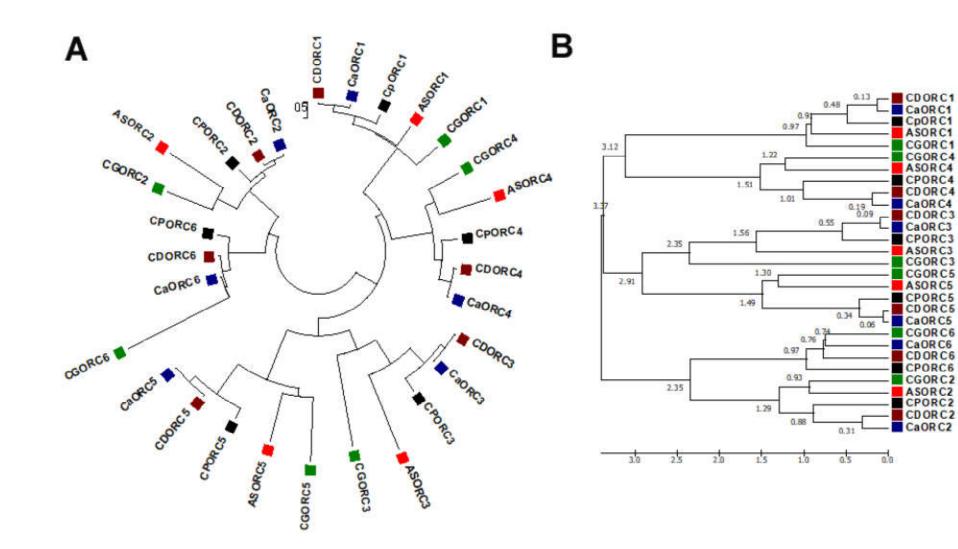
692

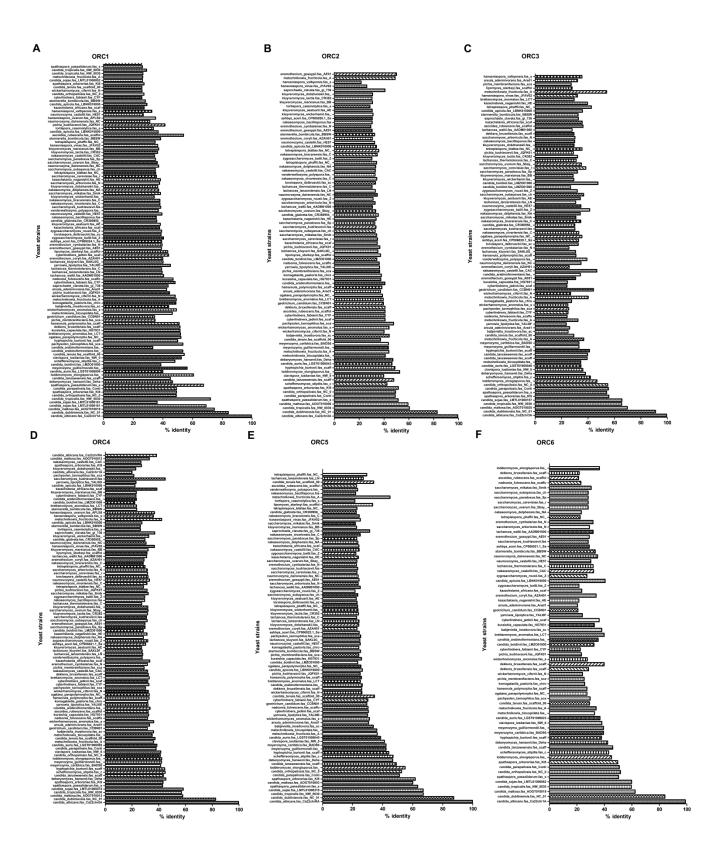
ORC proteins	Cscore ^{GO}	Cscore ^{LB}
ORC1	0.24	0.41
ORC2	0.25	0.02
ORC3	0.16	0.01
ORC4	0.29	0.6
ORC5	0.29	0.58
ORC6	0.21	0.01

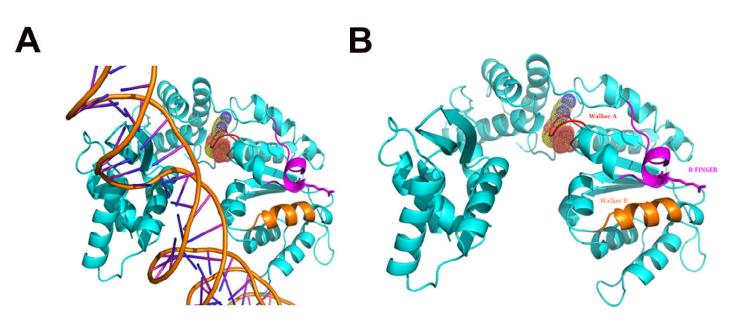
693

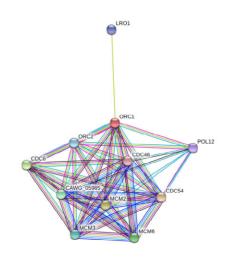

694 Table 10. SMART predictions of pre-RC proteins' interactions

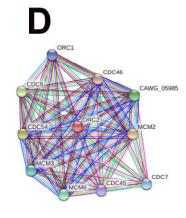

Pre-RC	Domains	Putative interacting partners
protein	/ motifs	
CAORC1	BAH &	ORC2,CDC6,CDC46, <u>CDC54,MCM2,MCM3,MCM6,</u>
	AAA	<u>CAWG05_985</u> ,POL12,LRO1
CAORC2		ORC1,CDC6,CDC46, <u>CDC54</u> ,CDC45,CDC7, <u>MCM2,</u>
		<u>MCM3,MCM6,CAWG05_985</u>
CAORC3		-
CAORC4	AAA	CDC54,CDC6,MCM2,MCM3,MCM6,CAWG05_985
CAORC5		-
CAORC6		-
CACDC6	AAA	-
CAMCM2	МСМ	ORC1,ORC2,CDC45,CDC46, <u>CDC54</u> ,CDC7, <u>MCM3,</u>
		MCM6,CAWG05_985,RFA1
CAMCM3	AAA /	ORC1,ORC2,ORC4,CDC45,CDC46,CDC54,CDC7,MCM2,
	МСМ	<u>MCM3,MCM6, CAWG05_985</u>
CAMCM4 /	МСМ	ORC1,ORC2,CDC45,CDC46, <u>CDC54</u> ,CDC7, <u>MCM2,</u>
CDC54		<u>MCM3,MCM6, CAWG05_985</u>
CAMCM5 /	AAA /	CDC45, <u>CDC54</u> ,CDC7,MCM2,MCM3,MCM6,
CDC46	МСМ	CAWG05_985,PRI1, POL30, RFA1

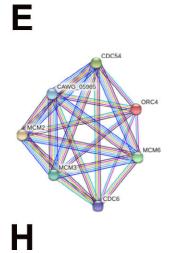

CAMCM6	MCM	ORC1,ORC2,ORC4,CDC45,CDC46, <u>CDC54</u> ,CDC7, <u>MCM2</u> ,
		<u>MCM3,MCM6, CAWG05_985</u>
CAMCM7	AAA /	-
	МСМ	

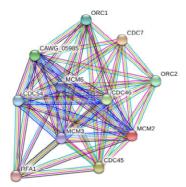

695 Note : CAWG05_985 = MCM7

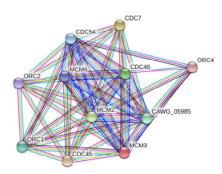

696

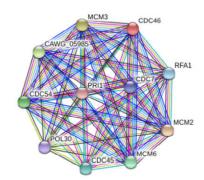







С


F



G

