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Abstract

Summary: Single-cell RNA sequencing has emerged as an essential tool to investigate cellular heterogeneity,
and highlighting cell sub-population specific signatures. Nowadays, dedicated and user-friendly bioinformatics
workflows are required to exploit the deconvolution of single-cells transcriptome. Furthermore, there is
a growing need of bioinformatics workflows granting both functional, i.e. saving information about data
and analysis parameters, and computation reproducibility, i.e. storing the real image of the computation
environment. Here, we present rCASC a modular RNAseq analysis workflow allowing data analysis from
counts generation to cell sub-population signatures identification, granting both functional and computation
reproducibility.

Availability and Implementation: rCASC is part of the reproducible bioinfomatics project. rCASC is a
docker based application controlled by a R package available at https://github.com/kendomaniac/rCASC .

Supplementary information:Supplementary data are available at rCASC github

1 Introduction

Single cell analysis is instrumental to understand the functional differences existing between cells within a
tissue. Individual cells of the same phenotype are commonly viewed as identical functional units of a tissue
or organ. However, published single cells sequencing results (Buettner, et al., 2015) suggest the presence of
a complex organization of heterogeneous cell states producing together system-level functionalities. Single
cell analysis focuses on the understanding differences characterizing any cell within a population of cells.
A mandatory element of single cell RNAseq is the availability of dedicated bioinformatics workflows. In
the last few years a lot of tools have been developed for the identification of tissue cell subpopulations
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(Hwang, et al., 2018). However, sub-population identification might require some preprocessing steps of the
single-cell sequencing data, depending on the technology in use and on some specific cell characteristics,
e.g. cell state. Furthermore, after cell partitioning, extra steps are required to identify cell sub-population
signatures, e.g. markers identification. rCASC is a modular workflow, based on docker technology, allowing
processing of 10XGenomics, inDrop and whole transcripts single-cell sequences from fastq to the definition of
cell sub-population signatures. Furthermore, rCASC addresses the problem of functional and computational
reproducibility, which is becoming a very important topic, because of the “Data Reproducibility Crisis”
(Allison, et al., 2018).

Figure 1: rCASC workflow. A) rCASC modules, outputs for the relevant steps of the workflow are shown in
capital letters in parenthesis. B) Depicting the range of clusters to be investigated with k-mean clustering
tools (SIMLR or tSne). C) Cell stability score for the selected range of clusters. D) SIMLR clusterization
results for the number of clusters showing the most homogeneous cell stability score, i.e. 5 clusters. E)
Z-score heatmap of prioritized clusters-specific genes. Color bar refers to clusters colors in D. F) Cell stability
score in E. Colors refers to clusters’ colors.

2 Methods

rCASC is developed within the umbrella of the Reproducible Bioinformatics Project (www.reproducible-
bioinformatics.org), which is an open-source community aiming to develop reproducible bioinformatics
workflows. Each module of rCASC is implemented in a docker container, and it is compliant with the rules
proposed by Sandve (Sandve, et al., 2013) to guarantee reproducibility. The key elements of rCASC workflow
are shown in Fig. 1A, and the main functionalities are summarized below.

Data preprocessing: rCASC allows processing of fastq derived by 10XGenomics and inDrop platforms to
generate a cell count matrix annotated using ENSEMBL gene model (Supplementary Section 2). Furthermore,
counts matrix, using ENSEMBL gene model, can be processed within rCASC. The most relevant preprocessing
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modules of rCASC (Supplementary Section 3) allow visualization of the numbers of genes detected in each
cell with respect to the cells total reads, removal of low quality cells using Lorenz statistic (Diaz, et al., 2016),
removal of ribosomal and mitochondrial genes and the association of gene symbol to the ENSEMBL gene
identifier, data normalization (Bacher, et al., 2017), detection of possible cell cycle bias (Liu, et al., 2017) and
removal of such effects from the data (Barron and Li, 2016).

Cell heterogeneity analysis: The optimal number of cells partitions is detected inducing perturbations in
the structure of the cell data set, i.e. removing a random subset of cells and repeating the clustering. The
rational of this approach is that a robust cluster of cells should contain the same set of cells independently by
the perturbation of the overall dataset. The bootstrapped dataset is analyzed with a graph-based community
detection method (https://github.com/ppapasaikas/griph), allowing the identification of the range of number
of clusters observable perturbing the cells dataset structure (Fig. 1B, Supplementary Section 4). Then, the
range of number of clusters is probed using SIMLR (Wang, et al., 2017), a clustering framework learning a
sample-to-sample similarity measure from expression data. A cell stability score (Supplementary Section 5),
indicating the fraction of bootstraps in which a cell is allocated in a specific cluster, is used to identify the
optimal number of clusters for the cell sub-populations representation (Fig. 1C). Cells are then plotted in
each cluster with a specific symbol indicating its stability (Fig. 1D). Furthermore, the shuffling of unstable
cells between nearby clusters can be visualized in a video in which each bootstrap is a frame of a video.

Clusters specific feature selection: The identification of clusters specific signatures is addressed with two
different methods (Supplementary Section 6). The ANOVA-like method from edgeR (Robinson, et al., 2010)
is used in case of the presence a reference cluster, e.g. in a cells activation experiment it could be the cluster
of resting cells undergoing to activation/differentiation by an external stimulus. In case a reference cluster
is not available SIMLR (Wang, et al., 2017) provides a gene prioritization, measuring how gene expression
values across cells correlate with the learned cell-to-cell similarity. This information combined with dataset
bootstraps allows the identification of genes which are the main players in clusters organization. The genes
selected with the above-mentioned approaches can be then visualized with a supervised heatmap ordering
cells according to the belonging cluster (Fig. 1E).The cell stability in each cluster is also provided (Fig. 1F).
GUI: Implementation of rCASC functions within 4SeqGUI is in progress, to make the analysis workflow
user-friendly and suitable for users lacking of scripting knowledge.

Results

The main objective of rCASC is the identification of the most robust partitioning of cell sub-populations within
a reproducible framework. The comparison of rCASC with four single-cell analysis workflows (Supplementary
Section 8) indicate that rCASC provides unique features, e.g. jackknife resampling for cluster robustness
evaluation. The cluster’s robustness, evaluated measuring the persistence of cells in a cluster, as consequence
of jackknife resampling, provides a better estimation of clusters stability with respect to other measurements
as the silhouette plot (Supplementary Section 5, Fig. 23 A,B). With respect to other workflows, rCASC uses
as clustering tool SIMLR, which was shown to outer-performed at least part of the methods implemented in
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other workflows. rCASC modularity structure easily allows the implementation of other pre/post processing
methods and supports the implementation of other clustering methods within the resampling framework.
Furthermore, rCASC is the only workflow granting functional and computational reproducibility.

Conclusion

In conclusion, rCASC is a workflow with valuable new features that could help researchers in defining cells
sub-populations and detecting sub-population specific markers, under the umbrella of data reproducibility.
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