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ABSTRACT

Currently, there are available several tools to predict the effect of variants, with the aim of classify
variants in neutral or pathogenic. In this study, we propose a new model trained over ensemble
scores with two particularities, first we consider minor frequency allele from gnomAD and second,
we split variants based on their splicing for training each specific model. Variants Stacked Random
Forest Model (VSRFM) was constructed for variants not involved in splicing and Variants Stacked
Random  Forest  Model  for  splicing  (VSRFM-s)  was  trained  for  variants  affected  by  splicing.
Comparing these scores with their constituent scores used as features, our models showed the best
outcomes. These results were confirmed using an independent data set from Clinvar database, with
similar results.

BACKGROUND

High-throughput  next-generation  genomic  technology  is  a  disruptive  event  in  the  research  of
genetic  based  diseases.  However,  it  implies  a  challenge  in  discerning  pathogenic  from benign
variants. For this purpose, researchers have built different scope developed algorithms. Up to date,
there are several tools for predicting variants pathogenicity, including ensemble scores, that gather
information from different single pathogenic predictors, improving the overall outcome in variants
classification.
On the other hand, conservation scores give evolutionary measures over a specific position, and
therefore variant consequence.  Nevertheless, the conservation degree depends on the considered
phylogenetic group.

Alternative splicing (AS) is a major biological mechanism for rising protein diversity in organisms.
Complexity in AS is correlated with evolution and tissue complexity (1). Thus, conservation level
may vary drastically depending on considered phylogenetic groups and in a higher rate than it does
in exonic variants  that  directly  modify protein.  Because of  this  particular  behavior  it  could be
interesting to split variants depending on splice events participation.
Here,  we  present  two  stacked  meta  learners  for  deleteriousness  classification,  trained  in  two
different  data  sets:  Variants  Stacked  Random  Forest  Model  (VSRFM),  trained  in  variants  not
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involved in splicing and Variants Stacked Random Forest Model for splicing (VSRFM-s), trained in
variants involved in splicing events.

MATERIAL AND METHODS

Study models
We trained two random forest models, VSRFM for not splice variants data set and VSRFM-s in
splice involved variants data sets, using randomForest v-2.5.1 R package (2).

Datasets
To build VSRFM and  VSRFM-s we used supervised machine learning over a composed data set
which  contains  pathogenic  and  benign  variants,  obtained  selecting  unique  variants  from  five
benchmark  datasets  HumVar  (3),  ExoVar  (4),  VariBench(5),  predictSNP (6)  and  SwissVar  (7).
Variants were annotated using Variant Effect Predictor web interface for GRCh37, with metaLR,
metaSVM, REVEL, DANN, phastCons and phyloP scores from dbNSFP v3.5a, ada score and rf
score,  Condel,  CADD and gnomAD allele  frequency.  Study data  set  contained 82922 variants,
which  were  split  in  two  different  datasets,  one  with  2145  splice  implicated  variants  (1322
pathogenic and 823 neutral variants) and another with 80777 not splice implicated variants (38878
pathogenic and 41899 neutral variants).
We tested the accuracy of VSRFM and VSRFM-s against their constitutive scores in a set of 10664
variants selected from Clinvar archive, classified as benign or pathogenic variants, not presented in
our training dataset, annotated with all needed scores (8). These variants were split again in two
data sets according to their participation in splicing, in 10109 not splice Clinvar variants (6965
pathogenic and 3144 neutral  variants)  and 555 splice Clinvar  variants  (481 pathogenic and 74
neutral variants).

Features
For models building we used 12 different scores for not splice variants data set, 6 general esemble
functional predictor scores, MetaLR (9), MetaSVM (9), REVEL (10), DANN (11), CADD (12) and
Condel (13), four conservation scores, phastCons (14) and phyloP (15) conservation score based on
the  multiple  alignments  of  100  vertebrate  and  20  mammalians  genomes  and  gnomAD  allele
frequencies  for  exome  variants  (16).  Variants  without  minor  allele  frequency  (MAF)  value  in
gnomAD database are considered rare variants and automatically assigned minimum MAF value
0.0000081.  For splice variants we considered the addition of two ensemble scores ada score an rf
score, for altered splicing prediction from dbscSVN (17). Missing values for splice variants and not
splice variants dataset are represented in table 1s. For both data sets variant data imputation was
carried out using randomForest v-2.5.1 R package (2).

For testing feature correlation, we used spearman correlation test, represented using ggplot2 v-2.2.1
R package (18).

Receiver operating characteristic (ROC) curves
Receiver operating characteristic (ROC) curves were used to compare deleteriousness classification
ability between our scores and their different components scores considered in this study. ROC
curves plots and its areas under the curve (AUC) were made using ROCR v-1.0-7, cvAUC v-1.1.0
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and pROC v-1.12.1 R packages (19–21). For both models, AUC was computed as an average of
AUC obtained in 10-fold cross validation. For ROC curve comparison we used pROC v-1.12.1.

RESULTS

The correlation study between features in not splice variants showed that MetaLR, MetaSVM and

REVEL had very strong correlation level  (Spearman correlation coefficient  rs  > 0.8)  also seen
between CADD and DANN and between Condel and CADD, figure 1s. It is interesting to notice
that  while  there  is  very  strong  correlation  between  phastCons  and  phyloP in  vertebrates,  that

correlation is moderate in mammalians (Spearman correlation coefficient 0.39 > rs > 0.60). The rest
of  possible  comparisons  between  functional  ensemble  scores  are  strong  (Spearman  correlation

coefficient 0.59 > rs > 0.79), figure 1s. In training splice variants decreases the overall correlation
level between features. Both dbscSVN scores showed a very strong correlation level, figure 2s.

Figure 1. ROC curves for models in training not splice variant data (A), training splice variant data
(B), Clinvar not splice variant data (C) and Clinvar splice variant data (D).

ROC curves for our two models, VSRFM, VSRFM-s, and their constituent predictor scores both for
splice and not splice non-synonym exomic variants, are shown in figure 1. VSRFM and VSRFM-s
and their component scores, using area under the ROC curve were statistically significant better in
both in non-synonym splice involved variants as in not splice involved variants, p-value < 1*10-06,
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both in our training data set (AUC = 0.97 in splice and in not splice variants), as in Clinvar selected
variants (AUC = 0.97 in not splice variants and AUC = 0.98 in splice variants), table 2s.
According to our data, we purpose a cutoff for VSRFM = 0.4599167 (0.9987139 sensibility and
0.9900236  specificity)  and  for  VSRFM-s  =  0.5079833  (0.9992436  sensibility  and  0.9963548
specificity), figure 2.

Figure 2. VSRFM and VSRFM-s scores.
VSRFM score in deleterious (red) and neutral (blue) variants and purposed cutoff (A). Distribution
of VSRFM-s score and chosen cutoff value (B).

Relative importance of VSRFM and VSRFM-s, as decrease in Gini impurity for features in VSRFM
and VSRFM-s are represented in table 1. The most important constituent score in both classifiers
were REVEL. Looking at these results gnomAD MAF information plays a relevant role in outcome
weighting  for  both  models.  In  not  splice  variants,  though  scores  conservation  information  are
included in other features, as REVEL, were included in random forest training, given that they still
provided additional information, however they have very low relevance in splice variants.
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Tabla 1. Feature relative importance.

Decrease Gini impurity

VSRFM VSRFM-splicing

MetaLR 3852.26 90.40

MetaSVM 3104.22 68.72

REVEL 5479.67 137.11

gnomAD 2633.51 78.90

DANN 637.41 10.71

CADD 980.03 19.88

Condel 974.15 23.78

phastCons100way_vertebrate 209.61 2.81

phastCons20way_mammalian 375.30 6.99

phyloP100way_vertebrate 831.56 11.55

phyloP20way_mammalian 411.38 7.80

Ada score - 14.64

Rf score - 19.43

DISCUSSION

We  have  developed  two  scores  to  discriminate  neutral  from  probably  deleterious  variants,
VSRFM-s and VSRFM in splice and not splice involved variants, respectively.
According to the level of correlation observed between features, the high correlation level showed
may be due to the strong correlation between these features and our target/classification group. This
observation  is  especially  strong  between  REVEL,  metaLR  and  metaSVM  which  could  be
consequence  of  sharing  lots  of  single  scores,  despite  they  are  different  algorithms.  This  could
mislead  random  forest  to  give  more  importance  to  a  feature  over  other  highly  correlated,  as
REVEL, that presented the highest Gini impurity decrease, and hence had the highest importance
over some other classifiers as metaLR or metaSVM. But this is not an issue that leads to overfit our
random forest model, as could be seen in overall performance in Clinvar data.
Regarding to the ROC curve comparison, the results obtained in this study were consistent with
Sieh and coworkers, about the relative overall performance of used scores (10). In the comparison
between VSRFM and VSRFM-s and their constituent functional scores, our models showed the
largest discriminative power, followed by REVEL, metaLR and metaSVM, both in training data set
and in  Clinvar  data  set,  for  their  specific  subset  of  variant  type  (splice/not  splice).  Unlike  the
strategy adopted by other  authors,  focusing  in  MAF to select  working variants,  we decided to
include this information to train the random forest algorithm. In this way, in accordance with Gini
impurity  decrease,  gnomAD  allele  frequency  presented  high  relevance  in  weighting  the  final
outcome.
The reduced relevance of conservation scores in VSRFM-s development, points to the fact that in
spite of there are several conserved positions involved in splicing, this conservation depends on
considered.  In  this  way  these  different  levels  of  conservation  were  not  recovered  by  the  two
conservation levels considered in this study.
For all exposed, we can conclude that VSRFM and VSRFM-s are tools that improve pathogenic
mutation detection.
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