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Abstract

The endoplasmic reticulum (ER) has a complex morphology generated and
maintained by membrane-shaping proteins and membrane energy minimization,
though not much is known about how it is regulated. The architecture of this
intracellular organelle is balanced between large, thin sheets that are densely
packed in the perinuclear region and a connected network of branched, elongated
tubules that extend throughout the cytoplasm. Sheet formation is known to
involve the cytoskeleton-linking membrane protein 63 (CLIMP-63), though its
regulation and the depth of its involvement remain unknown. Here we show that
the post-translational modification of CLIMP-63 by the palmitoyltransferase
ZDHHCG6 controls the relative distribution of CLIMP-63 between the ER and the
plasma membrane. By combining data-driven mathematical modeling,
predictions, and experimental validation, we found that the attachment of a
medium chain fatty acid, so-called S-palmitoylation, to the unique CLIMP-63
cytoplasmic cysteine residue drastically reduces its turnover rate, and thereby
controls its abundance. Light microscopy and focused ion beam electron
microcopy further revealed that enhanced CLIMP-63 palmitoylation leads to
strong ER-sheet proliferation. Altogether, we show that ZDHHC6-mediated S-
palmitoylation regulates the cellular localization of CLIMP-63, the morphology
of the ER, and the interconversion of ER structural elements in mammalian cells
through its action on the CLIMP-63 protein.

Keywords: Endoplasmic reticulum, cellular compartment, S-palmitoylation,
ZDHHC6, CLIMP-63/CKAPA4.
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Significance Statement

Eukaryotic cells subcompartmentalize their various functions into organelles, the shape of each
being specific and necessary for its proper role. However, how these shapes are generated and
controlled is poorly understood. The endoplasmic reticulum is the largest membrane-bound
intracellular compartment, accounting for more than 50% of all cellular membranes. We found
that the shape and quantity of its sheet-like structures are controlled by a specific protein,
cytoskeleton-linking membrane protein 63, through the acquisition of a lipid chain attached by
an enzyme called ZDHHC6. Thus, by modifying the ZDHHC6 amounts, a cell can control the
shape of its ER. The modeling and prediction technique used herein also provides a method for
studying the interconnected function of other post-translational modifications in organelles.
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Introduction

The endoplasmic reticulum (ER) is a complex multifunctional organelle that extends from the
nuclear envelope to the cell periphery (1, 2). Based on morphological features, it is classically
separated into three distinct subcompartments: the nuclear envelope, the rough ER, and the
smooth ER. The rough ER is composed of packed membrane sheets studded with ribosomes
and is concentrated in the perinuclear region, while the smooth ER is formed by narrow tubular
membranes arranged as a tentacular meshwork that occupies the entire cytoplasm, reaching the
plasma membrane. While the major function of the rough ER is considered to be synthesis of
proteins targeted to the secretory pathway and the endomembrane system, the smooth ER is
thought to be involved in lipid biogenesis, calcium ion storage, and cell detoxification (3).

In the last decade, the mechanisms generating this complex ER architecture have been
extensively studied, and several protein families have been observed to control the shape of ER
membranes. For instance, ER-sheet formation depends on the protein TMEM170A (4) and on
the cytoskeleton-linking membrane protein 63 (CLIMP-63, also called CKAP4) (5-7); ER-sheet
flatness depends on kinectin-1 (KTN1) and ribosome binding protein 1 (RRBP1) (2); the width
of the ER lumen also involves CLIMP-63 (5-7); the highly curved membranes in the ER tubules
and at ER-sheet edges are sustained by ER-curving protein families, such as reticulons (RTNs)
and receptor-enhanced expression proteins (REEPs) (8); and, ER tubule fusion is regulated by
specific GTPases, the atlastins (ATL) (9). More recently, mathematical models have suggested
that ER sheets intrinsically tend to minimize their surface tension energy and form a helicoidal
compact arrangement resembling a parking garage to maximize the surface area to volume
offered to ribosomes (10). After years of disjointed studies, a somewhat unifying model was
finally proposed based on reported observations on the membrane physics and ER-shaping
proteins. This model predicts that the specific local ER morphology is regulated by varying the
local relative concentrations of various membrane-shaping proteins, reminiscent of a multi-
component phase diagram (11).

Even though the mechanisms fundamental to ER shape generation have been heavily studied,
it remains unclear how cells control these proteins and, in particular, what governs the
interconversion between sheets and tubular structures. In this work, we have studied the effect
of a post-translational protein modification, S-acylation, on ER morphology. S-acylation is the
addition of a medium-length fatty acid, generally palmitate in a process known as S-
palmitoylation, to specific cytosolic cysteine residues of a protein. It is catalyzed by palmitoyl-
acyltransferases (12, 13) and is the only lipid addition that can be reversed, which occurs
through the action of acyl protein thioesterases. S-acylation can control the association of
soluble proteins with cellular membranes but may also occur on transmembrane proteins to
target them to specific membrane subdomains, to induce conformational changes or to drive
membrane protein complex formation (14).

Several roles have been assigned to the transmembrane protein, CLIMP-63, which is the only
ER-shaping protein for which palmitoylation has been reported (15, 16). It was first described
as linking the ER to microtubules through its N-terminal cytosolic tail (17). These studies also
indicated that inside the ER, i.e. in the lumen, CLIMP-63 could assemble into dimers and higher
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order structures, which strongly affect the mobility of the protein in the ER membrane. CLIMP-
63 was later proposed to impose the precise width or thickness of the ER lumen by forming
dimers in trans, i.e. between two CLIMP-63 molecules present in opposing membrane patches
“across” the ER lumen (6). CLIMP-63 has also been reported to be present at the plasma
membrane, acting as a receptor for various ligands in a tissue-dependent manner (18-21). How
these different roles relate to each other, however, and how they are controlled is unknown.
CLIMP-63 was reported to undergo two post-translational modifications: phosphorylation,
which affects its microtubule binding ability (22), and palmitoylation, which may be mediated
by ZDHHC2 (23), a palmitoyltransferase at the plasma membrane (24-26) that may thus play a
role in CLIMP-63-mediated signaling at the cell surface.

Here, we show that CLIMP-63 is a preferential target of the ER-localized palmitoyl-
acyltransferase ZDHHCG6, and that ZDHHC6 regulates the plasma membrane abundance of
CLIMP-63 by controlling its ER exit. We found that ZDHHC6 regulates CLIMP-63 turnover,
by stabilizing higher order assemblies, and thus controls its abundance. Strikingly,
overexpression of ZDHHC6 drastically affected ER morphology, leading to massive ER-sheet
proliferation in a manner dependent on CLIMP-63 and its palmitoylation. Altogether, our
results show that ER morphology can be locally and dynamically controlled by the ZDHHC6-
mediated palmitoylation of the ER-shaping protein CLIMP-63.
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Results
The bulk of cellular CLIMP-63 is in a palmitoylated form

We first confirmed that, as reported, CLIMP-63 undergoes palmitoylation, using a resin-
assisted capture method, called Acyl-RAC. In this assay, palmitate is removed by
hydroxylamine and the freed cysteines are then captured using thiol-reactive beads. The final
read out used here was western blot analysis. CLIMP-63 was readily captured using this assay
(SI Appendix, Fig. S1). We also tested a panel of reported ER-shaping proteins — ATL2, ATL3,
spastin, KTN1, RRBP1, lunapark, and TMEM170A (SI Appendix, Fig. Sla-c, with the
validation of the antibodies) — but none were robustly captured. Incubating cells with *H-
palmitate led to its incorporation into CLIMP-63, and this incorporation was abolished when
Cys-100 was mutated to alanine (SI Appendix, Fig. S1d) (27). For exogenous expression, HA
or monomeric red fluorescent protein (RFP) tags were added to the N-terminus of the protein
since we found that this recapitulated the behavior of the endogenous protein CLIMP-63,
whereas C-terminal tags prevented the ER sheet proliferation induced by CLIMP-63
overexpression (SI Appendix, Fig. Sle).

Since palmitoylation occurs on the cytosolic domain of CLIMP-63 and since this domain is
involved in linking CLIMP-63 to the microtubule network, we tested whether palmitoylation
and phosphorylation influence one another. The palmitoylation of CLIMP-63 was insensitive
to nocodazole-induced microtubule depolymerization or to Taxol-induced microtubule
stabilization (SI Appendix, Fig. S2a). It was also insensitive to mutations of the serine
phosphorylation sites involved in microtubule binding (SI Appendix, Fig. S2b) (22).
Conversely, mutating the CLIMP-63 palmitoylation site did not affect microtubule binding (SI
Appendix, Fig. S2c¢).

We next determined the percentage of cellular CLIMP-63 that is palmitoylated at steady state.
We first used an assay where palmitate is exchanged with a PEG molecule, leading to a shift in
mass that can be monitored by gel electrophoresis (28, 29). The result showed that the majority
of CLIMP-63 is palmitoylated at steady state in our cells (Figure 1a). To gain precision, we
developed a variation of the Acyl-RAC method for quantifying free, i.e. non-acylated, cysteines
that involves an alkylation step using fluorescent iodoacetamide for a more quantitative
detection (Fig. 1b and SI Appendix, Fig. S2d). In addition to Cys-100, CLIMP-63 has only one
other cysteine, Cys-126, on the ER lumenal boundary of the transmembrane region. Cys-126
was mutated to alanine to facilitate the quantification of palmitoylation on Cys-100. To analyze
CLIMP-63 mutants, we generated a cell line stably expressing an shRNA construct to silence
endogenous CLIMP-63 (SI Appendix, Fig S3). Since CLIMP-63 levels influence ER
morphology, we titrated the amount of DNA required to reach an endogenous level of CLIMP-
63 upon exogenous expression (SI Appendix, Fig. S3c), which was used in all further
experiments. Using alkylation with fluorescent iodoacetamide, we could determine that only
12.7 + 0.05% of the CLIMP-63 population had a free Cys-100 (Figure 1b). Thus, 87% of
CLIMP-63 is palmitoylated in our cells. The method can be further modified to probe for
acylated, as opposed to free, cysteines leading to the same percentage of palmitoylated CLIMP-
63 (SI Appendix, Fig. S2ef).
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CLIMP-63 is a substrate for ZDHHCO6, which regulates its plasma membrane targeting

The above experiments indicated that almost 90% of CLIMP-63 is palmitoylated under our
experimental conditions. Morphological analyses have reported that CLIMP-63 was
predominantly found in the ER (6, 30), as was confirmed later in this study. Combined, these
observations imply that ER-localized CLIMP-63 is largely palmitoylated, which in turn
suggests that ZDHHC2 (31), given its preferential plasma membrane localization (24,25),
cannot be the sole palmitoyl-acyltransferase to modify CLIMP-63. Among the 23 known
ZDHHC enzymes, many localize to the ER (32). ZDHHCG6 stands out because it has been found
to modify various key ER proteins such as calnexin (33), the E3 ligase gp78 (34), and the
inositol triphosphate receptor IP3R (35). We therefore investigated its ability to modify
CLIMP-63. Incorporation of *H-palmitate into CLIMP-63 was strongly decreased upon
CRISPR-Cas9 knockout (KO) of ZDHHC6 (Figure Ic, validation of the KO cells in SI
Appendix, Fig. S4a,b) indicating that CLIMP-63 is indeed a target of this enzyme.

We next compared the relative involvements of ZDHHC2 and ZDHHC6. A more pronounced
decrease in 3H-palmitate incorporation, ~70%, was seen when ZDHHC6 expression was
silenced with small interfering RNA (siRNA) than for ZDHHC?2 silencing, ~40% (Figure Ic
and SI Appendix, Fig. S4c). Overexpression of these enzymes did not affect *H-palmitate
incorporation. The lack of increase upon overexpression could be because the majority of
CLIMP-63 is already modified at the resting state and thus was not available for modification
by *H-palmitate.

Co-immunoprecipitation experiments further indicated that CLIMP-63 could interact with both
ZDHHC2 and ZDHHC6 (SI Appendix, Fig. S4d). For a more quantitative evaluation, we
performed a dual proximity ligation assay (36) in which the close proximity of two proteins is
detected by antibodies coupled to DNA oligonucleotides that are ligated and labeled with
fluorescent probes when they are near each other. Interaction could be observed with both
enzymes but was considerably more pronounced with ZDHHC6 than with ZDHHC2 (Figure
1d), consistent with the relative abundance of CLIMP-63 in the ER and at the plasma
membrane.

As mentioned, a population of CLIMP-63 was reported to act as a cell-surface signaling
receptor, indicative of its presence at the plasma membrane (18-21, 37). We investigated
whether ZDHHCG6 affects the abundance of CLIMP-63 at the plasma membrane using a surface
biotinylation assay, wherein all surface proteins were chemically modified, isolated with
streptavidin beads, and CLIMP-63 was subsequently identified by western blot. In control HeLa
cells, CLIMP-63 was detected at the cell surface, though in minute amounts, probably sufficient
for signaling purposes. This population increased three-fold upon ZDHHCG6 silencing (Figure
le). Consistent with this increased surface localization, proximity ligation between CLIMP-63
and ZDHHC?2 was higher in ZDHHC6 KO than in control cells (Figure 1d right panel and SI
Appendix, Fig. S4e). These observations indicated that ZDHHC6 controls the plasma
membrane targeting of CLIMP-63.
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Surface biotinylation was also performed on palmitoylation-deficient CLIMP-63 C100A.
Intriguingly, it was less abundant than wildtype (WT) CLIMP-63 at the plasma membrane (SI
Appendix, Fig. S4f). This observation raises the possibility that palmitoylation by ZDHHC2
could increase the surface residence time of CLIMP-63, i.e. slow down endocytosis and
lysosomal targeting, as previously observed for the anthrax-toxin receptor TEMS (38). To test
this hypothesis, we monitored the surface levels of CLIMP-63 upon ZDHHC?2 silencing and
found that it decreased four-fold (Figure le).

Altogether, these findings indicated that the bulk of CLIMP-63 resides in the ER but that a
minor population, the size of which is negatively-controlled by ZDHHCS6, exits this
compartment in a non-palmitoylated state and reaches the plasma membrane where it is retained
through palmitoylation by ZDHHC?2.

ZDHHC6 influences CLIMP-63 turnover

We then investigated the dynamics of CLIMP-63 palmitoylation. Measurements of *H-
palmitate incorporation as a function of time showed a gradual increase over at least six hours
(Figure 1f and SI Appendix, Fig. S4g). We next monitored palmitate turnover by incubating
cells with *H-palmitate for 2 hr (the pulse) followed by different incubation times in a label-
free medium (the chase). CLIMP-63 was then immunoprecipitated and analyzed by
electrophoresis and radiography. *H-palmitate was rapidly lost from labeled CLIMP-63, with
almost half of it released within 30 min (Figure 1g and SI Appendix, Fig. S4h). A plateau was
reached after two hours, when about 20% of the labeled CLIMP-63 appeared to retain its bound
palmitate (Figure 1g). Almost identical kinetics were observed upon ZDHHC?2 silencing (SI
Appendix, Fig. S4i). Given the low *H-palmitate incorporation signal when silencing ZDHHCS,
we could not measure palmitate turnover under these conditions.

We next analyzed the effect of palmitoylation on CLIMP-63 turnover since we previously
observed that palmitoylation can drastically affect the half-life of a protein, either increasing it,
as for calnexin (39), or decreasing it, as for ZDHHCS6 (40). *>S Cys/Met metabolic labeling, or
pulse-chase, experiments indicated that CLIMP-63 has an apparent half-life (t1,2) of about 25
hours following a 20-min labelling pulse (Figure 1h). Silencing ZDHHC?2 did not impact the
decay kinetics of CLIMP-63 (Figure lh) but silencing ZDHHC6 slightly accelerated the
apparent decay (t12= 22 hours, Figure 1h and j). Silencing both ZDHHC6 and ZDHHC?2 further
accelerated the decay (Figure lh), thus revealing an effect of ZDHHC2 and confirming that
ZDHHCE6 acts upstream of ZDHHC?2.

To further investigate the role of palmitoylation on CLIMP-63 turnover, we monitored the
decay of exogenously expressed WT and C100A mutant proteins as well as the effect of
overexpressing ZDHHC6. Exogenously expressed CLIMP-63 showed similar decay kinetics to
the endogenous protein (Figure 1i). The overexpression of ZDHHCS6 led to an increase in the
apparent stability of CLIMP-63 (Figure li). Conversely, mutating the palmitoylation site
(C100A) led to accelerated degradation, with an apparent half-life of only four hours (Figure
li-)). The difference in CLIMP-63 stability in ZDHHC6-ZDHHC?2 double-silenced cells and
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CLIMP-63-C100A might be due to the residual presence of the palmitoyl-acyltransferases in
the siRNA-treated cells.

Taken together, these results indicate that the palmitoylation of CLIMP-63 is dynamic and that
palmitoylation strongly affects the turnover rate of the protein.

Understanding CLIMP-63 assembly and trafficking through mathematical modeling

The above analyses, combined with knowledge from literature, indicate that the majority of
CLIMP-63 resides in the ER with small amounts at the plasma membrane, that in each of these
compartments it could be unmodified or contain the palmitoyl modification, and that ZDHHC6
levels modulate the plasma membrane abundance of CLIMP-63. Our data also indicated that
while the apparent turnover of palmitate was rapid (Fig. 1g), the vast majority of cellular
CLIMP-63 at any given time was in a palmitoylated state (Fig. 1a-b). To understand how these
findings fit together, we generated a computational representation of the system and made use
of mathematical modeling.

The model was initially composed of five CLIMP-63 species: non-palmitoylated monomer in
the ER (Mg, the 0 superscript indicates that the palmitoylation site is free), palmitoylated
monomer in the ER (M'gg, the 1 superscript indicates that the palmitoylation site is occupied),
the same molecules but at the plasma membrane (PM), M’%y and M'pv, and a non-
palmitoylated intermediate species representing transport from the ER to the PM. Although
pulse-chase experiments were accurately reproduced, we could not find reasonable parameter
values that would sensibly fit the subcellular distribution of CLIMP-63 (SI Appendix, Fig.
S5ab), instead simulating CLIMP-63 as equally abundant at the plasma membrane and in the
ER. This suggested that the mechanistic network model would require modification.

One of the first plausible modifications to the structure of the model would take into account
the reported observations that CLIMP-63 can form dimers and possibly higher order oligomeric
structures (5, 41, 42). Since the information currently available on oligomerization of CLIMP-
63 is insufficient to differentiate dimerization in cis and in trans, the two where lumped in our
conceptual model. Palmitoylation states of these dimers was however taken into account,
leading to three species, D%g, D'er and D’r, corresponding to non-palmitoylated, single
palmitoylated, and double palmitoylated dimers, respectively (Figure 2e). The same
dimerization constant was imposed for M%g and M'gr. Integrations of higher order multimers
of CLIMP-63 were also tested but did not change the behavior of the system, so the dimer
structure was retained according to the principle of parsimony (SI Appendix, Fig. S5). Since
our experimental data did not reveal any cross-talk between palmitoylation and
phosphorylation/microtubule binding, the latter was not included in the mechanistic framework,
which was designed to estimate parameters such as protein turnover, palmitoylation and
depalmitoylation rates.

A subset of the experimental data (from Figure 1 and SI Appendix, Fig. S5¢) was used to
calibrate the model (Figure 2f and SI Appendix, Fig. S5f). A heuristic optimization method
generated a population of models consistent with the calibration experiments. We chose the 100
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sets of parameters that best fitted the experimental data. These sets of parameters were
subsequently used to predict the results of a second set of experiments. As shown in Figure 2g
and SI Appendix, Figure S5g, the results fit the predictions. Importantly, with the introduction
of dimerization in the ER, the model predicted that the majority of CLIMP-63 is retained in the
ER (see below) and suggested that dimerization is the major ER-retention mechanism of
CLIMP-63. Since the mathematical equations both fitted a subset of data and predicted another
set of data, it was considered as accurately capturing the overall system and appropriate to
interpret our data without the necessity to increase the complexity.

Considering the predicted importance of dimerization, we first verified that CLIMP-63 can
indeed form dimers. We analyzed CLIMP-63 by Blue-Native PAGE, a method for monitoring
protein complexes by electrophoresis. CLIMP-63 migrated with an apparent molecular weight
of 480 kDa (Fig. 2a). While this observation does indicate that CLIMP-63 is mostly non-
monomeric, it is difficult to draw conclusions regarding multimerization states since
conformation and shape also strongly affect protein migration in such gels. We therefore
performed experiments with three types of cross linkers: BMOE, a short (8A) sulfhydryl-to-
sulthydryl crosslinker; DSS, a sulfo-NHS ester that reacts rapidly with any primary amine; and
glutaraldehyde, for indiscriminate cross-linking. All three reagents revealed the presence of
dimers, while DSS and glutaraldehyde indicated that CLIMP-63 could also associate into higher
order structures (Figure 2b), which could include hetero-oligomers. To further confirm the
existence of CLIMP-63 dimers, we performed co-immunoprecipitation experiments with HA-
and RFP-tagged CLIMP-63 combined with 3°S Cys/Met metabolic labeling and found that
dimers did form, shortly after synthesis, even for the C100A mutant (SI Appendix, Fig. S5c).
To get a more accurate estimation of the abundance of dimers and higher order assemblies, we
constructed a mutant of CLIMP-63 with a cysteine residue in the ER luminal domain to generate
disulfide-bonded oligomers. The entire 472-residue CLIMP-63 domain in the ER lumen is
predicted to form a coiled-coil, with two or three breaks (Multicoil2:
http://cb.csail.mit.edu/cb/multicoil2/cgi-bin/multicoil2.cgi). We chose to mutate a hydrophobic
residue close to the transmembrane domain likely to be involved in monomer-monomer contact,
Val-137, to cysteine in order to trap dimers through disulfide bond formation. The
electrophoresis migration pattern of the V137C mutant under non-reducing conditions indeed
revealed the formation of dimers as well as higher molecular weight forms (Fig. 2c) that must
involve other cysteines, either within CLIMP-63 or in an interacting protein. Dimerization of
V137C CLIMP-63 was observed rapidly after synthesis as revealed by **S Cys/Met metabolic
labeling, both in control cells and in ZDHHC6 KO cells (Fig. 2d), confirming that
palmitoylation is not necessary for multimerization. Altogether this analysis indicated that the
majority of CLIMP-63 rapidly forms dimers or higher order structures. The observed migration
patterns also indicated that CLIMP-63 multimerization is complex. Its understanding will
require structural determination of the luminal domain, which probably simultaneously forms
both parallel and antiparallel coiled-coil domains at the N-terminal and C-terminal end,
respectively, with CLIMP-63 molecules in the same ER membrane plane and with CLIMP-63
molecules in the opposing ER membrane “across” the lumen.

10
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The model allowed the deconvolution of experimental curves into the evolution of the
individual species as a function of time. This indicated that when performing a 20-min labeling
pulse with 33S-Cys/Met, newly synthesized M was rapidly converted to M'gr, which itself
was rapidly decayed to partially give rise to Dgr, the only significant ER species remaining at
the 20-hour chase time (Figure 2f, top panel). While the model predicted that monomers
underwent rapid palmitoylation in the ER, it also indicated that monomers underwent
significant depalmitoylation (Figure 2h). This balance was predicted to result in a 1.6x excess
of M!gr over Mg, increasing the probability of dimerization between M'gr but not excluding
that Mg can dimerize, as confirmed by dimerization of the V137C mutant in ZDHHC6 KO
cells (Fig. 2d) and of HA-CLIMP-63 C100A with RFP-CLIMP-63 C100A (SI Appendix, Fig.
S5d).

Interestingly, the palmitoylation and depalmitoylation fluxes of the dimers were predicted to be
very low (Figure 2h), leading us to analyze what was being measured during the pulse-chase
experiments shown in Fig. 1g. According to the model, after two hours of *H-palmitate labeling,
the labeled population was composed of 77% M'gr and only 15% D?gr. M!gr was subsequently
depalmitoylated while D?er was not, explaining the plateau that the depalmitoylation curve
reached at long chase times (Fig. 1g). As for any labeling experiment, the species distribution
at the end of the pulse was influenced by the length of the pulse. The model would therefore
predict that increasing the length of the pulse would lead to more dimer formation, which would
in turn lead to slower apparent depalmitoylation kinetics during the chase (SI Appendix, Fig.
S5g). This could be validated experimentally; indeed, depalmitoylation occurred at far slower
apparent rates when pulse times were longer (Fig. 2i). Thus, experiments and modeling
indicated that dimerization protects CLIMP-63 from depalmitoylation.

We next used the model to infer the half-lives of the different species in order to better describe
how CLIMP-63 stability may be regulated. As opposed to experiments that provide the apparent
half-lives of mixed protein populations, models can predict half-lives of individual species. All
ER-localized CLIMP-63 species were predicted to have similar half-lives, around five hours,
with the notable exception of D?gr whose half-life was predicted to be above 80 hours (Figure
2k). To validate this prediction, we sought a method that would allow us to estimate the half-
life of the majority of the cellular CLIMP-63 population, as opposed to **S-Cys/Met labeling
that monitored a newly synthesized population that gradually converted to different species as
a function of time. For this, we performed fluorescent pulse-chase experiments using a fusion
protein of CLIMP-63 with a SNAP tag. This tag allows labeling of a fully folded protein and
can be used to measure its half-life (39). No SNAP-CLIMP-63 degradation was observed over
a 24 h period, confirming that the most abundant species has a very long half-life (SI Appendix,
Fig. S5h).

Prediction of the species distribution indicated that the palmitoylated dimer was the most
abundant CLIMP-63 species (Figure 2j), consistent with its long half-life and very slow
depalmitoylation. The overall abundance of CLIMP-63 was predicted to depend on ZDHHC6
activity in cells, whose overexpression was predicted to increase the overall CLIMP-63 level
by 30% (Figure 2k) due to the accelerated palmitoylation of monomers and the subsequent
production of palmitoylated dimers (SI Appendix, Fig. S5i, magenta curves). ZDHHC6
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silencing was predicted to decrease CLIMP-63 levels by 32% (Figure 21). These predictions
could be experimentally validated since the expression of CLIMP-63 was 30% lower in
ZDHHC6 KO cells and about 20% higher when overexpressing ZDHHC6 (Fig. 2m).

Finally, consistent with experimental observations, the model predicted that ZDHHC6
controlled the concentration of the ER-exit-competent species and, thereby, the plasma
membrane population. At the surface, ZDHHC2-mediated palmitoylation of CLIMP-63 was
predicted to delay degradation, presumably by delaying targeting to lysosomes. Thus, the
plasma membrane population of CLIMP-63 that is involved in signaling events appears to be
controlled negatively by ZDHHC6 and positively by ZDHHC?2.

In summary, the synergistic cycle of experiments, model development, model-based analysis
of experimental data and simulations support the conclusions that dimerization and
palmitoylation jointly, but not alone, drastically stabilize CLIMP-63, that dimerization prevents
depalmitoylation, and thus that the palmitoylated multimers are far more abundant than
monomers in the cells. The joint importance of palmitoylation and dimerization was also
apparent when performing a global sensitivity analysis (SI Appendix, Fig. S5j). The kinetic
properties of both the palmitoylation of CLIMP-63 dimer and monomer (SI Appendix, Fig. S5j)
were indeed among the most important parameters for an accurate calibration of the model.

CLIMP-63 palmitoylation regulates ER morphology

CLIMP-63 overexpression was reported to induce ER-sheet proliferation (5, 6). Since our data-
driven mathematical modeling indicated that the abundance of CLIMP-63 was strongly
influenced by palmitoylation, we investigated whether this lipid modification played a role in
shaping the ER. We choose to first modulate depalmitoylation kinetics. The model predicted
that a decrease in palmitate turnover would lead to an accelerated accumulation of dimers and
an increased apparent half-life when performing S Cys/Met pulse-chase experiments (Fig.
3a). In membrane proteins, palmitoylation sites are often found in close proximity to the
transmembrane domain and often occur in pairs, such as in the anthrax toxin receptor TEMS8
(38) or the ER chaperone calnexin (33), where dual site modification essentially prevented
depalmitoylation (39). We thus tested if inserting a second cysteine right next to Cys-100, which
is five residues away from the transmembrane domain, would affect the palmitate turnover rate
of CLIMP-63 monomers. This insertion is unlikely to have structural consequence since the
cytosolic tail of CLIMP-63 is predicted to be disordered (https://iupred2a.elte.hu/). As
predicted, the depalmitoylation of CLIMP-63-CC was drastically slower after a two-hour *H-
palmitate pulse than observed for WT, with an almost 10-fold increase in the apparent half-life
of bound palmitate (Figure 3b). The palmitate decay plateaued at 40% (Figure 3b), consistent
with the predicted higher percentage of palmitoylated dimers at the end of the pulse compared
to WT CLIMP-63. Finally, consistent with the effect of palmitoylation on CLIMP-63 turnover,
the apparent half-life of CLIMP-63-CC was longer than that of WT (Figure 3c). We next
analyzed the effect of CLIMP-63-CC expression on ER morphology. We observed a striking
densification of perinuclear ER-sheets, as quantified over some 100 CLIMP-63-CC-expressing
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cells randomly chosen over three independent experiments (Figure 3d). This observation
indicated that the dynamics of CLIMP-63 palmitoylation strongly influence ER morphology.

We next modulated ZDHHC6 expression levels. In ZDHHC6 KO HeLa cells, the ER appeared
more tubular than in control cells and showed a decreased density in the perinuclear region
(Figure 3e and SI Appendix, Fig. S6b). Conversely, overexpression of ZDHHC6 in HeLa and
U20S cells clearly induced severe alterations in ER morphology (SI Appendix, Fig. Sé6cd).
Importantly, ZDHHC6 overexpression did not induce ER stress, as shown by qPCR analysis of
the mRNA levels of major ER stress mediators BiP, Irel, PERK, and ATF6 (SI Appendix, Fig.
S6e). This overexpression caused ZDHHC6 to accumulate into dot-like structures when
visualized by fluorescence microscopy, which corresponded to organized smooth endoplasmic
reticulum (OSERs) as revealed by electron microscopy (Fig. 3f and SI Appendix, Fig. S7) (40,
46). These ER alterations were specific to ZDHHC6 since the overexpression of other ER-
residing ZDHHC enzymes, such as of ZDHHC24, did not induce these morphological changes
(SI Appendix, Fig. S8). Thus, ZDHHC6 expression levels directly influence ER architecture,
as further analyzed below.

We next investigated whether the effect of ZDHHC6 on ER morphology was mediated by
CLIMP-63. Remarkably, ZDHHC6 overexpression had no effect on ER morphology in
CLIMP-63 knockdown cells (Figure 3g and SI Appendix, Fig. S8a). Expression of exogenous,
small hairpin RNA (shRNA)-resistant, WT CLIMP-63 restored the ZDHHC6-induced ER
proliferation phenotype, whereas expression of the palmitoylation-deficient C100A mutant did
not (Figure 3h and SI Appendix, Fig. S8b). Thus, ER-sheet proliferation induced by ZDHHC6
overexpression depends on palmitoylation of CLIMP-63.

To investigate the impact of CLIMP-63 palmitoylation on ER morphology at a higher
resolution, we performed electron microscopy analysis. We expressed RFP-tagged WT in cells
stably transduced with CLIMP-63 shRNA. These cells were analyzed by correlation
microscopy: first by identifying transfected cells by fluorescence microscopy and subsequently
analyzing these cells by transmission electron microscopy. We could not tag ZDHHC6 with
GFP because it led to functional alterations. CLIMP-63 itself was therefore tagged at the N-
terminus with RFP. As expected, long ER-sheets were observed in CLIMP-63 shRNA cells
expressing RFP-CLIMP -63 (SI Appendix, Fig. S10). We next overexpressed ZDHHC6-myc.
High ZDHHC6 expressing cells could be identified by the presence of dark dot-like structures,
the OSERs, in the RFP-CLIMP-63 staining pattern (SI Appendix, Fig. S10 according to Figure
3h and SI Appendix Fig. S7). We next imaged the cell volume using focused ion beam scanning
electron microscopy (FIBSEM). This technique provided serial images with near isotropic
voxels from which we reconstructed the ER (Figure 4a-d and SI Appendix, Movie S1 to S3).
The ER sheets appeared as a loose, stratified matrix containing multiple openings between
layers. Upon ZDHHCG6 overexpression, the layering pattern appeared denser with less openings
in the ER sheets, and multiple convolutions of the membrane (Figure 4d, Movie S3).

The FIBSEM images and the 3D reconstruction revealed an increase in continuity and a
densification of the ER sheets upon ZDHHC6 overexpression in WT CLIMP-63-expressing
cells (Fig. 4, Movie S3). In order to quantify these visual changes, we employed persistent
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homology, a construction from the mathematical field of applied algebraic topology (for
thorough and mathematically precise introductions, please refer to previous studies [47-51]).
Persistent homology can track the appearance and disappearance of features — spherical
cavities (in degree-2) and loops (degree-1) — in data across a range of scales (SI Appendix,
Fig. S11-13). We summarize persistent homology as a diagram with a point for each feature.
The point’s horizontal coordinate encodes the feature’s appearance, and its vertical coordinate
encodes its disappearance (in the artificial case illustrated in (SI Appendix, Fig. S11a), the
diagram would contain a single point [b, e]). Persistent homology of both degree-1 and degree-
2 (SI Appendix, Fig. S11b-f) confirms the change in ER topology upon ZDHHC6
overexpression, with a loss of ER fenestration and an increase in sheet density.

Discussion and Conclusions

This study investigated the role of the reversible post-translational modification S-
palmitoylation on the complex and dynamic architecture of the ER. ER morphology has been
previously shown to be dependent on the N-myristoylation of the protein Lunapark (52).
Because myristoylation is irreversible, however, it is unlikely to dynamically regulate ER
membrane rearrangements. Independent studies showed that CLIMP-63 can be palmitoylated
and that it is involved in ER sheet formation. Because the reversible nature of palmitoylation
makes it ideal for mutable systems, we analyzed the palmitoylation status and dynamics of
CLIMP-63 to determine whether it influences ER-sheet formation.

Based on the experimental determination of palmitoylation, depalmitoylation, and protein
turnover combined with data-driven mathematical modeling and prediction, we propose the
following outlook on CLIMP-63 involvement in ER-shaping and plasma membrane signaling.
As with most transmembrane proteins, CLIMP-63 is synthesized by ribosomes that dock onto
the translocon on the ER membrane, generating monomeric CLIMP-63 (M%g). CLIMP-63 does
not harbor any classical ER retention signals, allowing M’k to exit the ER and reach the plasma
membrane. CLIMP-63 can be retained in the ER through two independent mechanisms: S-
palmitoylation or dimerization. M%g is highly susceptible to palmitoylation by ZDHHCS,
generating M'gg, which can either be rapidly depalmitoylated by an acyl-protein thioesterase
that remains to be identified (depalmitoylation cannot be spontaneous and requires a
thioesterase), or it can dimerize. As opposed to monomers, dimers do not undergo significant
depalmitoylation and have an ~16-times longer half-life than all other ER-localized CLIMP-63
species. In the absence of palmitoylation, dimerization also occurs, leading to ER retention.
Thus, the vast majority of CLIMP-63 remains in the ER and is almost exclusively in the
palmitoylated multimeric form.

Palmitoylation controls the residence time of CLIMP-63 in both the ER and at the plasma
membrane. Non-palmitoylated CLIMP-63 monomers can be transported out of the ER to the
cell surface, with the amount exiting dependent on ZDHHC6. Experiments indeed indicate that
the amount of CLIMP-63 at the cell surface, where it is required in lower numbers due to its
involvement in signaling (18-21, 37), can vary several fold in response to changes in ZDDHC6
activity, with less palmitoylation by ZDDHC6 allowing for an increased presence of CLIMP-
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63 at the plasma membrane. It always, however, remains a very minor proportion of the total
cellular CLIMP-63 population. At the plasma membrane, CLIMP-63’s abundance is again
under the control of palmitoylation, this time through the action of ZDHHC2 (25, 31, 53). M'pm
has a longer predicted half-life than M, thus suggesting that ZDHHC2-mediated
palmitoylation increases the surface residence time of CLIMP-63, as reported for the anthrax
toxin receptor TEMS (38). Altogether, the present study shows that the distribution of various
species of CLIMP-63 as well as their localization in the cell are influenced by ZDHHC6-
mediated palmitoylation in the ER and ZDHHC2-mediated palmitoylation at the plasma
membrane.

The most striking observation is that CLIMP-63 palmitoylation dramatically affects ER
morphology. Palmitoylation was perturbed by overexpression or KO of ZDHHC6, expression
of the palmitoylation-deficient CLIMP-63 C100A mutant, and expression of the CLIMP-63-
CC mutant that harbors two neighboring palmitoylation sites leading to slower palmitate
turnover on monomers. Analyses by fluorescence and electron microscopy showed that proper
control of the ER morphology requires well-tuned palmitoylation. Severe alterations were
indeed caused by the absence of CLIMP-63 palmitoylation, decreased depalmitoylation
kinetics, or excessive palmitoylation. In particular, excessive palmitoylation of CLIMP-63 led
to the proliferation of ER sheets, which increased in size and became extremely smooth, without
fenestrations, as revealed by FIBSEM microscopy. A sort of phase diagram has been proposed
to explain changes in ER structural elements based on variations in other known ER-shaping
proteins (11). It is tempting to speculate that local concentrations of CLIMP-63 species,
particularly in peripheral ER sheets surrounded by tubules, may reside near phase transitions.
Consequently, moderate ZDHHC6-induced variations in CLIMP-63 dimers may trigger
pronounced tubule-to-sheet conversions. In addition, palmitoylation may influence local
membrane curvature as recently reported for the influenza virus hemagglutinin (54).

Most early studies on CLIMP-63 were focused on its ability to bind microtubules (17) through
the phosphorylation of three serines in the cytosolic domain of CLIMP-63 (22), thereby
affecting the microtubule network. Here we show that the zDHHC6-mediated palmitoylation
of CLIMP-63, while not influenced by microtubule binding, strongly influences ER
morphology and in particular the abundance of ER-sheets. The activity of zDHHC6, which
controlled by the upstream palmitoyltransferase ZDHHC16, varies in a tissue dependent manner
(40) and future studies will elucidate how this impact ER structure. Palmitoylation may also
occur for other ER-shaping proteins in addition to CLIMP-63, in particular tubule generating
protein, which would allow a coordinated generation of tubules and sheets.

Materials and Methods
Cell culture, transfections, immunoprecipitation, and western blotting

All HeLa cells were cultured in MEM Eagle (Sigma, US) complemented with 10% FCS (PAN
Biotech, D), 1% Pen/Strep, 1% L-Glutamine, and 1% MEM NEAA (all from Gibco, US). HeLa
cells are not on the list of commonly misidentified cell lines maintained by the International
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Cell Line Authentication Committee. Our cells were authenticated by Microsynth (CH), which
revealed 100% DNA identity with ATCC®CCL-2™., They were mycoplasma negative as
tested on a trimestral basis using the MycoProbe Mycoplasma Detection Kit CULO01B. For
transfection, the cells were dissociated using trypsin and plated in tissue culture dishes (Falcon,
US). After 24 h, the medium was changed and the cells were transfected using Fugene for
plasmids (Promega, US) or Interferrin (Polyplus, F) for silencing with siRNA. The cells were
incubated for 24 h to 48 h (for plasmids) or 72 h (for siRNA) before performing experiments.

For immunoprecipitation and western blotting the cells were lysed on ice for 30min with lysis
buffer (500 mM Tris—HCI pH 7.4, 2 mM benzamidine, 10 mM NaF, 20 mM EDTA, 0.5% NP40
and a protease inhibitor cocktail (Roche, CH)). The lysate was then centrifuged at 4°C for 3
min at 5000 rpm and the supernatant retrieved. For immunoprecipitation, the lysate was pre-
cleared using Sepharose G-beads without antibody for 30 min at 4°C before
immunoprecipitating (with G-beads and antibody) turning on a wheel overnight at 4°C. The
beads were then washed 3x with lysis buffer before adding sample buffer (4x) including beta-
mercaptoethanol. The samples were boiled 5 min at 95°C and vortexed before loading and
migration on 4-12% or 4-20% Tris-glycine SDS-PAGE gels. After 2 h at 120 V, the gel was
transferred for western blotting using an iBlot (Invitrogen, US) and revealed after antibody
incubations using a Fusion Solo (Vilber Lourmat, CH). Blot quantifications were done in
ImagelJ or BiolD (Vilber Lourmat, CH).

Crosslink experiments

Cells were washed two times with PBS, incubated 5 min at room temperature with crosslinker
(1mM BMOE or ImM DSS or 0.025% glutaraldehyde, Thermo Fisher, US), washed two times
with PBS, lysed and boiled Smin at 95°C in non-reducing sample buffer before migration on 4-
20% Tris-Glycine SDS-PAGE gels.

Immunofluorescence

Cells were seeded on glass coverslips (N1.5, Marienfeld, D) for at least 48 h (including
transfection). Fixation and permeabilization were performed either 1) to preserve the secretory
pathway as follows: cells were washed 3x with PBS and fixed with 3% paraformaldehyde for
20 min at 37°C, washed 3x with PBS, quenched with 50 mM of NH4ClI for 10 min at RT,
washed 3x with PBS, permeabilized with 0.1% Triton X-100 for 5 min at RT and finally washed
3x with PBS; or ii) to preserve the cytoskeleton and ER membranes as follows: cells were
washed 3x with PBS and fixed for 4 min at -20°C with precooled methanol and washed 3x with
PBS. In both cases, the cells were then blocked overnight in PBS + 0.5% BSA (GE Healthcare,
US). Immunostaining was performed as follows: the coverslips were incubated with primary
antibody for 30 min at RT, washed 3x for 5 min with PBS - 0.5% BSA and incubated for 30
min at RT with secondary fluorescent antibodies (Alexa 488, 568 or 647, Invitrogen, US) and
finally washed again 3x with PBS - 0.5% BSA prior to mounting in Mowiol. The coverslips
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were then imaged by confocal microscopy using a LSM710 microscope (Zeiss, D) with a 63x
oil immersion objective (NA 1.4).

Correlative Electron Microscopy

Cells were plated and transfected with ZDHHC6-GFP plasmids on glass coverslips coated in a
5-nm layer of carbon that outlined a numbered grid reference pattern. After 24 h, the cells were
fixed for 60 min in a buffered solution of 2% paraformaldehyde and 2.5% glutaraldehyde at
25°C, and then washed 3x with cacodylate buffer. The coverslips were then mounted in a holder
for fluorescence microscopy and the cells imaged using confocal microscopy (LSM700, Zeiss,
63x objective, NA 1.4). The cells of interest were imaged at a range of magnifications, and their
location recorded according to the carbon grid pattern. The coverslips were then post-fixed with
1% osmium tetroxide and 1.5% potassium ferrocyanide in cacodylate buffer (0.1 M, pH 7.4)
for 40 min at 25°C. After washing in distilled water and further staining with osmium alone
followed by 1% uranyl acetate, they were dehydrated in a series of increasing concentrations of
alcohol, then embedded in Durcupan resin, which was hardened overnight at 65°C. The next
day, the resin containing the cells of interest was separated from the coverslips and mounted
onto a blank resin block for ultrathin sectioning. Serial ultrathin sections were cut at 50 nm
thickness and collected onto a formvar support film on single slot copper grids. Pictures were
acquired at 80 kV using a transmission electron microscope (Tecnai Spirit, FEI Company, US).

Focused lon Beam Scanning Electron Microscopy (FIBSEM)

Cells of interest, recorded with fluorescent microscopy and prepared for electron microscopy
(see above) were serially imaged using FIBSEM. Resin blocks were trimmed using an
ultramicrotome so that the cell was located within 5 pm of the edge of the resin block. This
block was then glued to aluminum stub, coated with a 20-nm layer of gold in a plasma coater,
and placed inside the microscope (Zeiss NVision 40, Zeiss NTS). An ion beam of 1.3 nAmps
was used to sequentially mill away 10-nm layers of resin from block surface to enable the cell
to be serially imaged. Images were collected using the backscatter detector with the electron
beam at 1.6 kV and grid tension set at 1.3 kV to collect only the highest energy electrons.

The final images were precisely aligned using the StackReg algorithm (56) in ImagelJ, and the
ER, mitochondria, nuclear membrane, and cell membrane segmented using the Microscopy
Image Browser software (57). The mesh models were then exported to the Blender software
(www.blender.org) for final rendering and visualization.

Statistical analysis

Statistical analyses were performed using unpaired two-tailed Student’s t-test. Data are
represented as means =+ standard deviations. ns: not significant, *p < 0.05, **p < 0.01, ***p <
0.001.

Data availability

The authors declare that all data supporting the findings of this study are available within the
paper and in the SI Appendix.
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Further details on materials and methods can be found in SI Appendix.
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FIGURE LEGENDS

Figure 1. ZDDHC6-mediated CLIMP-63 palmitoylation affects its localization and turnover.

a. Majority of CLIMP-63 is palmitoylated. Stoichiometry of CLIMP-63 palmitoylation in HeLa cells
was followed with the APEGS assay. PEG-5k was used to label endogenous protein or transfected HA-
CLIMP-63, HA-CLIMP-63-C100A, or endogenous Calnexin or endogenous TRAP-alpha (+PEG), in
the -PEG the PEG was not added. b. Determination of the non-acylated fraction of CLIMP-63. HA-
CLIMP63 C126A or C100A + C126A were treated or not with hydroxylamine (NH,OH) and labeled
with iodoacteamide-oregon-green-488 (IAA-OG488) as described in SI Appendix, Figure S2d. The
amount of acylated CLIMP-63 was determined by comparing plus and minus NH>OH (n = 4). Error bar
represents standard deviation (SD). e. Metabolic labeling with *H-palmitate was performed on ZDHHC6
KO or control HeLa cells for 2 h at 37°C. Bottom panel: *H-palmitate labeling of HeLa cells with
control, ZDHHC2, or ZDHHC6 siRNA, or overexpressed ZDHHC2-myc or ZDHHC6-myc for 2 h.
Quantification of CLIMP-63 *H-palmitate metabolic labeling with SD (n = 4). ***p < 0.01. d. Proximity
ligation assay of ZDHHC2 or ZDHHC6 with CLIMP-63 in HeLa control or ZDHHC6 KO cells after
cold methanol fixation. Quantification of the proximity ligation assay with SD. (n = 15 each, *p < 0.05;
**p < 0.01, ***p <0.001). e. HeLa cell-surface proteins were labeled at 4°C for 30 min with NHS-
biotin. LRP6 and GAPDH are blotted as positive and negative controls, respectively. Total cell extract
(TCE) = 5% of pulldown volume. Exposure of CLIMP-63 on the right panel is 1.5 orders of magnitude
longer than on the left panel. Quantification of CLIMP-63 population at the cell surface with SD (n = 3,
##%p < (.001). f. Metabolic labeling with *H-palmitate at 37°C was performed on HeLa cells for
different pulse lengths. Quantification of CLIMP-63’s *H-palmitate incorporation showing the average
with SD. The signal was normalized so the population at t = 2 h represented 100% (n = 3). g. Pulse
Chase. After a 2 h *H-palmitate labeling at 37°C, HeLa cells were chased for various times.
Quantification of CLIMP-63’s *H-palmitate loss showing the average with SD. The signal was
normalized so the initial population at t = 0 represents 100% (n = 5). h. Pulse chase. **S Metabolic
labeling with a pulse of 20 min was performed on HeLa cells transfected with RNAi CTRL (n = 5) or
against ZDHHC2, ZDHHC®6, or ZDHHC?2 + 6 (all n = 3). The radioactive signal for the population at t
= 0 was normalized to 100%. The error bars represent SD. i. Pulse chase. Same as (h), but HeLa cells
were transfected with either HA-CLIMP-63 WT or C100A, or HA-CLIMP-63 + ZDHHC6-myc together
(all n = 3). j. Apparent half-lives as extracted from data in (h) and (i).

Figure 2. Modeling of CLIMP-6 palmitoylation dynamics. a. A post-nuclear fraction of HeLa cells
was prepared and ultracentrifuged for 1 h at 45,000 rpm. The membrane fraction was retrieved and
separated into two samples migrated either on Blue Native gel or SDS-PAGE. b. Endogenous CLIMP-
63 in HeLa cells was crosslinked 5 min at room temperature with either ImM BMOE, 1mM DSS or
0.025% Glutaraldehyde. Total cell extracts were suspended in non-reducing SDS-PAGE sample buffer,
run on a 4-20% SDS-PAGE Tris-Glycine gel and revealed with anti-rabbit CLIMP-63 antibodies. c.
HeLa cells were transfected with HA-CLIMP-63 WT or HA-CLIMP-63 V137C for 24 hours. Total cells
extracts were migrated on non-reducing conditions on a 4-20% SDS-PAGE Tris-Glycine gel and
revealed with anti-HA antibodies. d. Autoradiography of HeLa cells transfected with HA-CLIMP-63
WT or HA-CLIMP-63 V137C for 24 hours, **S Cys-Met radiolabeled for 20 min pulse,
immunoprecipitated using HA-beads and loaded on SDS-PAGE under non-reducing conditions. e.
Schematic description of CLIMP-63 species and localizations. f. Calibration and g. validation of the
model output (from Fig. S2). The solid grey line is the median of 100 model simulations; the shaded
grey interval is defined by the 1st and the 3rd quartile of the 100 model simulations (see ST Appendix,).
Each species is color coded. h. Predicted palmitoylation and depalmitoylation rates for CLIMP-63
species. Rates are lumped together for dimer species. ie. DP*™gg corresponds to the sum of D’%sr and
D'rr palmitoylation rates. i. Pulse chase. After either 2 h, 6 h, or 16 h of metabolic labeling with *H-
palmitate at 37°C, the HeLa cells were washed with complete medium and lysed at the various time
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points. The graph represents the *H signal quantification of endogenous CLIMP-63 with error bars as
SD (n = 3). j. Steady-state distribution of CLIMP-63 species as predicted for CLIMP-63 WT and C100A
mutant. Error bars represent the first and third quartile through the simulation of 100 models. k.
Simulated bona fide half-lives of CLIMP-63 species. 1. In silico prediction of the total level of CLIMP-
63 under control conditions, ZDHHC6 silencing, or ZDHHC6 overexpression. m. Expression of
endogenous CLIMP-63 in HelLa cells control, in Hela cells KO for ZDHHC6 and in HeLa ZDHHC6
KO cells recomplemented with ZDHHC6. Endogenous CLIMP-63 of 10ug of total cell extracts were
revealed by Western Blotting with rabbit anti-Climp-63 and anti-rabbit alexa-488 antibodies, detected
with FUSION Camera and quantified with BIO1D software (n=8, error bars rereesent SD).

Figure 3. ZDHHC6-mediated CLIMP-63 palmitoylation induces ER-sheet proliferation. a.
Computational simulations of CLIMP-63 depalmitoylation (left), dimer formation (middle), and protein
stability (right) upon slower depalmitoylation kinetics. Median shown by solid lines, 1% and 3" quartile
by shaded interval. b. Pulse chase: *H-palmitate pulse (2 h)-chase of HeLa cells transfected with FLAG-
CLIMP-63 WT or CC mutant (n = 3). The plot represents the quantification with average and standard
deviation (SD). The signal was normalized to that at t = 0. ¢. Pulse chase: **S metabolic pulse (20 min)-
chase of HeLa cells transfected with HA-CLIMP-63 WT or CC (n = 3). The plot represents the
quantification with average and SD. The signal was normalized so the initial population att= 0. d. HeLa
cells stably expressing a shRNA against CLIMP-63 were recomplemented for 48 h with either RFP-
CLIMP-63 WT or CC and analyzed by immunofluorescence. Calnexin and TRAPa were used as ER
markers. Quantification represents the percentage of cells with higher perinuclear density of the ER (n
= 3 with each >30 randomly chosen cells, ***p < 0.01). e. HeLa CRISPR-Cas9 ZDHHC6 KO cells or
control cells were analyzed by immunofluorescence. The surfaces of the dense perinuclear ER (pER;
red) as well as the total ER (tER; blue) were measured using ImageJ. The bar plot represents the ratio
of pER/tER for the control and KO-ZDHHC6 cells (32 different randomly chosen cells were measured
for each condition; ***p < 0.001). f. HeLa cells were transfected for 48 h with ZDHHC6-myc and
analyzed by immunofluorescence. Blue arrows highlight the dense perinuclear ER sheets while orange
arrows show non-transfected cells. g. As in (f) using HeLa cells stably expressing a shRNA against
CLIMP-63. Quantification of the proportion of cells overexpressing ZDHHC6-myc with a dense
perinuclear region expansion in the absence or not of CLIMP-63 (n = 3). ZDHHC®6 in control (CTRL):
129 cells; ZDHHC6 in shCLIMP-63: 226 cells. ***p < 0.01. h. HeLa cells transfected for 48 h with
ZDHHC6-myc and CLIMP-63 WT or C100A mutant were analyzed by immunofluorescence.
Quantification of cells with or without induced ER-sheets (n = 3). Cells with expanded ER were
normalized to the total number of cells. HA-CLIMP-63-WT: 137 cells, HA-CLIMP-63-WT +
ZDHHC6: 79 cells, HA-CLIMP-63-C100A: 145 cells, HA-CLIMP-63-C100A + ZDHHC®6: 182 cells.
***p <0.01, n.s.: non-significant.

Figure 4. ZDHHC6 induced ER changes. FIBSEM was used to 3D image the ER in RFP-CLIMP-63
under control conditions (a) or upon co-overexpression of ZDHHCG6 (b). ¢-d. FIBSEM image stacks,
with near isotropic voxels, show the convoluted branching pattern of the ER. In (d), numerous closed
loops of membrane can be seen in the two imaging planes (arrows). Reconstructions of ER (green) show
its conformation in cells under control conditions (e) or upon ZDHHC6-myc overexpression (f), with
the reconstructed mitochondria (pink) and nuclear membrane (yellow).
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