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ABSTRACT
Empirical knowledge of ecosystem stability and diversity-stability relationships is mostly
based on the analysis of temporal variability of population and ecosystem properties.
Variability, however, often depends on external factors that act as disturbances, making
it difficult to compare its value across systems and relate it to other stability concepts.
Here we show how variability, when viewed as a response to stochastic perturbations,
can reveal inherent stability properties of ecological communities, with clear connections
with other stability notions. This requires abandoning one-dimensional representa-
tions, in which a single variability measurement is taken as a proxy for how stable
a system is, and instead consider the whole set of variability values associated to a
given community, reflecting the whole set of perturbations that can generate variability.
Against the vertiginous dimensionality of the perturbation set, we show that a generic
variability-abundance pattern emerges from community assembly, which relates variability
to the abundance of perturbed species. As a consequence, the response to stochastic
immigration is governed by rare species while common species drive the response to
environmental perturbations. In particular, the contrasting contributions of different
species abundance classes can lead to opposite diversity-stability patterns, which can
be understood from basic statistics of the abundance distribution. Our work shows
that a multidimensional perspective on variability allows one to better appreciate the dy-
namical richness of ecological systems and the underlying meaning of their stability patterns.

Keywords: diversity-stability relationship, immigration stochasticity, demographic stochasticity, environmental
stochasticity, rare species, common species, asymptotic resilience.
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Empirical knowledge of ecosystem stability and diversity-stability relationships is mostly based
on the analysis of temporal variability of population and ecosystem properties. Variability, how-
ever, often depends on external factors that act as disturbances, making it di�cult to compare
its value across systems and relate it to other stability concepts. Here we show how variability,
when viewed as a response to stochastic perturbations, can reveal inherent stability properties of
ecological communities, with clear connections with other stability notions. This requires abandon-
ing one-dimensional representations, in which a single variability measurement is taken as a proxy
for how stable a system is, and instead consider the whole set of variability values associated to a
given community, reflecting the whole set of perturbations that can generate variability. Against
the vertiginous dimensionality of the perturbation set, we show that a generic variability-abundance
pattern emerges from community assembly, which relates variability to the abundance of perturbed
species. As a consequence, the response to stochastic immigration is governed by rare species while
common species drive the response to environmental perturbations. In particular, the contrasting
contributions of di↵erent species abundance classes can lead to opposite diversity-stability patterns,
which can be understood from basic statistics of the abundance distribution. Our work shows that
a multidimensional perspective on variability allows one to better appreciate the dynamical richness
of ecological systems and the underlying meaning of their stability patterns.

Keywords: diversity-stability relationship, immigration stochasticity, demographic stochasticity, environ-
mental stochasticity, rare species, common species, asymptotic resilience.

Introduction

Ecological stability is a notoriously elusive and multi-
faceted concept [7, 28]. At the same time, understanding
its drivers and relationship with biodiversity is a fun-
damental, pressing, yet enduring challenge for ecology
[8, 23, 24, 26]. The temporal variability of populations
or ecosystem functions, where lower variability is inter-
preted as higher stability, is an attractive facet of eco-
logical stability, for several reasons. First, variability is
empirically accessible using simple time-series statistics
[36]. Second, variability – or its inverse, invariability – is
a flexible notion that can be applied across levels of bio-
logical organization [15] and spatial scales [40, 41]. Third,
variability can be indicative of the risk that an ecological
system might go extinct, collapse or experience a regime
shift [32]. During the last decade, the relationship be-
tween biodiversity and ecological stability has thus been
extensively studied empirically using invariability as a
measure of stability [5, 13, 16, 20, 27, 35].

In a literal sense, stability is the property of what tends
to remain unchanged [29]. Variability denotes the ten-
dency of a variable to change in time, so that its inverse,
invariability, fits this intuitive definition. However, vari-
ability is not necessarily an inherent property of the sys-
tem that is observed (e.g., a community of interacting
species), as it typically also depends on external factors
that act as perturbations, and generate the observed vari-
ability. In other words, the variability of a community
is not a property of that community alone. It may be

caused by a particular perturbation regime so that a dif-
ferent regime could lead to a di↵erent value of variability.
Stronger perturbations will generate larger fluctuations,
and the way a perturbation’s intensity is distributed and
correlated across species is also critical. In other words,
a variability measurement reflects the response of a sys-
tem to the specific environmental context in which it is
embedded.

Despite this complexity, quantifying the fluctuations
of an ecosystem property (e.g., primary production) can
be of foremost practical interest as it provides a mea-
sure of predictability in a given environmental context
[11]. However, to generalize results beyond the specific
context in which variability is measured, use variability
to compare the stability of di↵erent systems, establish
links between di↵erent stability notions, or reconcile the
conflicting diversity-stability patterns and predictions re-
ported in the empirical and theoretical literature [18], one
needs to know how variability measurements can reflect
a system’s inherent dynamical features.

Here, we adopt an approach in which stability is viewed
as the inherent ability of a dynamical system to endure
perturbations (Fig. 1A). For simplicity we will restrict
to systems near equilibrium, by opposition to, e.g., limit
cycles or chaotic attractors. We propose that a measure
of stability should reflect, not a particular perturbation
(as in Fig. 1B), but a system’s propensity to withstand
a whole class of perturbations. We therefore consider a
vast perturbation set, and study the corresponding range
of community responses (Fig. 1C). Even from a theo-
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FIG. 1: Variability vs stability. A: Stability quantifies the way
a system responds to perturbations, seen as an inherent property
of the system (indicated by the red framed box). B: By contrast,
temporal variability is typically a feature of both the system studied
and external factors that act as perturbations. C: For variability to
be an inherent property of the system, one can consider a whole set
of perturbations, thus integrating out the dependence on specific
external factors.

retical perspective, considering all possible perturbations
that an ecosystem can face is a daunting task. We will
thus restrict our attention to model ecological communi-
ties near equilibrium, perturbed by weak stochastic per-
turbations, and derive analytical formulas for two com-
plementary features of the set of their variability values:
its average and maximum, corresponding to the mean-
and worst-case perturbation scenarios, respectively.

After having developed a general theory of variability
that can be applied to any model community near equi-
librium, we turn our attention to species-rich communi-
ties that are assembled from nonlinear dynamics. We
show that a generic variability-abundance pattern can
emerge from the complex interactions between species
during assembly. We argue that this pattern, in con-
junction with the type of perturbations considered (envi-
ronmental, demographic, or caused by stochastic immi-
gration), determines the specific species abundance class
that governs the variability distribution. In particular,
we establish a generic link between rare species, worst-
case variability, and asymptotic resilience – the long-term
rate of return to equilibrium following a pulse perturba-
tion. We finally illustrate that the contrasting contribu-
tions of various species abundance classes can be respon-
sible for opposite diversity-invariability patterns.

The goal of our work is (i) to demonstrate that vari-
ability is an inherently multidimensional notion, reflect-
ing the multidimensionality of an ecosystem’s responses
to perturbations; (ii) to show that clear patterns exist
in ecosystem responses to perturbations, which reflect
the dynamical properties of distinct species abundance
classes; (iii) to argue that, in order to compare and pre-

dict variability patterns, it is paramount to first identify
to which abundance class these patterns or predictions
refer to; and finally, (iv) to propose that a multidimen-
sional perspective on variability allows one to better ap-
preciate the dynamical richness of ecosystems, and the
underlying meaning of their stability patterns.

Conceptual framework

We focus on communities modelled as dynamical sys-
tems at equilibrium, and study their responses to a whole
class of stochastic white-noise forcing. In this section we
outline the theory, focusing on ecological intuitions, while
Appendix A through D provides a self-contained presen-
tation of its mathematical foundations. Our work follows
traditional approaches of theoretical ecology [19, 24], ex-
tending the analysis to encompass a large perturbation
set.

Perturbed communities

Let Ni(t) represent the abundance (or biomass) of
species i at time t, and xi(t) = Ni(t) � Ni its displace-
ment from an equilibrium value Ni, with i running over
S coexisting species that form an ecological community.
We model fluctuations in abundance (hence variability)
as a response to some stochastic forcing. We focus on sta-
tionary fluctuations caused by weak perturbations with
zero mean (cf. note [43]), which are governed by the fol-
lowing dynamical system, written from the perspective
of species i as

d

dt
xi(t)|{z}

fluctuations

=
SX

j=1

Aijxj(t)| {z }
interactions

+�i

p
Ni

↵
⇠i(t)| {z }

perturbation

. (1)

In this expression, the coe�cients Aij represent the ef-
fect that a small change of abundance of species j has on
the abundance of species i. Organized in the community
matrix A = (Aij), they encode the linearization of the
nonlinear system of which (Ni) is an equilibrium. In the
perturbation term, ⇠i(t) denotes a standard white-noise
source [1, 38]. In discrete time ⇠i(t) would be a nor-
mally distributed random variable with zero mean and
unit variance, drawn independently at each time step
(Appendix A).
Community models of the form eq. (1) were studied by

Ives et al. [19] to analyze ecological time series. In their
approach, stability properties are inferred from the sys-
tem’s response to specific perturbations. Here we build
on a similar formalism, but explicitly explore a vast set of
possible perturbations. Although environmental fluctua-
tions often follow temporal patterns [10, 31, 39] we will
not consider autocorrelated perturbations. It would thus
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FIG. 2: A theoretical framework for variability. Perturbations are characterized by their type, a statistical relationship between the
direct e↵ect of perturbations and the abundance of perturbed species. For a given type and fixed intensity, there remains a whole set of
covariance structures of perturbations, i.e., various perturbation directions, that will be transformed by community dynamics into a whole
set of community responses, i.e., various covariance structures of species stationary time series. A sampling of those responses leads to a
variability distribution, one for each perturbation type. Spanning all perturbation types leads to a family of variability distributions (in
blue, green and red in the rightmost column).

be interesting to extend the analysis to more general tem-
poral structures of perturbations, as well as to nonlinear
behaviors. What we will explicitly consider, however, are
temporal correlations between ⇠i(t) and ⇠j(t), a situation
in which individuals of species i and j are similar in their
perception of a given perturbation, a property known to
have potentially strong, and unintuitive e↵ects on species
dynamics [30].

For the fluctuations of species abundance in eq. (1) to
be stationary, the equilibrium state (Ni) must be stable.
More technically, the eigenvalues of the community ma-
trix Amust have negative real part [14, 24]. The maximal
real part determines the slowest long-term rate of return
to equilibrium following a pulse perturbation. This rate
is a commonly used stability measure in theoretical stud-
ies; we call it asymptotic resilience and denote it by R1
[4]. To illustrate the connections between stability con-
cepts, we will compare asymptotic resilience to measures
of variability.

Perturbation type

The perturbation term in eq. (1) represents the direct
e↵ect that a perturbation has on the abundance of species
i. It consists of two terms: some power ↵ of

p
Ni, and

a species-specific term �i⇠i(t). The latter is a function
of the perturbation itself, and of traits of species i that

determine how individuals of that species perceive the
perturbation. The former defines a statistical relation-
ship between a perturbation’s direct e↵ects and the mean
abundance of perturbed species. It allows us to consider
ecologically distinct sources of variability (Fig. 2).

When individuals of a given species respond in syn-
chrony to a perturbation, the direct e↵ect of the pertur-
bation will be proportional to the abundance of the per-
turbed species, thus a value of ↵ close to 2 [22]. We call
this type of perturbation environmental as fluctuations
of environmental variables typically a↵ect all individuals
of a given species, leading, e.g. to changes in the popu-
lation growth rate [25].

If individuals respond incoherently, e.g., some nega-
tively and some positively, the direct e↵ect of the per-
turbation will scale sublinearly with species abundance.
For instance, demographic stochasticity can be seen as
a perturbation resulting from the inherent stochasticity
of birth and death events, which are typically assumed
independent between individuals. In this case ↵ = 1, and
we thus call such type demographic [22].

We can also consider purely exogenous perturbations,
such as the random removal or addition of individuals.
In this case ↵ = 0. We call such perturbations immigra-
tion-type but stress that actual immigration events do
not necessarily statisfy this condition (e.g., they can be
density-dependent). Furthermore, because we focus on
zero-mean perturbations, perturbations of this type con-
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tain as much emigration than immigration. The reason-
ing behind this nomenclature is that, in an open system,
fluctuations of an otherwise constant influx of individuals
(immigration flux) would correspond to an immigration-
type perturbation.

More generally, eq. (1) with ↵ 2 [0, 2] can describe a
continuum of perturbation types. Note that, although
not unrelated, such a statistical relationship between a
perturbation’s direct e↵ects and the abundance of per-
turbed species is not equivalent to Taylor’s law [33]. The
latter is an empirically observed power-law relationship
between the variance and mean of population fluctua-
tions. Hence, in contrast to the perturbation type ↵, the
exponent of Taylor’s law depends on community dynam-
ics, e.g., on species interactions [21]. We will come back
to this point below and in the Discussion.

Perturbation intensity

For a given community, a stronger perturbation will
lead to stronger fluctuations. A disproportionate increase
in their amplitude as perturbation intensity changes
would reveal nonlinearity in the dynamics [42]. In a lin-
ear setting, however, such e↵ects cannot occur and there
is only a linear dependency on perturbation intensity.
This trivial dependency can be removed by controlling
for perturbation intensity. We now illustrate how to do
so, for a given definition of variability.

In our setting, fluctuations induced by white-noise
forcing are normally distributed, thus fully characterized
by their variance and covariance. It is therefore natu-
ral to construct a measure of variability based on the
variance of species time-series. To compare variability of
communities with di↵erent species richness we will mea-
sure their average variance:

�2
out =

1

S

X

i

Var(Ni(t)). (2)

In empirical studies, variability is often associated to an
ecosystem function (primary productivity, ecosystem res-
piration, etc). This amounts to measuring the ecosystem
response along a direction in the space of dynamical vari-
ables. In Appendix B we explain how considering the av-
erage variance amounts to taking the expected variance
along a random choice of direction of observation. In
this sense, eq. (2) represents the variance of a “typical”
observation.

We now wish to remove the trivial e↵ect of pertur-
bation intensity from eq. (2). Let us start from a one-
dimensional system dx/dt = ��x+ �⇠(t). Its stationary

variance is �2
out = �2

2� . Here we see the combined e↵ect
of perturbation �2 and dynamics �, leading us to de-
fine �2 as measure of perturbation intensity. For species-
rich communities, we define perturbation intensity as the
average intensity per species, that is, using the species-

specific intensities �2
i :

�2
in =

1

S

X

i

�2
i . (3)

When increasing all species-specific perturbation intensi-
ties by a factor c, both �2

in and �2
out increase by the same

factor. To remove this linear dependence, we define vari-
ability as

V =
�2
out

�2
in

, (4)

i.e., as the average species variance relative to perturba-
tion intensity (see 19 for a similar definition of variabil-
ity). Generalizing previous work [3, 4] to an arbitrary
perturbation type, we construct invariability as

I =
1

2V . (5)

The factor 1/2 allows I to coincide, for simple systems,
with asymptotic resilience [4]. In particular, for the one-
dimensional example considered above for which R1 =
�, we do have V = 1/2� and thus I = � = R1.

Perturbation direction

Once intensity (�2
in) is controlled for, perturbations can

still di↵er in how their intensity is distributed (�2
i ) and

correlated in time (correlation between ⇠i(t) and ⇠j(t), see
eq. (1)) across species. We want to be able to model the
fact that species with similar physiological traits will be
a↵ected in similar ways by, say, temperature fluctuations,
whereas individuals from dissimilar species may react in
unrelated, or even opposite, ways [30]. We will thus study
the e↵ect of the covariance structure of the perturbation
terms, i.e., the e↵ect of the direction of perturbations.
Spanning the set of all perturbation directions will de-
fine a whole range of community responses. Assuming
some probability distribution over this set translates into
a probability distribution over the set of responses, i.e.,
a variability distribution (see Fig. 2). We will assume
all perturbation directions to be equiprobable, but our
framework allows di↵erent choices of prior. Finally, span-
ning the set of perturbation types reveals a continuous
family of variability distributions. In Fig. 2 we show
three archetypal elements of this family, corresponding
to ↵ = 0 (blue distribution), ↵ = 1 (green distribution)
and ↵ = 2 (red distribution).

For each distribution we consider two complementary
statistics: mean- and worst-case responses. In Appen-
dices C and D we prove that the worst-case response
is always achieved by a perfectly coherent perturbation,
i.e., a perturbation whose direct e↵ects on species are not
independent, but on the contrary, perfectly correlated in
time. We derive explicit formulas to compute the worst-
case variability from the community matrix and species
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equilibrium abundances, see eqs. (C2, D5). The mean-
case scenario, on the other hand, is defined with respect
to a prior over the set of perturbation directions. For the
least informative prior, we prove in Appendices C and
D that a perturbation a↵ecting all species independently
but with equal intensity, realizes the mean-case response.
This provides a way to compute this response from the
community matrix and the species abundances, given in
eqs. (C3, D6).

Variability patterns for two-species community

Before considering complex communities, let us illus-
trate our variability framework on the following elemen-
tary example, in the form of a 2⇥ 2 community matrix

A =

✓
�1 0.1
�4 �1

◆
. (6)

This matrix defines a linear dynamical system that
could represent a predator-prey community, with the first
species benefiting from the second at the latter’s expense.
Its asymptotic resilience is R1 = 1. Let us suppose that
the prey, N2 (second row/column of A) is 7.5 times more
abundant than its predator, N1 (first row/column of A)
and consider stochastic perturbations of this community,
as formalized in eq. (1).

In Fig. 3 we represent the set of perturbation directions
as a disc, in which every point is a unique perturbation
direction (see Appendix E for details). The e↵ect of a
perturbation on a community is represented as a color;
darker tones imply larger responses, with the baseline
color (blue, green or red) recalling the perturbation type
(↵ = 0, 1, 2, respectively). Points at the boundary of the
disc correspond to coherent perturbations, which have
the potential to generate the largest (but also the small-
est) variability. This is why the color maps of Fig. 3 take
their extreme values at the boundary. We see that vari-
ability strongly depends on the perturbation direction,
and that this dependence is strongly a↵ected by the per-
turbation type. For immigration-type perturbations (in
blue) variability is largest when perturbing the preda-
tor species most strongly (the least abundant species in
this example). For demographic-type perturbations (in
green) perturbations that equally a↵ect the two species
but in opposite ways achieve the largest variability. For
environmental-type perturbations (in red) variability is
largest when perturbing the prey species (the most abun-
dant species in this example). For all types we see that
positive correlations between the components of the per-
turbation (i.e., moving upwards on the disc) reduce vari-
ability (see 30 for related results).

Thus, in general, a given community cannot be asso-
ciated to a single value of variability. Depending on the
type of perturbations causing variability, di↵erent species
can have completely di↵erent contributions. This stands

in sharp contrast with asymptotic resilience R1, which
associates a single stability value to the community. Al-
though we know from previous work [4] that the smallest
invariability value in response to immigration-type per-
turbations will always be smaller than R1, in general
(i.e., any perturbation type and/or any perturbation di-
rection) there is, a priori, no reason to expect a relation-
ship between invariability and asymptotic resilience.

Variability patterns in complex communities

The dimensionality of variability will be larger in com-
munities comprised of many species, as their sheer num-
ber, S, increases the dimension of the perturbation set
quadratically. Yet, when species interact, a generic struc-
ture can emerge from ecological assembly, revealing a
simple relationship between variability and the abun-
dance of perturbed species. To show this, we study ran-
domly assembled communities. We start from a large
pool of species with randomly drawn dynamical traits (cf.
note [44]), and let the system settle to an equilibrium fol-
lowing Lotka-Volterra dynamics. During assembly some
species would go extinct, but no limit cycles, chaotic be-
havior or multi-stability were observed. A complete de-
scription of the nonlinear model is given in Appendix F
and Matlab simulation code is available as supplementary
material.
In Fig. 4 we show the variability patterns for a sin-

gle randomly assembled community, but the results hold
more generally (see below). The species pool consisted of
Spool = 50 species, with species interaction strengths an
order of magnitude smaller than the strengths of species
self-regulation (see Appendix F for details). The as-
sembled community had S = 40 coexisting species. In
this species-rich context, the perturbation set cannot be
represented exhaustively. We therefore plot the variabil-
ity induced by species-specific perturbations (of various
types) against the abundance of perturbed species. That
is, we focus on the e↵ect of a specific subset of pertur-
bations, those a↵ecting a single species. Linear combi-
nations of these perturbations will span all scenarios in
which species are a↵ected independently, but exclude sce-
narios in which they are perturbed in systematically cor-
related or anti-correlated way (cf. note [45]).
The leftmost panel shows a negative unit slope on

log scales: when caused by immigration-type perturba-
tions, variability is inversely proportional to the abun-
dance of perturbed species. Randomly adding and re-
moving individuals from common species generates less
variability than when the species is rare. In fact, the
worst-case scenario corresponds to perturbing the rarest
species. Worst-case invariability is close to asymptotic
resilience, which corroborates previous findings showing
that the long-term rate of return to equilibrium is often
associated to rare species [2, 15]. On the other hand,
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FIG. 3: Variability patterns for a two-species community. Top panel: For a two-species community the set of all perturbation directions
can be represented graphically as a disc (shaded in gray), with the variance of the perturbation term ⇠2(t) on the x-axis and the covariance
between ⇠1(t) and ⇠2(t) on the y-axis. Some special perturbation directions are indicated (numbers 1 to 5, see also Appendix E). Bottom
panels: We consider a predator-prey system; the community matrix A is given by eq. (6), and the prey (species 2) is 7.5 more abundant
than its predator (species 1). The induced variability depends on the perturbation directions (darker colors indicate larger variability),
and this dependence in turn depends on the perturbation type ↵. For immigration-type perturbations (↵ = 0, in blue) variability is largest
when perturbing species 1 most strongly. For demographic-type perturbations (↵ = 1, in green) perturbations that a↵ect the two species
equally strongly but in opposite ways achieve the largest variability. For environmental-type perturbations (↵ = 2, in red) variability is
largest when perturbing species 2 most strongly. Notice that the worst case is always achieved by perturbations lying on the edge of the
perturbation set. Such perturbations are perfectly correlated (see main text and Appendix E).

FIG. 4: Variability-abundance pattern in a complex community. We consider a community of S = 40 species, and look at the variability
induced by perturbing a single species, whose abundance is reported on the x-axis. Left: When caused by immigration-type perturbations
(↵ = 0), variability is inversely proportional to the abundance of the perturbed species (notice the log scales on both axis). The worst case
is achieved by perturbing the rarest species, and is determined by asymptotic resilience (more precisely, it is close to 1/2R1). Middle:
For demographic-type perturbations (↵ = 1), variability is independent of the abundance of the perturbed species. The worst case is
not necessarily achieved by focusing the perturbation on one particular species. Right: For environmental-type perturbations (↵ = 2),
variability is directly proportional to the abundance of the perturbed species. The worst case is attained by perturbing the most abundant.
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the middle panel of Fig. 4 shows that, in response to
demographic-type perturbations, variability is indepen-
dent of perturbed species’ abundance. Finally, the right-
most panel shows a positive unit slope on log scales: when
caused by environmental-type perturbations, variability
is proportional to the abundance of perturbed species.
The worst case is thus attained by perturbing the most
abundant one. Despite being more stable than rare ones
(they bu↵er exogenous perturbations more e�ciently, see
left-hand panel), common species are more strongly af-
fected by environmental perturbations, and can thus gen-
erate the most variability.

Those patterns are not coincidental, but emerge from
species interactions, as we illustrate in Fig. 5. In their ab-
sence, other patterns can be envisioned. This is because,
without interactions, the response to a species-specific
perturbation involves the perturbed species only. The
variability-abundance relationship is then V = N↵/2r,
with N = K. If r and K are statistically independent in
the community (top-left panel in Fig. 5), this yields a dif-
ferent scaling than the one seen in Fig. 4. In the case of an
r-K trade-o↵ (i.e., species with larger carrying capacities
have slower growth rate), abundant species would be the
least stable species (bottom-left panel in Fig. 5, in blue)
which is the opposite of what the leftmost panel of Fig. 4
shows. However, as interaction strength increases (from
left to right in Fig. 5; the ratios of inter- to intraspecific
interaction strength are 0, 0.02 and 0.1 approximately),
we see emerging the relationship between abundance and
variability of Fig. 4, regardless of the choice made for
species growth rates and carrying capacities. We explain
in Appendix G why this reflects a generic, limit-case be-
havior of complex communities. It occurs when species
abundances, due to substantial indirect e↵ects during as-
sembly, become only faintly determined by their carry-
ing capacities (cf. note [46]). Importantly, our example
demonstrates that this limit can be reached even for rel-
atively weak interactions (in Fig. 4 and in the right-hand
panels of Fig. 5, the interspecific interaction strengths are
ten times smaller than the intraspecific ones).

Although we considered a specific section of the pertur-
bation set, the response to single-species perturbations
of immigration and environmental types can still span
the whole variability distribution, from worst-case (rarest
and most abundant species perturbed, respectively) to
mean- and best-case scenarios (most abundant and rarest
species perturbed, respectively). For demographic-type
perturbation the situation is more subtle as the response
is independent of species abundance, and, in general, ex-
treme scenarios will be associated to temporally corre-
lated perturbations a↵ecting multiple species.
The variability-abundance patterns shown in Figs. 4

and 5 should not be confused with Taylor’s law [33], a
power-law relationship between a species’ variance and
its mean abundance. In fact, the variability-abundance
pattern is dual to Taylor’s law, it represents the commu-
nity response to single-species perturbations instead of
that of individual species to a community-wide pertur-
bation (cf. note [47]).

Diversity-invariability relationships

To illustrate some implications of the generic
variability-abundance pattern, we now propose to revisit
the diversity-stability relationship, with stability quanti-
fied as invariability I. For a given size of the species pool,
we randomly sample species dynamical traits to assemble
a stable community. By increasing the size of the pool
we generate communities of increasing species richness S.
For each community, we uniformly sample the boundaries
of its perturbation set by drawing 1000 fully correlated
perturbations (i.e., those that can realize the maximal
response), of a given type. We compute the bulk of the
resulting invariability distribution (5 to 95 percentiles),
as well as its mean and extreme realized values. We also
compute theoretical predictions for mean- and worst-case
scenarios, and asymptotic resilience R1.

The leftmost panel of Fig. 6 shows a negative relation-
ship between immigration-type invariability and species
richness. Asymptotic resilience and worst-case invariabil-
ity mostly coincide, with a decreasing rate roughly twice
as large as that of the mean case. The middle panel sug-
gests a di↵erent story. Mean-case demographic-type in-
variability stays more or less constant whereas the worst
case diminishes with species richness, although much
more slowly than R1. The relationship between diver-
sity and stability is thus ambiguous. In the rightmost
panel we see an increase in all realized environmental-
type invariability values with species richness, showcas-
ing a positive diversity-stability relationship.

The di↵erent relationships between diversity and
stability can be understood in terms of the generic
variability-abundance patterns of Figs. 4 and 5 (see Ap-

pendix H for details). In the case of immigration-type
variability, species contributions to variability are pro-
portional to the inverse of their abundance (first panel
of Fig. 4). Hence, the worst-case scenario follows the
abundance of the rarest species, which rapidly declines
with species richness. As detailed in Appendix H, mean-
case invariability scales as the average species abundance,
which also typically decreases with S.
The responses to demographic perturbations, on the

other hand, are not determined by any specific species
abundance class (second panel of Fig. 4), so that no sim-
ple expectations based on typical trends of abundance
distributions can be deduced.
We recover a simpler behavior when looking at the

response to environmental-type perturbation. It is now
abundant species that drive variability (rightmost panel
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FIG. 5: The emergence of the variability-abundance pattern (same procedure as in Fig. 4). Top row: intrinsic growth rates r and
carrying capacities K are sampled independently. Bottom row: Species satisfy a r-K trade-o↵ (r ⇠ 1/K). Colors correspond to the
three perturbation types: ↵ = 0 (blue), ↵ = 1 (green) and ↵ = 2 (red). The value � reported in each panel corresponds to the exponent

of the fitted relationship Vi / N�
i for each perturbation type. As interaction strength increases (left to right) we see emerging the

relationship between abundance and variability described in Fig. 4, i.e., � = ↵� 1. Thus when species interactions are su�ciently strong,
variability always ends up being: (blue) inversely proportional, (green) independent and (red) directly proportional to the abundance of
the perturbed species. Note that such relationships di↵er from Taylor’s law: they represent an average community response to individual
species perturbations, whereas Taylor’s law deals with individual species responses to a perturbation of the whole community.

FIG. 6: Di↵erent perturbation types yield contrasting diversity-stability relationships, with stability quantified as invariability I. We
generated random communities of increasing species richness S and computed their invariability distribution in response to 1000 random
perturbations. Full line: median invariability, dark-shaded region: 5th to 95th percentile, light-shaded region: minimum to maximum
realized values. The ⇥-marks correspond to the analytical approximation for the median, the dots to the analytical formula for the
worst-case. Dashed line is asymptotic resilience R1. For immigration-type perturbations (↵ = 0, blue) diversity begets instability, with
R1 following worst-case invariability. For demographic-type perturbations (↵ = 1, green) the trend is ambiguous. For environmental-type
perturbations (↵ = 2, red) all realized values of invariability increase with S.
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of Fig. 4). As explained in Appendix H, mean-case in-
variability now scales as the inverse of an average species
abundance. The latter typically declines with S explain-
ing the observed increase of mean-case invariability.

In all panels of Fig. 6, the bulk of invariability stays
close to the mean- while moving away from the worst-
case. This is because the worst-case corresponds to a
single direction of perturbation met with the strongest
response, a fine-tuned perturbation which becomes in-
creasingly unlikely to be picked at random as S increases.

There is an analogy to be made between stability and
diversity. As has been said about diversity metrics (e.g.,
species richness, Simpson index or Shannon entropy), dif-
ferent invariability measures “di↵er in their propensity
to include or to exclude the relatively rarer species” [17].
In this sense, di↵erent invariability measures can probe
di↵erent dynamical aspects of a same community, with
potentially opposite dependencies on a given ecological
parameter of interest.

Discussion

Because it is empirically accessible using simple time-
series statistics, temporal variability is an attractive facet
of ecological stability. But there are many ways to define
variability in models and empirical data, a proliferation of
definitions reminiscent of the proliferation of definitions
of stability itself [12]. Variability measurements often
depend, not only on the system of interest, but also on
external factors that act as disturbances, which makes it
di�cult to relate variability to other stability concepts.
These caveats constitute important obstacles toward a
synthetic understanding of ecological stability, and its
potential drivers [18].

We proposed to consider variability as a way to probe
and measure an ecosystem’s response to perturbations,
thus revealing inherent dynamical properties of the per-
turbed system. We did not seek for an optimal, single
measure of variability but, on the contrary, we accounted
for a vast set of perturbations, leading to a whole distri-
bution of responses. We focused on the worst- and mean-
case values of this distribution as functions of species
abundance, their interactions, and the type of perturba-
tions that generates variability.

A perturbation type characterizes a statistical rela-
tionship between its direct e↵ect on a population and
the latter’s abundance. We distinguished between envi-
ronmental perturbations, whose direct e↵ects on popu-
lations scales proportionally to their abundance; demo-
graphic perturbations, whose direct e↵ect on populations
scales sublinearly to their abundance; and purely exoge-
nous perturbations, representing random addition and
removal of individual, independent of the size of the per-
turbed population (immigration-type). Controlling for
perturbation type and intensity, we considered all the
ways this intensity can be distributed and correlated
across species.

After having described a general (linear) theory for
variability, which emphasizes its highly multidimensional
nature, we turned our attention towards species-rich
communities assembled by random (nonlinear) Lotka-
Volterra dynamics. Because of the sheer number of
species contained in such communities (S ⇡ 40 in our
examples), we could have expected the dimensionality of
perturbations and responses to be so large that variabil-
ity distributions would be too complex and broad to be
clearly described. However, the process of assembly al-
lowed for a simple behavior to emerge: a generic relation-
ship between variability and the abundance of individu-
ally perturbed species. In essence, this pattern predicts
that the species’ ability to bu↵er exogenous perturba-
tions is proportional to their abundance. In conjunction
to this simple pattern, the type of perturbation will then
determine the individual contributions of species to the
variability distribution, so that both common and rare
species can determine variability. This is reminiscent of
diversity measures [17], some of which (e.g., species rich-
ness) are sensitive to the presence of rare species, while
others are mostly indicative of the distribution of abun-
dant species (e.g., Simpson diversity index).
These connections with di↵erent diversity metrics can

explain contrasting trends in invariability as a function
of species richness. Since immigration-type perturba-
tions mostly a↵ect rare species, they lead to a nega-
tive diversity-invariability relationship, reflecting a grow-
ing number and rarity of rare species. On the other
hand, in response to demographic perturbations, species
contributions to variability can be independent of their
abundance. In this case, variability is not expected to
follow trends in diversity, so that diversity-invariability
patterns can be less predictable and harder to inter-
pret. Finally, although common species bu↵er exoge-
nous perturbations e�ciently, they are also the most af-
fected by environmental-type perturbations. This can
lead to a proportional relationship between average abun-
dance and mean-case invariability, and hence to a positive
diversity-invariability relationship.

Implications for empirical patterns

Our theoretical models show wide variability distri-
butions. These distributions would become even wider
when accounting for nonlinear system dynamics and tem-
porally autocorrelated perturbations. Therefore, we also
expect a large dispersion of empirical variability data,
i.e., when the variability of the same system is measured
repeatedly. For certain applications it might be su�cient
to restrict to a particular perturbation regime, but in or-
der to detect in variability an inherent stability property
of a system, i.e. a property that is not bound to a specific
environmental context (see Fig. 1), one must describe of
the spread of variability.
To do so, the most direct approach consists in observ-

ing the same community under multiple environmental
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conditions. With relatively few observations, one can
estimate the mean and spread of the response distribu-
tion. There is, however, more information to be extracted
from a time series than a single variability value. If high-
quality time series are available, it might be possible to
infer linear model dynamics, which can then be used to
compute stability properties [19], and in particular, vari-
ability distributions.

We showed that species abundances greatly a↵ect vari-
ability distributions. This new insight has broad con-
sequences. For example, it has been reported that
ecosystem-level and population-level stability tend to in-
crease and decrease, respectively, with increasing diver-
sity [5, 20]. Ecosystem-level stability is often quantified
based on the variability of total biomass, which gives, by
construction, a predominant weight to abundant species.
On the other hand, averages of single-species variabili-
ties have been used to measure population-level stabil-
ity [34]. These averages are strongly a↵ected, and can
even be fully determined, by rare, highly variable species
[15]. Thus, here as well as in our theoretical results
(Fig. 6), stability metrics governed by common, or rare,
species tend to generate respectively positive and nega-
tive diversity-stability relationships. It would be inter-
esting to test whether this observation holds more gen-
erally, e.g., if it can explain the contrasting relationships
recently reported by Pennekamp et al. [27].

The type of perturbations a↵ects which species abun-
dance class contributes most to variability. In turn, the
physical size of the system considered a↵ects which per-
turbation type dominates. This is well known in popula-
tion dynamics [9], but it also transposes to the commu-
nity level. At small spatial scales, implying small popu-
lations, we may expect variability to be driven by demo-
graphic stochasticity. At larger scales, implying larger
populations, demographic stochasticity will be negligi-
ble compared with environmental perturbations. Just as
changing the perturbation type transforms the respec-
tive roles of common and rare species, patterns of vari-
ability at di↵erent scales should reflect di↵erent aspects
of a community [6], associated to di↵erent species abun-
dance classes (abundant species at large spatial scales,
rare/rarer species at small spatial scales).

Empirically determining the perturbation type, which
is a preliminary step to test the stability patterns pre-
dicted in this paper, is a non-trivial task. To develop
suitable methods, it might be helpful to first understand
the link between the variability-abundance patterns (see
Figs. 4 and 5) and Taylor’s law [33]. The latter is an em-
pirically accessible pattern, relating the mean and vari-
ance of population sizes. A close connection is indeed
expected: we studied the behavior of the community re-
sponse to an individual species perturbation, while Tay-
lor’s law focuses on the individual species response to a
perturbation of the whole community. This duality also
suggests that Taylor’s law is, at the community level,
strongly a↵ected by species interactions. Although this
is known [21], our approach could shed new light on

the information regarding species interactions and other
dynamical traits, actually contained in community-level
Taylor’s laws.

Link with other stability measures

We noted a connection between variability and asymp-
totic resilience, which is a popular notion in theoreti-
cal studies [7]. We showed that asymptotic resilience is
comparable to the largest variability in response to an
immigration-type perturbation, which is often a pertur-
bation of the rarest species (first panel of Fig. 4). While
asymptotic resilience is sometimes considered as a mea-
sure representative of collective recovery dynamics, we
previously explained why that this is seldom the case [2].
The asymptotic rate of return to equilibrium generally
reflects properties of rare “satellite” species, pushed at
the edge of local extinction by abundant “core” species.
On the other hand, short-time return rates can exhibit
qualitatively di↵erent properties related to more abun-
dant species.

In fact, the multiple dimensions of variability are re-
lated to the multiple dimensions of return times. Vari-
ability is an integral measure of the transient regime fol-
lowing pulse perturbations, i.e., a superposition of re-
sponses to various pulses, some of which have just oc-
curred and are thus hardly absorbed, while others oc-
curred long ago and are largely resorbed. If abundant
species are faster than rare ones (the case in complex
communities, see Appendix G), if they are also more
strongly perturbed (e.g., by environmental perturba-
tions), the bulk of the transient regime will be short:
variability in response to environmental perturbations is
associated with a short-term recovery. By contrast, if
all species are, on average, equally displaced by pertur-
bations (e.g., by immigration-type perturbations), rare
species initially contribute to the overall community dis-
placement as much as do abundant ones. Since their
recovery is typically very slow, the transient regime will
be long: variability in response to immigration-type per-
turbations is associated with a long-term recovery.

Ecologists have long acknowledged the multi-faceted
nature of ecological stability [7, 12, 18, 28], but here we
show that a single facet (variability) is in itself inher-
ently multidimensional, thus suggesting that links across
facets can be subtle. Short-term return rates may be
linked with environmental variability, but environmental
variability may have nothing to do with immigration-type
variability, the latter possibly related with long-term re-
turn rates and driven by rare species. Because measures
can be determined by di↵erent species abundance classes,
we should not expect a general and simple connection to
hold between facets of ecological stability.
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Conclusion

The multidimensional nature of variability can lead to
conflicting predictions, but once this multidimensional-
ity is acknowledged, it can be used to extensively probe
the dynamical properties of a community. In particu-
lar, in species-rich systems, we revealed a generic pattern
emerging from ecological assembly, relating species abun-
dance to their variability contribution. This allowed con-
nections to be drawn between variability and statistics
of abundance distributions. We argued that similar pat-
terns should underlie ecosystem responses to other fam-
ilies of perturbations (e.g., pulse perturbations). There-
fore, we conclude that embracing the whole set of a
ecosystem responses can help provide a unifying view on
ecological stability and shed new light on the meaning of
empirical and theoretical stability patterns.

Supplementary material

Matlab simulation code is available online (bioRxiv
server) DOI: 10.1101/431296 (supplementary material).
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Appendices

The Appendices are organized as follows: Appendix
A through D provides a self-contained presentation of
the mathematical foundations of our variability theory.
Appendix E through H provide details concerning spe-
cific applications considered in the main text: two-species
communities in Appendix E, complex Lotka-Volterra
communities in appendices F and G, and the link between
abundance statistics and variability in Appendix H. A list
of the most important notation used in the Appendices
is given in Table A1.

Appendix A: Response to white-noise perturbation

We describe the response of a linear dynamical sys-
tem, representing the dynamics of displacement of species
around an equilibrium value, to a white-noise perturba-
tion. Stochastic perturbations in continuous time are
mathematically quite subtle (see, e.g., 37). However, in
the setting of linear dynamical systems, the e↵ect of a
white-noise perturbation can be analyzed relatively eas-
ily. Because this analysis is not readily available in the
ecology literature, we present here a short overview. We
start from a fomulation in vector notation,

dx

dt
= Ax+ ⇠(t), (A1)

where x = (xi) denotes the vector of species displace-
ments, ⇠ = (⇠i) the vector of species perturbations, and
A = (Aij) the community matrix.
Suppose that the perturbation ⇠(t) consists in a se-

quence of pulses. We denote the times at which these
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TABLE A1: Notation used throughout the Appendices

symbol meaning equation

�2
in per species variance of applied perturbation (B2)

�2
out per species variance of system response to perturbation (B4, D3)

Cu covariance matrix of individual pulses in multi-pulse perturbation (A3)

f frequency at which pulses occur in multi-pulse perturbation

E perturbation direction, proportional to fCu (B5)

Cx covariance matrix of species responses to perturbation (A5, A9)

L solution of Lyapunov equation, used to compute stationary Cx (A7, A8)

V↵ variability for perturbation type ↵; when index ↵ is omitted, immigration-
type perturbations are assumed (↵ = 0)

(D4)

Vworst mean-case variability, i.e., variability averaged over perturbation directions (C2, D5)

Vmean worst-case variability, i.e., variability maximized over perturbation directions (C3, D6)

Vspec i variability for the perturbation that a↵ects only species i

I invariability, i.e., variability-based stability measure (B6)

pulses occur by tk, and the corresponding pulse direc-
tions by uk = (uk,i). The multi-pulse perturbation can
then be written as

⇠(t) =
X

k

�(t� tk)uk. (A2)

where we have used the Dirac delta function �(t).
We model both the pulse times tk and the pulse di-

rections uk as random variables. Specifically, we assume
that the pulse times are distributed according to a Pois-
son point process with intensity f . This means that the
probability that a pulse occurs in a small time interval
of length �s is equal to f�s, and that this occurrence is
independent of any other model randomness. We denote
the average over the pulse times tk by Ef .

Furthermore, we assume that the pulse directions uk

are independent (mutually independent, and indepen-
dent of any other model randomness) and identically dis-
tributed. They have zero mean, and their second mo-
ments are given by the covariance matrix Cu. That is,
denoting the average over the pulse directions uk by Eu,
we have Eu uk,i = 0, Eu u2

k,i = Cu,ii, Eu uk,iuk,j = Cu,ij ,
and Eu uk,iu`,i = Eu uk,iu`,j = 0 for i 6= j and k 6= `.
The latter equations can be written in vector notation,

Cu = Eu uku
>
k and Eu uku

>
` = 0. (A3)

We use this information to compute the statistics of
species displacements x(t). Because the system response
to a single pulse perturbation at time tk in directon uk is
equal to e(t�tk)Auk, the system response to the sequence

(A2) of pulse perturbations is equal to

x(t) =
X

k|tk<t

e(t�tk)A uk. (A4)

Taking the mean over the perturbation directions, we
obtain

Eu x(t) =
X

k|tk<t

e(t�tk)A Eu uk = 0,

showing that the species displacements fluctuate around
the unperturbed equilibrium.
Next, we compute the covariance matrix of the species

displacements,

Cx = Ef,u x(t)x(t)
>. (A5)

We substitute the response to the multi-pulse perturba-
tion, eq. (A4),

Cx = Ef,u

X

k|tk<t

e(t�tk)A uk

X

`|t`<t

u>
` e(t�t`)A

>

= Ef

X

k|tk<t

X

`|t`<t

e(t�tk)A Eu uku
>
` e(t�t`)A

>

= Ef

X

k|tk<t

e(t�tk)A Eu uku
>
k e(t�tk)A

>

= Ef

X

k|tk<t

e(t�tk)A Cu e
(t�tk)A

>
,

where we have used eq. (A3). To take the average over
the pulse times, we partition the time axis in small inter-
vals of length �s. Writing sn = n�s for any integer n,
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we get

Cx =
X

n|sn<t

e(t�sn)A Cu e
(t�sn)A

>
f�s,

because the contribution of term n is equal to
e(t�sn)A Cu e(t�sn)A

>
with probability f�s, and zero

otherwise. Assuming that the time intervals �s are in-
finitesimal, we find the integral

Cx =

Z t

�1
e(t�s)A Cu e

(t�s)A>
fds

=

Z 1

0
esA Cu e

sA>
fds

=

Z 1

0
esA

�
fCu

�
esA

>
ds. (A6)

Hence, we have obtained the stationary covariance ma-
trix of the species displacements under a stochastic multi-
pulse perturbation.

A white-noise perturbation corresponds to a special
case of the stochastic multi-pulse perturbation, namely,
to the case of extremely frequent pulses (large f) of ex-
tremely small size (small kuk). More precisely, we have
to take the coupled limit f ! 1 and Cu ! 0 while keep-
ing fCu constant. Because eq. (A6) depends on f and
Cu through the product fCu only, the same expression
is also valid for white-noise perturbations.

Alternatively, the stationary covariance matrix Cx can
be obtained by solving the so-called Lyapunov equation,

AC + CA> + E = 0, (A7)

where E is the covariance matrix characterizing the white
noise, equal to fCu in our case. Indeed, it can be verified
that eq. (A6) satisfies eq. (A7),

ACx + CxA
> =

Z 1

0

⇣
AesA fCu e

sA>
ds+ esA fCu e

sA>
A>
⌘
ds

=

Z 1

0

d

ds

⇣
esA fCu e

sA>
⌘
ds

= esA fCu e
sA>

���
s!1

� esA fCu e
sA>

���
s=0

= �fCu.

For a stable matrix A this is the unique solution of the
Lyapunov equation, for which we introduce the short-
hand notation L(A,E),

L(A,E) =

Z 1

0
esA E esA

>
ds. (A8)

Hence, we can write

Cx = L(A, fCu), . (A9)

From a numerical viewpoint, the covariance matrix Cx

can be easily obtained by solving the Lyapunov eq. (A7),

which can be written as a system of S2 linear equations,
rather than by computing the integral in (A8). Note
also that solution of Lyapunov equation is linear in the
perturbation covariance matrix,

L(A, c1E1 + c2E2) = c1 L(A,E1) + c2 L(A,E2). (A10)

Appendix B: Construction of variability measure

We explain the construction of the variability measure
V, see eq. (4) in the main text. The construction is based
on the comparison of the intensity of the system response
relative to the intensity of the applied perturbation. It
should be stressed that, while we take special care of
quantifying these intensities in a reasonable way, alter-
native choices are possible.
a. Perturbation intensity A reasonable measure of

the perturbation intensity should increase with the num-
ber of pulses and the intensity of each pulse separately.
In particular, we expect it to be proportional to the pulse
frequency f and to some function of the pulse covariance
matrix Cu.
We propose to look at the squared displacements kukk2

induced by pulses uk. The accumulated squared dis-
placement in time interval [t, t+ T ] is

X

tk2[t,t+T ]

kukk2.

Taking the average over pulse times and pulse directions,

Ef,u

X

tk2[t,t+T ]

kukk2 =
X

n|t<sn<t+T

Eukuk2 f�s,

where we have partitioned the time axis in small intervals
of length �s (see derivation of eq. (A6)). Then,

Ef,u

X

tk2[t,t+T ]

kukk2 = Tr
�
Cu

�
fT.

The result is proportional to the length T of the con-
sidered time interval. The average accumulated squared
displacement per unit of time is

1

T
Ef,u

X

tk2[t,t+T ]

kukk2 = Tr
�
fCu

�
. (B1)

As expected, this quantity is proportional to the pulse
frequency f and increases with the pulse covariance ma-
trix Cu. Note also that f and Cu appear as a product,
so that the expression is compatible with the white-noise
limit.
Eq. (B1) quantifies the intensity of the perturbation

applied to the entire ecosystem. This measure is not di-
rectly appropriate to normalize the pertubation intensity
across systems. Indeed, when keeping the total pertur-
bation intensity constant, the perturbation applied to a
given species would be weaker in a community with a
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larger number of species. To eliminate this artefact, we
normalize the perturbation intensity on a per species ba-
sis. Thus, we propose to quantify the perturbation in-
tensity as

�2
in =

f

S
TrCu. (B2)

b. Response intensity We measure the intensity of
the system response in terms of the covariance matrix
Cx. This matrix encodes the statistical properties of the
abundance (or biomass) fluctuations in stationary state.
For example, species abundance xi(t) fluctuates around
its equilibrium value Ni with variance Cx,ii. More gen-
erally, we can describe the fluctuations of any function
' of species abundance. The dynamics near equilibrium
are

'(n(t)) = '(N) + v>x(t),

where vector v = r' is the gradient of the function '
evaluated at the equilibrium N . This vector gives the
direction in which the system fluctuations are observed.
Then, denoting the temporal mean and variance by Et

and Vart, we have

Vart ('(n(t)) = Et

⇣�
v>x(t)

�2⌘

= Et

⇣
v>x(t)x(t)>v

⌘

= v>Et

�
x(t)x(t)>

�
v

= v>Cx v. (B3)

We use this variance to quantify the intensity of the
system response. Rather than choosing a particular vec-
tor v, we consider the average over all observation direc-
tions. Specifically, we restrict attention to unit vectors v
and average over the uniform distribution of such vectors.
Denoting this average by Ev, we get

Ev Vart
�
'(n(t)

�
= Ev

�
v>Cxv

�
= Tr Ev vv

>Cx.

It follows from species symmetry that the average Ev vv>

is proportional to the unit matrix. Moreover, because
Tr vv> = 1 for all vectors v, the constant of proportion-
ality is equal to 1

S . Hence,

Ev Vart
�
'(n(t)

�
=

1

S
TrCx.

Therefore, we propose to quantify the response intensity
as

�2
out =

1

S
TrCx. (B4)

c. Variability and invariability We define variabil-
ity V as the ratio of the response intensity �2

out and the
perturbation intensity �2

in,

V =
�2
out

�2
in

=
1
S TrCx

f
S TrCu

=
TrCx

f TrCu
.

Substituting eq. (A9) for Cx, we get

V =
TrL(A, fCu)

f TrCu
= TrL

�
A,

Cu

TrCu

�
,

where we have used the linearity property (A10). We see
that only the normalized perturbation covariance matrix
matters in this expression. That is, the variability mea-
sure focuses on the directional e↵ect of the perturbation.
We make this dependence explicit in the notation, and
write

V(E) = TrL(A,E), (B5)

where E = Cu
TrCu

is the perturbation direction, i.e., a
covariance matrix with unit trace.
Variability is inversely related to stability: the more

variable an ecosytem, the less stable it is. For purpose
of comparison, we construct a stability measure based on
variability V(E), which we call invariability I(E),

I(E) =
1

2V(E)
. (B6)

The factor 2 in this definition guarantees that we re-
cover asymptotic resilience for the simplest dynamical
systems. To see this, consider a system of S non-
interacting species, in which all species have the same re-
turn rate �. The community matrix is equal to A = ��I
where I denotes the identity matrix. From the Lyapunov
equation (A7) we get the stationary covariance matrix
L(A,E) = 1

2�E. Therefore, V(E) = 1
2� and I(E) = �,

which is equal to the asymptotic resilience of this exam-
ple system.

Appendix C: Worst-case and mean-case variability

Worst-case variability is defined as

Vworst = max
E

V(E) = max
E

TrL(A,E) (C1)

where the maximum is taken over perturbation direc-
tions, i.e., over covariance matrices E with TrE = 1. The
function TrL(A,E) is linear in the perturbation direction
E, see eq. (A10), and the set of perturbation directions
is convex. Hence, the maximum is reached at an extreme
point, that is, on the boundary of the set. The extreme
points are the purely directional perturbations (see Ap-
pendix E for the argument in the two-species case), so
that the maximum is reached at a purely directional per-
turbation. Arnoldi et al. [4] showed that the worst-case
variability can be easily computed, namely, as a specific
norm of the operator bA�1 that maps E to L(A,E). Con-
cretely, defining bA = A⌦ I+ I⌦A,

Vworst = || bA�1||, (C2)

where || · || stands for the spectral norm of S2 ⇥ S2 ma-
trices.
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To define mean-case variability Vmean, we assume a
probability distribution over the perturbation directions,
and compute the mean system response over this distri-
bution. Due to the linearity property (A10), this mean
response is equal to the response to the mean perturba-
tion direction. Hence, we do not have to specify the full
probability distribution over the perturbation directions;
it su�ces to determine the mean perturbation direction.
As can be directly verified in the two-species case (Ap-
pendix E), if, averaged over the distribution of pertur-
bation directions, perturbation intensities are evenly dis-
tributed across species, and positive and negative correla-
tions between species perturbations cancel out, then the
mean perturbation direction is adirectional. This corre-
sponds to the center of the set of perturbation directions
(in the two-species case the disc center represented in
Fig. 3), and is proportional to the identity matrix, that
is, E = 1

S I. Therefore,

Vmean = TrL(A, 1
S I). (C3)

Appendix D: Perturbation types and variability

The perturbation type (environmental-, demographic-
or immigration-type) a↵ects how the perturbation inten-
sity is distributed across species. Therefore, it also af-
fects our measure of variability, as defined in Appendix B.
Here we describe how the variability definition has to be
modified.

We defined variability measure (B5) as the intensity of
the system response relative to the intensity of the ap-
plied perturbation. To quantify the perturbation inten-
sity in the case of abundance-dependent perturbations,
we distinguish the intrinsic e↵ect of the perturbation on
a species, which does not depend on the species’ abun-
dance, and the total e↵ect of the perturbation on the
species, which does depend on abundance. We propose
to express the perturbation intensity in terms of the in-
trinsic perturbation, while it is the total perturbation
that acts on the species dynamics.

Formally, for species i, we denote the intrinsic pertur-
bation by ⇠intri (t) and the total perturbation by ⇠toti (t).
Then, for a type-↵ perturbation, we have

⇠toti (t) = N
↵
2
i ⇠intri (t), (D1)

where Ni is the abundance of species i. Thus, the in-
trinsic perturbation ⇠intr(t) can be interpreted as the per
capita perturbation strength. Eq. (D1) can be written in
vector notation as

⇠tot(t) = D
↵
2 ⇠intr(t), (D2)

where D is the diagonal matrix whose entries are species
equilibrium values (Dii = Ni).

Both the intrinsic and total perturbation are multi-
pulse. If we denote the pulses of the intrinsic perturba-
tion by uk, then, by eq. (D2), those of the total pertur-
bation are D

↵
2 uk. Then, to quantify the perturbation in-

tensity, we use the covariance matrix of the pulses in the

intrinsic perturbation. The derivation leading to eq. (B2)
is still valid. However, to compute the covariance matrix
of the species displacements, we use the covariance ma-
trix of the pulses in the total perturbation. This corre-
sponds to replacing Cu by D

↵
2 CuD

↵
2 in the derivation of

eq. (B4), so that we get

�2
out =

1

S
TrL

�
A, fD

↵
2 CuD

↵
2
�
. (D3)

The variability measure for a type-↵ perturbation be-
comes

V↵ =
�2
out

�2
in

= TrL
�
A,

D
↵
2 CuD

↵
2

TrCu

�
,

or, in terms of the (intrinsic) perturbation direction E,

V↵(E) = TrL
�
A,D

↵
2 ED

↵
2
�
. (D4)

Applying the same arguments as in Appendix C, we find
that worst-case variability,

Vworst
↵ = max

E
V↵(E) = max

E
TrL

�
A,D

↵
2 ED

↵
2
�
,

is attained at a perfectly correlated perturbation. If we
define the operator (an S2 ⇥ S2 matrix)

D↵ = D
↵
2 ⌦D

↵
2 ,

then the worst case-variability can be computed as

Vworst
↵ = || bA�1 �D↵||, (D5)

where || · || is the spectral norm for S2⇥S2 matrices. On
the other hand, the mean-case variability,

Vmean
↵ = TrL

�
A, 1

SD
↵
�
, (D6)

is attained by the uniform, uncorrelated perturbation.

Appendix E: Perturbation directions in two

dimensions

Variability spectra are built on the notion of perturba-
tion directions. They are characterized by a covariance
matrix E with TrE = 1. To gain some intuition, we
study the set of perturbation directions in the case of
two species.
Any perturbation direction E in two dimensions can

be written as

E =

 
1� x y

y x

!
. (E1)

with 0  x  1 and y2  x(1 � x). The first in-
equality guarantees that the elements on the diagonal are
variances, i.e., positive numbers. The second inequality
guarantees that the o↵-diagonal element is a proper co-
variance, in particular, that the correlation coe�cient is
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contained between �1 and 1. Note that matrix (E1) has
always TrE = 1.

It follows from eq. (E1) that the set of perturbation
directions in two dimensions is parameterized by two
numbers x and y. Using these numbers as axes of a
two-dimensional plot, we see that the set of perturba-
tion directions corresponds to a disc with radius 0.5 and
centered at (0.5, 0) (see Fig. 3).

It is instructive to study the position of specific per-
turbation directions on the disc. The point (0, 0) corre-
sponds to a perturbation a↵ecting only the first species,
whereas point (1, 0) is a perturbation only a↵ecting the
second species. More generally, any point on the bound-
ary of the disc correspond to a multi-pulse perturba-
tion for which the individual pulses have a fixed direc-
tion. For example, the point (0.5, 0.5) is a perturbation
for which each pulse has the same e↵ect on species 1
and species 2, whereas the perturbation corresponding
to point (0.5,�0.5) consists of pulses that a↵ect the two
species equally strongly, but in an opposite way. Pertur-
bations on the boundary are perfectly correlated.

The perturbations towards the center of the disc are
composed of pulses with more variable directions. For
example, a multi-pulse perturbation for which half of the
pulses a↵ect only the second species, and the other pulses
a↵ect the two species equally strongly corresponds to the
point 1

2 (0, 1) +
1
2 (0.5, 0.5) = (0.25, 0.75). The mixture of

di↵erent pulse directions is the strongest at the center of
the disc (0.5, 0). Examples of ways to realize this pertur-
bation are 1

2 (0, 0)+
1
2 (1, 0),

1
2 (0.5, 0.5)+

1
2 (0.5,�0.5) and

1
4 (0, 0) +

1
4 (0.5, 0.5) +

1
4 (1, 0) +

1
4 (0.5,�0.5). In each of

these example, the pulses have their intensities, averaged
over time, evenly distributed across species, and a↵ect
them, again averaged over time, in an uncorrelated way.
The perturbation corresponding to the point (0.5, 0) is
thus evenly distributed across species but uncorrelated
in time.

Appendix F: Random Lotka-Volterra model

The communities used in Figs. 4, 5 and 6 are con-
structed from the Lotka-Volterra model with random pa-
rameters. We consider a pool of species governed by the
dynamics

dNi(t)

dt
=

riNi(t)

Ki

 
Ki �Ni �

SpoolX

j=1
j 6=i

BijNj(t)

!
, (F1)

and we let the dynamics settle to an equilibrium commu-
nity of S remaining species. By drawing random values
for the parameters – growth rates ri, carrying capaci-
ties Ki, and competition coe�cients Bij – we generate
communities of various diversity.

For the communities in Fig. 4, we set Spool = 50, and
chose the parameter values as follows,

ri randomly drawn fromN (1, 0.2), a normal dis-
tribution with mean 1 and standard deviation
0.2 (independent draws for di↵erent species)

Ki drawn from N (1, 0.2)

Bij half of the competition coe�cients are set
equal to 0; the other half are drawn from
N (0.1, 0.1).

This procedure resulted in a community of S = 40 per-
sistent species. Note that some of the competition co-
e�cients can be negative, so that there can be positive
interactions (e.g. facilitation).
For the communities in the top row of Fig. 5, we fol-

lowed the same procedure, except that we changed the
way of generating the competition coe�cients Bij . In
the case without interactions, all Bij were set zero; in
the case with weak interactions, the non-zero coe�cients
Bij were drawn from N (0.02, 0.02); and in the case with
strong interactions, the non-zero Bij were drawn from
N (0.1, 0.1), as for the community of Fig. 4.
We applied a similar procedure to obtain the bottom

row of Fig. 5, but for these communities the growth rates
ri and carrying capacities Ki were not drawn indepen-
dently. Instead, we first drew auxiliary variables ai from
N (1, 0.2), bi from N (1, 0.1) and ci from N (1, 0.1), and
then set ri = biai and Ki = ci/ai.
For the communities of Fig. 6, we varied the size of

the species pool Spool so that the realized species rich-
ness covered the range from 1 to 20. Specifically, we
drew Spool randomly from 1 to 100, and generated the
parameter values as in Fig. 4. We repeated this procedure
many times, until obtaining 1000 communities for each
value of realized species richness S from 1 to 20. Then,
for each realized community, and for each of the three
perturbation types (↵ = 0, ↵ = 1 and ↵ = 2), we gener-
ated 1000 random perturbations leading to a variability
distribution of 1000 values. From the variability distribu-
tions we extracted median, 5th and 95th percentile, and
minimum and maximum. For the realized communities
we computed asymptotic resilience, worst-case variability
and the prediction for the median. Finally, we computed
the median of these statistics and predictions, all repre-
sented in Fig. 6.

Appendix G: Genericity in strongly interacting

communities

We give some elements as to why the behavior reported
in Figs. 4 and 5 in the main text can be expected to
be a general trend in diverse communities of interacting
species. Denote by Vspec i

↵ the community variability in-
duced by a type-↵ perturbation that is fully focused on
a single species i. We are interested in the relationship
between this variability and the equilibrium abundance
Ni of the perturbed species i.
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FIG. G1: Clarifying the relationship between abundance of perturbed species and community variability. In Appendix G we introduce
the auxiliary variable ⌧i, the characteristic time scale of species i, to explain the relationship between variability Vspec i

↵=0 and abundance

Ni. For the six communities of Fig. 5 in the main text, we plot ⌧i vs Ni in the main panels, and Vspec i
↵=0 vs ⌧i in the inset panels. We fit

a power law to each of these relationships, using linear regression on the log-log plot. The estimated exponents � (for the data ⌧i vs Ni)

and ⌫ (for the data Vspec i
↵=0 vs ⌧i) are reported in the panels.

First, note that for single-species perturbations the
variability metrics Vspec i

↵ for di↵erent perturbation
types ↵ are directly linked. From definition (D4) we get
that

Vspec i
↵ = N↵

i Vspec i
↵=0 . (G1)

Hence, it su�ces to study the behavior of Vspec i
↵=0 .

Next, consider again the Lotka-Volterra dynamics (F1)
from the perspective of a focal species i. If a stable equi-
librium exists in which the focal species survives, small
displacements from equilibrium xi = Ni(t)�Ni are met
with the dynamics

dxi

dt
=

riNi

Ki

✓
�xi�

X

j 6=i

Bijxj

◆
=

1

⌧i

✓
�xi�

X

j 6=i

Bijxj

◆
,

(G2)
where ⌧i =

Ki
riNi

has units of time. We claim that ⌧i sets
a characteristic time scale of the focal species dynam-
ics; it measures the typical time it takes for the species

to recover from a perturbation that displaces it from its
equilibrium. This species response time is directly related
to the species’ variability Vspec i

↵=0 : the slower the species,
the larger the impact of a repeated perturbation acting
on this species, and the larger the induced variability.
We illustrate the relationship between ⌧i and Vspec i

↵=0 in
Fig. G1 (inset panels). For the six communities of Fig. 5,
we fit the power-law relationship

Vspec i
↵=0 / ⌧⌫i , (G3)

where the index i runs over the set of persistent species.
The estimates of the exponent ⌫ (using linear regression
on the log-log plot) are all close to one. This result is ob-
vious for the communities without interactions, for which
Vspec i
↵=0 = 1

2⌧i (left-hand panels). But the same result re-
mains valid in the presence of interactions. We find that
interactions do not substantially modify the time scale
on which a species responds to perturbations a↵ecting
only that species.

Therefore, to study the relationship between Ni and
Vspec i
↵ , we can restrict to the simpler relationship be-

tween Ni and ⌧i =
Ki
riNi

, which is determined by the cor-
relations between growth rates ri, carrying capacities Ki
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and equilibrium abundances Ni. Fig. G1 (main panels)
shows this relationship for the six communities of Fig. 5.
Fitting the power law

⌧i / N�
i , (G4)

we find various estimates for the exponent �. Without
interactions, we have Ni = Ki, and hence, ⌧i = 1

ri
.

If growth rates and carrying capacities are drawn inde-
pendently, abundance and response time are unrelated,
leading to � ⇡ 0 (Fig. G1, upper-left panel). Alter-
natively, if growth rates and carrying capacities satisfy
some trade-o↵, higher abundance (larger Ki) is associ-
ated with longer response time (smaller ri), leading to
� > 0 (Fig. G1, lower-left panel). When increasing the
interactions, the link betweenNi andKi becomes weaker.
Indeed, from the equilibrium condition for species i we
have

Ni = Ki +
X

j 6=i

BijNj

= Ki +

✓X

j 6=i

BijKj +
X

k 6=j 6=i

BijBjkKk

+
X

l 6=k 6=j 6=i

BijBjkBklKl + . . .

◆
,

where in the second line we have used the equilibrium
condition for the other species. For su�ciently strong
interactions, the terms between brackets dominate the
term Ki, so that Ni and Ki become unrelated. In this
case, we have ⌧i / 1

Ni
, leading to � ⇡ �1: more abun-

dant species have faster dynamics and smaller response
time. This limiting case is observed both if ri and Ki

are independent, and if they satisfy a trade-o↵ (Fig. G1,
right-hand panels).

Finally, putting together eqs. (G1, G3, G4), we get

Vspec i
↵ / N↵

i ⌧⌫i / N↵+�⌫
i ⇡ N↵+�

i , (G5)

where in the last step we have used that ⌫ ⇡ 1. The re-
lationship between abundance of perturbed species and
community variability is strongly determined by the ex-
ponent �, that is, by the relationship between abundance
Ni and response time ⌧i. In the case of weak interac-
tions, the latter relationship depends on the assumed
link between growth rate ri and carrying capacity Ki, so
that no unambiguous relationship is to be expected be-
tween abundance and variability. However, in the limit
of strong interactions, we have � ⇡ �1 and

Vspec i
↵ / N↵�1

i . (G6)

Hence, for immigration-type perturbations (↵ = 0) vari-
ability is inversely proportional to the abundance of the
perturbed species. In contrast, for environmental per-
turbations (↵ = 2), variability is directly proportional to

the abundance of the perturbed species. These are the
relationships depicted in Figs. 4 and 5 of the main text.
Appendix H: Variability and abundance statistics

From the observed relationship between abundance
and variability (Figs. 4 and 5), patterns for worst- and
mean-case variability can be deduced. This reveals a con-
nection between stability and diversity metrics.
Denote by Vspec i

↵ the community variability induced
by a type-↵ perturbation fully focused on species i. We
start from the power-relationship (G6), linking this vari-
ability and the equilibrium abundance of species i. As
argued in Appendix G, we expect this relationship to
hold for su�ciently strong interactions.
For immigration-type perturbations (↵ = 0), worst-

case variability is approached by taking the maximum
over species which gives

Vworst
↵=0 ⇡ max

i
Vspec i
↵=0 / 1

mini Ni
. (H1)

so that the worst case is governed by the rarest species.
Because the abundance of the rarest species typically
decreases with diversity, the corresponding diversity-
stability relationship is decreasing. For mean-case vari-
ability, averaging over species individual contributions,
we get

Vmean
↵=0 =

1

S

X

i

Vspec i
↵=0 / 1

S

X

i

1

Ni
= hNi�1

harm, (H2)

where hNiharm stands for the harmonic mean of species
abundances. Mean abundance typically decreases with
diversity, so that the corresponding diversity-stability re-
lationship is decreasing.
When caused by environmental-type perturbations

(↵ = 2), worst-case variability is approached by taking
the maximum over species, giving

Vworst
↵=2 ⇡ max

i
Vspec i
↵=0 / max

i
Ni, (H3)

so that the worst case is governed by the most abundant
species. For mean-case variability we get

Vmean
↵=2 / 1

S

X

i

Ni = hNiarith, (H4)

the arithmetic mean of species abundances. Mean abun-
dance typically decreases with diversity, so that the cor-
responding diversity-stability relationship is increasing.
Note that when caused by demographic-type pertur-

bations (↵ = 1) the species-by-species approach does
not work: demographic variability probes a collective
property of the community. The di↵erent relationships
between abundance and variability are illustrated in
Fig. H1.
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FIG. H1: Invariability and species abundance. Top row: mean-case, bottom row: worst-case. ⇥-marks: analytical formula; +-marks:
approximation in terms of abundance (see Appendix H); thick line: simulation results. For immigration-type perturbations (first column,
in blue), mean-case invariability scales as the harmonic mean abundance (see eq. (H2)), which decreases with diversity. Worst-case
invariability scales as the abundance of the rarest species. On the other hand, in response to environmental-type perturbations (third
column, in red), mean-case variability scales as the arithmetic mean abundance (see eq. (H4)) so that invariability increases. Worst-case
variability scales as the abundance of the most common species. In between (second column, in green), for demographic-type perturbations,
neither worst- nor mean-case invariability is determined by statistics of species abundances.
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