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Abstract 

 

Current cognitive models of reading assume that word recognition involves the ‘bottom-up’ 

assembly of perceived low-level visual features into letters, letter combinations, and words. 

This rather inefficient strategy, however, is incompatible with neurophysiological theories of 

Bayesian-like predictive neural computations during perception. Here we propose that prior 

knowledge of the words in a language is used to ‘explain away’ redundant and highly 

expected parts of the percept. As a result, subsequent processing stages operate upon an 

optimized representation highlighting information relevant for word identification, i.e., the 

orthographic prediction error. We demonstrate empirically that the orthographic prediction 

error accounts for word recognition behavior. We then report neurophysiological data 

showing that this informationally optimized orthographic prediction error is processed around 

200 ms after word-onset in the occipital cortex. The remarkable efficiency of reading, thus, is 

achieved by optimizing the mental representation of the visual percept, based on prior visual-

orthographic knowledge. 
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Introduction 

Written language – script – developed over the last ~8,000 years in many different variants 

(Haarmann, 2007). It is a symbolic representation of meaning, based on the combination of 

simple high contrast visual features (oriented lines) into ultimately linguistically meaningful 

units. All current cognitive-psychological reading  models (Coltheart, Rastle, Perry, Langdon, 

& Ziegler, 2001; Perry, Ziegler, & Zorzi, 2007) assume that the recognition of written words 

involves the ‘bottom-up’ assembly of such visual line representations into abstract 

orthographic representations of letters, letter combinations (e.g., bi- or trigrams), and 

ultimately words. The most widely-accepted brain-based account of reading (Dehaene & 

Cohen, 2011; Dehaene, Cohen, Sigman, & Vinckier, 2005) proposes that this is realized by 

perceptual neurons that – starting from line-orientation sensitive neurons in primary visual 

cortex – represent successively more complex combinations of lines. Higher-order visual 

neurons in the ventrotemporal part of the left brain hemisphere are thought to provide the 

‘access code’ for retrieving word meaning during comprehension (Coltheart et al., 2001; 

Perry et al., 2007).  

In steep contrast, a currently prevalent model questions the reliance of visual 

information processing on a purely bottom-up signal (e.g. Clark, 2013; K. Friston, 2005; Rao 

& Ballard, 1999; Srinivasan, Laughlin, & Dubs, 1982), and favors a top-down guided, active 

and prediction-based approach to visual perception. From the point of view of this predictive 

coding perspective, exclusively bottom-up, feature-based sensory processing is inefficient – 

and thus hard to integrate with the empirical finding that most of us read at a remarkable 

speed (Gagl et al., 2018; Kliegl, Nuthmann, & Engbert, 2006; Rayner, 2009). Nevertheless, 

there is so far no plausible account for the remarkable efficiency of sensory processing of 

visual words, as a basis for fast visual word recognition.  

Here we adopt the domain-general neurophysiological theory of predictive coding to 

visual word recognition and reading. Predictive coding postulates that perceived regularities 

in the world are used to build up internal models of the (hidden) causes of sensory events, and 

that these internal predictions are imprinted in a top-down manner upon the hierarchically 

lower sensory systems, making sensory analysis of perfectly expected inputs, in the best case, 

obsolete (K. Friston, 2005; Rao & Ballard, 1999). In recent years, this framework has 

received support in many domains of perceptual neuroscience from retinal coding (Srinivasan 

et al., 1982), auditory perception (Todorovic, van Ede, Maris, & de Lange, 2011; Wacongne, 

Changeux, & Dehaene, 2012) and speech perception (Arnal, Wyart, & Giraud, 2011; 
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Gagnepain, Henson, & Davis, 2012) to object (Kersten, Mamassian, & Yuille, 2004) and face 

recognition (Schwiedrzik & Freiwald, 2017). According to predictive coding theory, sensory 

percepts that confirm contextual or knowledge-based expectations elicit relatively reduced 

neuronal responses. Predictive processing, thus, increases the resource-efficiency of 

perception. In contrast, when new input violates these expectations, a prediction error signal is 

generated (e.g. Todorovic et al., 2011) which, according to current theorizing, signals the 

unexpected part of the percept to higher levels of cortical processing, where it is used for 

model updating and thus optimizing future predictions (Clark, 2013; Rao & Ballard, 1999).  

If predictive coding is indeed a general principle of brain function, it should apply also 

to the perceptual processes involved in visual word recognition. Previously, (Price & Devlin, 

2011) proposed a role for predictive processes during higher stages of word recognition, 

particularly related to the interactive integration of contextual linguistic information (e.g., 

semantic or phonological) with visual-spatial bottom-up information, in the service of word 

identification. In contrast, we here focus on earlier stages of sensory processing of visual 

words. Remember that one of the main claims of predictive coding is that our brain ‘explains 

away’ redundant (and thus non-informative) aspects of the sensory percept, to optimize 

information processing at the lowest levels of perception. We here propose that during visual 

word recognition, this mechanism operates on the basis of the orthographic knowledge that 

we have acquired about language. Interestingly, the feature-configurations that constitute 

letters and words, i.e., that are part of our orthographic knowledge of language, contain highly 

redundant information (Changizi, Zhang, Ye, & Shimojo, 2006) – like vertical lines often 

occurring at the same position (e.g., the left vertical line in E, R, N, P, B, D, F, H, K, L, M) or 

letters often positioned at the same location in a word (e.g., s or y as final letters in English). 

As redundancies contribute very little to unique letter and word identification, we here 

propose that using prior orthographic knowledge to predict away the redundant part of the 

percept is a neurophysiologically plausible strategy of our brain to reduce the amount of to-

be-processed information – and thus a plausible way of increasing the efficiency of visual 

word recognition, relative to strict feature-based bottom-up processing of the full visual input. 

At the same time, we assume that the subsequent abstractions of letter and word 

representations, as assumed by current visual word recognition theories (e.g. Coltheart et al., 

2001; Dehaene et al., 2005), can operate upon an informationally optimized representation of 

the visual input. The proposed orthographic prediction model of reading, thus, is not in 

principle incompatible with established models of visual word processing and reading. 
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To test which sensory processing hypothesis is adequate for visual word recognition 

behavior and related neuronal activation, we here report an implementation of the proposed 

prediction-based word recognition model, and use it to compare two parameters, one 

reflecting strictly bottom-up visual processing and one based on a top down-/prediction-based 

optimization of the sensory representation of the perceived stimulus word.  

 

A Predictive Coding Model of Visual Input Optimization in Reading 

We postulate that the brain identifies words not on the basis of the full (i.e., ‘bottom-up’) 

physical input into the visual system contained in a string of letters, but rather based on an 

informationally optimized representation of the percept that only reflects the non-predictable, 

i.e., informative part of the input (Fig. 1a). In the predictive coding framework, this non-

redundant portion of a stimulus is formalized as a prediction error; we thus propose that 

during visual word recognition, internal (i.e., knowledge- or context-dependent) visual-

orthographic predictions are used to informationally optimize the sensory input, so that 

further processing stages operate upon an orthographic prediction error (oPE) signal. It is 

commonly believed that higher level linguistic representations can initiate specific 

expectations about upcoming words (DeLong, Urbach, & Kutas, 2005; Kliegl et al., 2006; 

Nieuwland et al., 2018; Price & Devlin, 2011) – e.g., about the class (noun or verb) and 

meaning of the next word in a sentence like “The scientists made an unexpected … 

(discovery)”. The fundamental difference between these psycholinguistic assumptions about 

semantic and syntactic predictions and the proposed visual-orthographic prediction (VOP) 

model of reading, postulates predictive processes already at much earlier stages of visual 

processing. While this is in line with general considerations about information optimization as 

fundamental property of perceptual systems (Niven & Laughlin, 2008), this proposal differs 

radically from current (neuro-)cognitive models of reading – which rely on the full bottom-up 

visual-sensory input. 

Here, we demonstrate a quantitative implementation of this model for the most 

frequently investigated paradigm in reading research, single word recognition. In the absence 

of sentence context, the redundant visual information (i.e., the visual-orthographic prediction 

or, in Bayesian terms, the prior) is a function of our orthographic knowledge of words. We 

here approximate this knowledge quantitatively as the pixel-by-pixel mean over image 

representations of all words derived from a psycholinguistic database (Brysbaert et al., 2011; 
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see Fig. 1b and Methods). Interestingly, the resulting visual-orthographic predictions look 

similar across different languages sharing the same writing system (compare Fig. 1b,c) and, 

when compared directly, correlations of gray values are high ranging from .95 to .99.  

To empirically examine the assumptions of the VOP model, we estimate the 

orthographic prediction error as a pixel-by-pixel subtraction of this visual-orthographic 

prediction from each perceived word (Fig. 1d). This step of ‘predicting away’ the redundant 

part of written words reduces the amount of to-be-processed information by up to 51% (on 

average 33%, 37%, and 31% for English, French, and German, respectively; see Methods, 

Formula 4), thereby optimizing the visual input signal in the sense of highlighting only its 

informative parts (Fig. 1d). According to the VOP model, the resulting orthographic 

prediction error is a critical early stage of word identification, representing the access code 

that our brain uses to activate word meaning. In the following, we provide empirical support 

for this model by demonstrating that the orthographic prediction error (i) is correlated with 

orthographic familiarity of words measured as a property of lexicon statistics, (ii) accounts for 

response times in three languages, (iii) is represented in occipital brain regions, and (iv) is 

active at around ~170 ms after word onset. 
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Figure 1. Visual-orthographic prediction (VOP) model of reading. (a) The VOP 
model assumes that during word recognition, redundant visual-orthographic 
information is ‘explained away’, thereby highlighting the informative aspects of the 
percept. Subsequent stages of word recognition and linguistic processing (i.e. 
accessing abstract letter and word representations), thus, operate upon an 
informationally optimized input representation. This assumption is here tested for 
single-word reading, i.e., independent of context, by subtracting a ‘visual-
orthographic prediction’ from the input. (b) The visual-orthographic, knowledge-
based prediction is implemented as a pixel-by-pixel mean across image 
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representations of all known words (here approximated by all words in a 
psycholinguistic database; only five letters words, as in most experiments reported 
here; but see Supplemental figure 1a for a prediction including different word 
lengths). The resulting visual-orthographic prediction, shown on the right, contains 
the most redundant visual information across all words. (c) Across multiple 
languages, these predictions are very similar, with the exception of the upper-case 
initial letter that is visible in the German prediction (because experiments in German 
involved only nouns). (d) The orthographic prediction error (oPE) is estimated, for 
each word, by a pixel-by-pixel subtraction of the orthographic prediction from the 
input word (based on their image representations; see Methods for details). While 
the two example words have similar numbers of pixels, subtracting the orthographic 
prediction results in substantially different residual (i.e., oPE) images. The values 
underneath the prediction error images represent a quantitative estimate of the 
orthographic prediction error, the sum of non-black pixels per image, and show that 
the amount of information reduction (∆) can differ strongly between words. (e) 
Letter-length unspecific prediction for German, based on ~190.000 words. 

 

Results 

Lexicon-based Characterization of the Orthographic Prediction Error 

Cognitive psychologists have developed a number of quantitative measures to characterize 

words (Brysbaert et al., 2011; Coltheart, Davelaar, Jonasson, & Besner, 1977; Yarkoni, 

Balota, & Yap, 2008), mostly derived from large text corpora and psycholinguistic word 

databases (Heuven, Mandera, Keuleers, & Brysbaert, 2014; Keuleers, Brysbaert, & New, 

2010; see Fig. 2a for most important characteristics and examples). Abundant empirical 

research demonstrates that these lexicon-based word characteristics are predictive of different 

aspects of reading behavior (Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; 

Rayner, 2009). Accordingly, understanding how the orthographic prediction error derived 

from the implemented VOP model (see Fig. 1) relates to these measures provides an 

important first indication that this informationally optimized perceptual signal is critically 

involved in word recognition.  
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Figure 2. Comparison of orthographic prediction error to established lexicon-based 
word characteristics. (a) Overview of established word characteristics, exemplified for 
the word ‘read’: Coltheart’s neighborhood size (Coltheart N; Coltheart et al., 1977), 
orthographic Levenshtein distance (OLD20; Yarkoni et al., 2008), sub-lexical 
frequency measures (bi-, tri-, and quadri-gram frequencies, i.e. number of 
occurrences of two, three, and four-letter combinations from the target word, in the 
lexicon), and word frequency as calculated from established linguistic corpora (see 
Methods for details). (b) Clustered correlation matrix between the orthographic 
prediction error, the number of pixels per original image, which represents an 
estimate of the pure amount of physical bottom-up input in the present study, and 
the described word characteristics (cf. panel a), applied to a set of 3,110 German 
nouns. Red rectangles mark clusters and black crosses mark non-significant 
correlations (p < .05; Bonferroni corrected to p < .00179). (c) Correlations between 
the orthographic prediction error and number of pixels per word (Npixel), 
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orthographic similarity (OLD20), and word frequency (WF), for four different 
languages. (d) Representational similarity matrices (RSM; Kriegeskorte, Mur, & 
Bandettini, 2008) for original word images (left panel) and orthographic prediction 
error images (central panel). Each similarity matrix reflects the correlations among 
the gray values of all 3,110 words (in total 9,672,100 correlations per matrix). Note, 
the words were sorted alphabetically. The color scale indexing correlation strength is 
equivalent to the one used in (b). The right panel shows the correlation between 
word- and orthographic prediction error-based RSMs.   

 

Across all words, the orthographic prediction error (calculated as a summed difference 

between the actual stimulus and the knowledge-based visual-orthographic prediction; cf. Fig. 

1d and Methods) clusters with several measures commonly interpreted as orthographic (Fig. 

2b). These classic orthographic characteristics reflect the (non-) uniqueness of words in terms 

of their orthographic similarity to other words (e.g., the number of Coltheart neighbors 

Coltheart et al., 1977 or the orthographic distance OLD20; Yarkoni et al., 2008 to other 

words; cf. Fig. 2a) and letter co-occurrences (e.g., bi- and trigram frequency; cf. Fig. 2a). 

Note that these measures describe the statistics of letters and letter combinations in relation to 

all words retrieved from a lexicon database (Keuleers, Brysbaert, et al., 2010); in cognitive 

psychological research, they are consistently being associated with the first, i.e., orthographic 

stages of processing written words (Coltheart et al., 2001; Grainger & Jacobs, 1996). This is 

an important result as it demonstrates that a neurophysiologically inspired transformation of 

the visual stimulus that optimizes its information content, i.e., the here-proposed orthographic 

prediction error, is meaningfully related to orthographic properties of words as derived from 

lexicon-based statistics.  

In contrast, the orthographic prediction error is not correlated with the frequency of 

occurrence of a word in a language (Fig. 2b), which is typically taken as indicator of the 

difficulty of the process of accessing word meaning on the basis of an already-decoded 

orthographic access code (Coltheart et al., 2001). This dissociation between the orthographic 

prediction error and word frequency replicates across languages (Fig. 2c) and is in fact much 

more pronounced for the orthographic prediction error than the so-far predominant measures 

of orthographic similarity and orthographic neighborhood (Fig. 2b). Only two classical 

orthographic measures (tri- and quadrigram frequency) were weakly correlated with the raw 

pixel count of the words (Fig. 2b), providing first evidence that the neurophysiologically 

inspired orthographic prediction error is more important for a mechanistic understanding of 

reading than the full physical input contained in a printed word, without losing the ability of 
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discriminating the word identities. The latter was indicated by a strong correlation (r = .87) 

between the representational similarity matrices of the word and orthographic prediction error 

images (Fig. 2d). Here, the gray values from each word/orthographic prediction error image 

were correlated, pixel by pixel, separately for the original words and the orthographic 

prediction error images. The resulting so-called representational similarity matrices reflect the 

similarity structures among the entire set of items (Edelman, 1998; Kriegeskorte et al., 2008). 

The strong correlation of the word image and prediction error image similarity matrices, 

which is directly visible when visually comparing the structure of the two matrices, indicates 

that the representational similarity structure, or in other words the discriminability between 

items, is preserved after perceptual optimization of the sensory input as proposed by the VOP 

model.   

 

Accounting for Word Recognition Behavior 

As a next empirical test of the visual-orthographic prediction of reading, we evaluated how 

well the orthographic prediction error performs in accounting for behavior in an established 

and widely-used word recognition task. 35 human participants were asked to decide as fast as 

possible by button press whether written letter-strings (presented on the computer screen; 

1,600 items; 5 letters length; language: German) were words or not (lexical decision task). 

The orthographic prediction error represents the deviance of a given letter-string from our 

knowledge-based orthographic expectation, and thus how (un-)likely it is that the given letter-

string constitutes a word. Accordingly, participants should be fast in identifying letter-strings 

with low orthographic prediction error as words and fast in rejecting non-words with a high 

orthographic prediction error.  
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Figure 3. Word/non-word decision task behavior. (a) Orthographic prediction error 
(oPE) and (b) number of pixels (Npixel) effects on response times in a word/non-
word decision task (German 5-letter nouns; overall error rate 7.4%; see 
Supplemental table 1 for all detailed statistical analysis). Green lines show the effects 
for words, blue lines for pseudowords (pronounceable non-words), and red lines for 
consonant strings (unpronounceable non-words). Dots represent mean reaction time 
estimates across all participants, separated into bins of oPE (width of 10) and 
stimulus category, after excluding confounding effects. (c) Results from model 
comparisons. First all models are compared to the null model with only word/non-
word status and word frequency as predictors. Subsequently, a model adding only 
the oPE predictor, a model adding only the Npixel predictor, and one model adding 
both predictors to the predictors of the null model, were compared to the null 
model. Note that also the interaction terms with the word/non-word parameter were 
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included. The Akaike Information Criterion (AIC) difference to the null model is 
shown for the three models. A positive value represents an increase in model fit; 
asterisks mark significant differences (p < .05 Bonferroni corrected for multiple 
comparisons; 6 comparisons, three in relation to the null model and three 
comparing the alternative models; corrected significance threshold p < .0083). (d-f) 
Analogous results for English and (g-i) for French word/non-word decision tasks.  

 

Fig. 3a shows exactly this pattern of response times, i.e., a word/non-word by 

orthographic prediction error interaction (linear mixed model/LMM estimate: 0.03; SE = 

0.01; t = 5.0; see Methods for details on linear mixed effects modeling and Supplemental 

table 1 for detailed results). No significant interaction or fixed effect of the number of pixels 

estimate (i.e. the sum of all black pixels contained in a word), representing the strictly bottom-

up model, was found (Fig. 3b; Interaction: estimate: 0.00; SE = 0.01; t = 0.0; Fixed effect: -

0.01; SE = 0.00; t =1.8). To directly compare if the response times are more adequately 

described by the VOP model, represented by the orthographic prediction error, or by the pure 

bottom up model, represented by the number of pixels predictor for each word, we performed 

an explicit model comparison (see Methods for details) of four models: the full model, 

including as predictors the orthographic prediction error and the number of pixels, a pure 

prediction error model, a pure number of pixels model, and a null model without any of the 

two predictors. Fig. 3c shows that, in contrast to the null model, the three alternative models 

showed higher model fits (all c2’s > 9.9; all p’s < .007; Bonferroni corrected p threshold: 

0.0083), but this increase was significantly larger for the models including the orthographic 

prediction error. In addition, the model including only the orthographic prediction error 

explained substantially higher amounts of variance when compared to the model including 

only the number of pixels parameter (AIC difference: 34; c2(0) = 34.2; p < .001) with no 

substantial increase for the combined model (AIC difference: 3; c2(2) = 7.2; p = .02). This 

indicates that the bottom-up model explains substantially less variance in word recognition 

behavior than the orthographic prediction error based model.   

Additionally, including orthographic distance (OLD20; Yarkoni et al., 2008) as 

predictor improved the model fit further (AIC difference comparing the full model with and 

without OLD20: 104 c2(2) = 105.8; p < .001) but did not affect the significance of the 

word/non-word-by-orthographic prediction error interaction (Interaction effect estimate after 

including additional parameters: 0.03; SE = 0.01; t = 5.2). This indicates that despite its 

correlation with other orthographic measures (Figure 2b, c), the orthographic prediction error 
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accounts for unique variance components in word recognition behavior that cannot be 

explained by other word characteristics.  

We also replicate this interaction when calculating the orthographic prediction error 

using a length-unspecific visual-orthographic prediction (i.e., based on all ~190,000 German 

words from the SUBTLEX database Brysbaert et al., 2011; 2-36 letters length; cf. Fig. 1e; 

LMM estimate of interaction effect: 0.03; SE = 0.01; t = 4.5; for a replication in English and a 

more extensive investigation of the interaction effect for multiple word lengths see 

Supplemental figure 1b). Interestingly, length-specific and length-unspecific orthographic 

prediction errors are highly correlated (e.g., German: r = .97), showing that the prediction-

based word recognition process proposed by the VOP model is a general mechanism 

independent of word length constraints. This notion is in line with findings from natural 

reading, which show that low level visual features like length can be extracted from 

parafoveal vision prior to fixating the word (Cutter, Drieghe, & Liversedge, 2014; Gagl, 

Hawelka, Richlan, Schuster, & Hutzler, 2014; Schotter, Angele, & Rayner, 2012). The use of 

a fixed of word length in our German lexical decision experiment is therefore not necessarily 

artificial, since in natural reading word length is known prior to fixation. Combined, these 

results demonstrate that the orthographic prediction error is meaningfully related to word 

recognition behavior and independent of word length.  

Generalization across languages  

The interaction effect shown for German could be replicated in two open datasets from 

other languages (British English, 78 participants and 8,488 words/non-words: Fig. 3d; 

estimate: 0.008; SE = 0.002; t = 4.2, Keuleers, Lacey, Rastle, & Brysbaert, 2012; French, 974 

participants and 5,368 words/non-words: Fig. 3g; estimate: 0.005; SE = 0.002; t = 2.0, 

Ferrand et al., 2010; see Fig. 3; see also Supplemental figure 2 for two further datasets from 

Dutch and Supplemental table 1 for detailed results of English and French). However, in 

contrast to German, in both datasets we also found a significant effect of the number of pixels 

parameter (Fig. 3e,h; British: fixed effect: 0.008; SE = 0.001; t = 6.7; French: interaction with 

word/non-word status: -0.007; SE = 0.002; t = 3.0). In terms of model comparison, the pattern 

derived from German, i.e., strongest model fit increases when the orthographic prediction 

error was included, could not be recovered for English and French. Rather, we found that the 

role of the number of pixels parameter for describing the response times was larger than in 

German (see Fig 3f,i). Still, the combined model showed the best model fit in all three 

languages (although this difference was not significant for French after Bonferroni correction: 
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c2(2) = 7.8; p = .02) indicating that both the orthographic prediction error and the number of 

pixels parameter are relevant in explaining word/non-word decision behavior (oPE only vs. 

full model: AIC difference English: 52; c2(2) = 56.5; p < .001; French: 6; c2(2) = 10.5; p = 

.005; Npixel only vs. full model: AIC difference English: 24; c2(2) = 28.6; p < .001; French: 

3; c2(2) = 7.8; p = .02). To summarize, for English and French, model comparisons showed 

that in addition to the prediction error, the parameter reflecting more directly the pure bottom-

up processing of the physical stimulus input explained a substantial amount of variance. 

Nevertheless, we found that the orthographic prediction error was relevant in accounting for 

word recognition behavior in German, English, and French. 

Word recognition behavior under conditions of visual noise 

The fact that we used large-scale open source data sets for the generalization to English and 

French implicated a number of sources of additional of perceptual variability, which may 

have led to the greater role for bottom-up input in these two datasets. For example, word and 

font characteristics varied, e.g., word length changes from trial to trial (English, 2-13 letters; 

French, 2-19 letters) or the use of proportional fonts (Times new roman in the English 

dataset), while we had used only five-letter words presented in a monospaced font in the 

German experiment and the implementation of the VOP model reported here. For a predictive 

system, such unpredictable perceptual variation may reduce the ability to predict visual 

features of upcoming stimuli. For example, presenting different word lengths in a random 

sequence reduces the predictability of letter positions. Similarly, using a proportional-spaced 

font (like Times new roman) removes the letter separation in the prediction, which in turn 

increases the correlation between the number of pixels and the orthographic prediction error 

(cp. monospace font: r = .05 vs. proportional font: r = .49, both in German; see Supplement 

2). The loss of structure in the sensory input, thus may result in less precise predictions and 

thus in larger prediction errors, which as a consequence are more similar to the total amount 

of bottom-up information (i.e., number of pixels) of the same word. In the face of this, it is 

noteworthy and important that the orthographic prediction error, as proposed here, is still 

highly relevant in the English and French data set, where stimuli were perceptually more 

variable than in the German experiment. Note, however, that in natural reading, low level 

visual features like word length or letter position can be picked up in parafoveal vision, so 

that the visual system may dynamically adapt its predictions to the upcoming word (Schotter 

et al., 2012).  
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 To directly test if visual word recognition relies more strongly on the bottom-up input 

when visual word presentation includes unpredictable perceptual variations, we realized a 

second lexical decision task in German including an explicit visual noise manipulation 

reducing the predictability of visual features in words. We used a noise manipulation, instead 

of e.g. a font manipulation, since noise levels can be easily manipulated and quantified (i.e. 

number of displaced pixels) and a direct comparison of fonts is more difficult to realize, 

because the contrast of proportional vs. mono-spaced font is confounded with multiple other 

visual differences like total stimulus width (Hautala, Hyönä, & Aro, 2011). In addition, the 

0% noise words allowed us to replicate our original behavioral finding. Figure 5a shows 

examples of words in monospace font with applied visual noise which were used in this 

experiment. 

Figure 4. Stimuli and results for word/non-word decision task behavior with visual 
noise manipulation. (a) Example stimuli representing the three visual noise levels. (b) 
Orthographic prediction error effect (oPE) when no noise was applied, replicating 
the first study presented in Fig. 3a (error rate: 6%). (c) Number of pixels effect 
(Npixel) in the condition where noise was strongest (error rate: 33%). (d) Model 
comparisons including the full models and the models with oPE and Npixel only for 
each of the noise levels. Bars show the AIC difference to the null model of all nine 
models; asterisks mark significant differences (p < .05 Bonferroni corrected for 
multiple comparisons; 6 comparisons, three in relation to the null model and three 
comparing the alternative models; corrected significance threshold p < .0083)  

 

We found, in general, that response times and errors increased with the amount of 

noise that was applied to the visual-orthographic stimuli (0%: response time/RT: 613 ms, 6% 

errors; 20%: RT: 739 ms, 12% errors; 40%: RT: 1,105 ms, 33% errors; compare also Fig. 4b 

and c). When no noise was applied we replicated our first study (cp. Fig. 4b and Fig. 3a) with 

a significant interaction of the orthographic prediction error and word/non-word distinction 

(estimate: 0.05; SE = 0.02; t = 2.3; see Supplemental table 1 for detailed results). No effect or 
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interaction was found for the number of pixels parameter. With 20% noise, we still could 

identify a fixed negative effect of the orthographic prediction error (estimate: -0.06; SE = 

0.02; t = 3.3) however without a significant interaction pattern or number of pixels effect. 

With 40% noise, however, no significant effect of the orthographic prediction error could be 

found but we observed a significant fixed effect and interaction of the number of pixels 

parameter (Fig. 4c; estimate: 0.08; SE = 0.03; t = 2.9). A similar impression can be obtained 

from the model fit results showing that including the orthographic prediction error resulted in 

significantly higher model fits for 0% and 20% noise conditions compared to model were 

only the number of pixels predictor was included (see Fig. 4d; 0% AIC difference: 1; c2(0) = 

1; p < .001; 20% AIC difference: 13; c2(0) = 13.7; p < .001). With 40% noise, inclusion of the 

number of pixels parameter resulted in a higher model fit (AIC difference: 13; c2(0) = 13.2; p 

< .001). Surprisingly, we found an interaction between word/non-words and the number of 

pixels, with a positive effect for words and strong negative effects for non-words. This pattern 

closely matches that observed for the orthographic prediction error in stimuli without noise 

(cp. Fig. 4b and c).  

We interpret this pattern of effects as consistent with the assumptions of predictive 

coding, i.e., that better predictability of the expected input (here resulting from lower visual-

perceptual variability) results in more precise and stronger predictions and, therefore, greater 

reliance on the orthographic prediction error then on the pure bottom-up sensory input. As 

already discussed above, this may provide a possible explanation for the relatively increased 

importance of the bottom-up stimulus input in the English and French as compared to the 

German word recognition datasets, as in the two former the perceptual variability was higher 

than in the latter (due to the inclusion of stimuli of variable lengths and, in the case of the 

English study, proportional font). Most generally, the behavioral experiments reported in this 

section demonstrate that the orthographic prediction error contributes substantially to visual 

word recognition.  

 

Cortical Representation of the Orthographic Prediction Error 

The VOP model assumes that the orthographic prediction error is estimated at an early stage 

of the word recognition processes, i.e., in the visual-perceptual system and before word 

meaning is accessed and higher-level linguistic representations of the word can be activated. 
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Involved brain systems should accordingly be driven by the orthographic prediction error 

independent of the item’s word/non-word status (i.e., for words and non-words alike). 

Localizing the neural signature of the orthographic prediction error in the brain during word 

recognition, thus, is a further critical test of the VOP model. Of note, a strict bottom-up model 

of word recognition (and perception in general) would make a different prediction, i.e., that 

activation in early visual-sensory brain regions should be driven by the full amount of 

physical information in the percept (Goodyear & Menon, 1998; Henrie & Shapley, 2005). 

Processes that take place after word identification, i.e., that involve higher levels of linguistic 

elaboration, can only operate on words, so that brain regions involved in these later stages of 

word processing should distinguish between words and non-words.  

 

 
Figure 5. fMRI results demonstrating the neuroanatomical localization of 
orthographic prediction error effects. BOLD activation during silent reading (see 
Methods for further details, and Table 1 for exact locations of activation effects): (a) 
Analysis demonstrating a positive orthographic prediction error (oPE) effect in 
bilateral occipital activation-clusters. This regression analysis used item-specific oPE 
values as covariate, independent of stimulus condition, and shows brain regions with 
greater activity for letter strings characterized by a higher oPE, independent of 
stimulus type. (b) Clusters of higher BOLD activation for words than for non-words. 
(c) Two frontal activation clusters showing a oPE by word/non-word interaction, i.e. 
positive and negative oPE effects for words and non-words, respectively. Boxplots 
show individual beta weights; lines connect word and non-word betas from each 
individual. No effects of the number of pixels per word were found. Threshold voxel 
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level: p<.001 uncorrected; cluster level: p<.05 family-wise error corrected. Boxplots 
represent the median (line), the data from the first to the third quartile (box) and 
±1.5 times the interquartile range (i.e. quartile 3 minus quartile 1; whiskers). 

 

Table 1. Reliable activation clusters from the fMRI evaluation with respective anatomical labels (most likely 
regions from the Harvard-Oxford atlas; order of brain regions is relative to the order of peak components), cluster 
size (in voxels of size 2x2x2), and peak voxel coordinates (MNI space).	

Hemisphere	
Cluster 
extent 

[N voxels]	
T	 x	 y	 z	

Orthographic prediction error based analysis (positive relationship)	

Occipital fusiform gyrus / Lateral occipital gyrus	
L	 95	 6.6*	 -24	 -90	 -12	

	 	 	 4.3	 -34	 -88	 -10	

Lateral occipital gyrus	 L	 81	 4.8	 -28	 -84	 6	

	 	 	 4.3	 -34	 -76	 6	

	 	 	 3.8	 -38	 -86	 4	

Lateral occipital gyrus / Occipital fusiform gyrus	
R	 104	 5.1	 48	 -76	 -12	

	 	 	 4.1	 44	 -64	 -18	

	 	 	 4.0	 34	 -64	 -14	

Occipital fusiform gyrus / Lateral occipital gyrus	
L	 170	 4.9	 -36	 -68	 -12	

	 	 	 4.2	 -48	 -76	 -10	

	 	 	 4.0	 -24	 -68	 -12	

Words > Pseudowords	

Frontal orbital cortex / Inferior frontal gyrus, pars triangularis	
L	 1347	 6.6	 -36	 34	 -18	

	 	 	 6.3	 -40	 28	 -8	

	 	 	 6.1	 -54	 26	 -4	

Superior frontal gyrus / Frontal pole	
L/R	 427	 5.5	 -6	 52	 28	

	 	 	 3.9	 -10	 62	 22	
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	 	 	 3.7	 10	 56	 26	

Temporal Fusiform Cortex, posterior division	
L	 120	 5.2	 -40	 -36	 -18	

	 	 	 5.2	 -34	 -42	 -24	

Middle Temporal Gyrus, posterior division / Superior Temporal 
Gyrus, posterior division / Middle Temporal Gyrus, 
temporooccipital part	

R	 113	 4.5	 60	 -34	 -2	

	 	 	 4.0	 50	 -26	 -2	

	 	 	 3.8	 52	 -38	 0	

Inferior Frontal Gyrus, pars triangularis / Frontal Pole 	
R	 164	 4.3	 56	 32	 10	

	 	 	 3.9	 48	 34	 -12	

	 	 	 3.4	 50	 34	 -4	

Precentral Gyrus / Inferior Frontal Gyrus, pars opercularis	
R	 98	 3.9	 44	 10	 28	

	 	 	 3.9	 38	 4	 32	

	 	 	 3.7	 42	 16	 22	

Orthographic prediction error by word/non-word interaction (positive relationship for words and negative for 
non-words)	

Inferior frontal gyrus, pars triangularis / Frontal operculum cortex	
L	 125	 5.5	 -52	 32	 -4	

	 	 	 4.6	 -48	 20	 -4	

Paracingulate gyrus / Superior frontal gyrus	
L/R	 90	 4.4	 -4	 48	 28	

	 	 	 4.2	 4	 48	 30	

Note. Cluster-level FWE-corrected at p < .05, peak-level uncorrected at p < .001; * Significant after FWE-
correction on the voxel level. Order of regions presented per cluster corresponds to the order retrieved from the 
probabilistic Harvard-Oxford atlas.	

 

We tested these hypotheses about the localization of the orthographic prediction error 

by measuring BOLD activation changes using functional MRI while 39 participants silently 

read words (German nouns) and pronounceable non-words (i.e., pseudowords), in randomized 

order (see Methods for details). Consistent with our prediction, we identified three left- and 
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one right-hemispheric brain regions located in occipital cortex, that showed greater levels of 

activation when reading items with higher orthographic prediction error – both for words and 

non-words (Fig. 5a and Table 1). Importantly, no brain areas showed activity dependent on 

the pure amount of bottom-up information in the percept (pixel count). Prior research 

(Dehaene & Cohen, 2011; Dehaene et al., 2005) has identified a region in the mid-portion of 

the left occipito-temporal cortex as critical for reading. All four activation clusters 

representing the orthographic prediction error are located posterior to this so-called visual 

word form area (Dehaene & Cohen, 2011), which supports our claim of an early role for the 

orthographic prediction error signal prior to word identification. 

Only brain regions involved in the activation of word meaning and subsequent 

processes should differentiate between words and non-words. We observed greater activity 

for words than non-words, independent of the orthographic prediction error, more anteriorly 

in left temporal and prefrontal cortex (Fig. 5b and Table 1). Third, the left inferior frontal 

gyrus (pars triangularis) and the medial superior frontal gyrus (mSFG) mirrored the 

word/non-word decision behavior reported above, in that higher prediction errors lead to 

increasing activation for words but decreasing activation for non-words (Fig. 5c and Table 1). 

The fMRI experiment, thus, supports our hypothesis that during the earliest stages of visual 

processing, i.e., presumably prior to accessing word meaning, an optimized perceptual signal, 

the orthographic prediction error, is generated and used as a basis for efficient visual-

orthographic processing of written language. Only at later processing stages (in more anterior 

temporal and prefrontal cortices), the brain differentiates between words and non-words. 

 

Timing of the Orthographic Prediction Error  

While a representation of the orthographic prediction error could be localized in presumably 

‘early’ visual brain regions, the temporal resolution of fMRI on the order of several seconds 

precludes inferences concerning the temporal sequence of cognitive processes during word 

recognition. The millisecond time resolution of EEG has helped to attribute the extraction of 

meaning from perceived words to a time window of around 300 to 600 ms (N400 component 

of the event-related brain potential/ERP; Kutas & Federmeier, 2011). Visual-orthographic 

processes associated with the orthographic prediction error should thus temporally precede 

this time window, most likely to occur during the N170 component of the ERP (Barber & 

Kutas, 2007; Carreiras, Armstrong, Perea, & Frost, 2014). To test this hypothesis, we 
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measured EEG while 31 participants silently read words and non-words. A multiple 

regression model (analogous to the model used for the analysis of behavioral data) was fitted 

to the EEG data (Linzen & Engemann, 2017) with orthographic prediction error, number of 

pixels, word/non-word-status, and their interactions as parameters (see Methods for details).  

 

 

Figure 6. EEG results: Timing of orthographic prediction error effects. Effect sizes 
from regression ERPs are presented as time courses for each sensor and time-point 
(left column; color coding reflects scalp position) with yellow areas marking time 
windows with significant activation clusters for silent reading of 200 words and 200 
non-words (100 pronouncable pseudowords, 100 consonant strings; see 
Supplemental figure 3 for a more detailed visualization of the significance of spatio-
temporal activation clusters). ERP results are shown for (a) the orthographic 
prediction error (oPE) main effect, (b) the word/non-word effect, and (c) the oPE by 
word/non-word interaction. Results indicate significant oPE, word/non-word, and 
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oPE by word/non-word effects starting around, 150, 200, and 360 ms, respectively. 
The right panel shows the activation patterns related to the significant activation 
clusters (cf. Supplemental figure 3) in more detail. Dots represent mean predicted 
µV across (a,c) all participants and items separated by oPE and stimulus category, 
and (b) all items separated by stimulus category, excluding confounding effects (see 
Methods). No significant activation clusters were found for the parameter 
representing the number of pixels. Boxplots represent the median (line), the data 
from the first to the third quartile (box) and ±1.5 times the interquartile range (i.e. 
quartile 3 minus quartile 1; whiskers). The frontal cluster includes the following 
sensors: AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6, F7, F8, SO1, SO2, FP1, FP2, Fz. 
The posterior cluster includes the following sensors: O2, O1, Oz, PO10, PO3, PO4, 
PO7, PO8, PO9, POz. 

 

Regression-estimated ERPs show a significant effect of the orthographic prediction 

error on electrical brain activity between 150 and 250 ms after stimulus onset (Fig. 6a). In this 

early time window, letter-strings characterized by higher prediction errors elicited 

significantly more negative-going ERPs over posterior-occipital sensors, for both words and 

non-words. In line with the temporal sequence of processes inferred from their 

neuroanatomical localizations (i.e., fMRI results), a significant word/non-word effect then 

emerged between 200-570 ms (Fig. 6b), followed by an interaction between word/non-word-

status and orthographic prediction error at 360-620 ms (Fig. 6c). In this interaction cluster, 

greater prediction errors led to more negative-going ERPs for non-words, as observed for all 

stimuli in the earlier time window, but showed a reverse effect for words, i.e., more positive-

going ERPs for words with higher prediction errors (Fig. 6c). This pattern of opposite 

prediction error effects for words vs. non-words is analogous to the effects seen in word/non-

word decision behavior and in the frontal brain activation results.  

As in the fMRI study, we found no effect of the bottom-up input as such (pixel count), 

even though it is well-established that manipulations of physical input contrast (as 

determined, e.g., by the strength of luminance; Johannes, Münte, Heinze, & Mangun, 1995) 

can increase the amplitude of early ERP components starting at around 100 ms. We 

performed an explicit model comparison between statistical models including the 

orthographic prediction error compared to a model including the number of pixels parameter 

(analogous to the analysis of behavioral data), for both time windows in which the 

orthographic prediction error was relevant (early fixed effect and later interaction). In both 

time windows the model including the orthographic prediction error resulted in better fit (AIC 
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difference: 16 at 230 ms at posterior sensors: c2(0) = 16.0; p < .001; and 5 at 430 ms at frontal 

sensors: c2(0) = 5.0; p < .001).   

To summarize, EEG results converge with fMRI results and suggest that relatively 

early on in the cortical visual-perceptual processing cascade, the amount of perceptual 

processing devoted to the orthographic percept is smallest for letter-strings with highly 

expected visual features (i.e., low orthographic prediction error). 100 to 200 ms later, i.e., in a 

time window strongly associated with semantic processing (Kutas & Federmeier, 2011), the 

prediction error effect was selectively reversed for words, and thus started to differentiate 

between the two stimulus categories. This mirrors behavioral results and activation patterns in 

anterior temporal lobe and prefrontal cortex. Combined, these results support the VOP 

model’s proposal that orthographic representations are optimized early during visual word 

recognition, and that the resulting orthographic prediction error is the basis for subsequent 

stages of word recognition.  

 

Applying the VOP model to handwritten script.  

The electronic fonts used for all above-reported experiments introduce a highly regular 

structure that favors some of the VOP model’s core processes, like the calculation of the 

orthographic prediction error. We showed above that reducing the high regularity of 

computerized script by visual noisy, reading performance decreases and the orthographic 

prediction error becomes less relevant for describing reading behavior. To demonstrate the 

‘real world’ validity of the VOP model with even less regular scripts, we applied a variant of 

this model to naturalistic reading of handwriting. The extreme variability of different 

handwritings strongly influences their readability. Visual-orthographic predictions, here 

implemented on the basis of single letters and separately for each handwriting, accordingly 

vary substantially in the strength and precision between individual handwritings (cp. 

prediction of Fig. 7a,b). Prediction strength is represented in terms of darkness of the gray 

values of the prediction image, i.e., the mean gray value across pixels. The precision of the 

prediction is represented by the inverse of the number of gray pixels included the prediction 

image; more precise predictions are more focused and less distributed. High strength and high 

precision in the script-specific prediction result in lower orthographic prediction errors (Fig. 

7c,d; linear mixed model statistics: Estimate: -0.05; SE = 0.01; t = 7.4 and estimate: 0.02; SE 
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= 0.01; t = 2.1, respectively; see Supplemental table 1 for full results). Finally, we obtained 

the rated readability of the handwriting on the basis of 10 handwritten words and observed 

that the readability is higher for handwritings that produce lower prediction errors (Fig. 7e; 38 

raters; Estimate: -5.9; SE = 1.0; t = 6.2). This variant of the VOP model, shows that we can 

account for reading processes not only in highly formalized stimuli, but also when applied to 

handwritings.	

 

Figure 7. Applying the visual-orthographic prediction model of reading to the 
perception of handwritings. Examples for two (out of 10 empirically obtained) 
different handwritings. (a) A handwriting including single letters and the respective 
(letter-level) orthographic prediction estimated based on all 26 lower case letters 
(written in isolation). In addition, the word Identifikation (identification) is presented 
for both handwritings, as an example (out of 10). These words were used to acquire 
the readability rating. (c) Relationship between prediction strength and the mean 
orthographic prediction error across all letters for each script. Note that the oPE 
estimate for handwritings was normalized (i.e. divided) by the number of pixels since 
the number of pixels differed drastically between scripts (e.g. compare Examples in 
a and b). (d) Relationship between the precision of the prediction and the 
orthographic prediction error. Point color reflects each of 10 individual scripts, 
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separately for upper- and lower-case letters. (e) Script readability ratings in relation 
to the orthographic prediction error (lower- and upper-case prediction error 
combined). Blue line reflects the overall relationship and thin lines represent each 
rater.  

 

Discussion 

We have demonstrated that predictive coding is a plausible model for visual-orthographic 

processing during reading. This conclusion is empirically supported by our observation that 

the orthographic prediction error, i.e., the non-redundant and thus informative part of the 

visual-orthographic percept, (i) accounts for word identification behavior, (ii) explains	brain 

activation in low-level visual-perceptual systems of the occipital cortex, and (iii) explains	

brain activation as early as 150 ms after the onset of the letter-string. In addition, our visual 

orthographic prediction (VOP) model provides a quantitative estimate of the amount of 

information reduction achieved by this mechanism (i.e., in our data between 29 and 37% on 

average depending on language, with an upper limit of 51% at the level of the individual 

word). The pattern of differential correlations with various lexicon-based descriptors of words 

supports our proposal of an association of this prediction error representation with 

orthographic stages of visual word recognition. Finally, we have provided first evidence that 

the basic ideas of the VOP model may also be applicable to more naturalistic reading 

situations, for example to account for individual differences in the readability of handwritings. 

Combined, these findings are evidence against the common (explicit or implicit) assumption 

that the pure bottom-up visual information (i.e., in terms of the total number of pixels 

included in a word) is the basis for the transformation of visual input into abstract 

representations of letters and words that is at the core of the reading process. Rather, our 

results suggest that top-down guided predictive processing is used to optimize the visual input 

and improve the efficiency of word recognition, even when reading isolated words.  

We also found evidence for a greater reliance on bottom-up visual information when 

higher levels of variability are present in the visual stimulus – i.e., when visual occurrence of 

the stimulus is less predictable, for example due to visual noise or a larger range of different 

word lengths. Already some of the earliest models of predictive coding (Rao & Ballard, 1999) 

showed that noise in the percept reduces the amount of predictable information. A shift to 

bottom-up processing, thus, may represent an important fallback strategy of predictive 

systems. In naturalistic sentence or text reading, the perceptual variability introduced by 
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factors such as variable word lengths are accounted for by the fact that low-level visual 

properties (e.g., letter length) are available prior to fixation through para-foveal vision 

(Schotter et al., 2012). The visual system, accordingly, in principle has the capability of 

dynamically implementing best-fitting visual-orthographic predictions, thereby allowing 

optimized sensory processing as described by the VOP model in most natural reading 

situations. This hypothesis must be tested in future studies but fits with proposals which have 

acknowledged the integration of top-down predictions from multiple linguistic domains (for 

example at the phonological, semantic, or syntactic level; DeLong et al., 2005; Nieuwland et 

al., 2018; Price & Devlin, 2011). Critically, our results go clearly beyond this by 

demonstrating that top-down guided expectations are implemented already onto early visual-

perceptual processing stages.  

The so-far dominant model of visual word recognition in the brain (Dehaene & Cohen, 

2011; Dehaene et al., 2005) postulates that words are ‘assembled’ in a bottom-up fashion 

from line- and orientation-sensitive receptive fields of simple primary visual cortex neurons 

into successively more complex higher-order representations along the visual pathway. The 

high correlation between the representational spaces of our original word stimulus images and 

their derived orthographic prediction errors (Fig. 2d), however, indicates that sufficient 

information is retained in the optimized input representation so that words can be 

discriminated with high precision. As a consequence, extraction of feature combinations (like 

letters or bigrams; cf. Dehaene et al., 2005) should in principle be possible, however 

according to our account in a more efficient way from the orthographic prediction error rather 

than from a full representation of the bottom-up input. Prediction-based top-down 

optimization of the visual-orthographic input, as proposed here, is thus not necessarily 

incompatible with the currently prevalent bottom-up models of word recognition. 

Nevertheless, the two theoretical accounts are fundamentally different, for example with 

respect to the role of top-down processing. Future research will have to show which theory 

can better account for neuronal processing at various stages of the hierarchical word 

processing system.  

In sum, we demonstrate that during reading, visual-orthographic information 

processing is optimized by explaining away redundant visual information. This provides 

strong evidence that reading follows domain-general mechanisms of predictive coding during 

perception (Clark, 2013) and is also consistent with the influential hypothesis of a Bayesian 

brain, which during perception continuously combines prior knowledge and new sensory 

evidence (K. Friston, 2005; Knill & Pouget, 2004). We propose that the result of this 
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optimization step, i.e., an orthographic prediction error signal, is the neurophysiologically 

efficient access code to subsequent higher levels of word processing, including the activation 

of word meaning. These data provide the basis for a new understanding of visual word 

recognition rooted in domain-general neurophysiological mechanisms of prediction-based 

perceptual processes (K. Friston, 2005; Rao & Ballard, 1999). At the same time, our results 

provide important converging evidence in support of predictive coding theory.  

	

Methods 

 

Implementation of the VOP Model 

The estimation of the orthographic prediction error as assumed in VOP was realized by image-

based computations. Using the EBImage package in R (Pau, Fuchs, Sklyar, Boutros, & Huber, 

2010), letter-strings were transformed into gray scale images (size for, e.g., 5-letter words: 

140x40 pixels) that can be represented by a 2-dimensional matrix in which white is represented 

as 1, black as 0, and gray as intermediate values. This matrix representation allows an easy 

implementation of the subtraction computation presented in Fig. 1a, i.e.,  

1
𝑆𝐼$,$ … 𝑆𝐼$'(,$
⋮ ⋱ ⋮

𝑆𝐼$,'( … 𝑆𝐼$'(,'(
−

𝑃$,$ … 𝑃$'(,$
⋮ ⋱ ⋮

𝑃$,'( … 𝑃$'(,'(
=

𝑜𝑃𝐸$,$ … 𝑜𝑃𝐸$'(,$
⋮ ⋱ ⋮

𝑜𝑃𝐸$,'( … 𝑜𝑃𝐸$'(,'(
 

where SIx,y indicates the sensory input at each pixel. Px,y reflects the prediction matrix which is 

in the present study calculated as an average across all words (or a subset thereof) in a lexical 

database e.g., the example shown in Fig. 1b is based on 5,896 nouns of five letters length from 

the English SUBTLEX database (Heuven et al., 2014). This orthographic prediction was 

estimated by transforming each of n words into a matrix as described above and then averaging 

the values included in these matrices:  

2

𝑆𝐼$,$ … 𝑆𝐼$'(,$
⋮ ⋱ ⋮

𝑆𝐼$,'( … 𝑆𝐼$'(,'(

1
$

𝑛
=

𝑃$,$ … 𝑃$'(,$
⋮ ⋱ ⋮

𝑃$,'( … 𝑃$'(,'(
 

The VOP model postulates that during word processing, SI is reduced by the prediction matrix 

P, resulting in an orthographic prediction error matrix (oPE) as shown above in formula (1). 

The resulting orthographic predication error is therefore black (i.e. value 0) at pixels were the 
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prediction was perfect and gray to white (i.e. value > 0) where the visual information was not 

predicted perfectly. As a last step, a numeric value for the orthographic prediction error of each 

stimulus was determined by summing all values of its prediction error matrix. This numeric 

representation of the prediction error is used as parameter for all empirical evaluations. 

3 ∑
𝑜𝑃𝐸$,$ … 𝑜𝑃𝐸$'(,$
⋮ ⋱ ⋮

𝑜𝑃𝐸$,'( … 𝑜𝑃𝐸$'(,'(
= 𝑜𝑃𝐸567 

The amount of information reduction (𝐼89:6;9:) achieved by this predictive computation can 

then be calculated by relating the numeric representation of the prediction error to an analogous 

numeric representation of the respective word SIsum:  

4 1 −
𝑜𝑃𝐸567
𝑆𝐼567

∗ 100 = 𝐼89:6;9: 

 

Participants 

35, 54, 39, 31, and 38 healthy volunteers (age from 18 to 39) participated in the two German 

lexical decision studies, the fMRI, the EEG, and the handwriting experiments, respectively. 

All had normal reading speed (reading scores above 20th percentile estimated by a 

standardized screening; unpublished adult version of Auer, Guber, Wimmer, & Mayringer, 

2005), reported absence of speech difficulties, had no history of neurological diseases, and 

normal or corrected-to-normal vision. Participants gave written informed consent and 

received student credit or financial compensation (10€/h) as incentive for participating. The 

research was approved by the ethics board of the University of Salzburg (EK-GZ: 20/2014; 

fMRI study) and Goethe University Frankfurt (#2015-229; EEG study, lexical decision 

studies). Behavioral results for English, and French were obtained from publicly available 

data sets, whose samples are described elsewhere (Ferrand et al., 2010; Keuleers et al., 2012). 

Materials, experimental procedures, and analyses. 

Lexicon-based Characterization of the Orthographic Prediction Error. We calculated the 

number of pixels per word, the orthographic prediction error, and established word 

characteristics (Orthographic Levenshtein distance; Yarkoni et al., 2008, word frequency) for 

3,110 German (Brysbaert et al., 2011) nouns (i.e., the subset used for the empirical 

evaluations later on; with uppercase first letters), for 5,896 English (Heuven et al., 2014) 
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words, 5,638 French (New, Pallier, Brysbaert, & Ferrand, 2004) words, and 4,418 Dutch 

(Keuleers, Brysbaert, et al., 2010) words. All items had a length of five letters. For the 

German nouns, we additionally estimated a more comprehensive set of orthographic word 

characteristics, including bi-, tri-, quadirgram-frequencies (i.e., occurrences of 2, 3, 4 letter 

combinations), and Coltheart’s N (Coltheart et al., 1977); see Fig. 2b). Orthographic 

Levenshtein distance and Coltheart’s N were estimated with the vwr Package in R (Keuleers, 

2013). 

Accounting for Word Recognition Behavior. German lexical decision task 1: 800 five-letter 

nouns and 800 five-letter nonwords (400 pronouncable pseudowords, 400 unpronouncable 

non-words/consonant clusters) were presented in pseudorandomized order (Experiment 

Builder software, SR-Research, Ontario, Canada; black on white background; Courier-New 

font; .3° of visual angle per letter; 21″ LCD monitor with 1,024 × 768 resolution and 60Hz 

refresh rate), preceded by 10 practice trials. Participants judged for each letter string whether 

it was a word or not using a regular PC keyboard, with left and right arrow keys for words and 

non-words, respectively. Before stimulus presentation, two black vertical bars (one above and 

one below the vertical position of the letter string) were presented for 500 ms, and letter 

strings were displayed until a button was pressed. Response times were measured in relation 

to the stimulus onset. German lexical decision task 2 including noisy stimuli reports a 

replication in German with 70 five-letter words and 70 nonwords (36 pseudowords, 34 

consonant clusters) with no noise with identical procedures except that data were acquired in 

small groups of up to 8 participants. In addition, words with 20% or 40% noise added (i.e. 

20% or 40% of pixels were displaced; for details see Gagl et al., 2014) were presented in 

blocks of 140 (70 five-letter words and 70 nonwords).   

Linear mixed model (LMM) analysis implemented in the lme4 package (Bates, 

Mächler, Bolker, & Walker, 2015) of the R statistics software were used for analyzing lexical 

decision data as LMMs are optimized for estimating statistical models with crossed random 

effects for items. These analyses result in effect size estimates with confidence intervals (SE) 

and a t-value. Following standard procedures, t-values larger than 2 are considered significant 

since this indicates that the effect size ±2 SE does not include zero (Kliegl, Wei, Dambacher, 

Yan, & Zhou, 2011). For the presentation in Fig. 3a,b,g,h,j,g and 4b,c co-varying effects were 

removed by the keepef function of the remef package (Hohenstein & Kliegl, 2014/2017). All 

response times were log-transformed, which accounts for the ex-Gaussian distribution of 

response times. In addition, orthographic prediction error, and number of pixels were centered 

and normalized by R’s scale() function in order to optimize LMM analysis.  
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Cortical Representation of the Orthographic Prediction Error. 60 five-letter words and 180 

pseudowords were presented in pseudorandom order (yellow Courier New font on gray 

background; 800 ms per stimulus; ISI 2,150 ms) as well as 30 catch trials consisting of the 

German word Taste (button), indicating participants to press the response button. Catch trials 

were excluded from the analyses. All items consisted of two syllables and were matched on 

OLD20 (Yarkoni et al., 2008) and mean bigram frequency between conditions. To facilitate 

estimation of the hemodynamic response, an asynchrony between the TR (2,250 ms) and 

stimulus presentation (onset asynchrony: 2,150 + 800 ms) was established and 60 null events 

were interspersed among trials; a fixation cross was shown during inter-stimulus intervals and 

null events. The sequence of presentation was determined by a genetic algorithm (Wager & 

Nichols, 2003), which optimized for maximal statistical power and psychological validity. 

The fMRI session was divided into 2 runs with a duration of approximately 8 min each. 	

A Siemens Magnetom TRIO 3-Tesla scanner (Siemens AG, Erlangen, Germany) equipped with 

a 32-channel head-coil was used for functional and anatomical image acquisition. The BOLD 

signal was acquired with a T2*-weighted gradient echo echo-planar imaging sequence (TR = 

2,250 ms; TE = 30 ms; Flip angle = 70°; 86 x 86 matrix; FoV = 192 mm). Thirty-six descending 

axial slices with a slice thickness of 3 mm and a slice gap of 0.3 mm were acquired within each 

TR. In addition, for each participant a gradient echo field map (TR = 488 ms; TE 1 = 4.49 ms; 

TE 2 = 6.95 ms) and a high-resolution structural scan (T1-weighted MPRAGE sequence; 1 x 1 

x 1.2 mm) were acquired. Stimuli were presented using an MR-compatible LCD screen 

(NordicNeuroLab, Bergen, Norway) with a refresh rate of 60 Hz and a resolution of 1,024x768 

pixels. 

SPM8 software (http://www.fil.ion.ucl.ac.uk/spm), running on Matlab 7.6 (Mathworks, Inc., 

MA, USA), was used for preprocessing and statistical analysis. Functional images were 

realigned, unwarped, corrected for geometric distortions by use of the FieldMap toolbox, and 

slice-time corrected. The high-resolution structural image was pre-processed and normalized 

using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm8). The image was segmented into 

gray matter, white matter, and CSF compartments, denoised, and warped into MNI space by 

registering it to the DARTEL template of the VBM8 toolbox using the high-dimensional 

DARTEL registration algorithm (Ashburner, 2007). Functional images were co-registered to 

the high-resolution structural image, which was normalized to the MNI T1 template image, and 

resulting normalization parameters were applied to the functional data, which were then 

resampled to a resolution of 2×2×2 mm and smoothed with a 6 mm FWHM Gaussian kernel. 
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For statistical analysis, we first modeled stimulus onsets with a canonical hemodynamic 

response function and its temporal derivative, including movement parameters from the 

realignment step and catch trials as covariates of no interest, a high-pass filter with a cut off of 

128 s, and an AR(1) model (K. J. Friston et al., 2002) to correct for	autocorrelation. For the 

group level statistics, t-tests were realized with a voxel level threshold of p < .001 uncorrected 

and a cluster level correction for multiple comparisons (p < .05 family-wise error corrected).  

 

Timing of the Orthographic Prediction Error. 200 five-letter words, 100 pseudowords, and 

100 consonant strings (nonwords) were presented for 800 ms (black on white background; 

Courier-New font, .3° of visual angle per letter), followed by an 800 ms blank screen and a 

1,500 ms hash mark presentation, which marked an interval in which the participants were 

instructed to blink if necessary. In addition, 60 catch trials (procedure as described for fMRI 

study) were included in the experiment. Stimuli were presented on a 19″ CRT monitor 

(resolution 1,024 × 768 pixels, refresh rate 150Hz), and were preceded by two black vertical 

bars presented for 500 - 1,000 ms to reduce stimulus onset expectancies.  

EEG was recorded from 64 active Ag/Ag-Cl electrodes (extended 10-20 system) using an 

actiCAP system (BrainProducts, Germany). FCz served as common reference and the EOG was 

recorded from the outer canthus of each eye as well as from below the left eye. A 64-channel 

Brainamp (BrainProducts, Germany) amplifier with a 0.1–1,000 Hz band pass filter sampled 

the amplified signal with 500Hz. Electrode impedances were kept below 5kΩ. Offline, the EEG 

data were re-referenced to the average of all channels. EEG data were preprocessed using MNE-

Python (Gramfort et al., 2014), including high (.1 Hz) and low pass (30 Hz) filtering and 

removal of ocular artifacts using ICA (Delorme, Sejnowski, & Makeig, 2007). For each subject, 

epochs from 0.5 s before to 0.8 s after word onset were extracted and baselined by subtracting 

the pre-stimulus mean, after rejecting trials with extreme (>50 µV peak-to-peak variation) 

values. Multiple regression analysis, with the exact same parameters as for the behavioral 

evaluation (orthographic prediction error, number of pixels, word/non-word, and the 

interactions with the word/non-word distinction), was conducted and a cluster-based 

permutation test (Maris & Oostenveld, 2007) was used for significance testing. 1,024 label 

permutations were conducted to estimate the distribution of thresholded clusters of spatially 

and temporally (i.e., across electrodes and time) adjacent time points under the null hypothesis. 

All clusters with a probability of less than an assumed alpha value of 0.05 under this simulated 

null hypothesis were considered statistically significant. The presentation of effect patterns (line 
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and box-plots) in Fig. 6 co-varying effects were removed by the keepef function of the remef 

package (Hohenstein & Kliegl, 2014/2017). 

Application to handwriting. We obtained handwriting samples (26 upper and 26 lower case 

letters; 10 common German compound words, 10-24 letters long) from 10 different writers (see 

Fig. 5a,b for examples). The single letters were scanned and centered within a 50x50 pixels 

image. These images were used to estimate, for each script separately, pixel-by-pixel 

predictions for upper and lower-case letters (see also Fig. 5a,b), analogous to the procedures 

described above and in Fig. 1b. Subsequently, these predictions were subtracted from each letter 

of the alphabet, within the respective script sample (matrix subtraction; Formula 1). In contrast 

to computer fonts the correlation of the orthographic prediction error and the respective item’s 

number of pixels was high (r = .98). To compensate this, the orthographic prediction error was 

normalized by a division with the respective pixel count. Readability ratings (5-point Likert 

scale) were obtained from 38 participants (27 females; mean age 25 years) by presenting all ten 

versions of all ten handwritten compound words, in addition to the identical word in 

computerized script. Note that all stimuli including lexical characteristics and original 

handwritings will be available on Zenodo (after acceptance). 

For the handwriting data, a LMM was realized that predicted the orthographic prediction error 

(Fig. 5c-d) from the following parameters: mean prediction strength (i.e., mean of the values 

extracted from the prediction matrix), number of all non-white pixels (both scaled), and letter 

case. The random effect on the intercept was estimated for each script. In addition, a second 

LMM was estimated for readability ratings with the orthographic prediction error as the only 

predictor and participants as random effect on the intercept and as random effect of the 

orthographic prediction error slope.  

 

Data and Code availability 

Data and analysis scripts will be made publicly available at Zenodo when published. 
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Supplements

 

Supplemental figure 1. (a) Response times aggregated across participants from the 
British lexicon (BLP) project (Keuleers et al., 2012) for the word lengths 4-8. The left 
panel shows the word/non-word by orthographic prediction error (oPE) interaction 
and the right panel shows the word/non-word by number of pixels (Npixel) 
interaction for each word length separately. In addition, the upper panel shows 
letter strings that are correctly categorized in nearly all cases (accuracy > .95) and 
the lower panel shows the response times to the items, which were less accurately 
processed (i.e., accuracy < .95). We realized this median split in order to result in a 
subset of the BLP (i.e., the easy words) which are roughly comparable to the 
previous experiments (e.g. see Fig. 2d), as the BLP study includes a large number of 
very rare words (median log. word frequency per million is .3). Analogous to 
Supplemental figure 1, bluish colors represent non-words (N) and greenish colors 
represent words (W), while the hue of the colors reflects word length (i.e., bright to 
dark reflects short to long letter strings). For both effects, we first estimated linear 
regression models with either the oPE or the Npixel effect and allowing interactions 
with word/non-word status, word length, and accuracy. Note that the oPE in this first 
analysis was based on length-specific predictions (i.e., for the estimation of the oPE 
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of four-letter words, all four-letter words of the lexicon were included in the 
prediction). For the oPE model, a significant four-way interaction was found 
(estimate = -1.078e-04; SE = 4.199e-05; t = -2.567). Separating hard vs. easy words 
allowed us to disentangle the four-way interaction: In easy words/non-words, we 
found a consistent (i.e., across length levels) oPE by word/non-word interaction 
(estimate = 1.530e-04; SE = 4.047e-05; t = 3.780) in the same direction as previously 
shown (positive effect for words and a negative effect for non-words). For hard 
words/non-words, we found that the oPE by word/non-word interaction was 
inconsistent across letter length levels, which was indicated by a significant oPE and 
letter length interaction (estimate = -3.530e-05; SE = 8.092e-06; t = -4.363). In 
addition, for the hard words both the oPE by word/non-word interaction (estimate = 
-1.685e-04; SE = 6.905e-05; t = -2.440) and the main effect of oPE were reversed 
(estimate = 2.828e-04; SE = 5.802e-05; t = 4.874 compare to estimate = -1.000e-04; 
SE = 2.440e-05; t = -4.101, for easy words). For the Npixel model, no four-way 
interaction and no Npixel interaction or main effect were found. In sum, in this 
analysis we showed that the oPE by word/non-word interaction shown previously for 
word lengths of five letters (see main text) is consistent for easy-to-process English 
items with word lengths from 4-8 letters. Secondly, the word/non-word by 
orthographic prediction error interaction was also reliable when the prediction 
included all words of all letter lengths from the English lexicon (see part b of this 
Figure) and the orthographic prediction error estimation was based on this length-
unspecific prediction (estimate: 0.02; SE=0.007; t=3.349). (b) Letter-length 
unspecific prediction for English based on ~60,000 English words from the SUBTLEX 
database (Heuven et al., 2014).  
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Supplemental figure 2. Dutch lexical decision behavior and prediction using a 
proportional script. (a) Effect of the orthographic prediction error parameter, (b) 
number of pixels parameter and (c) showing the same model comparisons realized 
in Figure 3 for the data from the first Dutch lexicon project (DLP1; Keuleers, 
Diependaele, & Brysbaert, 2010; 4,305 five-letter stimuli; 39 participants) and the 
same effects and model comparisons for the second Dutch lexicon project (DLP2; 
Brysbaert, Stevens, Mandera, & Keuleers, 2016; 3,145 five-letter stimuli; 81 
participants) are presented in (d,e,f). Before going into the details of the two studies 
one has to note that the patterns we have found in the data in relation to our 
parameters of interest do not replicated within these two Dutch studies and, in 
addition, do not replicate with the findings from German, English, and French shown 
in Figure 3. In general, this is difficult for the interpretations of the results. For the 
DLP1 pattern we found a significant interaction of the orthographic prediction error 
with word/non-words and no significant effect of number of pixels. The interaction 
pattern in contrast to the findings in other languages (Fig. 3a), however, was 
qualitatively different as it showed a negative orthographic prediction error effect for 
words and a positive effect for non-words. The pattern is exactly the inverse from all 
other languages. Still model comparisons highlighted that the orthographic 
prediction error was relevant for the model fit since the predictor increased the 
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model fit with no further increase of fit when the number of pixel parameter was 
included. None of these findings could be replicated in the DLP2 dataset, showing 
no significant fixed effects or interactions and no substantial changes in model fit 
relation to the null model. (g) Prediction image from a VOP implementation using 
five-letter words with a proportional Times New Roman script.  
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Supplemental figure 3. Detailed description of significant activation clusters for (a) 
the orthographic prediction error; (b) word/non-word effect; (c) interaction of 
word/non-word and the orthographic prediction error. On the left, the effect sizes 
from regression ERPs are presented as time courses for each sensor and time-point 
(color coding reflects scalp position). This part of the Figure reproduces Figure 4. 
The right column displays time courses with one line per channel, masked by 
significance using cluster statistics (see Methods for details; Maris & Oostenveld, 
2007). 
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Supplemental table 1. Results from linear mixed model 
regression analysis (with the exception of the British data 
including multiple word lengths was estimated based on word 
aggregated data) for the behavioral lexical decision tasks (LDT) 
and handwriting analyses. 

 E SE t  

German LDT N°1: Orthographic prediction error based on 
word length specific prediction  

Intercept 6.49 0.023 288  

Orthographic prediction error (oPE) -0.03    0.004 6.5  

Number of pixels (Npixel) -0.007 0.004 1.8  

Word/non-word (Lex) 0.33 0.009 33.1  

Word frequency -0.12 0.004 33.5  

Error -0.03 0.005 6.2  

oPE X Lex 0.03 0.006 5.0  

Npixel X Lex 0.000 0.006 0.1  

     

German LDT N°1: Orthographic prediction error based on 
word length general prediction 

 

Intercept 6.48 0.023 288.3  

Orthographic prediction error (oPE) -0.03    0.004 6.3  

Number of pixels (Npixel) -0.01 0.004 1.7  

Word/non-word (Lex) 0.33 0.010 33.2  

Word frequency -0.12 0.004 35.5  

Error -0.03 0.005 6.2  

oPE X Lex 0.03 0.006 4.5  

Npixel X Lex -0.00 0.006 0.0  

     

German LDT N°1: Orthographic prediction error based on 
word length specific prediction including orthographic 

Levenshtein distance and word frequency 

 

Intercept 6.66 0.023 237.1  

Orthographic prediction error (oPE) -0.02    0.004 4.3  
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Number of pixel (Npixel) -0.00 0.004 0.2  

Word/non-word (Lex) 0.29 0.011 27.0  

Error -0.03 0.005 6.2  

Orthographic Levenshtein distance -0.08 0.008 10.5  

Word frequency -0.12 0.004 35.5  

oPE X Lex 0.03 0.006 5.2  

Npixel X Lex -0.00 0.005 0.6  

     

German LDT N°2 including noise: 0%  

Intercept 6.32 0.024 263.9  

Orthographic prediction error (oPE) -0.02    0.016 1.4  

Number of pixels (Npixel) -0.00 0.015 0.2  

Word/non-word (Lex) 0.27 0.05 5.4  

Word frequency -0.07 0.02 4.9  

Error -0.07 0.010 6.8  

oPE X Lex 0.05 0.02 2.3  

Npixel X Lex -0.02 0.021 1.2  

     

German LDT N°2 including noise: 20%  

Intercept 6.45 0.026 245.4  

Orthographic prediction error (oPE) -0.06   0.017 3.3  

Number of pixels (Npixel) -0.00 0.013 0.3  

Word/non-word (Lex) 0.37 0.049 7.5  

Word frequency -0.14 0.02 6.1  

Error -0.14 0.010 5.4  

oPE X Lex 0.04 0.022 1.6  

Npixel X Lex 0.02 0.022 0.7  

     

German LDT N°2 including noise: 40%  

Intercept 6.84 0.042 162.9  

Orthographic prediction error (oPE) -0.02    0.021 1.0  
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Number of pixels (Npixel) -0.08 0.018 4.1  

Word/non-word (Lex) 0.14 0.049 2.8  

Word frequency -0.11 0.06 1.9  

Error -0.00 0.010 0.1  

oPE X Lex -0.00 0.028 0.1  

Npixel X Lex 0.08 0.026 2.9  

     

British LDT   

Intercept 6.39 0.013 507.1  

Orthographic prediction error (oPE) -0.007    0.001 5.3  

Number of pixels (Npixel) 0.008 0.001 6.7  

Word/non-word (Lex) 0.12 0.003 46.2  

Word frequency -0.067    0.001 58.0  

oPE X Lex 0.008 0.002 4.2  

Npixel X Lex -0.003 0.002 1.9  

     

British LDT 4-8 Letters: Length specific prediction   

Intercept 6.26 0.157 39.7  

Orthographic prediction error (oPE) -0.001    0.000 5.0  

Number of letters (Nletters) 0.062 0.027 2.3  

Word/non-word (Lex) 0.155 0.162 0.3  

Error 0.043 0.165 0.8  

oPE X Lex -0.001 0.000 4.5  

oPE X Nletters -0.001 0.000 3.3  

oPE X Error -0.002 0.000 5.1  

Nletters X Lex -0.006 0.028 0.8  

Nletters X Error -0.245 0.172 1.4  

Lex X Error -0.036 0.028 1.3  

oPE X Lex X Nletters 0.001 0.000 2.4  

oPE X Lex X Error 0.002 0.000 5.0  
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oPE X Nletters X Error 0.001 0.000 3.2  

Nletters X Lex X Error 0.003 0.030 0.1  

oPE X Lex X Nletters X Error -0.001 0.000 2.6  

     

British LDT 4-8 Letters: Length general prediction   

Intercept 5.25 0.421 12.5  

Orthographic prediction error (oPE) 0.002    0.000 3.7  

Number of letters (Nletters) 0.250 0.061 4.1  

Word/non-word (Lex) 1.064 0.438 2.4  

Error 1.264 0.443 2.9  

oPE X Lex -0.002 0.001 3.1  

oPE X Nletters -0.000 0.000 3.6  

oPE X Error -0.002 0.001 4.0  

Nletters X Lex -0.183 0.065 2.9  

Nletters X Error -0.002 0.001 4.0  

Lex X Error -1.426 0.467 3.1  

oPE X Lex X Nletters 0.001 0.000 2.9  

oPE X Lex X Error 0.002 0.001 3.6  

oPE X Nletters X Error 0.001 0.000 4.0  

Nletters X Lex X Error 0.228 0.068 3.5  

oPE X Lex X Nletters X Error -0.001 0.000 3.3  

     

British LDT 4-8 Letters: Number of pixel  

Intercept 6.590  0.157 42.0   

Number of pixel (Npixel) 0.000   0.001 0.3  

Number of letters (Nletters) 0.092   0.028 3.2  

Word/non-word (Lex) -0.124   0.162 0.8  

Error -0.309  0.165 1.9  

Npixel X Lex 0.000 0.001 0.2  
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Npixel X Nletters 0.000 0.001 1.4  

Npixel X Error 0.000 0.001 0.4  

Nletters X Lex -0.059 0.029 2.0  

Nletters X Error -0.090   0.030 3.0  

Lex X Error 0.035  0.171 0.2  

Npixel X Lex X Nletters 0.000 0.001 0.9  

Npixel X Lex X Error 0.000 0.001 0.1  

Npixel X Nletters X Error 0.000 0.001 1.2  

Nletters X Lex X Error 0.069 0.031 2.2  

Npixel X Lex X Nletters X Error 0.000 0.001 1.2  

     

French LDT  

Intercept 6.63 0.005 1,333  

Orthographic prediction error (oPE) -0.002    0.001 2.0  

Number of pixels (Npixel) 0.002 0.001 1.3  

Word/non-word (Lex) -0.040 0.003 11.6  

Word frequency -0.042 0.001 34.1  

oPE X Lex 0.005 0.002 2.0  

Npixel X Lex -0.007 0.002 3.0  

     

Dutch LDT   

Intercept 6.45 0.019 348.1  

Orthographic prediction error (oPE) 0.005    0.002 3.2  

Number of pixels (Npixel) 0.001 0.002 0.6  

Word/non-word (Lex) 0.101 0.004 23.8  

Word frequency -0.061 0.002 36.9  

oPE X Lex -0.016 0.002 6.6  

Npixel X Lex 0.002 0.002 1.0  

     

Dutch LDT2   
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Intercept 6.35 0.016 391.1  

Orthographic prediction error (oPE) 0.002    0.002 1.1  

Number of pixels (Npixel) -0.001 0.002 0.6  

Word/non-word (Lex) 0.048 0.005 9.4  

Word frequency -0.023 0.001 26.9  

oPE X Lex -0.003 0.003 1.3  

Npixel X Lex 0.003 0.003 0.5  

     

Handwriting: Script based orthographic prediction error   

Intercept 1.465 0.010 154.3  

Mean prediction strength 0.052 0.007 7.4  

Number of pixels with a prediction 0.015 0.008 2.1  

Letter case 0.039 0.012 3.2  

     

Handwriting: Readability ratings   

Intercept 11.5 1.4 8.1  

Mean prediction strength -5.9 1.0 6.2  

Note. E: Estimate; SE: Standard error; t: t-value. All t’s >2 are 
considered a significant effect. 
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