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Abstract 

The goal of human brain mapping has long been to delineate the functional subunits in the 
brain and elucidate the functional role of each of these brain regions. Recent work has 
focused on whole-brain parcellation of functional Magnetic Resonance Imaging (fMRI) data 
to identify these subunits and create a functional atlas. Functional connectivity approaches to 
understand the brain at the network level, require such an atlas to assess connections between 
nodes and extract network properties. While no single functional atlas has emerged as the 
dominant atlas to date, there remains an underlying assumption that such an atlas exists. 
Using fMRI data from a highly sampled subject as well as two independent replication data 
sets, we demonstrate that functional atlases reconfigure substantially and in a meaningful 
manner, according to brain state. 
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Introduction 

The field of human brain mapping, as the name suggests, has the goal of assigning functions 
to brain regions. To understand how the brain works, it is first necessary to define the 
minimal functional units in the brain at the macroscopic level considered in neuroimaging. 
These subunits are called a variety of terms, including nodes, parcels, cortical areas, or 
regions of interest (ROIs); while different analysis traditions favor different terms, each 
describes the same fundamental building block of macroscale neural circuitry: a spatially 
contiguous region of the human brain that is homogeneous and distinct in its functional 
identity. Individual areas may have unique combinations of cells and microstructure, but the 
overarching feature of interest is their function, and their functional architecture reflecting 
their connections to other brain regions. There has been no consensus to date, however, as to 
how to best define this underlying atlas, consisting of these functionally distinct, spatially 
contiguous nodes.  

Since the early cytoarchitectonic atlas of Brodmann1, there have been numerous attempts at 
subdividing the brain into small anatomical or functional subunits and assigning roles to these 
brain regions2-7. Neuroimaging-based parcellation approaches are attractive because they 
allow whole-brain parcellations in individuals8-11 or groups of subjects12-18 (for a review see 
Eickhoff et al.19). Most recent neuroimaging-based parcellation algorithms have been based 
entirely on functional connectivity data12-15 or combinations of anatomical and functional 
data16,17. In addition, meta-analytic databases such as BrainMap20 and NeuroSynth21 have 
attempted to collate information from thousands of studies to assign functional identities to 
brain regions, and clustering methods have been developed to translate these findings into 
nodes22. Yet all of these commonly adopted parcellations, whether at the individual- or 
group-level, define a single functional atlas for all different brain states, assuming that nodes 
are homogenous in function with no state-dependent variability in size, shape or position. 

Here, we challenge the fundamental assumption that a single functional atlas exists. We 
demonstrate that node boundaries change substantially across task conditions, yet are reliably 
reproducible within a condition. We provide evidence that node configuration can provide 
meaningful information on brain state. We do so by showing that a measure of node 
configuration as coarse as node size can significantly predict the task condition under which 
the data was acquired, for novel runs of a left-out subject, as well as the within-condition task 
performance for a left-out session in the same subject. These results have major implications 
for neuroscience both in terms of how we interpret previous findings, and in terms of re-
adjusting how we think about the goals of human brain mapping.  
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Results 

Three independent data sets are used to support these findings. In the first, 30 sessions of 
fMRI data were obtained from a single subject; each session was approximately 60 minutes 
long and included 6 task conditions (n-back23, gradual-onset continuous performance task 
[gradCPT]24-26. , stop-signal [SST]27, card guessing28, Reading the Mind in the Eyes29, and 
movie watching) and 2 rest conditions. Data were acquired from a single subject to eliminate 
the confound of inter-individual variations in anatomy, which would contribute to the 
variance in node boundaries30.  The high number of fMRI sessions acquired in a single 
subject allows us to demonstrate consistent within-condition parcellations across sessions, 
while also demonstrating significantly different cross-condition parcellations. Since a single 
subject was used, the null hypothesis would be consistent parcellations across all sessions and 
conditions. A second, independent data set was used from Midnight Scan Club (MSC)31, to 
replicate these findings and demonstrate their generalizability. This publicly available data 
set consists of a set of 8 individuals scanned, under both resting-state and task conditions, 10 
times (10 sessions) each. Finally, rather than measuring consistency within a subject across 
sessions, we used the Human Connectome Project (HCP)32 data (n=514) to demonstrate that 
even when collapsing across subjects (rather than sessions), we observe that different 
conditions lead to reproducibly different functional parcellations.  

In the first data set, we applied an extended version of our recently developed individualized 
parcellation algorithm10 to each functional run, generating one parcellation atlas for each 
condition and each scanning session (8 conditions × 30 sessions = 240 atlases total). By 
taking the majority vote over all sessions of each condition, we generated condition-specific 
parcellations. Figure 1a visualizes these parcellations using a force-directed graph (see 
Methods). Nodes are colored by the magnitude of reconfiguration in the given condition 
relative to Rest 1, demonstrating that nodes with high reconfiguration are broadly distributed 
and condition-specific. Increased similarity of reconfiguration maps is observed (Figure 1a) 
among condition-specific parcellations with increased pairwise similarity (Figure 1b). 
Consistent with our expectations, Rest 1 and Rest 2 parcellations are highly similar to each 
other, while the parcellation for the movie-watching condition is the most distinct (Figure 1).  
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Figure 1. Visualization of the condition-specific functional atlases. (a) Condition-specific 
functional atlases are visualized in a force-directed graph, with edge weights indicating the 
similarity between parcellations, measured by rHamming = 1-Hamming distance relative to the 
atlas from the 1st resting-state acquisition. Force-directed graphs attempt to visually organize 
networks such that the energy of the graph as a whole is minimized. This is accomplished by 
assigning both repulsive and attractive forces to each pair of nodes such that the nodes with 
stronger interconnections are displayed closer to each other and the ones with weaker 
connections are more distant. Brain size is proportional to the graph theory measure degree. 
Edge thickness is proportional to the edge weights. Nodes are colored by the magnitude of 
reconfiguration in the given condition relative to Rest 1. (b) Cross-condition parcellation 
similarity measured by rHamming. 
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To quantitatively examine these parcellation changes across conditions, we applied a voting-
based ensemble method, randomly dividing all sessions for a given condition into two equal-
sized groups, obtaining the majority-vote over each group, and computing the similarity 
between pairs of parcellations (see Methods). This was done both within and across 
functional conditions. We repeated this analysis 1000 times, generating 1000 pairwise 
similarity matrices. Parcellation similarity was considered at two scales: at the fine scale, we 
assessed the fraction of voxels that retained their node assignment (Figure 2a, d); at the 
coarse scale, we computed the rank correlation between node-size vectors (Figure 2b, e) for 
all condition pairs. The results demonstrate that parcellations are significantly more similar 
within each functional condition than across different conditions (KS-test; p<0.001). This 
finding also holds true when node size is considered as a means to summarize atlas 
boundaries (KS-test; p<0.001). The primary finding is that parcellations are highly 
reproducible within a functional condition, and rearrange significantly between conditions. 
These changes are reflected even in a coarse-scale feature of spatial topography, i.e. node-
size.  

Next, we demonstrate that the observed task-evoked parcellation reconfiguration is consistent 
across sessions and specific to each condition. To this end, we built a fully cross-validated 
predictive model that predicts the functional condition under which novel runs were acquired, 
based solely on the node size vector. Prediction accuracies—measured as precision and recall 
for each condition—were significantly higher than random for all conditions (mean accuracy 
= 71%; Figure 2c). That a measure of spatial topography as coarse as node size can 
significantly predict which task a subject is performing suggests that functional brain atlases 
reconfigure with task (in this case a proxy for brain state) in a consistent manner, forming a 
generalizable and robust signature of brain organization during that condition. Successful 
prediction also demonstrates that cross-condition reconfigurations are not driven by noise. 

While the overall stability of the functional atlases within each condition was high, subtle 
variations were observed across different sessions of the same condition. To examine if node 
reconfigurations contain meaningful within-session information, we attempted to predict task 
performance using node-size as the model feature. Task performance was used as a proxy for 
level of engagement in the task, reflecting more fine-grained variations in brain state than can 
be captured by simply considering task state (see Methods for details of the behavioral 
measures that were used for each task). To this end, a linear regression model was employed 
in a leave-one-out cross-validated framework (see Methods for details), for each task 
independently. We used coefficient of determination (r-value) to assess the predictive power 
of the model. Task performances were successfully predicted from node sizes (Figure 2f), 
indicating that node reconfigurations from session to session, within a task condition, reflect 
meaningful changes in brain function. The success of these predictions again rules out the 
possibility that even session-to-session node reconfigurations are simply driven by noise. 
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Figure 2. Node definitions change with task condition; Yale single-subject data. a) 
Pairwise parcellation similarity was calculated within and across functional conditions (8 
conditions, N=30 sessions), using voting-based ensemble analysis with 1000 iterations. The 
matrix represents the average over all iterations. Similarity was assessed by rHamming =1-
Hamming distance. b) The same analysis as (a) was performed, this time using rank 
correlation of node-size vectors (rSpearman) as a proxy for parcellation similarities. c) The bars 
report the accuracy of predicting the functional condition using a leave-one-out cross-
validated GBM classifier with node sizes as features. The predictive power is measured by 
precision (dark cyan) and recall (light cyan) values for each condition. The precision (black) 
and recall (gray) values of 1000 null models are also reported (error bars represent ±s.d.). d) 
A histogram of the parcellation similarities for all 1000 iterations is depicted for within-
condition (diagonal elements in [a]) and cross-condition (off-diagonal elements in [a]) 
comparisons. The two distributions are significantly different (KS-test; p<0.001). e) A 
histogram of the node size similarities for all 1000 iterations is depicted for within-condition 
(diagonal elements in [b]) and cross-condition (off-diagonal elements in [b]) comparisons. 
The two distributions are significantly different (KS-test; p<0.001). f) The bars report the 
accuracy of predicting task performance using a leave-one-out cross-validated linear 
regression model with node sizes as features. Predictive power is measured by square root of 
coefficient of determination (r-value). 
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Replication of the state-evoked atlas reconfiguration across data sets 

We replicated our main findings by leveraging a publicly available data set: Midnight Scan 
Club (MSC)31. The MSC data are particularly well suited for this analysis, as they include 
task-based and resting-state fMRI data from 10 individuals, each of whom was scanned 10 
times. Each scan session included seven runs of tasks (semantic-coherence [2 runs], memory 
[scenes, faces, and words; each 1 run], and motor [2 runs] tasks) and 1 resting-state run (eyes 
open). Two individuals were excluded from the analyses, one (MSC10) due to missing data 
and the other (MSC08) due to excessive head motion (see Methods for details), leaving 8 
individuals (4 females; age = 24-34) for analysis. 

For each individual, we repeated the voting-based ensemble analysis described above and 
calculated the similarity between each task- (or rest-) based pair of parcellations. Figure 3 
demonstrates the pairwise parcellation similarities, averaged over individuals (Figure 3a,d: 
fine-scale similarity; Figure 3b,e: coarse-scale similarity). Figure S1 shows the similarity 
matrices of each individual separately. Confirming the finding from the single subject data 
described above, we observed that functional atlases are significantly more similar within 
condition than across conditions (KS-test, p<0.001). Similarly, node sizes are significantly 
more similar within a condition (KS-test, p<0.001). Predictive modeling based on node size 
could significantly predict condition for a novel run (mean accuracy = 66%; Figure 3c) and 
generalized across individuals. That all the predictions were successful, despite the additional 
variance introduced by inter-individual anatomical variations, is a strong indication of the 
functional significance of task-evoked node reconfigurations. The findings from this 
independent data set replicate the single subject findings. 
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Figure 3. Replication of the finding that node definitions change with task condition; 
Midnight Scan Club (MSC) data. a) Pair-wise parcellation similarity was calculated within 
and across functional conditions, averaged over all individuals. For every individual, voting-
based ensemble analysis was used with 100 iterations. The matrix represents the average over 
all iterations. Similarity was assessed by rHamming =1-Hamming distance. b) The same analysis 
as (a) was performed, this time using rank correlation of node-size vectors (rSpearman) as a 
proxy for parcellation similarities. c) The bars report the accuracy of predicting the functional 
condition using a leave-one-out cross-validated GBM classifier with node sizes as features. 
The predictive power is measured by the precision (dark cyan) and recall (light cyan) values 
for each condition. The precision (black) and recall (gray) values of 1000 null models are 
also reported (error bars represent ±s.d.). d) A histogram of parcellation similarities for all 
100 iterations (averaged over all individuals) is depicted for within-condition (diagonal 
elements in [a]) and cross-condition (off-diagonal elements in [a]) comparisons. The two 
distributions are significantly different (KS-test; p<0.001). e) A histogram of node size 
similarities for all 100 iterations (averaged over individuals) is depicted for within-condition 
(diagonal elements in [b]) and cross-condition (off-diagonal elements in [b]) comparisons. 
The two distributions are significantly different (KS-test; p<0.001). 
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The results from the previous two data sets relied upon the construction of individual atlases 
across both sessions and conditions and were evaluated in terms of how the atlas within an 
individual changed between conditions. Next, we used the Human Connectome Project 
(HCP)33 data to determine if such condition-dependent reconfigurations could be observed 
when collapsing across multiple subjects. The HCP data set includes task-based and resting-
state fMRI data from 514 individuals (284 females; age = 22-36+), each of whom was 
scanned over a period of two days. Each scan session included seven tasks (day 1: working 
memory (WM), gambling, and motor tasks; day 2: language, social, relational, and emotion 
tasks) and 2 resting-states (one on each day).  

We repeated the voting-based ensemble analysis described above, this time replacing 
sessions with subjects such that, for a given condition, we randomly divided all subjects into 
two equal-sized groups, obtained the majority-vote over each group, and computed the 
similarity between pairs of parcellations (see Methods). We repeated this analysis 1000 
times. Figure 4 demonstrates the pairwise parcellation similarities across subjects. Despite the 
introduction of inter-individual anatomic and functional organization variance, the primary 
finding that the parcellation map changes with condition remains highly significant (Figure 
4a,d: fine-scale similarity [KS-test, p<0.001]; Figure 3b,e: coarse-scale similarity [KS-test, 
p<0.001]). As an even stronger assessment of generalizability, we repeated our prediction 
analysis to predict the functional condition of data from previously unseen subjects based on 
node size. Given that we had a larger sample size (n=514), we further challenged our model 
by employing a 10-fold cross-validated pipeline (rather than leave-one-out). We observed 
that our model can significantly predict functional condition in novel subjects (mean 
accuracy = 73%; Figure 4c). This observation demonstrates an even stronger replication of 
our main findings; that is, the observed state-evoked parcellation reconfigurations are robust 
and reliable not only across different sessions, but also across distinct individuals.  
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Figure 4. Replication of the finding that node definitions change with task condition, 
even when considered across individuals; Human Connectome Project (HCP) data. a) 
Pairwise parcellation similarity was calculated within and across functional conditions (9 
conditions, N=514 subjects), using voting-based ensemble analysis with 1000 iterations. The 
matrix represents the average over all iterations. Similarity was assessed by rHamming =1-
Hamming distance. b) The same analysis as (a) was performed, this time using rank 
correlation of node-size vectors (rSpearman) as a proxy for parcellation similarities. c) The bars 
report the accuracy of predicting the functional condition using 10-fold cross-validated GBM 
classifier with node sizes as features, iterated 100 times. The predictive power is measured by 
precision (dark cyan) and recall (light cyan) values for each condition (reported as mean ± 
s.d. across iterations). The precision (black) and recall (gray) values of the 1000 null models 
are also reported (error bars represent ±s.d.). d) A histogram of the parcellation similarities 
for all 1000 iterations is depicted for within-condition (diagonal elements in [a]) and cross-
condition (off-diagonal elements in [a]) comparisons. The two distributions are significantly 
different (KS-test; p<0.001). e) A histogram of the node size similarities for all 1000 
iterations is depicted for within-condition (diagonal elements in [b]) and cross-condition (off-
diagonal elements in [b]) comparisons. The two distributions are significantly different (KS-
test; p<0.001).  

 
Robustness of the state-evoked atlas reconfiguration across scales 

In our final analysis, we sought to address the question of parcellation scale, asking if these 
reconfigurations are simply due to the rather large node sizes typically targeted in current 
parcellation approaches. In the limit of nodes reduced to the size of a voxel, there can be no 
condition-induced change in node definition since the node is defined by the voxel size. Here 
we attempted to determine the critical resolution at which parcellations stabilize. To address 
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this question, we repeated our analyses with Yale data, using atlases containing greater 
numbers of nodes, from 368, to 1041, to 5102 nodes. In each case, similar results were 
obtained, even when the number of nodes was increased to 5102, more than ten times the 
typical number of nodes used in functional connectivity analysis (Figure 5a-d)34-36. See 
Figure S2 and S3 for the results with 368-node and 1041-node atlases, respectively. To date, 
the parcellation community has not considered atlases in the 5000 node and higher range.  

 

 
 
Figure 5. Node size effects: Even for an atlas with 5102 nodes (on average 25 voxels per 
node), node definitions change with task condition, with high reliability within conditions. a) 
Pairwise parcellation similarity was calculated within and across functional conditions, using 
voting-based ensemble analysis with 1000 iterations. Similarity was assessed by rHamming =1-
Hamming distance. b) The same analysis as (a) was performed, this time using rank 
correlation of node-size vectors (rSpearman) as a proxy for parcellation similarities. c) The 
histogram of the parcellation similarities for all 1000 iterations is depicted for within-
condition (diagonal elements in [a]) and cross-condition (off-diagonal elements in [a]) 
comparisons. The two distributions are significantly different (KS-test; p<0.001). d) The 
histogram of the node size similarities for all 1000 iterations is depicted for within-condition 
(diagonal elements in [b]) and cross-condition (off-diagonal elements in [b]) comparisons. 
The two distributions are significantly different (KS-test; p<0.001).  
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Discussion 

Together, these findings suggest that there is no single functional atlas for the human brain. 
The parcellation boundaries of functionally defined nodes change with changes in brain state 
in a consistent and reproducible manner. These node reconfigurations appear to be 
cognitively and biologically meaningful, as evidenced by their utility in predictive models of 
task condition and within-condition task performance.  

Reconfiguration of the connectome 

These results are consistent with the extensive evidence for reconfigurations of the 
connectome. There is growing evidence that patterns of functional connectivity change with 
changing brain states (e.g., as induced by distinct tasks), and that these changes are 
functionally significant37. Recent work has highlighted the impact of node spatial 
configuration across individuals on brain-behavior relationships30, but the common 
assumption that node boundaries are fixed for a given individual remains unchallenged; in 
fact, as we demonstrate, task-induced node reconfigurations are substantial, consistent, and 
functionally significant both within and across individuals, and taking such reconfigurations 
into account may further inform efforts to relate changing patterns of functional connectivity 
to behavior and cognition.  

The generalizability of the state-evoked node reconfigurations across a large cohort of 
individuals, as demonstrated by the HCP data (Figure 4), is important. Previous work has 
shown that patterns of functional connectivity are unique to each individual38, and any state-
evoked reconfigurations are also individual-specific39. That the average of these state-evoked 
node reconfigurations across individuals does not mask out the effect of state is a significant 
finding, suggesting that task-induced node reconfigurations are not idiosyncratic and subject-
specific, but rather robust and generalizable; that is, despite significant individual differences 
in brain functional organization, task-induced brain states have consistent and substantial 
effects on this organization. 

Composition of functional subunits 

The cause of such node reconfigurations remains an important open question. At the atlas 
sizes considered here, any individual node will contain hundreds of thousands of neurons. 
Node boundaries may change as different subsets of neurons within a given node are engaged 
to subserve a particular function. If this is the case then it is possible that consistent invariant 
boundaries may not be found until the acquisition resolution is of the order of cortical 
columns (300-500 µm)40,41 or less. The findings here, of substantial node reconfiguration 
occurring even at atlas sizes of 5000 nodes (consisting of, on average, 25, 2mm3 voxels, or 
~5.8 mm3 of tissue), suggest that the minimal functional units that we wish to identify are 
much smaller than ~5.8 mm, and not of the order of 200-400 node atlases, which have 
previously been suggested to delineate minimal functional units 7,35,36. Nevertheless, our goal 
does not have to be to identify a minimal functional unit. In practice a unit that has a 
homogeneous, distinct identity in a given state is sufficient for many analyses. In other 
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words, as long as the atlas is consistent with the state of interest, atlases in the 400-node 
range are entirely appropriate, and we may not need to know the size of the minimal 
functional unit.  

Additional considerations 

The exemplar-based clustering approach used in this work imposes a constraint that holds the 
total number of nodes fixed. In doing so, it eliminates the problem of establishing 
correspondence between nodes under different conditions. Maintaining node correspondence 
across parcellations allows for quantitative assessment of the change in each node. It is 
possible that nodes not only reconfigure, but also blend and/or split, leading to a change in 
the total number of nodes with a change in brain state or function. This additional degree of 
freedom would make comparison of atlases across conditions more difficult due to the 
correspondence problem but nevertheless the conclusion would be the same: there is no fixed 
functional atlas at the scale typically used in functional MRI studies.  

States are defined in this work as task conditions with acquisitions spanning a series of 
continuous performance, event-related, and blocked tasks. It is likely that node 
reconfiguration occurs over considerably shorter periods of time than these ~6-minute task 
intervals. Future work may seek to characterize how node boundaries continuously vary to 
reflect the dynamic reconfiguration of macroscale neural circuitry underlying moment-to-
moment changes in brain state.   

This work also does not invalidate multimodal parcellation approaches that combine both 
anatomical and functional data (including functional data across a wide range of task- and 
resting-states) but suggests, instead, that those approaches are defining a mean atlas across 
states, thereby masking important information on specific node reconfigurations associated 
with specific brain states.    

Implications 

Essentially all publications to date have used fixed atlases. Such fixed nodes may be defined 
anatomically or functionally (or through a combination of methods) but nevertheless, the 
underlying assumption of a fixed functional subunit is not correct. The findings here, for the 
most part, do not invalidate these previous works. But they do potentially impact the 
interpretation of the changes in connectivity observed. The findings here suggest that changes 
in connectivity could be attributable in part to reconfiguration of the nodes.  

It has been posited that imposing an atlas on the brain is simply a data-reduction strategy to 
reduce the connectivity matrix to a manageable size. This may indeed be a useful feature (for 
a discussion see Eickhoff et al.19), and this work does not impact the utility of that approach. 
The findings here, however, support the notion that function-based parcellations are not only 
a means of data dimensionality reduction but also a way to identify meaningful functional 
subunits. The results demonstrating prediction of state and performance based on the 
particular node configuration support this conclusion. 
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This work has immediate implications for investigators developing algorithms aimed at 
finding the ideal parcellation, by refocusing the goal to understanding state-specific 
organization at the nodal level. New approaches to individualized parcellation, such as the 
approach used in this work, could potentially lead to custom state-dependent atlases for 
individuals or groups. Much work needs to be done to understand the relationship between 
functional edge strength measures and these variable node configurations, and the impact of 
these variables on graph theory measures in both healthy populations and disease. It is an 
open question as to whether fixed minimal functional subunits, invariant to task or brain 
state, can be defined in the human cortex with current state-of-the-art neuroimaging methods. 

Conclusion 

This work demonstrates that there is no single functional atlas for the human brain at the 200-
5000 node resolution level, but rather that nodes reconfigure depending on task in a robust 
and reliable manner. Such reconfigurations are distinct and reliable enough to allow 
prediction of the task condition across multiple tasks as well as within-task performance, 
directly from quantitative node characteristics (i.e., node size). That functional node 
definitions are fluid must be considered when interpreting changes in connectivity in graph 
theory or other connectivity analyses across brain states. The results highlight the importance 
of considering state-evoked variations in node definitions and leveraging state-specific 
individualized functional atlases for functional connectivity analyses, and call for the 
continued development and validation of such approaches. 
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Materials and Methods 

Three data sets were used in this work. The primary data were collected at Yale University 
from one healthy subject (author R.T.C.). The validation data were obtained from the 
publicly available Midnight Scan Club (MSC) dataset31, and Human Connectome Project 
(HCP). These three data sets are described in detail below. 

Yale Data 

Participant and Processing 

The primary subject R.T.C. is a healthy left-handed male, aged 56 years old at the onset of 
the study.  

R.T.C. was scanned at Yale University 33 times (that is, 33 sessions) over ten months. Scans 
were typically performed on Wednesdays at 8:30 am and Fridays at 2:00 pm. Functional MRI 
data were acquired on 2 identically configured Siemens 3T Prisma scanners equipped with a 
64-channel head coil at Yale Magnetic Resonance Research Center. Three sessions were 
excluded from analysis: the first two sessions were excluded because of the considerable 
adjustment in task design after session 2, and the ninth session was excluded due to 
interruptions in task presentation due to computer software changes.  

The first session was used to acquire structural MRI data. High-resolution T1-weighted 3D 
anatomical scans were performed using a magnetization prepared rapid gradient echo 
(MPRAGE) sequence with the following parameters: 208 contiguous slices acquired in the 
sagittal plane, repletion time (TR) = 2400 ms, echo time (TE) = 1.22 ms, flip angle = 8°, slice 
thickness = 1 mm, in-plane resolution = 1 mm × 1 mm, matrix size = 256 × 256. A T1-
weighted 3D anatomical scan was acquired using a fast low angle shot (FLASH) sequence 
with the following parameters: 75 contiguous slices acquired in the axial-oblique plane 
parallel to AC-PC line, TR = 440 ms, TE = 2.61 ms, flip angle = 70°, slice thickness = 2 mm, 
in-plane resolution = 0.9 mm × 0.9 mm, matrix size = 256 × 256.  

Functional scans were performed using a multiband gradient echo-planar imaging (EPI) pulse 
sequence with the following parameters: 75 contiguous slices acquired in the axial-oblique 
plane parallel to AC-PC line, TR = 1000 ms, TE = 30 ms, flip angle = 55°, slice thickness = 2 
mm, multiband = 5, acceleration factor = 2, in-plane resolution = 2 mm × 2 mm, matrix size 
= 110 × 110. 

Data were analyzed using BioImage Suite42 and custom scripts in MATLAB (MathWorks). 
Motion correction was performed using SPM12 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). White matter and CSF masks were 
defined in MNI space and warped to the single-subject space using a series of linear and non-
linear transformations (see Scheinost et al.43). The following noise covariates were regressed 
from the data: linear, quadratic, and cubic drift, a 24-parameter model of motion44, mean 
cerebrospinal fluid signal, mean white matter signal, and mean global signal. Finally, data 
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were temporally smoothed with a zero mean unit variance Gaussian filter (cutoff 
frequency=0.19 Hz). 

Dimensional Task Battery Design 

Functional scans were 6 minutes 49 seconds each, including initial shim and 8s discarded 
acquisitions before the start of each task. Tasks varied slightly in length (see below), but were 
all approximately 6 minutes in duration. A fixation cross was displayed after the end of each 
task and lasted until the beginning of the next task. Each task, with the exception of movie 
watching, was preceded by instructions and practice, after which the subject had the 
opportunity to ask questions before the scan began. All responses were recorded using a 2×2 
button box. 

Each session consisted of two resting-state runs and six task runs. The first and last functional 
runs (runs 1 and 8) were resting-state runs, during which the participant was instructed to stay 
still with his eyes open. Runs 2-7 were task runs, with the order counterbalanced via Latin 
Square across sessions. 

Task Details 

N-Back Task 

The n-back task was adapted from that used in Rosenberg et al.23. In this task, the participant 
was presented with a sequence of images and was instructed to respond via button press if the 
image was different than the image presented two before, and to withhold response if it was 
the same. Images were presented for 1 second, followed by a 1-second inter-trial interval 
(ITI; fixation cross). The target (i.e., matching image) probability was 10%. There were two 
blocks, each with 90 trials. One block used images of emotional faces and the other block 
used images of scenes45,46. Block and stimulus order were randomized for each session. Task 
performance was assessed by sensitivity (d'), defined as hit rate relative to false alarm rate25. 

Gradual-onset Continuous Performance Task (gradCPT) 

The gradCPT task was adapted from that described in Esterman et al.24 and Rosenberg et 
al.25,26. In this task, the participant viewed a sequence of 450 scenes [city or mountain] that 
gradually transitioned via linear pixel-by-pixel interpolation from one to the next over 800ms. 
The participant was instructed to respond via button press to cities and to withhold response 
to mountains. Stimulus order was randomized, and 10% of images were mountains. Task 
performance was assessed by sensitivity (d'). 

Stop-Signal Task (SST) 

The stop-signal task was adapted from that implemented in Verbruggen et al.27. In this task, 
the participant was required to determine via button press whether a presented arrow was 
pointing left (right index finger) or right (right middle finger). On 25% of trials, the arrow 
turned blue after some delay, indicating that the participant should withhold response. This 
stop-signal delay (SSD) was initially set to 250ms, and was continuously adjusted via the 
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staircase tracking procedure (50ms increase after correct inhibition trials; 50ms decrease after 
each failure to inhibit). The arrow was presented for 1.5 seconds, followed by 0.5 seconds of 
fixation; there were 176 trials in total, with stimulus order randomized within block. Task 
performance was assessed by missing probability, defined as the percentage of missed 
responses on no-signal trials27. 

Card Guessing Task 

The card guessing task was adapted from that originally developed by Delgado et al.28 and 
subsequently extended47,48. In this task, the participant was presented with a card and asked to 
guess if the number on the back was lower than 5, or greater than 5 but less than 10. The 
question mark card was displayed for 1.5 seconds, or until the participant responded (right 
index finger for “lower,” right middle finger for “higher”). The card then “flipped over” to 
reveal the number. The number was displayed for 0.5 seconds, followed by an arrow for 0.5 
seconds to indicate accuracy (green and up for correct, red and down for incorrect), which 
was in turn followed by a 1-second inter-trial interval (fixation cross). There were 10 blocks, 
each with 10 trials, and guess accuracy was deterministic, such that in half of the blocks 
(“high win”), the participant was correct 70% of the time, while in the other half of the blocks 
(“high loss”) he was correct 30% of the time; block (high win/loss) and trial 
(correct/incorrect) orders were randomized. Task performance was assessed by RT 
variability, defined as standard deviation of reaction time for correct trials49. 

Reading the Mind in the Eyes Task (“Eyes Task”) 

The Eyes Task was adapted from that originally described in Baron-Cohen et al.29. In this 
task, the participant viewed a series of photographs of an individual’s eyes with four “mental 
state terms”29, one in each corner of the image, and was instructed to select via button press 
(with each button corresponding to one corner, and thus one term) the term that best 
described what the individual was thinking or feeling. There were 36 images in total. Each 
was presented once, in random order, for 9.25 seconds or until the participant responded; the 
remainder of each 10-second trial consisted of a fixation cross. Task performance was 
assessed by RT variability.  

Movies Task 

In this task, three movie clips were presented in continuous series; each was approximately 2 
minutes long. The first clip was a trailer for “Inside Out,” the second clip was the wedding 
scene from “Princess Bride,” and the third clip was a trailer for “Up;” order was fixed across 
sessions. The participant was instructed to relax and enjoy the movies; no responses were 
required. No task performance was recorded.  

 
Midnight Scan Club (MSC) Data 

Participants and Processing 
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The MSC data set31 includes data from 10 healthy individuals (5 females; age=24-34); each 
underwent 1.5s hour of functional MRI scanning on 10 consecutive days, beginning at 
midnight. For details of the data acquisition parameters and sample demographics see Gordon 
et al31. Two individuals were excluded from the analysis: MSC08 was excluded because of 
excessive head motion and self-reported sleep31; MSC10 was excluded for insufficient data 
(missing one session of incidental memory task). 

All data were preprocessed using BioImage Suite42. Data were transformed to MNI space to 
facilitate analysis across multiple subjects. Preprocessing steps included regressing 24 motion 
parameters, regressing the mean time courses of the white matter and cerebrospinal fluid as 
well as the global signal, removing the linear trend, and low pass filtering. 

Task Battery Design 

Each scanning session started with a 30-min resting-state fMRI scan, followed by three 
separate task-based fMRI scans: motor (2 runs per session, 7.8 min combined), incidental 
memory (3 runs per session, 13.1 min combined), and semantic-coherence design (2 runs per 
session, 14.2 min combined).  

Motor Task 

The motor task was adapted from that used in the Human Connectome Project (HCP)47. In 
this task, participants were cued to perform one of the following movements: closing/relaxing 
their hands, flexing/relaxing their toes, or wiggling their tongue. Each block started with a 2.2 
s cue indicating which movement to perform, followed by a central caret (flickering every 
1.1s) to signal the movement. Each run consisted of 2 blocks of each movement type and 3 
blocks of resting-fixation (15.4 s total).  

Incidental Memory Task 

The incidental memory task consisted of three different types of stimuli (scenes, faces, and 
words), each presented in a separate run. For scene runs, participants were asked to decide if 
the presented scene was indoors or outdoors. For face runs, participant made male/female 
judgments. For word runs, participants made abstract/concrete judgments. Each run consisted 
of 24 stimuli, each repeating 3 times. Stimuli were presented for 1.7 s with a jittered 0.5-4.9 s 
inter-stimulus interval. All stimuli were taken from publicly available sources (see Gordon et 
al.31 for details).  

Semantic-Coherence Task 

The semantic-coherence task had a mixed block/event-related design, consisting of two 
different conditions (“semantic” and “coherence”). In the “coherence” task, participants 
viewed a concentric dot pattern (Glass50) with 0% or 50% coherence, and made binary 
decisions whether the pattern was concentric or random. In the semantic task, participants 
viewed a word and indicated whether the word is a noun or verb. Each run consisted of two 
blocks of each task, separated by 44 s of rest. Each block started with a 2.2 s cue indicating 
which task was to be performed. Blocks consisted of 30 trials. Stimuli were presented for 0.5 
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s with a variable 1.7-8.3 s ISI. Each block finished with a 2.2 s cue indicating the end of the 
task block.  

Human Connectome Project (HCP) Data 

Participants and Processing 

The HCP data set33 includes data from 897 healthy individuals (S900) scanned during nine 
functional conditions (seven tasks and two rest). For details of the data acquisition parameters 
see Uǧurbil et al.51 and Smith et al52. Analyses were restricted to subjects for whom data were 
available for all nine functional conditions (with left-right (LR) and right-left (RL) phase 
encoding). To mitigate the substantial effects of head motion on functional parcellations, we 
further excluded subjects with excessive head motion (defined as mean frame-to-frame 
displacement > 0.1 mm and maximum frame-to-frame displacement > 0.15 mm), leaving 514 
subjects (284 females; age = 22-36+) for analysis. 

The HCP minimal preprocessing pipeline was employed53, which includes artifact removal, 
motion correction and registration to MNI space. Further preprocessing steps were performed 
using BioImage Suite42 and included standard preprocessing procedures38 including 
regressing 24 motion parameters, regressing the mean time courses of the white matter and 
cerebrospinal fluid as well as the global signal, removing the linear trend, and low pass 
filtering. 

Task Battery Design 

Functional MRI scans were acquired during two different days: Day 1 included two runs (LR 
and RL) of the working memory (WM) task (5:01 min per run), incentive processing 
(gambling) task (3:12 min), motor task (3:34 min), and rest (14:33 min); day 2 included two 
runs of the language processing task (3:57 min), social cognition (theory of mind) task (3:27 
min), relational processing task (2:56 min), emotion processing task (2:16 min), and rest 
(14:33 min).  

The details of task design have been previously described33,47. We provide a brief description 
of each task and an overview of the relevant aspects below. 

Working Memory Task 

In this task, participants performed a visual n-back task, with blocked 0-back and 2-back 
conditions using four stimulus categories (faces, places, tools, body parts). Each run 
consisted of 8 task blocks (10 trials each), with each stimulus category used twice, and 4 
fixation blocks. Each block started with a 2.5 s cue indicating the task type (0-back versus 2-
back) and the target (for 0-back).  

Gambling Task 

In this task, participants were presented with a mystery card and asked to guess if the number 
on the back was lower than 5, or greater than 5 but less than 10. On reward trials, participants 
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were shown the number on the card, a green up arrow, and “$1”; on loss trials, participants 
were shown the number on the card, a red down arrow, and “-$0.50”; on neutral trials, 
participants were shown the number 5 and a gray, double-headed arrow. Each run consisted 
of 4 task blocks (8 trials each) and 4 fixation blocks. In half of the blocks (“mostly reward”), 
subjects were correct in 6 out of 8 trials (the remaining 2 trials were either neutral or loss), 
while in the other half of the blocks (“mostly loss”) they were incorrect in 6 out of 8 trials 
(the remaining 2 trials were either neutral or reward). 

Motor Task 

Participants were presented with visual cues that asked them to tap their left or right fingers, 
squeeze their left or right toes, or move their tongue. Each block started with a 3 s cue 
indicating which movement to perform. Each run consisted of 2 blocks of tongue movements, 
4 blocks of hand movements (2 left and 2 right), 4 blocks of foot movements (2 left and 2 
right), and 3 blocks of resting-fixation. 

Language Task 

In this task, participants were aurally presented with 4 blocks of a story task and 4 blocks of a 
math task. In the story task, they heard brief fables (5-9 sentences) and completed two-
alternative forced-choice questions about the topic of the story. In the math task, they 
completed addition and subtraction problems in a two-alternative forced-choice setting. 

Social Task 

In this task, participants were presented with 20-s video clips of objects (squares, circles, 
triangles) either interacting (theory-of-mind) or moving randomly. Participants were asked to 
choose between three potential responses (“mental interaction”, “no mental interaction”, and 
“not sure”). Each run consisted of 5 video blocks (2 mental and 3 random in one run, 3 
mental and 2 random in the other run) and 5 fixation blocks. 

Relational Task 

The relational task consisted of two different conditions (“relational” and “matching”). In the 
relational condition, participants were presented with two pairs of objects with one pair at the 
top and the other pair at the bottom of the screen. They were asked to decide whether the 
bottom pair of objects differed along the same dimension (i.e., shape or texture) as the top 
pair. In the control matching condition, they were presented with two objects at the top, one 
object at the bottom, and a word (“shape” or “texture”) in the middle of the screen. They 
were asked to determine whether the bottom object matched either of the top two objects on 
the dimension specified by the word. Each run consisted of 3 relational blocks (4 trials each), 
3 matching blocks (5 trials each) and 3 fixation blocks. 

Emotion Task 

In this task participants were presented with blocks of “face” and “shape” tasks, and were 
asked to determine which of the two faces (or shapes) presented at the bottom of the screen 
matched the face (or shape) at the top of the screen. Faces had either angry or fearful 
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expressions. Each block started with a 3 s cue indicating which task to perform. Each run 
included 3 face blocks (6 trials each) and 3 shape blocks (6 trials each), with 8 s fixation at 
the end of each run. 

Node-level Parcellation Algorithm: Individual- and State-specific Approach 

Here, we extended our previously developed individualized parcellation algorithm (Salehi et 
al.10) to account for the spatial contiguity of the nodes at the individual level. The presented 
algorithm is a priority-based submodular method that defines functional nodes in a streaming 
fashion, for every individual in every functional state.  

Our algorithm runs in three steps: 

i. Registration of the initial group-level parcellation. In the first step, an off-the-shelf 
group-level parcellation is applied to each individual’s data, assigning each voxel to a 
node defined by the group parcellation. At this step, all individuals in every state have 
the same node definitions.  

ii. Exemplar identification. In the second step, for every group-defined node in an 
individual brain, an exemplar is identified by maximizing a monotone nonnegative 
submodular function (see Eq. 2).  

iii. Spatially-constrained voxel-to-node assignment. Finally, the third step assigns 
every voxel in each individual brain to the functionally closest exemplar, ensuring the 
spatial contiguity of the resulting node. 

Exemplar Identification 

The exemplar identification algorithm can be viewed as a data summarization step, where the 
goal is to summarize a massive amount of data by fewer representative points or exemplars. 
A classic way of defining such exemplars is by finding the set 𝑆 that minimizes the following 
loss function, subject to the constraint |𝑆| = 	𝑘 (known as k-medoid problem). 

 𝐿(𝑆) =
1
|𝑉|+min

/∈1
𝑑(𝑣, 𝑒)

6∈7

. (1) 

In this equation, 𝑉 is the ground set consisting of all data points, 𝑑:	𝑉 × 𝑉 → 𝑅 is a 
dissimilarity function defined on every pair of data points, and 𝑆 is the objective exemplar 
set. Intuitively, 𝐿(𝑆) measures how much information we lose if we summarize the entire 
ground set to the exemplar set by representing each data point with its closest exemplar.  

Minimizing this loss function (1) is NP-hard, as it requires exponentially many inquiries. 
Using an appropriate auxiliary exemplar 𝑣=, we transform the minimization of (1) into the 
maximization of a non-negative monotone submodular function54, for which general greedy 
algorithms provide an efficient 1 − 1/e ≈ 0.63 approximation to the optimal solution:  
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 max
@⊆B

𝑓(𝑆) 

𝑠. 𝑡.		|𝑆| ≤ 𝑘, 
(2) 

where: 

 𝑓(𝑆) = 	𝐿(𝑣=) − 	𝐿(𝑆 ∪ 𝑣=). (3) 

In practice, the greedy algorithm provides a considerably closer approximation to the optimal 
solution (see Salehi et al.55). For the choice of auxiliary exemplar, any vector 𝑣= whose 
distance to every data point is greater than the pair-wise distances between data points can be 
used.  

Definition 1.2 (Submodularity) A function 𝑓: 27 → 𝑅	is submodular if for every 𝐴 ⊆ 𝐵 ⊆ 𝑉 
and 𝑒 ∈ 𝑉\𝐵 it holds that 𝑓(𝐴 ∪ 𝑒) − 𝑓(𝐴) 	≥ 𝑓(𝐵 ∪ 𝑒) − 𝑓(𝐵). That is, adding an element 
𝑒 to a set 𝐴 increases the utility at more than (or at least equal to) adding it to 𝐴’s superset, 𝐵, 
suggesting a natural diminishing returns. 

Spatially-Constrained Voxel-to-Node Assignment 

After identification of all exemplars (one per node), every voxel in the individual brain is 
assigned to the functionally closest exemplar while taking the spatial contiguity of the node 
into account. The spatial contiguity is assured by utilizing priority queues. Every exemplar i 
is assigned a priority queue (denoted as qi). Initially, all the queues are empty. In the first 
round, spatial neighbors of exemplar i are pushed into qi. The voxels in each queue are sorted 
according to their functional distance to the corresponding exemplar such that the voxel with 
minimum functional distance (maximum similarity) is in front. Next, the front voxel in each 
qi is considered as a potential candidate for being assigned the label i. Among all these 
candidates, the one with minimum distance to its corresponding exemplar is selected and 
assigned the exemplar’s label. Next, this voxel is popped out of the queue, and all of its 
spatial neighbors are pushed into the same queue. The algorithm continues until all the voxels 
are assigned a label. Note that at every step of the algorithm the labeled voxel is ensured to be 
spatially connected to its exemplar (either directly or through other previously labeled 
voxels).  

Implementation Details 

Here, we implemented an accelerated version of the greedy algorithm, called lazy greedy56. 
Also, here 𝑘 = 1, as we attempt to identify one exemplar per node (see Salehi et al.10 for 
details of interpretation and alternative approaches). For the choice of dissimilarity measure, 
we used squared Euclidean distance, after normalizing all the voxel-level time courses to a 
unit norm sphere centered at the origin. A point with the norm greater than two was used as 
the auxiliary exemplar. The parcellation algorithm was applied to each fMRI run (each 
individual in each state) independently, and thus was efficiently employed through 
parallelization. For HCP data, we restricted our analysis to left-right (LR) phase encoding. 
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Initial Group-Level Parcellations 

As the initial group-level parcellation, we primarily used a 268-node atlas, previously defined 
in our lab using a spectral clustering algorithm on resting-state data of a healthy 
population14,38. We replicated the results with more fine-grained atlases including 368, 1041, 
and 5102 nodes. The 368-node atlas was defined by integrating the parcellation of cortex 
from Shen et al.14, subcortex from the anatomical Yale Brodmann Atlas57, and cerebellum 
from Yeo et al.58. Similarly, the 1041-node parcellation was defined by integrating the 
subcortical and cerebellum portion of the 368-node parcellation with the 1000-node cortex 
parcellation from Yeo et al58. To define the 5102-node atlas, we started from the 1041-node 
parcellation and randomly divided all the nodes until the number of voxels per node reached 
approximately 25. 

Statistical Ensemble Analysis 

To estimate the similarity of parcellations within and across states, we employed an ensemble 
analysis. For each condition, we divided all sessions (for Yale and MSC data) or individuals 
(for HCP data) into two equal-size groups: group 1 and group 2. We took the majority vote 
over the parcellations of each group, resulting in two parcellations for each functional state, 
one for each group. Next, we assessed the similarity between every pair of the non-
overlapping parcellations both within and across states. For instance, if there are 𝑚 functional 
states, this analysis generates an 𝑚 ×𝑚 matrix, where each element (𝑖, 𝑗) represents the 
similarity between the parcellation of group 1 for state 𝑖 and the parcellation of group 2 for 
state 𝑗. Thus, the diagonal elements represent the within-state similarities while the off-
diagonal elements represent the cross-state similarities. We repeated the entire analysis 1000 
times, generating an ensemble of 𝑚 ×𝑚 similarity matrices. The normalized distribution of 
the within-state and cross-state similarity values were depicted as histograms, and compared 
using non-parametric Kolmogorov–Smirnov test (Figure 2d,e, 3d,e, and 4d,e). The average of 
these similarity matrices were also displayed (Figure 2a,b, 3a,b, and 4a,b). 

Similarity Measures Between Parcellations 

We compared parcellations at two different scales: at the fine-scale, we studied the ratio of 
voxels that change their node assignment across different parcellations. The fine-scale 
similarity was calculated using 1-Hamming distance (Figure 2a, 3a, 4a). At the coarse scale, 
we studied the changes in the node sizes across parcellations. The coarse-scale similarity was 
computed using Spearman correlation between node-size vectors (Figure 2b, 3b, 4b). 

Functional State Decoding Using Node Size as Feature 

We established a fully cross-validated predictive model that predicts the functional state of 
each unseen sample solely based on the size of nodes in that parcellation. Using a k-fold 
cross-validated approach, we trained and tested a gradient boosting classifier (GBM; with 
300 estimators and learning rate = 0.1) using node sizes as features and the functional state as 
output. We randomly divided the entire data into k folds (k=n for the Yale and MSC data sets 
and k=10 for the HCP data set). At each step, the model was trained on k-1 folds and tested to 
predict the state of the left-out fold. The predictive power of the model was estimated using 
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precision (also known as positive predictive value) and recall (also known as sensitivity), 
calculated separately for each state. Both precision and recall measures range between 0 and 
1, with higher values indicating higher predictive power. Precision calculates what fraction of 
the retrieved instances were actually relevant, while recall expresses what fraction of relevant 
instances were retrieved. In the case of 10-fold cross-validation (i.e., for the HCP data set), 
we repeated the predictive analysis 100 times to account for the randomness of the folds, and 
reported the precision and recall measures as the mean and standard deviation across all 
iterations. 

To evaluate the significance of the results, we employed non-parametric permutation testing: 
we randomly permuted the output vector (here the functional states) 1000 times, and each 
time ran the permuted values through the same predictive pipeline and calculated the 
precision and recall measures of the permuted states. 

Task Performance Prediction Using Node Size as Feature 

To establish the relevance of parcellation boundary changes to within-task variation in brain 
state, we developed a fully cross-validated predictive pipeline that predicts task performance 
during each session from the node sizes in the parcellation of that session. Using a leave-one-
out cross-validated approach, we trained and tested a ridge regression model (with 
regularization parameter = 1), using node sizes as features and the performance scores as 
output. For each task, a model was trained on n-1 sessions (of that task) and used to predict 
performance for the left-out session. Analyses were performed for each task independently. 
To measure performance, we used d’ for n-back and gradCPT tasks, RT variability for eyes 
and card-guessing tasks, and missing probability for SST task.  The predictive power was 
estimated using r-values, defined as the square root of the percentage of the explained 
variance. To estimate the significance of the results, we employed non-parametric 
permutation testing, where we randomly permuted the behavioral scores 1000 times, and 
each time ran the permuted scores through the predictive pipeline and calculated the R-value. 
P-values were also calculated from the permutation test (instead of the traditional r-to-p 
conversions). 

Code and Data Availability 

All the functional parcellations are available online on the BioImage Suite NITRC page 
(https://www.nitrc.org/frs/?group_id=51). MATLAB, C++ (for parcellation algorithm), and 
Python (for predictive modeling) scripts were written to perform the analyses described; 
these codes are available on GitHub at https://github.com/YaleMRRC/Node-Parcellation.git. 
The force-directed graph visualization (R script) is released separately under the terms of 
GNU General Public License and can be found here: 
https://github.com/YaleMRRC/Network-Visualization.git. The data that support the findings 
of this study are publicly available in International Neuroimaging Data-sharing Initiative 
(INDI) [http://fcon_1000.projects.nitrc.org/]. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431833doi: bioRxiv preprint 

https://doi.org/10.1101/431833
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1 Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren 
Prinzipien dargestellt auf Grund des Zellenbaues.  (Barth, 1909). 

2 Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM 
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. 
Neuroimage 15, 273-289 (2002). 

3 McIntosh, A. et al. Network analysis of cortical visual pathways mapped with PET. 
Journal of Neuroscience 14, 655-666 (1994). 

4 Downing, P. E., Jiang, Y., Shuman, M. & Kanwisher, N. A cortical area selective for 
visual processing of the human body. Science 293, 2470-2473 (2001). 

5 Schubotz, R. I., Anwander, A., Knösche, T. R., von Cramon, D. Y. & Tittgemeyer, 
M. Anatomical and functional parcellation of the human lateral premotor cortex. 
Neuroimage 50, 396-408 (2010). 

6 Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S. A 
whole brain fMRI atlas generated via spatially constrained spectral clustering. Human 
brain mapping 33, 1914-1928 (2012). 

7 Nieuwenhuys, R., Broere, C. A. & Cerliani, L. Erratum to: A new myeloarchitectonic 
map of the human neocortex based on data from the Vogt-Vogt school. Brain 
structure & function 220, 3753-3755, doi:10.1007/s00429-014-0884-8 (2015). 

8 Chong, M. et al. Individual parcellation of resting fMRI with a group functional 
connectivity prior. NeuroImage 156, 87-100 (2017). 

9 Blumensath, T. et al. Spatially constrained hierarchical parcellation of the brain with 
resting-state fMRI. Neuroimage 76, 313-324 (2013). 

10 Salehi, M., Karbasi, A., Scheinost, D. & Constable, R. T. in International Conference 
on Medical Image Computing and Computer-Assisted Intervention.  478-485 
(Springer). 

11 Smith, S. M. et al. Functional connectomics from resting-state fMRI. Trends in 
cognitive sciences 17, 666-682, doi:10.1016/j.tics.2013.09.016 (2013). 

12 Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from 
resting-state correlations. Cerebral cortex 26, 288-303 (2014). 

13 Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 
665-678, doi:10.1016/j.neuron.2011.09.006 (2011). 

14 Shen, X., Tokoglu, F., Papademetris, X. & Constable, R. T. Groupwise whole-brain 
parcellation from resting-state fMRI data for network node identification. 
Neuroimage 82, 403-415 (2013). 

15 Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by 
intrinsic functional connectivity. Journal of Neurophysiology 106, 1125-1165, 
doi:10.1152/jn.00338.2011 (2011). 

16 Fan, L. et al. The human brainnetome atlas: a new brain atlas based on connectional 
architecture. Cerebral cortex 26, 3508-3526 (2016). 

17 Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 
536, 171-178 (2016). 

18 Van Essen, D. C. Cartography and connectomes. Neuron 80, 775-790, 
doi:10.1016/j.neuron.2013.10.027 (2013). 

19 Eickhoff, S. B., Constable, R. T. & Yeo, B. T. Topographic organization of the 
cerebral cortex and brain cartography. Neuroimage 170, 332-347 (2018). 

20 Fox, P. T. & Lancaster, J. L. Mapping context and content: the BrainMap model. 
Nature Reviews Neuroscience 3, 319 (2002). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431833doi: bioRxiv preprint 

https://doi.org/10.1101/431833
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-
scale automated synthesis of human functional neuroimaging data. Nature methods 8, 
665 (2011). 

22 Eickhoff, S. B. et al. Co-activation patterns distinguish cortical modules, their 
connectivity and functional differentiation. Neuroimage 57, 938-949 (2011). 

23 Rosenberg, M. D., Finn, E. S., Constable, R. T. & Chun, M. M. Predicting moment-
to-moment attentional state. Neuroimage 114, 249-256 (2015). 

24 Esterman, M., Noonan, S. K., Rosenberg, M. & DeGutis, J. In the zone or zoning out? 
Tracking behavioral and neural fluctuations during sustained attention. Cerebral 
Cortex, bhs261 (2012). 

25 Rosenberg, M. D. et al. A neuromarker of sustained attention from whole-brain 
functional connectivity. Nat Neurosci 19, 165-171, doi:10.1038/nn.4179 

http://www.nature.com/neuro/journal/v19/n1/abs/nn.4179.html#supplementary-information 
(2016). 

26 Rosenberg, M., Noonan, S., DeGutis, J. & Esterman, M. Sustaining visual attention in 
the face of distraction: a novel gradual-onset continuous performance task. Attention, 
Perception, & Psychophysics 75, 426-439 (2013). 

27 Verbruggen, F., Logan, G. D. & Stevens, M. A. STOP-IT: Windows executable 
software for the stop-signal paradigm. Behavior research methods 40, 479-483 
(2008). 

28 Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. & Fiez, J. A. Tracking the 
hemodynamic responses to reward and punishment in the striatum. Journal of 
neurophysiology 84, 3072-3077 (2000). 

29 Baron-Cohen, S., Jolliffe, T., Mortimore, C. & Robertson, M. Another advanced test 
of theory of mind: Evidence from very high functioning adults with autism or 
Asperger syndrome. Journal of Child psychology and Psychiatry 38, 813-822 (1997). 

30 Bijsterbosch, J. D. et al. The relationship between spatial configuration and functional 
connectivity of brain regions. Elife 7, e32992 (2018). 

31 Gordon, E. M. et al. Precision functional mapping of individual human brains. 
Neuron 95, 791-807. e797 (2017). 

32 Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. 
NeuroImage 80, 62-79, doi:10.1016/j.neuroimage.2013.05.041 (2013). 

33 Van Essen, D. C. et al. The WU-Minn human connectome project: an overview. 
Neuroimage 80, 62-79 (2013). 

34 Bellec, P. et al. Impact of the resolution of brain parcels on connectome-wide 
association studies in fMRI. Neuroimage 123, 212-228 (2015). 

35 Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. 
Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on 
surface-based atlases. Cerebral cortex (New York, N.Y. : 1991) 22, 2241-2262, 
doi:10.1093/cercor/bhr291 (2012). 

36 Nieuwenhuys, R. The myeloarchitectonic studies on the human cerebral cortex of the 
Vogt-Vogt school, and their significance for the interpretation of functional 
neuroimaging data. Brain structure & function 218, 303-352, doi:10.1007/s00429-
012-0460-z (2013). 

37 Greene, A. S., Gao, S., Scheinost, D. & Constable, R. T. Task-induced brain state 
manipulation improves prediction of individual traits. Nature communications 9, 2807 
(2018). 

38 Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using 
patterns of brain connectivity. Nature neuroscience (2015). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431833doi: bioRxiv preprint 

https://doi.org/10.1101/431833
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 Gratton, C. et al. Functional brain networks are dominated by stable group and 
individual factors, not cognitive or daily variation. Neuron 98, 439-452. e435 (2018). 

40 Molnár, Z. in Neural circuit development and function in the brain     109-129 
(Elsevier, 2013). 

41 Mountcastle, V. B. Modality and topographic properties of single neurons of cat's 
somatic sensory cortex. Journal of neurophysiology 20, 408-434, 
doi:10.1152/jn.1957.20.4.408 (1957). 

42 Joshi, A. et al. Unified framework for development, deployment and robust testing of 
neuroimaging algorithms. Neuroinformatics 9, 69-84 (2011). 

43 Scheinost, D. et al. Alterations in anatomical covariance in the prematurely born. 
Cerebral cortex 27, 534-543 (2015). 

44 Satterthwaite, T. D. et al. An improved framework for confound regression and 
filtering for control of motion artifact in the preprocessing of resting-state functional 
connectivity data. Neuroimage 64, 240-256 (2013). 

45 Conley, M. I. et al. The racially diverse affective expression (RADIATE) face 
stimulus set. Psychiatry research (2018). 

46 Cohen, A. O., Conley, M. I., Dellarco, D. V. & Casey, B. in Society for Neuroscience. 
47 Barch, D. M. et al. Function in the human connectome: task-fMRI and individual 

differences in behavior. Neuroimage 80, 169-189 (2013). 
48 Speer, M. E., Bhanji, J. P. & Delgado, M. R. Savoring the past: positive memories 

evoke value representations in the striatum. Neuron 84, 847-856 (2014). 
49 May, J. C. et al. Event-related functional magnetic resonance imaging of reward-

related brain circuitry in children and adolescents. Biological psychiatry 55, 359-366 
(2004). 

50 Glass, L. Moire effect from random dots. Nature 223, 578 (1969). 
51 Uğurbil, K. et al. Pushing spatial and temporal resolution for functional and diffusion 

MRI in the Human Connectome Project. Neuroimage 80, 80-104 (2013). 
52 Smith, S. M. et al. Resting-state fMRI in the human connectome project. Neuroimage 

80, 144-168 (2013). 
53 Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome 

Project. Neuroimage 80, 105-124 (2013). 
54 Gomes, R. & Krause, A. in ICML.  391-398. 
55 Salehi, M., Karbasi, A., Shen, X., Scheinost, D. & Constable, R. T. An exemplar-

based approach to individualized parcellation reveals the need for sex specific 
functional networks. Neuroimage, Submitted 142 (2017). 

56 Minoux, M. in Optimization Techniques     234-243 (Springer, 1978). 
57 Lacadie, C. M., Fulbright, R. K., Rajeevan, N., Constable, R. T. & Papademetris, X. 

More accurate Talairach coordinates for neuroimaging using non-linear registration. 
Neuroimage 42, 717-725 (2008). 

58 Thomas Yeo, B. et al. The organization of the human cerebral cortex estimated by 
intrinsic functional connectivity. Journal of neurophysiology 106, 1125-1165 (2011). 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431833doi: bioRxiv preprint 

https://doi.org/10.1101/431833
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments 
This work was supported by NIH Grants R01 MH111424 (R.T.C.) and DARPA Young 
Faculty Award D16AP00046 (A.K.). Two publicly available data sets were used in this work. 
The first data set was provided by the Midnight Scan Club (MSC)31 project, funded by NIH 
Grants NS088590, TR000448 (NUFD), MH104592 (DJG), and HD087011 (to the 
Intellectual and Developmental Disabilities Research Center at Washington University); the 
Jacobs Foundation (NUFD); the Child Neurology Foundation (NUFD); the McDonnell 
Center for Systems Neuroscience (NUFD, BLS); the Mallinckrodt Institute of Radiology 
(NUFD); the Hope Center for Neurological Disorders (NUFD, BLS, SEP); and Dart 
Neuroscience LLC. This data was obtained from the OpenfMRI database. Its accession 
number is ds000224. The second data set was provided by the Human Connectome Project, 
WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 
1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH 
Blueprint for Neuroscience Research; and by the McDonnell Center for Systems 
Neuroscience at Washington University.  

Author Contributions 

M.S., A.K., D.S., and R.T.C. conceived and formulated the study. M.S. and A.K. developed 
the spatial-constrained exemplar-based submodular parcellation algorithm. M.S. performed 
the parcellation analysis and predictive modeling. A.S.G. designed the task-battery, collected, 
and preprocessed the primary data (RTC data set). M.S. preprocessed MSC data set. M.S. 
wrote the manuscript with contributions from R.T.C. and A.S.G. All other authors 
commented on the paper.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/431833doi: bioRxiv preprint 

https://doi.org/10.1101/431833
http://creativecommons.org/licenses/by-nc-nd/4.0/

