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Understanding the function of a tissue requires knowing the spatial organization 
of its constituent cell types. In the cerebral cortex, single-cell RNA sequencing 
(scRNA-seq) has revealed the genome-wide expression patterns that define its 
many, closely related cell types, but cannot reveal their spatial arrangement. Here 
we introduce probabilistic cell typing by in situ sequencing (pciSeq), an approach 
that leverages prior scRNA-seq classification to identify cell types using 
multiplexed in situ RNA detection. We applied this method to map the inhibitory 
neurons of hippocampal area CA1, a cell system critical for memory function, for 
which ground truth is available from extensive prior work identifying the laminar 
organization of subtly differing cell types. Our method confidently identified 16 
interneuron classes, in a spatial arrangement closely matching ground truth. This 
method will allow identifying the spatial organization of fine cell types across the 
brain and other tissues. 
 
The cortex contains many cell types, which differ in their spatial organization, 
morphology, connectivity, physiology, and gene expression.  Although the diversity of 
cortical cells was known to classical neuroanatomists, the true complexity of cortical 
cells has only become clear since the development of transcriptomics1–6. Many cell 
types previously thought to be homogeneous in fact contain multiple fine subclasses, 
which share expression of the great majority of their genes, but are distinguished by 
relatively small sets of genes. Hippocampal area CA1 contains at least 20 subtypes of 
molecularly-distinct inhibitory interneurons, which are arranged in a stereotyped spatial 
organization7–9, and recordings have shown that even closely related cell types have 
different in vivo functions10. Analysis of CA1 inhibitory classes by scRNA-seq yields 
clusters strikingly consistent with these classically-defined types5. Mapping the spatial 
organization of CA1 interneurons is thus not only important to understand the brain’s 
memory circuits, but also provides a powerful way to validate spatial cell type mapping 
approaches, using the spatio-molecular ground truth provided by this system. 
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Here we provide a spatial map of CA1 interneuron types, using a new approach to in 
situ cell typing based on in situ RNA expression profiling. While several approaches to 
multiplexed in situ RNA detection and cell type classification have been proposed11,12 
(e.g. in situ sequencing13, FISSEQ14, SNAIL15, MERFISH16, CorrFISH17, osmFISH18 and 
seqFISH19), none have yet shown the ability to distinguish fine cell types. The current 
method achieves this using three design criteria suggested by scRNA-seq analysis. 
First, for typing of closely related cells such as CA1 inhibitory neurons, of the order 100 
genes suffices to classify cells accurately5. Second, false positive reads present much 
more of a problem for cell typing than low detection efficiency. Indeed, because RNA 
expression levels follow a negative binomial distribution20 (whose standard deviation 
scales with its mean), detecting just a few copies of a genuinely-expressed gene can 
confidently identify cell types, provided one can be sure these are not misdetections. 
Third, using the cell types revealed by previous large-scale scRNA-seq analysis to 
define types avoids needing to relearn cell classes from noisier in situ data. We show 
that this combination allows cell typing of closely-related neuronal classes, verified by 
the ground truth available from CA1’s laminar architecture.  
 
Our cell typing method consists of three steps (Supplementary Figure S1). First, we 
select a set of marker genes sufficient for identifying cell types, using previous scRNA-
seq data. Second, we apply in situ sequencing to detect expression of these genes at 
cellular resolution in tissue sections. Third, gene reads are assigned to cells, and cells 
to types using a probabilistic model derived from scRNA-seq clusters.  
 
To select a gene panel, we developed an algorithm that searches for a subset of genes 
that can together identify scRNA-seq cells to their original clusters, after downsampling 
expression levels to match the lower efficiency of in situ data (see Methods). The gene 
panel was selected using a database of inhibitory neurons from hippocampus5 
(Supplementary Figure S2) as well as isocortex2, and the results were manually 
curated prior to final gene selection. The algorithm identified familiar interneuron 
markers such as Sst, Vip, Npy, and Cck, but also many genes identified only by 
transcriptomic analysis (e.g. Cxcl14, Ntng1, Id2). The final gene sets were chosen by 
manual curation of these lists, excluding genes that were likely to be strongly expressed 
in all cell types even if at different levels, and favoring genes which have been used in 
classical immunohistochemistry (Supplementary Table S1, Supplementary Figure 
S3). A further set of three genes were excluded after initial experiments, as their 
expression was widespread in neuropil and did not help identify cell types (Slc1a2, Vim, 
Map2). The final panel contained 99 genes.  
 
To generate RNA expression profiles, we modified the barcode-targeted in situ 
sequencing method described by Ke et al13 (Supplementary Figure S4). A library of 
padlock probes was generated to match the selected genes. For each gene, we 
selected a set of target sequences along the exon sequence, such that the two arms of 
each padlock probe together match a 40-basepair sequence along on the mRNA. In 
addition to the recognition arms, each padlock probe contained a 4-basepair barcode, 
an “anchor sequence” allowing all amplicons to be labelled simultaneously, and a 20-
basepair hybridization sequence allowing for additional readouts. For more weakly 
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Figure 1. Molecular maps. A) Pseudocolor images showing barcode sequencing readout for a region 
corresponding to one cell. Top to bottom, base-specific fluorophores in the four cycles of sequencing 
by ligation, and for the fifth cycle of barcode specific hybridization. The white square shows a single 
RCP of barcode AGCG-H4. Scale bars: 5 µm. B) Gene-calling for this RCP. Left: pseudocolor 
representation of raw fluorescence intensities; Middle, intensity after crosstalk compensation; Right, 
best fit barcode (AGCG-H4, encoding the gene Cnr1). C) Distribution of 99 genes at different zoom 
levels. From top to bottom: a complete coronal mouse brain section; left hippocampus; the border of 
stratum radiatum and stratum lacunosum moleculare; finally, zoom-in to reads for the cell whose raw 
fluorescence is shown in panel (A). D) Code symbols for the 99 marker genes. E) Comparison of the 
distribution of five markers in the hippocampus as determined by pciSeq (left column) with the 
distribution shown in the Allen Mouse Brain Atlas (right column). Scale bars: 500 µm. 

expressed genes, we designed probes matching multiple target sequences along the 
mRNA length, which aided their detection without compromising detection of others 
(Supplementary Figure S5). In total we designed 755 probes for 99 genes, but used 
only 161 barcodes out of 1024 (=45) possible combinations to allow error correction (for 
probe sequence and barcodes see Supplementary Table S2). 
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To apply the method to a tissue section, mRNA is enzymatically converted to cDNA in 
situ and then degraded. The padlock probe library is applied, and a ligation enzyme 
selectively circularizes only probes perfectly matching their cDNA target sequences. 
The circularized probes are rolling-circle amplified (RCA), generating sub-micron sized 
DNA molecules (rolling-circle products: RCPs), each carrying hundreds of copies of the 
probe’s barcode. The RCP barcodes are identified with a standard fluorescence 
microscope (20x objective) in five rounds of multi-color imaging (Figure 1A). Finally, 
RCPs for two genes which express so strongly their signal would swamp others (Sst 
and Npy) are detected separately in a 6th round by hybridizing fluorescent probes to 
their target recognition sequences. Data is analyzed using a custom pipeline, including 
point-cloud registration to deal with chromatic aberration in the images, and 
compensation for optical or chemical crosstalk between bases in the sequencing 
readout (Figure 1B; Supplementary Figure S6 and Methods). These improved 
chemical and analytic methods achieved a density of reads sufficient for fine cell type 
assignment. 
 
Our first experiments were performed using probes against a subset of 84 genes on 
four coronal sections of mouse brain (10 µm fresh frozen). After verifying that detected 
expression patterns match in situ hybridization data from the Allen Mouse Brain Atlas21, 
we continued with two further experiments using the full 99-gene panel, on two and 
eight coronal sections, respectively. All fourteen sections were from one P25 male CD1 
mouse and covered different parts of the dorsal hippocampus (Supplementary Figure 
S7).   Each section contained roughly 120,000 cells and in total 15,424,317 reads 
passed quality control (Supplementary Table S3). To display reads corresponding to 
99 genes on a single map, we displayed each read with symbols whose colors grouped 
genes often expressed by similar cell types, and glyph distinguished genes within these 
color groups (Figure 1, C and D).  
 
Expression patterns were consistent with expectation at multiple levels of detail. At the 
whole-brain level (Figure 1C, top), differences between regions could be seen, for 
example with the inhibitory thalamic reticular nucleus dominated by inhibitory-
associated genes (blue) and the CA1 pyramidal layer dominated by pyramidal-
associated genes (green). Zooming in to the hippocampus (Figure 1C, 2nd row) 
revealed differences between cell layers, for example with stronger expression of genes 
associated with Sst neurons (cyan) in stratum oriens, neurogliaform-associated genes 
(pink) in stratum lacunosum-moleculare, and non-neuronal genes (white) in the white 
matter. Zooming further to single neurons (bottom two rows) showed genes that 
appeared to be grouped together in combinations as expected from scRNA-seq. 
Expression patterns of all genes present in the Allen Mouse Brain Atlas21 matched at a 
corresponding coronal level (examples in Figure 1E). Read densities were consistent 
between experiments, even with different gene panels, further supporting the reliability 
of the technique (r = 0.93; Supplementary Figure S8A).  
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Figure 2. Cell type map of CA1 from an example experiment (experiment 4-3 right hemisphere). A) 
Reads are assigned to cells, and cells to classes using a probability model based on scRNA-seq data.  
Top row: distribution and assignment of reads for fourteen example cells. Colored symbols indicate 
reads (color code as in Figure 1D). Grayscale background image indicates DAPI stain with watershed 
segmentation as dotted line.  Straight lines join reads to the cell for which are assigned highest 
probability. Scale bars: 5 µm. Bottom row: pie charts showing probability distribution of each class for 
the same example cells. Colors indicate broad cell types; segments show probabilities for individual 
scRNA-seq clusters (named underneath). B) Spatial map of cell types across CA1. Cells are 
represented by pie charts, with size proportional to the number of reads assigned to the cell. Numbers 
identify the example cells in A. C) Box-and-whisker representation of total read count per cell of each 
type (top) and average number of unique genes per cell of each type (bottom). 
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We focused our cell typing analysis on hippocampal area CA1 (Supplementary Figure 
S9), where we can use the known laminar locations of several identified cell types to 
validate the method. We used the approach to identify the types of 27,338 cells typed 
as CA1 neurons, from 28 hippocampi. Data files for all experiments are available at 
https://figshare.com/s/88a0fc8157aca0c6f0e8, and an online viewer showing reads and 
probabilistic cell type assignments is at http://insitu.cortexlab.net. 
 
A fundamental challenge for in situ cell typing is assigning genes to cells. mRNA 
molecules can be found throughout a cell’s cytoplasm, and boundaries between cells 
are difficult to obtain in 2D imaging. In the current approach, we counterstained all 
sections with DAPI to reveal cellular nuclei. Applying standard watershed segmentation 
to these cells yielded boundaries that contained many, but not all the genes that manual 
inspection suggested belonged to them (Figure 2A). To solve this problem, we 
developed an algorithm which leverages scRNA-seq data to assign genes to cells more 
accurately than would be possible by spatial location alone (Figure 2A, straight lines). 
The model uses scRNA-seq clusters to define an expected read density for each gene 
in each cell type, and assigns a prior probability of assigning reads to cells based the 
DAPI image. It employs a variational Bayesian algorithm to compute a posterior 
probability distribution for the cell assigned to each read, and the type assigned to each 
cell. Note that the algorithm does not take into account a cell’s laminar location, allowing 
this to be used for validation.  
 
To represent the results on a spatial map, we displayed each cell’s class assignments 
by a pie-chart, of size proportional to total gene count, and with the angle of each color-
coded slice indicating the probability of assignment to that class (Figure 2B; see also 
Supplementary Figure S10; for all cell type maps, see Supplementary Appendix; 
online viewer at http://insitu.cortexlab.net). The algorithm was able to confidently identify 
16 inhibitory classes: 3 types of interneuron-selective cell; 2 types of Cck cell; 2 types of 
neurogliaform cell; 2 types of GABAergic projection cell; 3 types of parvalbumin cell and 
4 types of somatostatin cell (Supplementary Tables S4 and S5). Further subdivisions 
of these types, identified by scRNA-seq clusters, were called with varying levels of 
confidence. Although our panel was primarily aimed at distinguishing inhibitory neurons, 
we also obtained confident distinction of two types of pyramidal cell, as well as non-
neuronal cells. The probabilistic algorithm allows diagnostics which show which genes 
provided evidence for calling as one type over another (Supplementary Figure S11). 
The average number of gene reads per cell was over 20 for most targeted cell types, 
and the number of unique genes detected per cell was in the range 5 to 10 (Figure 2C).  
 
The algorithm’s cell type assignments conformed closely to known combinatorial 
patterns of gene expression in fine CA1 inhibitory subtypes. For example, the 
identification of Sst cells as O/LM or hippocamposeptal correlated with further 
expression of Reln or Npy22,23 (Figure 2A; cells 1,2); identification of Pvalb cells as axo-
axonic, basket or bistratified correlated with further expression of Pthlh, Satb1/Tac1, or 
Sst/Npy 6,22,24 (Cells 3-5); identification of neurogliaform cells as CGE-derived or MGE-
derived/Ivy correlated with further expression of Ndnf/Kit/Cxcl14 or Lhx6/Nos1 2,5,25,26; 
identification of long-range projection neurons as trilaminar or radiatum-
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retrohippocampal correlated with 
expression of Chrm2 or Ndnf/Reln 23,27 
(Cells 8,9); Cck cells were identified as 
two subtypes correlated with 
expression of Cxcl14, with both 
subtypes expressing Cnr1 and further 
subdivided by Vip expression 5,28,29 
(Cells 10-11); finally, inhibitory-
selective cells were divided into three 
classes correlated with the 
combinatorial expression of Calb2 and 
Vip 30,31 (Cells 12-14). Across all 
experiments, the patterns of both 
classical and novel interneuron 
markers were consistent with scRNA-
seq results, as well as the known 
biology of CA1 interneurons 
(Supplementary Figure S12). 
Moreover, the cell type composition 
was consistent between the left and 
right hemispheres (Supplementary 
Figure S8B). 
 
As the pciSeq algorithm did not use 
cell’s laminar location to determine its 
class assignment, we were able to 
validate both the in situ cell typing 
method, and the scRNA-seq 
classification it relies on, by verifying 
that cell classes it identifies are found 
in appropriate layers. The layers in 
which cell types were identified were 
consistent with known ground truth 
(Figure 3). Cells identified as O/LM, 
hippocamposeptal, or O-Bi showed a 
strong preference for their known 
locations in stratum oriens (so), while 
neurons identified as bistratified also could be found in stratum pyramidale (sp)32,33 
(Sst/Nos1 cells were too rare to reliably localized; Supplementary Figure S13). Cells 
identified as basket cells were found in sp and less often so, while rarer cells identified 
as axo-axonic were found in the pyramidal layer nearly exclusively34. Amongst cells 
identified with neurogliaform cells, those identified as having developmental origin in the 
medial ganglionic eminence (including Ivy cells) were found throughout all layers, while 
those identified as having origins in caudal ganglionic eminence were found nearly 
exclusively in stratum lacunosum-moleculare (slm), consistent with previous reports25,26. 
Of the two transcriptomic classes identified with long-range projecting GABAergic 

Figure 3. Fraction of each cell class found each 
CA1 layer. Circles indicate means of a single 
experiment with gray level representing number of 
cells of that class in the experiment; colored lines 
denote grand mean over all 28 hippocampi. In each 
plot, the 5 x-axis positions represent layers: stratum 
oriens (so), stratum pyramidale (sp), stratum 
radiatum (sr), border or strata radiatum and 
lacunosum-moleculare (sr/slm); stratum lacunosum-
moleculare (slm).
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neurons, those identified as trilaminar cells were located primarily in so23,35,36; while 
those identified as radiatum retrohippocampal were found at the border of stratum 
radiatum (sr) and slm 23,27,37,38. Cck interneurons were divided into two primary classes, 
with the Cxcl14-positive class located primarily in sr, close to the slm border, and the 
Cxcl14-negative class in all layers, as previously predicted5. Amongst interneuron-
selective subtypes, cells identified as IS1 were found in all layers as expected31, while 
IS3 cells were located primarily in sp and sr, but very rare in slm28 (IS2 cells were too 
rare for reliable quantification of their laminar distribution). Reassuringly, cells identified 
as CA1 pyramidal were found exclusively in sp, while cells identified as non-CA1 
excitatory could also be occasionally found in so, with the latter reflecting primarily 
subicular pyramidal cells, which can also be found extending into so at the 
CA1/subiculum boundary. Thus, our method identified 18 types of CA1 neuron with the 
expected laminar distributions, both confirming the predictions of our cell type 
identifications, and the in situ sequencing method itself. 
 
To conclude, we have shown it is possible to identify closely related cell classes in situ 
by levering information from scRNA-seq to design a probe panel and cell identification 
algorithm for in situ sequencing. A key to this method’s success is its very low false-
positive gene detection rate. Indeed, while the 16 inhibitory classes identified by this 
algorithm closely match known biology, a recent SNAIL-based method15 with higher 
total read density but also possibly higher erroneous reads identified just four or five 
classes, which were dominated by single genes and do not match combinatorial 
expression patterns suggested by scRNA-seq and classical analyses. We found that 
sixteen classes of CA1 inhibitory cell could be identified with just 99 genes chosen using 
scRNA-seq data. Large-scale scRNA-seq projects are now underway for the whole 
body, and the data required to design panels and apply this method to all tissues will 
soon be available. The pciSeq approach requires only low-magnification imaging (in 
contrast to FISH-based methods), and so may be applied high throughput, raising the 
possibility of body-wide spatial cell type maps in the near future.  
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