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Abstract 103 

Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our 104 

understanding of the functional relevance of the phenomenon remains limited. Because obesity is the main 105 

risk factor for T2D and a driver of methylation from previous study, we aimed to explore the effect of DNA 106 

methylation in the early phases of T2D pathology while accounting for body mass index (BMI). We performed 107 

a blood-based epigenome-wide association study (EWAS) of fasting glucose and insulin among 4,808 non-108 

diabetic European individuals and replicated the findings in an independent sample consisting of 11,750 non-109 

diabetic subjects. We integrated blood-based in silico cross-omics databases comprising genomics, 110 

epigenomics and transcriptomics collected by BIOS project of the Biobanking and BioMolecular resources 111 

Research Infrastructure of the Netherlands (BBMRI-NL), the Meta-Analyses of Glucose and Insulin-related 112 

traits Consortium (MAGIC), the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium, and 113 

the tissue-specific Genotype-Tissue Expression (GTEx) project. We identified and replicated nine novel 114 

differentially methylated sites in whole blood (P-value < 1.27 × 10-7): sites in LETM1, RBM20, IRS2, MAN2A2 115 

genes and 1q25.3 region were associated with fasting insulin; sites in FCRL6, SLAMF1, APOBEC3H genes and 116 

15q26.1 region were associated with fasting glucose. The association between SLAMF1, APOBEC3H and 117 

15q26.1 methylation sites and glucose emerged only when accounted for BMI. Follow-up in silico cross-omics 118 

analyses indicate that the cis-acting meQTLs near SLAMF1 and SLAMF1 expression are involved in glucose level 119 

regulation. Moreover, our data suggest that differential methylation in FCRL6 may affect glucose level and the 120 

risk of T2D by regulating FCLR6 expression in the liver. In conclusion, the present study provided nine new DNA 121 

methylation sites associated with glycemia homeostasis and also provided new insights of glycemia related loci 122 

into the genetics, epigenetics and transcriptomics pathways based on the integration of cross-omics data in 123 

silico.  124 

125 
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Background 126 

Type 2 diabetes (T2D) is a common metabolic disease, characterized by disturbances in glucose and insulin 127 

metabolism, that are in part genetically driven1-10 with the heritability ranging from 20% to 80%11. DNA 128 

methylation has been associated with T2D as well as with fasting glucose and insulin12. Methylation-based risk 129 

scores of T2D predicted incident T2D cases that go beyond traditional risk factors such as obesity and waist-hip 130 

ratio13. Further, obesity, which is the most important determinant of insulin resistance and glucose levels in 131 

the population,14,15 has also been associated with differential DNA methylation13. This raises the possibility that 132 

differential methylation associated with glucose and insulin levels could be counfounded by obesity. DNA 133 

methylation, mainly depending on the region, results in gene silencing and thus regulates gene expression and 134 

subsequent cellular functions16. It is very well possible that the epigenetic modifications occur in early phases 135 

of the pathology of T2D, requiring research focusing on the early process of the disease, e.g. in subjects free of 136 

diabetes. 137 

We aimed to determine the association of DNA methylation with fasting glucose and insulin accounting for the 138 

effect of obesity in the non-diabetic subjects and to evaluate the impact of DNA methylation on cross-omics 139 

level. We followed the hypothesis that genetic variants drive DNA methylation which subsequently regulates 140 

gene expression and then glycemic traits, changes of which mark the early phases of diabetes pathology 141 

(Figure 1a). First, we performed a blood-based epigenome-wide association study (EWAS) meta-analysis of 142 

4,808 diabetes-free individuals of European descent and replicated our findings among 11 cohorts summing up 143 

to 11,750 trans-ethnic non-diabetic individuals, mainly from European ancestry. Subsequently, we explored 144 

the role of genetics in determining the regulation of methylation associated with glycemic traits and the 145 

effects of the differential methylation on the human transcriptome in silico (Figure 1a).  146 

Results 147 

1. Blood-based epigenome-wide association analysis of glycemic traits 148 

The discovery phase was based on four European cohorts (Supplementary Table 1). The meta-analysis 149 

revealed DNA methylation in 28 unique CpG sites associated with fasting glucose (11 CpG sites, n = 4,808) 150 

and/or insulin (20 CpG sites, n = 4,740) at epigenome-wide significance (P-value < 1.27 × 10-7) in either the 151 

baseline model without body mass index (BMI) adjustment or in the second model with BMI adjustment. Of 152 

these 28 CpG sites, 15 were novel (Table 1) while 13 were identified by earlier EWAS studies of either T2D or 153 

related traits, including glucose, insulin, hemoglobin A1c (HbA1c), homeostatic model assessment-insulin 154 
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resistance (HOMA-IR) and BMI12,13,17-25 (Supplementary Table 2). Of the known CpG sites, three located in 155 

SLC7A11, CPT1A, and SREBF1 associated with both glucose and insulin. The remaining ten CpG sites associated 156 

with insulin and were located in genes ASAM, DHCR24, RNF145, KDM2B, MYO5C, TMEM49, CPT1A, two in 157 

ABCG1 and one in the 4p15.33 region. 158 

The 15 novel CpGs were tested using the same models in meta-analysis of 11 independent cohorts including 159 

11,750 non-diabetic subjects from the Cohorts for Heart and Aging Research in Genomic Epidemiology 160 

(CHARGE) consortium (Supplementary Table 1). As a result, nine unique CpG-trait associations were replicated: 161 

four passing the epigenome-wide significance threshold (P-value < 1.27 × 10-7) and five passing the Bonferroni 162 

significance threshold after correcting for 15 tests (P-value < 3.3 × 10-3) (Table 1). These included five sites 163 

associated with fasting insulin in the baseline model (LETM1, RBM20, IRS2, MAN2A2 and 1q25.3 region), one 164 

associated with fasting glucose in the baseline model (FCRL6) and additional three emerged to be associated 165 

with fasting glucose in the BMI-adjusted model (SLAMF1, APOBEC3H and 15q26.1 region).  166 

Because the replication cohorts also included other ethnic groups than the main European ancestry (European: 167 

n = 7,254, African: n = 3,744, and Hispanic: n = 543), we also performed meta-analysis stratified by ancestry. 168 

Seven out of nine new CpG sites (FCRL6, LETM1, RBM20, IRS2, MAN2A2, APOBEC3H and the 15q26.1 region) 169 

confirmed consistent directions of effect across the three ethnicities. (Supplementary Table 3)  170 

2. Integrated in silico cross-omics studies 171 

To evaluate the functional relevance of differential methylation findings, we integrated our EWAS findings with 172 

genomics, epigenomics and transcriptomics data obtained from public resources. These included blood-based 173 

cis and trans methylation quantitative trait loci (meQTLs), expression quantitative trait methylations (eQTMs), 174 

expression quantitative trait loci (eQTLs) from the European BIOS database26 from the Biobanking and 175 

BioMolecular resources Research Infrastructure of the Netherlands (BBMRI-NL), the genome-wide association 176 

studies (GWAS) of glycemic traits or T2D from the Meta-Analyses of Glucose and Insulin-related traits 177 

Consortium (MAGIC) and the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium4-7,27, 178 

and tissue-specific eQTL-phenotype associations from MetaXcan database28,29 based on Genotype-Tissue 179 

Expression (GTEx) project (See resources of these database in URLs). The hypotheses tested were outlined in 180 

Figure 1a: DNA methylation and gene expression are partly genetically driven and heritable; genetic variants 181 

determine in part methylation, which subsequently influences expression and further fasting glucose and/or 182 

insulin. While doing so, we centered on the 11 top independent DNA methylation sites previously identified 183 
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(cg00574958 in CPT1A and cg06500161 in ABCG1 were used) and 9 novel sites from our current study (total n 184 

= 20 methylation sites).  185 

2.1 Genomics of the differentially methylated sites involved in glycemic traits 186 

Using BIOS database (blood-based)26, we found that 2,991 single-nucleotide polymorphisms (SNPs) in 29 187 

unique genetic loci were associated with methylation in either cis or trans across 18 unique CpG sites among 188 

the tested 20 target methylation sites. For two CpG sites located in SLC7A11 and LETM1, we did not find any 189 

significant meQTLs. Results are shown in Figure 2 and given in detail in Supplementary Table 4. Seven of the 190 

29 meQTLs, 5 cis-acting and 2 trans-acting were found significantly associated with T2D, fasting glucose or 191 

HbA1c (shown in Figure 2 and given in detail Supplementary Table 5). 192 

Based on our leading hypothesis, we examined whether DNA methylation may influence fasting glucose and 193 

insulin in the circulation. To this end, we performed a two-sample-based Mendelian Randomization (MR) 194 

analyses30 to examine the causal effect of the differential DNA methylation sites in blood on fasting glucose or 195 

insulin using the summary GWAS results from BIOS26 and MAGIC databases5 (Supplementary Table 6). Up to 196 

eight independent genetic variants were included in the genetic risk score as the instrumental variable of each 197 

methylation site to check the association with the observationally associated traits, either fasting glucose or 198 

fasting insulin. Thirteen CpG sites out of the initial 20 met the present MR criteria and were testes by MR. No 199 

significant associations were detected when adjusting for multiple testing involving 13 independent tests (P-200 

value < 3.8 × 10-3) except for two marginal siginificant associations between methylation site in RBM20 with 201 

fasting insulin (P-value = 0.04) and methylation site in SLAMF1 with fasting glucose (P-value = 0.05).  202 

2.2 Transcriptome associated with the differentially methylated sites of glycemic traits  203 

2.2.1 Association of gene expression with differentially methylated sites in blood 204 

To understand if the methylation is also eQTM, we investigated the association between gene expression and 205 

the 20 key glycemic methylation sites from the European blood-based BIOS database26 (intergrated in Figure 206 

2). We found that methylation in five CpG sites, including two novel sites (in FCRL6 and SLAMF1) and three 207 

known sites (in CPT1A, SREBF1 and ABCG1), was significantly negatively associated with the expression of their 208 

respective genes: FCRL6 (P-value = 4.0 × 10-39), SLAMF1 (P-value = 4.1 × 10-5), CPT1A (P-value = 3.1 × 10-20), 209 

SREBF1 (P-value = 4.5 × 10-15) and ABCG1 (P-value = 2.2 × 10-37). The methylation site in SLAMF1 was positively 210 

associated with expression of two other genes near SLAMF1 (CD244: P-value = 2.9 × 10-6 and SLAMF7: P-value 211 

= 5.4 × 10-9). (Supplementary Table 7)  212 
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2.2.2 Common genetic determinants of glycemia related to DNA methylation and gene expression in blood  213 

We next explored if the genetic variants associated with the differential expression above were the same as 214 

the meQTLs using the eQTL data from the European blood-based BIOS database26 (integrated in Figure 2 and 215 

detailed in Supplementary Table 8). We found three genetic determinants associated with both differential 216 

DNA methylation, including two novel methylation sites (in FCRL6 and SLAMF1) and one known (in SREBF1), 217 

and gene expression in blood. Rs1577544 near SLAMF1 associated with decreased methylation of the 218 

cg18881723 (Z = -5.45, P-value = 5.1 × 10-8) as well as SLAMF1 expession (Z = -6.40, P-value = 1.6 × 10-10). 219 

Rs11265282 in FCRL6 associated with increased methylation of cg00936728 (Z = 4.17, P-value = 3.0 × 10-5) but 220 

decreased FCRL6 expession (Z = -6.73, P-value = 1.7 × 10-11). Rs6502629 in TOM1L2 associated with increased 221 

methylation of cg11024682 (Z = 9.97, P-value = 2.1 × 10-23) but decreased SREBF1 expession (Z = -17.93, P-222 

value = 7.2 × 10-72). 223 

2.2.3 Tissue-specific differential expression associated with T2D and related traits 224 

We then explored the tissue-specific differential expression associated with T2D and related traits by data-225 

mining from MetaXcan database from the GTEx project28,29. This analyses targeted on the eQTM-related 226 

expression of seven genes as shown in 2.2.1 in six glucose-metabolism-related tissues including blood, adipose 227 

subcutaneous, adipose visceral omentum, liver, pancreas, and muscle skeletal (Supplementary Table 9). The 228 

effect direction consistency was checked between methylation sites, gene expression and T2D or related traits. 229 

That meant the direction of the association between methylation and T2D or related traits should be a 230 

combination of the directions of methylation with gene expression and gene expression with T2D or related 231 

traits. The expression of SREBF1 in blood was significantly associated with decreased levels of HbA1c (Z = -3.26, 232 

P-value = 1.1 × 10-3) and also with decreased risk of T2D (Z = -2.40, P-value = 0.016). Meanwhile, the known 233 

cg11024682 in SREBF1 was positively associated with fasting glucose (Z = 6.45, P-value = 2.7 × 10-8) and fasting 234 

insulin (Z = 6.27, P-value = 6.7 × 10-9) and negatively associated with expression of SREBF1 in blood (Z = -7.84, 235 

4.5 × 10-15) (shown in Figure 1c). Higher liver gene expression of FCRL6, a novel locus, was associated with 236 

increased risk of T2D (Z = 2.14, P-value = 0.032) based on MetaXcan28,29,31 results generated by integrating 237 

functional data in liver32,33 and the GWAS of T2D9. The novel cg00936728 in FCRL6 was negatively associated 238 

with fasting glucose (Z = -6.17, P-value = 9.1 × 10-8) and expression of FCRL6 in blood (Z = -13.09, 4.0 × 10-39) 239 

(shown in Figure 1b). 240 

Discussion 241 
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The current large-scale EWAS identified and replicated nine new methylation sites associated with fasting 242 

glucose or insulin, including three additionally uncovered sites (in SLAMF1, APOBEC3H and the 15q26.1 region) 243 

associated with fasting glucose only after adjustment for BMI. We further validated 13 previous reported CpG 244 

sites in 11 independent loci. Based on the cross-omics analyses, our report complements earlier studies12,13,17-245 

25,34 for multiple DNA methylation sites related to the pathology early in the development of T2D through 246 

genetics and/or gene expression. We also present in silico evidence supporting the potential involvement of 247 

the nine new methylation sites.  248 

The novel methylation sites annotated to genes that play roles in glucose and energy metabolism (IRS2), 249 

metabolism of proteins (MAN2A2 and EDEM3, the nearest gene of cg13222915), RNA and splicing regulation 250 

(RBM20), RNA metabolism (APOBEC3H), small molecule transport (LETM1) and immune system process 251 

(SLAMF1, FCRL6 and SV2B, the nearest gene of cg18247172). Some of these genes are also involved in other 252 

diseases or biomarkers, including inflammatory phenotypes (EDEM3 with systemic lupus erythematosus35, 253 

SLAMF1 with inflammatory bowel disease36 and FCRL6 with C-reactive protein (CRP)37,38), cardiovascular 254 

phenotypes (RBM20 with electrocardiographic traits39), cancer (IRS2 with prostate cancer40) and schizophrenia 255 

(MAN2A2)41. Thus, observations provided insight into the pathways that might link T2D to inflammation, 256 

cardiovascular disease, cancer and schizophrenia, all disorders associated epidemiologically or clinically with 257 

T2D. This phenomenon may point at genetic pleiotropy of the genes, i.e. a gene codes the same products in 258 

various cells or have cascade-like signaling function that affects various targets.  259 

In this paper, we used the assumption that genetic variants drive DNA methylation which subsequently 260 

regulates gene expression and then glycemic traits42. Two pathways (on SREBF1 and FCRL6) related to 261 

genetics-epigenetics-transcriptomics-phenotype were observed in the present study (Figure 1b and Figure1c). 262 

We validated the differential methylation of SREBF1 in insulin metabolism43 and extended the findings building 263 

a pathway based on the cascading cross-omics analysis in the assumption of genetics-epigenetics-264 

transcriptomics-phenotype. We also discovered a new pathway of FCRL6 in glucose metabolism, which still 265 

needs further research for its role to be fully understood. From the present study, with the integration of all 266 

the significant associations, the effect allele (C) of the genetic variant rs11265282 in FCRL6 increases the 267 

methylation level which associates with lower expression of FCRL6 in the blood. The decreased FCRL6 268 

expression in liver was also associates with decreased risk of T2D. This presumably is mediated by a decrease 269 

in fasting glucose.  270 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2018. ; https://doi.org/10.1101/432070doi: bioRxiv preprint 

https://doi.org/10.1101/432070
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

The present study provides new genomic targets for further work on the pathology of T2D through large-scale 271 

EWAS and replication. However, the main findings are based on data from blood which was the only accessible 272 

tissue and may not be representative of more glucose-relevant tissues, although concordance of differential 273 

methylation between blood and adipose is high for certain pathways44. Our present MR analyses yielded no 274 

evidence for causality between methylation sites and fasting glucose or insulin. One limitation we faced here 275 

was the limited data to perform MR in all the association steps, e.g. the association of methylation with gene 276 

expression, the gene expression with phenotypes, some CpG sites with phenotypes, as well as the inverse 277 

causal effect of glucose or insulin on DNA methylation, thus we can not exclude entirely the influence of 278 

glycemia homeostasis on methylation levels. On the other hand, some of the MR tests performed had low 279 

explained variance of the instrumental variables, i.e. seven of the 13 performed CpGs have instrumental 280 

variables explained variance less than 5%. This might partly explain the insignificant findings in MR in the 281 

current study. Further studies are needed to include additional biologically relevant tissues and perform MR 282 

based on the tissue specific meQLTs.  283 

In conclusion, our large-scale EWAS and replication have identified nine new differentially methylated sites 284 

associated with fasting glucose or insulin. The integrative in silico cross-omics analysis provided new insights of 285 

both known and new glycemia related loci into the genetics, epigenetics and transcriptomics pathway. Our 286 

study suggests that the expression of seven genes associated with either glycemia related DNA methylation is 287 

altered. Two of these seven expressed genes are also associated with T2D or related traits through the tissue-288 

specific differentical expression association analysis: one known loci in SREBF1 and one new loci in FCRL6. 289 

Further biological functional experiments are requried in more directly glucose-related tissues, e.g. pancreatic 290 

cells and liver, to unravel the mechanisms. 291 

  292 
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Online methods 293 

Study population 294 

The discovery samples consisted of 4,808 European individuals without diabetes from four non-overlapped 295 

cohorts, recruited by Rotterdam Study III-1 (RS III-1, n = 626), Rotterdam Study II-3 and Rotterdam Study III-245 296 

(called as RS-BIOS, n = 705), Netherlands Twin Register46,47 (NTR, n = 2,753) and UK adult Twin registry48 297 

(TwinsUK, n = 724). The replication sets contained up to 11,750 individuals from 11 independent cohorts from 298 

the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), including up to 6,818 299 

individuals from European ancestry, 4,355 from African ancestry and 577 from Hispanic ancestry. We excluded 300 

individuals with known diabetes, those on anti-diabetic treatment or fasting glucose ≥ 7mmol/l. Local research 301 

ethics committees approved each study, and all participants gave informed consent to each original study. The 302 

details of the cohorts and the study design are shown in Supplementary Note.  303 

Glycemic traits and covariates 304 

Venous blood samples were obtained after an overnight fast in all discovery and replication cohorts. Details of 305 

fasting glucose and insulin measurements are shown in Supplementary Note. Body mass index (BMI) was 306 

calculated as weight over height squared (kg/m2) based on clinical examinations. Smoking status was divided 307 

into current, former and never, based on questionnaires. White blood cell counts were quantified using 308 

standard laboratory techniques or predicted from methylation data using the standard Houseman method49 309 

(see Supplementary Note for each cohort). 310 

DNA methylation quantification 311 

The Illumina Human Methylation450 array was used in all discovery and replication cohorts to quantify 312 

genome-wide DNA methylation in blood samples. We obtained DNA methylation levels reported as β values, 313 

which represents the cellular average methylation level ranging from 0 (fully unmethylated) to 1 (fully 314 

methylated). Study-specific details regarding DNA methylation quantification, normalization and quality 315 

control procedures are provided in the Supplementary Note and Supplementary Table 1. 316 

Epigenome-wide association analysis and replication 317 

All statistical analyses were performed using R statistical software. Insulin was natural log transformed. In the 318 

discovery analysis, we first performed epigenome-wide association studies (EWAS) in each cohort separately. 319 

Linear regression analysis was used to test the association between glucose and insulin with each methylation 320 

site in the Rotterdam Study samples. Linear mixed models were used in NTR and TwinsUK accounting the 321 
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family structure. We fitted two models for each cohort: 1) the baseline model adjusting for age, sex, technical 322 

covariates (chip array number and position on the array), white blood cell counts (lymphocytes, monocytes, 323 

and granulocytes) and smoking status, and 2) a second model additionally adjusting for BMI. We removed 324 

probes that have evidence of multiple mapping or contain a genetic variant in the methylation site50. All 325 

cohort-specific EWAS results for each model were then meta-analysed using inverse variance-weighted fixed 326 

effects meta-analysis as implemented in the “metafor” R package51. In total, we meta-analysed 403,011 CpGs 327 

that passed quality control in all four discovery cohorts. The detail of the quality control for each cohort could 328 

be found in the Supplementary Note. The association was later corrected by the genomic control factor (λ) in 329 

each meta-EWAS52. We produced quantile-quantile (QQ) plots of the -log10 (P) to evaluate inflation in the test 330 

statistic (Supplementary Figure 1). A Bonferroni correction was used to correct for multiple testing and 331 

identify epigenome-wide significant results (P < 1.27 × 10-7). We did not correct the number of glycemic traits 332 

and models, as they are highly correlated and not independent. The genome coordinates were provided by 333 

Illumina (GRCh37/hg19). The correlation of the CpG sites located in the same gene was further checked in the 334 

overall RS III-1 and RS-BIOS samples by Pearson's correlation test (n = 1,544) to find the independent top CpGs.  335 

For the associations discovered in the meta-EWAS that have not been reported previously, we attempted 336 

replication in independent samples using the same traits and models as in the discovery analyses. Study-337 

specific details of replication cohorts are provided in Supplementary Table 1 and Supplementary Note. Results 338 

from each replication cohort were meta-analysed using the same methods as in the discovery analyses. 339 

Bonferroni P-value < 3.3 × 10-3 (0.05 corrected by 15 loci tested for associations) was considered significant.  340 

Genomics of the differentially methylated sites and glycemic traits 341 

We identified the genetic determinants of the significant CpG sites known or replicated through the current 342 

EWAS using the results of the cis and trans methylation quantitative trait loci (meQTLs) from European blood-343 

based BIOS database26 from the Biobanking and BioMolecular resources Research Infrastructure of the 344 

Netherlands (BBMRI-NL) which captured meQTLs, expression quantitative trait loci (eQTLs) and expression 345 

quantitative trait methylations (eQTMs) from genome-wide database of 3,841 Dutch blood samples (See 346 

resources of the database in URLs). All the reported single-nucleotide polymorphisms (SNPs) with P-value 347 

adjusted for false discovery rate (FDR) less than 0.05 in the database were treated as the target genetic 348 

variants in the present study. The SNPs were annotated based on the information in the previous study26 or 349 

the nearest protein-coding gene list from SNPnexus53,54 on GRCh37/hg19. 350 
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We explored the associations of these DNA methylation-related SNPs with type 2 diabetes (T2D) or related 351 

traits, i.e. fasting glucose, insulin, hemoglobin A1c (HbA1c), based on public genome-wide association study 352 

(GWAS) datasets in European ancestry4-7,27. We checked the effect direction consistency of the association 353 

between the SNPs, methylation sites and T2D or related traits. That is the direction of the association between 354 

SNP and T2D or related traits should be a combination of the directions of SNP with methylation sites and 355 

methylation sites with T2D or related traits. A multiple-testing correction was performed by Bonferroni 356 

adjustment (P-value < 1.8 × 10-3, 0.05 corrected by the 29 genetic loci shown in Supplementary Table 4).  357 

For the significant CpG sites known or replicated through EWAS, we attempted to evaluate the causality effect 358 

of CpGs on their significant traits, either fasting glucose or fasting insulin, using two-sample Mendelian 359 

Randomization (MR) approach as described in detail before by Dastani et al30,55,56 based on the summary 360 

statistic GWAS results from BIOS database and the Meta-Analyses of Glucose and Insulin-related traits 361 

Consortium (MAGIC) database5,26 (Supplementary Figure 2). Briefly, we constructed a weighted genetic risk 362 

score for individual CpG on phenotype using independent SNPs as the instrument variables of the CpG, 363 

implemented in the R-package “gtx”. The effect of each score on phenotype was calculated as 364 

𝑎𝑎ℎ𝑎𝑎𝑎𝑎 =  
∑  (𝜔𝜔𝑖𝑖𝛽𝛽𝑖𝑖 𝑠𝑠𝑖𝑖2) ⁄
∑  (𝜔𝜔𝑖𝑖

2 𝑠𝑠𝑖𝑖2⁄ ) 
 

, where 𝛽𝛽𝑖𝑖  is the effect of the CpG-increasing alleles on phenotype, s𝑖𝑖its corresponding standard error and 𝜔𝜔𝑖𝑖  365 

the SNP effect on the respective CpG. Because the genetic variants might be close (cis) or far (trans) from the 366 

methylated site, we also performed MR test in the cis only SNPs if the CpG site has both cis and trans genetic 367 

markers. All SNPs were mapped to human genome build hg19. For each test (one CpG site with one trait), we 368 

extracted all the genetic markers of the CpG site in the fasting glucose or insulin GWAS from the MAGIC 369 

dataset (n = 96,496)5 with their effect estimate and standard error on fasting glucose or insulin. Within the 370 

overlapped SNPs, we removed SNPs in potential linkage disequilibrium (LD, pairwise R2 ≥ 0.05) in 1-Mbp 371 

window based on the 1000 Genome imputed genotype dataset from the general population: Rotterdam Study 372 

I (RSI, n = 6,291)45. We managed to exclude the genetic loci which were genome-wide significantly associated 373 

with glycemic traits, but none of the genetic loci meet this exclusion criteria. The instrumental variables that 374 

explain more than 1% of variance in exposure (DNA methylation) were taken forward for MR test. The 375 

Bonferroni P-value threshold was used to correct for the 13 CpG sites available for MR (P-value < 3.8 × 10-3).  376 

Gene expression analyses 377 
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To explore whether the differential methylation sites were associated with differential expression in blood, we 378 

explored the European blood-based BIOS database for eQTMs26. The significantly associated gene expression 379 

probes were searched in the eQTL data in BIOS database26. We also investigated if the genetic variants 380 

associated with these gene expression probes in blood were also related to the DNA methylation sites with 381 

glycemia. Finally, we tested whether the expression of the genes that harbor the eQTMs was associated with 382 

T2D and related traits in glucose metabolism-related tissues (adipose subcutaneous, adipose visceral 383 

omentum, liver, whole blood, pancreas, and muscle skeletal) using MetaXcan28,29,31 package. MetaXcan 384 

associates the expression of the genes with the phenotype by integrating functional data generated by large-385 

scale efforts, e.g Genotype-Tissue Expression (GTEx)32,33 with that of the GWAS of the trait. MetaXcan is 386 

trained on transcriptome models in 44 human tissues from GTEx and is able to estimate their tissue-specific 387 

effect on phenotypes from GWAS. For this study we used the GWAS studies of T2D9, fasting glucose traits5,6, 388 

fasting insulin6, hemoglobin A1c (HbA1c)57 and homeostatic model assessment-insulin resistance (HOMA-IR)4. 389 

We used the nominal P-value threshold (P-value = 0.05) as we had separate assumptions for each terminal 390 

pathway between gene expressions and phenotype. Further, we checked the effect direction consistency of 391 

the association between the methylation sites and fasting glucose or insulin with the combination of the 392 

associations between the methylation sites and gene expression and between the gene expression and T2D or 393 

related traits. 394 

 395 

URLs. BIOS database, https://genenetwork.nl/biosqtlbrowser/; SNPnexus, http://snp-nexus.org/index.html; 396 

GWAS database of glycemic traits, https://www.magicinvestigators.org/; GWAS database of T2D, 397 

http://diagram-consortium.org/; MetaXcan, https://s3.amazonaws.com/imlab-398 

open/Data/MetaXcan/results/metaxcan_results_database_v0.1.tar.gz. (available: 1st Jan, 2018)  399 

  400 
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Table1 Epigenome-wide association study (EWAS) results: novel differentially methylated sites associated with fasting glucose or insulin at an epigenome-wide 

significance level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Locus CpG Chr Position Regulatory feature Trait (s)  

Discovery phase (EA)  Replication phase (EA+AA+HS)  

Model 1 Model 2 Model 1 Model 2 

Z P-value* Z P-value* Z P-value Z P-value 

FCRL6 cg00936728 1 159772194 NA Glucose -6.17 9.1 × 10-8 -5.71 1.9 × 10-7 -3.90 9.55 × 10-5 NP NP 

SLAMF1 cg18881723 1 160616870 Promoter associated Glucose 6.11 7.5 × 10-8 6.94 3.4 × 10-10 2.67 7.66 × 10-3 3.23 1.2 × 10-3 

1q25.3 cg13222915 1 184598594  Insulin -6.50 2.6 × 10-9 -4.61 4.1 × 10-6 -8.16 3.33 × 10-16 NP NP 

BRE cg20657709 2 28509570 NA Glucose -5.46 2.7 × 10-6 -5.88 4.1 × 10-8 NP NP -2.10 0.036 

LRPPRC cg01913188 2 44223249 Promoter associated Glucose 5.13 9.4 × 10-6 6.27 5.7 × 10-9 NP NP 0.12 0.90 

IRAK2 cg14527942 3 10276383 NA Insulin 6.97 3.4 × 10-10 6.69 2.9 × 10-11 -0.70 0.48 -0.75 0.45 

LETM1 cg13729116 4 1859262 Promoter associated Insulin 5.95 4.3 × 10-8 4.56 4.5 × 10-6 4.96 6.98 × 10-7 NP NP 

RBM20 cg15880704 10 112546110 NA Insulin 6.41 3.8 × 10-9 
1.38 

4.06 
6.7 × 10-5 6.83 8.62 × 10-12 NP NP 

IRS2 cg25924746 13 110432935 Promoter associated Insulin 6.59 3.0 × 10-9 4.55 4.9 × 10-6 6.65 3.01 × 10-11 NP NP 

SPTB cg07119168 14 65225253 NA Glucose -5.86 4.4 × 10-7 -5.82 4.9 × 10-8 NP NP -1.81 0.070 

15q26.1 cg18247172 15 91370233 NA Glucose -5.25 4.9 × 10-6 -5.90 2.8 × 10-8 NP NP -3.47 5.1 × 10-4 

MAN2A2 cg20507228 15 91460071 
Promoter associated (Cell 

type specific)  
Insulin 5.90 5.5 × 10-8 4.83 9.0 × 10-7 7.93 2.28 × 10-15 NP NP 

FAM92B cg06709610 16 85143924 NA Insulin 6.35 6.5 × 10-9 7.24 5.8 × 10-13 0.24 0.81 0.55 0.59 

CD300A cg08087047 17 72461209 NA Glucose -5.19 5.9 × 10-6 -5.80 1.1 × 10-7 NP NP -1.08 0.28 

APOBEC3H cg06229674 22 39492189 NA Glucose -5.40 1.8 × 10-6 -5.86 4.7 × 10-8 NP NP -4.82 1.4 × 10-6 
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Genome-wide DNA methylation sites were tested for association with fasting glucose or fasting insulin in two models. Novel epigenome-wide significant (P-value < 

1.27 × 10-7) results in the discovery phase and the replication are shown. Model 1 adjusted for age, sex, technical covariates, white blood cell, and smoking status, 

accounting for family structure if needed in each cohort. Model 2 adjusted for BMI additionally. The significant associations in non-reported CpG sites were 

promoted for replication of the same models and traits. NP: Replication was not performed in the non-significant associated model or trait. Locus: the cytogenetic 

location or the gene symbol of the CpGs from Illumina annotation. Regulatory feature: the regulatory feature group of the CpGs from Illumina annotation. Chr: 

Chromosome. * Genomic controlled P-value. EA+AA+HA: European ancestry, African ancestry and Hispanic ancestry population. Z: effect estimate per standard 

error. Bold print: Significant results (P-value < 1.27 × 10-7 in the discovery phase, P-value < 3.3 × 10-3 in the replication phase). NA: Not available. 
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Supplementary Table 1 Characteristics of cohorts 

COHORT 
Discovery cohorts  Replication cohorts 

RS III-1 RS-BIOS NTR Twins UK  ARIC BLSA CHS FHS GENOA GOLDN HyperGEN inCHIANTI KORA WHI-BAA23 WHI-EMPC 

Ethnicity European European European European  
African 

American European African 
American European African 

American European African 
American European African 

American European European European African 
American Hispanic European African 

American Hispanic 

Fasting 
glucose (N)  626 705 2753 724  1875 402 142 160 147 2117 268 917 469 433 1488 836 503 319 425 951 258 

Fasting 
insulin (N)  626 705 2685 724  NA 402 142 160 147 2157 267 915 466 421 1488 817 495 314 413 917 246 

Fasting 
glucose 

(mmol/L)  
5.3 (0.5)  5.4 (0.6)  5.2 (0.6)  5.0 (0.5)   5.7 (0.6)  5.3 (0.5)  5.3 (0.5)  5.5 (0.5)  5.5 (0.6)  5.6 (0.5)  5.3 (0.6)  5.48 (0.67)  5.37 (1.3)  4.9 ( 0.6)  5.3 (0.5)  5.28 (0.5)  5.2 (0.6)  5.2 (0.5)  5.2 (0.6)  5.2 (0.6)  5.2 (0.6)  

Fasting 
insulin 

(pmol/L; 
mlU/L)  

89.0 
(44.3)  

79.4 
(44.4)  

57.0 
(36.1)  

57.0 
(53.6)   NA 58.8 

(38.9)  
78.7 

(54.2)  
76.3 

(38.8)  
91.4 

(63.7)  4.07 (0.6)  62.4 
(55.8)  13.7 (7.5)  9.4 (9.0)  72.8 

(37.9)  
45.8 

(82.9)  5.3 (0.8)  5.79 (0.7)  5.7 (0.7)  90.2 
(44.3)  

75.2 
(41.0)  

88.3 
(46.6)  

Age (years)  59.8 (8.1)  67.5 (6.0)  36.3 
(12.8)  58.1 (9.3)   56.1 (5.8)  69.0 

(14.4)  
64.3 

(10.9)  76.2 (5.0)  73.2 (5.7)  65.7 (8.9)  60.7 (7.7)  48.0 (15.8)  51.0 (13.7)  62.1 
(16.0)  60.2 (8.8)  68.4 (6.2)  62.6 (6.7)  62.4 

(6.8)  62.1 (6.9)  64.5 (7.2)  61.4 
(6.1)  

BMI 
(kg/m2)  27.4 (4.5)  27.6 (4.1)  24.1 (3.7)  26.4 (4.6)   29.3 (6.0)  26.4 (4.4)  287 (4.9)  26.3 (4.6)  28.4 (4.7)  27.7 (4.9)  30.5 (6.4)  28.5 (5.6)  30.7 (7.0)  27.0 (3.9)  27.7 (4.5)  28.2 (5.4)  30.9 (6.4)  28.7 

(4.9)  31.2 (6.0)  28.4 (5.7)  29.1 
(4.8)  

Female (%)  351 (56)  414 (59)  1817 (66)  684 (100)   1198 (64)  202 (50)  85 (60)  89 (56)  99 (67)  1204 (57)  191 (71)  488 (49)  365 (60)  234 (54)  783 (53)  836 (100)  503 (100)  319 
(100)  425 (100)  951 (100)  258 

(100)  
Never 

Smoker (%)  187 (30)  244 (35)  1625 (59)  423 (62)   841 (45)  219 (54)  90 (63)  73 (46)  74 (50)  771 (37)  151 (56)  700 (70.3)  84 (17.8)  244 (56)  662 (44)  438 (52)  234 (467)  188 (59)  207 (49)  482 (51)  168 (65)  

Former 
Smoker (%)  270 (43)  389 (55)  633 (23)  197 (30)   558 (30)  173 (43)  48 (34)  64 (40)  51 (35)  1180 (56)  69 (26)  209 (21)  207 (44.9)  105 (24)  607 (41)  381 (46)  258 (51)  123 (59)  176 (41)  402 (42)  73 (28)  

NA: Not available. The unit of fasting insulin in FHS, GOLDN, HyperGEN, WHI-BAA23 are mIU/L; the units of fasting insulin in other cohorts are pmol/L. 
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Supplementary Table 2 Epigenome-wide association study (EWAS) results: known differentially methylated sites associated with fasting glucose or insulin at 

epigenome-wide significance level in the discovery phase 

Locus CpG Chr Position Regulatory feature Trait (s)  
Model 1 Model 2 

Previous evidence 
Z P-value* Z P-value* 

DHCR24 cg17901584 1 55353706 
Promoter associated (Cell 

type specific)  
Insulin -6.19 2.3 × 10-8 -3.58 3.7 × 10-4 BMI13; Insulin13; HbA1c13; Incident T2D13 

4p15.33 cg10438589 4 14531493 NA Insulin 6.25 2.4 × 10-8 3.56 5.0 × 10-4 BMI13; Insulin13; Incident T2D13 

SLC7A11 cg06690548 4 139162808 NA 
Glucose 

Insulin 

-7.70 

-6.21 

7.6 × 10-10 

2.4 × 10-8 

-5.85 

-3.68 

7.8 × 10-8 

2.8 × 10-4 
BMI13; Glucose13; Insulin13; Incident T2D13 

RNF145 cg26403843 5 158634085 NA Insulin 6.29 8.5 × 10-9 4.60 7.7 × 10-6 BMI13,17,20; Insulin13; Incident T2D13 

CPT1A cg00574958 11 68607622 NA 
Glucose 

Insulin 

-7.63 

-8.00 

2.9 × 10-11 

3.5 × 10-13 

-5.56 

-4.11 

2.5 × 10-7 

3.5 × 10-5 

BMI13,17,18,20; Glucose13,22; Insulin13; HbA1c13; Incident 

T2D13; Prevalent T2D17 

CPT1A cg17058475 11 68607737 NA Insulin -6.36 7.4 × 10-9 -4.16 3.4 × 10-5 BMI13; Glucose13; Insulin13; HbA1c13; Incident T2D13 

ASAM cg26894079 11 122954435 NA Insulin -5.83 7.5 × 10-8 -2.95 3.3 × 10-3 BMI13; Insulin13; Incident T2D13 

KDM2B cg13708645 12 121974305 Promoter associated Insulin 6.00 1.1 × 10-7 3.28 8.8 × 10-4 BMI17,20 

MYO5C cg06192883 15 52554171 Unclassified Insulin 7.96 6.4 × 10-13 4.57 4.4 × 10-6 BMI13,17,20; Insulin13; Incident T2D13 

SREBF1 cg11024682 17 17730094 
Unclassified (Cell type 

specific)  

Glucose 

Insulin 

6.45 

6.27 

2.7 × 10-8 6.7 

× 10-9 

4.34 

2.69 

6.4 × 10-5 

8.6 × 10-3 

BMI13,20,24; Glucose13,22; Insulin13; HbA1c13; Incident 

T2D13,19; Prevalent T2D17 

TMEM49 cg24174557 17 57903544 NA Insulin -7.57 8.8 × 10-12 -4.00 6.7 × 10-5 BMI13,17; Insulin 13; Incident T2D13 

ABCG1 cg27243685 21 43642366 NA Insulin 7.55 5.9 × 10-12 5.10 4.5 × 10-7 
BMI13,17,20,24,25; Glucose13; Insulin13; HbA1c13; Incident 

T2D13 

ABCG1 cg06500161 21 43656587 NA Insulin 10.16  < 2.2 × 10-16 6.68 5.0 × 10-11 
BMI13,17,20,21; Glucose13,22; Insulin12,13,22; HbA1c13; Incident 

T2D13,19; Prevalent T2D17,23; 2h glucose22; HOMA-IR12 
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Genome-wide DNA methylation sites were tested for association with fasting glucose or fasting insulin in two models. Previously reported epigenome-wide 

significant (P-value < 1.27 × 10-7) results in the discovery phase and the previous evidence from the EWAS with T2D or related traits in the same CpG sites are 

shown. Model 1 adjusted for age, sex, technical covariates, white blood cell, and smoking status, accounting for family structure if needed in each cohort. Model 2 

adjusted for BMI additionally. Locus: the cytogenetic location or the gene symbol of the CpGs from Illumina annotation. Regulatory feature: the regulatory feature 

group of the CpGs from Illumina annotation. Chr: Chromosome. * Genomic controlled P-value. Z: effect estimate per standard error. Bold print: Epigenome-wide 

significant results (P-value < 1.27 × 10-7). NA: Not available. 
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Supplementary Table 3 Epigenome-wide association study (EWAS) results: replication of newly discovered differentially methylated sites in different ancestry 

populations 

Locus CpG Chr Position Trait (s)  

Replication in EA Replication in AA Replication in HA 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Z P-value Z P-value Z P-value Z P-value Z P-value Z P-value 

FCRL6 cg00936728 1 159772194 Glucose -2.48 0.013 NP NP -2.90 3.8 × 10-3 NP NP -1.84 0.066 NP NP 

SLAMF1 cg18881723 1 160616870 Glucose 2.68 7.3 × 10-3 3.07 2.1 × 10-3 1.14 0.25 1.59 0.11 -0.56 0.58 -0.49 0.63 

1q25.3 cg13222915 1 184598594 Insulin -6.85 7.6 × 10-12 NP NP -5.26 1.4 × 10-7 NP NP 0.10 0.092 NP NP 

BRE cg20657709 2 28509570 Glucose NP NP -0.93 0.35 NP NP -2.43 0.015 NP NP 0.23 0.82 

LRPPRC cg01913188 2 44223249 Glucose NP NP 0.08 0.94 NP NP -0.27 0.79 NP NP 0.99 0.32 

IRAK2 cg14527942 3 10276383 Insulin -1.06 0.29 -1.15 0.25 0.63 0.53 0.45 0.66 0.21 0.83 0.65 0.51 

LETM1 cg13729116 4 1859262 Insulin 4.63 3.6 × 10-6 NP NP 1.69 0.092 NP NP NP NP 0.62 0.54 

RBM20 cg15880704 10 112546110 Insulin 6.83 8.6 × 10-12 NP NP 1.22 0.23 NP NP NP NP 0.55 0.59 

IRS2 cg25924746 13 110432935 Insulin 6.20 5.7 × 10-10 NP NP 1.85 0.064 NP NP NP NP 1.65 0.10 

SPTB cg07119168 14 65225253 Glucose NP NP -0.57 0.57 NP NP -2.23 0.026 NP NP -0.97 0.33 

15q26.1 cg18247172 15 91370233 Glucose NP NP -1.69 0.092 NP NP -3.66 2.6 × 10-4 NP NP -1.18 0.24 

MAN2A2 cg20507228 15 91460071 Insulin 7.59 3.2 × 10-14 NP NP 1.59 0.11 NP NP 2.75 6.0 × 10-3 NP NP 

FAM92B cg06709610 16 85143924 Insulin 0.82 0.41 0.83 0.41 -1.93 0.053 -1.37 0.17 1.13 0.26 1.65 0.10 

CD300A cg08087047 17 72461209 Glucose NP NP -0.95 0.34 NP NP -0.21 0.83 NP NP -0.96 0.34 

APOBEC3H cg06229674 22 39492189 Glucose NP NP -3.88 1.0 × 10-4 NP NP -2.70 6.9 × 10-3 NP NP -0.99 0.32 

Replication of the epigenome-wide significant (P-value < 1.27 × 10-7) CpGs with fasting glucose or insulin stratified by different ancestry populations. Model 1 adjusted for 

age, sex, technical covariates, white blood cell, and smoking status, accounting for family structure if needed in each cohort. Model 2 adjusted for BMI additionally. EA: 
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European ancestry (n = 6,778 for fasting glucose; n = 6,773 for fasting insulin) AA: African ancestry (n = 4,355 for fasting glucose; n = 2,434 for fasting insulin). HA: Hispanic 

ancestry (n = 577 for fasting glucose; n = 560 for fasting insulin). NP: Replication was not performed in the non-significant associated model or trait from the discovery 

phase. Locus: the cytogenetic location or the gene symbol of the CpGs from Illumina annotation. Chr: Chromosome. Z: effect estimate per standard error. Bold print: 

Bonferroni significant results (P-value < 3.3 × 10-3).  
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Supplementary Table 4 Methylation quantitative trait loci (meQTLs) for known or new replicated CpG sites 

Locus (CpG) CpG Variant Chr Position Locus (meQTL) Type (meQTL) MAF Alleles EA Z P-value Cis/Trans 

DHCR24 cg17901584 rs7412 19 45412079 APOE Protein coding 0.08 C/T T 6.39 1.7 × 10-10 Trans 

DHCR24 cg17901584 rs7701414 5 131585958 P4HA2 Protein coding 0.22 A/G G 5.26 1.4 × 10-7 Trans 

DHCR24 cg17901584 rs174550 11 61571478 FADS1/FADS2 Protein coding 0.30 T/C C -6.72 1.8 × 10-11 Trans 

DHCR24 cg17901584 rs735665 11 123361397 
GRAMD1B 

(Nearest) 
Protein coding 0.10 G/A A 10.59 3.4 × 10-26 Trans 

DHCR24 cg17901584 rs687565 1 55364663 
TMEM61 

(Nearest) 
Protein coding 0.43 C/A C 11.95 6.2 × 10-33 Cis 

FCRL6 cg00936728 rs6657365 1 159782549 FCRL6 Protein coding 0.23 C/G G 5.04 4.6 × 10-7 Cis 

FCRL6 cg00936728 rs2523946 6 29941943 HCG9 (Nearest) lincRNA 0.49 C/T T 5.33 9.8 × 10-8 Trans 

SLAMF1 cg18881723 rs3129055 6 29670261 ZFP57 (Nearest) Protein coding 0.29 A/G G 6.37 1.9 × 10-10 Trans 

SLAMF1 cg18881723 rs11265461 1 160630143 
SLAMF1 

(Nearest) 
Protein coding 0.36 C/T C 8.39 4.7 × 10-17 Cis 

1q25.3 cg13222915 rs72737737 1 184598732 C1orf21 Protein coding 0.06 A/G G 5.68 1.4 × 10-8 Cis 

4p15.33 cg10438589 rs16890352 4 14385522 AC006296.1 lincRNA 0.16 A/G G -11.64 2.6 × 10-31 Cis 

RNF145 cg26403843 rs7529925 1 199007208 RP11-16L9.4 lincRNA 0.21 T/C C 5.68 1.3 × 10-8 Trans 

RNF145 cg26403843 rs7732603 5 158614357 RNF145 Protein coding 0.48 A/C C 35.61 8.6 × 10-278 Cis 

RBM20 cg15880704 rs7906643 10 112545494 RBM20 Protein coding 0.09 C/T T -29.45 1.4 × 10-190 Cis 

CPT1A cg00574958 rs964184 11 116648917 ZNF259 Protein coding 0.22 C/G G -5.54 3.0 × 10-8 Trans 

ASAM cg26894079 rs34817879 11 123023729 CLMP Protein coding 0.12 T/G G -4.67 3.0 × 10-6 Cis 

KDM2B cg13708645 rs60370741 12 121966676 KDM2B Protein coding 0.30 T/C C 37.16 2.6 × 10-302 Cis 

IRS2 cg25924746 rs9521528 13 110504805 IRS2 (Nearest) Protein coding 0.44 T/A T -13.64 2.4 × 10-42 Cis 
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IRS2 cg25924746 rs7984800 13 110671951 
LINC00396 

(Nearest) 
lincRNA 0.26 A/G G 3.88 1.0 × 10-4 Cis 

MYO5C cg06192883 rs1047891 2 211540507 CPS1 Protein coding 0.29 A/C A -6.01 1.8 × 10-9 Trans 

MYO5C cg06192883 rs71472932 15 52541976 MYO5C Protein coding 0.11 G/A A 4.22 2.4 × 10-5 Cis 

15q26.1 cg18247172 rs404623 15 91367271 BLM (Nearest) Protein coding 0.50 G/C G -11.70 1.3 × 10-31 Cis 

15q26.1 cg18247172 rs3129055 6 29670261 ZFP57 (Nearest) Protein coding 0.29 A/G G -5.22 1.8 × 10-7 Trans 

15q26.1 cg18247172 rs4324798 6 28776117 AL662890.3 miRNA 0.04 G/A A -5.48 4.3 × 10-8 Trans 

MAN2A2 cg20507228 rs9374080 6 109616420 CCDC162P pseudogene 0.27 C/T C -5.31 1.1 × 10-7 Trans 

MAN2A2 cg20507228 rs35831960 15 91466262 
MAN2A2 

(Nearest) 
Protein coding 0.17 C/T T 8.14 4.1 × 10-16 Cis 

SREBF1 cg11024682 rs7701414 5 131585958 P4HA2 Protein coding 0.22 A/G G 5.21 1.9 × 10-7 Trans 

SREBF1 cg11024682 rs7529925 1 199007208 RP11-16L9.4 lincRNA 0.21 T/C C -5.15 2.6 × 10-7 Trans 

SREBF1 cg11024682 rs6502629 17 17869642 TOM1L2 Protein coding 0.22 G/A G 9.97 2.1 × 10-23 Cis 

TMEM49 cg24174557 rs3774937 4 103434253 NFKB1 Protein coding 0.25 C/T C -7.75 9.3 × 10-15 Trans 

ABCG1 cg06500161 rs225443 21 43658206 ABCG1 Protein coding 0.40 G/A A -7.16 8.1 × 10-13 Cis 

APOBEC3H cg06229674 rs28583464 22 39486593 
APOBEC3G 

(Nearest) 
Protein coding 0.11 T/C C 8.31 9.8 × 10-17 Cis 

Based on the European blood-based BIOS database (n = 3,841),26 the meQTL information of known or new replicated CpG sites are shown. Locus (CpG): the cytogenetic 

location or the gene symbol of the CpGs from Illumina annotation. Locus (meQTL): the located or nearest protein-coding gene of the meQTL from UCSC annotation. Type 

(meQTL): the gene type of the meQTL. Chr: chromosome. MAF: minor allele frequency. EA: effect allele. Z: effect estimate per standard error.  
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Supplementary Table 5 Common genetic determinants of glycemia related methylation sites and T2D or related traits in blood 

Variant 
Locus 

(meQTL)  
Type (meQTL) Chr Position MAF EA 

Association with CpG 
Association with T2D or related 

traits† 

CpG 
Locus 

(CpG)  
Z P-value Trait Z P-value 

rs6701489 
TMEM61 

(Nearest)  
Protein coding 1 55358459 0.07 T cg17901584 DHCR24 4.82 1.4 × 10-6 FG6 -3.43 8.5 × 10-4 

rs6896438 
RNF145 

(Nearest)  
Protein coding 5 158547876 0.36 C cg26403843 RNF145 6.15 8.0 × 10-10 FI5 3.82 1.4 × 10-4 

rs10849885 KDM2B Protein coding 12 121881848 0.32 A cg13708645 KDM2B 29.33 4.2 × 10-189 FG6 4.17 2.2 × 10-5 

rs9374080 CCDC162P pseudogene 6 109616420 0.27 C cg20507228 MAN2A2 -5.31 1.1 × 10-7 HbA1c58 -5.11 2.0 × 10-7 

rs3818717 RAI1 Protein coding 17 17707105 0.06 T cg11024682 SREBF1 8.93 4.1 × 10-19 T2D27 1.08 4.9 × 10-4 

rs7529925 RP11-16L9.4 lincRNA 1 199007208 0.21 C cg11024682 SREBF1 -5.15 2.6 × 10-7 HbA1c58 -3.60 2.5 × 10-4 

rs16960744 TOM1L2 Protein coding 17 17755259 0.37 A cg11024682 SREBF1 4.87 1.1 × 10-6 HbA1c58 3.11 1.5 × 10-3 

The common genetic determinants of glycemia related methylation sites and T2D or related traits are shown. Chr: chromosome. Locus (meQTL): the located or nearest 

protein-coding gene of the meQTL from UCSC annotation. Type (meQTL): the gene type of the meQTL. MAF: minor allele frequency. EA: effect allele. Locus (CpG): the 

cytogenetic location or the gene symbol of the CpGs from Illumina annotation. Z: effect estimate per standard error. FG: fasting glucose. FI: fasting insulin. Data sources of 

associations: 1) association with CpG was from the current discovery phase (n = 4,808), 2) associations with FG (n = 133,010), FI (n = 96,496), T2D (case/control: n = 

81,412/370,832) and HbA1c (n = 159,940) were from the MAGIC and DIAGRAM GWAS database5,6,27,58 
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Supplementary Table 6 Mendelian randomization (MR) results 

Exposure 
Locus 

(CpG)  
Trait 

No. 

of 

SNPs 

R2 (%)  Effect SE 
P-

value 

Heter

ogene

ity P-

value 

Type of 

SNPs 
SNPs list Z (exposure)  Z (outcome)  

cg00574958 CPT1A NP 1 0.79 NP NP NP NP All-Trans rs964184 -5.54 0.42 

cg06192883 MYO5C NP 1 0.91 NP NP NP NP All-Trans rs715 -5.94 1.77 

cg06229674 APOBEC3H FG 1 1.71 0.09 0.12 0.48 NA All-Cis rs6001423 8.17 0.71 

cg06500161 ABCG1 FI 2 2.30 0.09 0.11 0.42 0.27 All-Cis rs225443;rs225391 -7.16;6.18 -1.33;-0.31 

cg10438589 4p15.33 FI 4 7.15 -0.03 0.06 0.60 0.50 All-Cis 
rs16890358;rs9291625;rs13131008;rs1

0488977 

-11.63;-

7.83;6.91;6.06 

-0.3;1.23;0.43;-

0.94 

cg11024682 SREBF1 FG 2 4.65 -0.06 0.07 0.44 0.44 All-Cis rs8070432;rs6502629 9.12;9.97 0.05;-1.09 

cg11024682 SREBF1 FI 2 4.65 0.02 0.07 0.81 0.84 All-Cis rs8070432;rs6502629 9.12;9.97 0.02;0.31 

cg13708645 KDM2B FI 3 30.09 0.04 0.03 0.11 0.22 All-Cis rs28604990;rs11065536;rs3935332 37.01;-9.78;7.28 1.76;1.13;1.06 

cg15880704 RBM20 FI 5 23.38 0.06 0.03 0.04 0.91 All-Cis 
rs7906643;rs11195272;rs4918591;rs49

18537;rs10509930 

-29.45;-7.86;7.14;-

6.72;5.92 

-1.83;-1.05;-0.33;-

0.6;0.56 

cg17901584 DHCR24 FI 4 8.33 -0.07 0.06 0.19 0.07 All-CisTrans rs681123;rs735665;rs174546;rs445925 
11.86;10.59;-

6.75;5.5 
-0.47;-1.33;2;1.69 

cg17901584 DHCR24 FI 1 3.53 -0.04 0.08 0.64 NA Sub-Cis rs681123 11.86 -0.47 

cg18247172 15q26.1 FG 3 5.82 -0.05 0.07 0.47 0.30 All-CisTrans rs8038275;rs2518968;rs4324798 11.55;-8.12;-5.48 0.27;0.71;1.53 

cg18247172 15q26.1 FG 2 5.04 -0.01 0.07 0.85 0.46 Sub-Cis rs8038275;rs2518968 11.55;-8.12 0.27;0.71 

cg18881723 SLAMF1 FG 2 2.85 0.19 0.09 0.05 0.59 All-CisTrans rs11265461;rs3129055 8.39;6.37 1.89;0.76 

cg18881723 SLAMF1 FG 1 1.80 0.23 0.12 0.06 NA Sub-Cis rs11265461 8.39 1.89 
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cg20507228 MAN2A2 FI 1 1.69 -0.07 0.12 0.59 NA All-Cis rs1266482 8.12 -0.55 

cg24174557 TMEM49 FI 1 1.54 -0.07 0.13 0.60 NA All-Trans rs3774937 -7.75 0.53 

cg25924746 IRS2 FI 2 5.89 0.05 0.07 0.48 0.85 All-Cis rs9521528;rs11842277 -13.64;-7.01 -0.55;-0.49 

cg26403843 RNF145 FI 8 42.56 0.01 0.02 0.60 0.03 All-CisTrans 

rs6556405;rs3846687;rs12188300;rs68

90049;rs4244439;rs2043269;rs170567

47;rs7529925 

39.82;-16.71;-

10.3;8.38;-7.39;-

7.1;-5.55;5.68 

-0.3;-

2.66;0.86;0.31;0.0

9;1.97;-0.28;2.03 

cg26403843 RNF145 FI 7 41.73 0.01 0.02 0.78 0.07 Sub-Cis 

rs6556405;rs3846687;rs12188300;rs68

90049;rs4244439;rs2043269;rs170567

47 

39.82;-16.71;-

10.3;8.38;-7.39;-

7.1;-5.55 

-0.3;-

2.66;0.86;0.31;0.0

9;1.97;-0.28 

Two-sample MR approach was performed to check the effect of known or replicated CpG sites on their significant traits, either fasting glucose or fasting insulin. We also 

performed MR test in the cis-only SNPs if the CpG site has both cis and trans genetic markers. Locus (CpG): the cytogenetic location or the gene symbol of the CpGs from 

Illumina annotation. R2 (%): the percentage of explained variance in the exposure by genetic risk score. Effect/SE/P-value: The effect estimate / standard error / P-value of 

genetic risk score of the exposure on the outcome (MR results). Heterogeneity P-value: The P-value of the heterogeneity test among the SNPs. Type of SNPs: type of SNPs 

included in the genetic risk score: 1) All-CisTrans: all the genetic markers (included cis and trans SNPs) ; 2) All-Cis: only cis genetic markers available; 3) All-Trans: only trans 

genetic markers available; 4) Sub-Cis: the sub-analysis with the genetic markers in cis-only. Z (exposure): the effect estimate per standard error of the SNP on exposure 

(CpG) from exposure GWAS result; Z (outcome): the effect estimate per standard error of the SNPs on outcome (fasting glucose or insulin) from outcome GWAS result. NP: 

the genetic risk score has R2 less than 1%, and the MR was not performed. FG: fasting glucose. FI: fasting insulin. NA: Not available. 
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Supplementary Table 7 Blood-based expression quantitative trait methylations (eQTMs): association between gene expression and the glycemia related methylation 

sites 

Locus (CpG)  CpG Probe Probe-Chr Probe-Pos Gene expression Z P-value Cis/Trans 

FCRL6 cg00936728 ENSG00000181036 1 159770301 FCRL6 -13.09 4.0 × 10-39 Cis 

SLAMF1 cg18881723 ENSG00000026751 1 160709037 SLAMF7 5.84 5.4 × 10-9 Cis 

SLAMF1 cg18881723 ENSG00000122223 1 160832692 CD244 4.68 2.9 × 10-6 Cis 

SLAMF1 cg18881723 ENSG00000117090 1 160617085 SLAMF1 -4.10 4.1 × 10-5 Cis 

CPT1A cg00574958 ENSG00000110090 11 68611878 CPT1A -9.22 3.1 × 10-20 Cis 

SREBF1 cg11024682 ENSG00000072310 17 17740325 SREBF1 -7.84 4.5 × 10-15 Cis 

ABCG1 cg06500161 ENSG00000160179 21 43619799 ABCG1 -12.78 2.2 × 10-37 Cis 

The gene expressions associated with the glycemia related methylation sites are shown based on the European blood-based BIOS database (n = 3,841) 26. Locus (CpG): the 

cytogenetic location or the gene symbol of the CpGs from Illumina annotation. Probe: The probe of the gene expression. Chr: chromosome. Pos: position. Z: effect estimate 

per standard error. 
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Supplementary Table 8 Common genetic determinants of glycemia related DNA methylation (methylation quantitative trait loci, meQTL) and gene expression 

(expression quantitative trait loci, eQTL) in blood. 

Variant Chr Position 
Locus 

(eQTL)  

Type 

(eQTL)  
MAF EA 

Association with CpG Association with gene expression 

CpG 
Locus 

(CpG)  
Z P-value 

Cis/Tran

s 

Gene 

expression 
Z P-value Cis/Trans 

rs11265282 1 159774408 FCRL6 
Protein 

coding 
0.26 C cg00936728 FCRL6 4.17 3.0 × 10-5 Cis FCRL6 -6.73 1.7 × 10-11 Cis 

rs1577544 1 160630974 
SLAMF1 

(Nearest)  

Protein 

coding 
0.39 T cg18881723 SLAMF1 -5.45 5.1 × 10-8 Cis SLAMF1 -6.40 1.6 × 10-10 Cis 

rs6502629 17 17869642 TOM1L2 
Protein 

coding 
0.22 G cg11024682 SREBF1 9.97 2.1 × 10-23 Cis SREBF1 -17.93 7.2 × 10-72 Cis 

The common genetic determinants of glycemia related methylation sites and gene expression in the European blood-based BIOS database (n = 3,841) 26 are shown. Locus 

(eQTL): the located or nearest protein-coding gene of the eQTL. Type (eQTL): the gene type of the eQTL. Chr: chromosome. MAF: minor allele frequency. EA: effect allele. Z: 

effect estimate per standard error. Locus (CpG): the cytogenetic location or the gene symbol of the CpGs from Illumina annotation. 
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Supplementary Table 9 Association between the gene expression level in the glucose metabolism-related tissue and the T2D or related traits based on the Genotype-

Tissue Expression (GTEx) project 

Gene expression Trait Tissue Z P-value 

FCRL6 T2D9 Liver 2.14 0.032 

SREBF1 T2D9 Whole blood -2.40 0.016 

SREBF1 HbA1c4 Whole blood -3.26 1.1 × 10-3 

The significant associations between the gene expression level in the glucose metabolism-related tissue and the T2D or related traits are shown based on the tissue-specific 

Genotype-Tissue Expression (GTEx) project28,29. It was explored in six glucose related tissues, i.e. adipose subcutaneous, adipose visceral omentum, liver, whole blood, 

pancreas, and muscle skeletal, and five T2D or related traits, i.e. T2D9, fasting glucose5,6, fasting insulin6, HbA1c57, and HOMA-IR4. Z: effect estimate per standard error.  
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Figure 1 Overview of the cross-omics analysis and examples 

Cascading associations cross multiple-omics-based on different data sources were integrated in the network 

figures. The assumption is genetic variants drive DNA methylation which subsequently regulates gene 

expression and then glycemic traits. FG: fasting glucose. FI: fasting insulin. T2D: type 2 diabetes 
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Figure 2 Associations between genetic variants, DNA methylation sites, gene expressions and fasting glucose, 

insulin and related traits based on the integration of cascading associations in Figure 1a  

The effect allele is standardized across all associations. Only the significant associations which passed the 

specific P-value threshold in each association step were shown in the figure. FG: fasting glucose. FI: fasting 

insulin. T2D: type 2 diabetes.  
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 Supplementary Figure 1 QQ plots and Manhattan plots of the epigenome-wide association study (EWAS) 

results 

A: EWAS results of fasting glucose in the baseline model; B: EWAS results of fasting glucose in the BMI-

adjusted model; C: EWAS results of fasting insulin in the baseline model; D: D EWAS results of fasting insulin in 

the BMI-adjusted model.  
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Supplementary Figure 2 Overview of the general Mendelian Randomization process 
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