1 Sequence data from the internal and external transcribed spacers of nuclear

2 ribosomal DNA of Cyclamen purpurascens allow geographic mapping

- 3
- 4 Hannah Miriam Jaag
- 5
- 6 hannah.jaag@hmjaag.de
- 7
- 8 Affiliation: hmjaag, Hauptstr. 52, 78183 Hufingen, Germany

9 Abstract

Cyclamen purpurascens (Alpine, European or purple cyclamen) is native to central 10 Europe. Since decades it is discussed wether the occurrences of C. purpurascens north of 11 the alps is native or if it was introduced. Here the nuclear ribosomal DNAs (rDNA) are 12 sequenced in oder to obtain a phylogenetic geographic pattern. Phylogenetic analyses of 13 ITS and NTS/ETS sequences distinguish three main clades coinciding with geographical 14 distribution: Eastern alps (Austria), southern alps (Switzerland, Italy) and western Alps 15 16 (France). The paper presents interspecific relationship of *C. purpurascens* based on geographic sequences of rDNA. The observed variations suggest that some plants were 17 introduced via Benedictine gardens and the plants from Monastery gardens seem to origin 18 from Lower Austria. 19

20

21 Introduction

Cyclamen purpurascens (Alpine, European or purple cyclamen) is a species in the genus 22 Cyclamen of the family Myrsinaceae, formerly Primulaceae, and is native to central Europe 23 from eastern France across the Alps to Slovakia and south to Croatia. North of the alps 24 25 there are some occurrences of *C. purpurascens* like in southwest Germany (Mühlheim, Kisslegg, Salem, Brigachtal) and Switzerland (Schaffhausen) [1]. Welten & Sutter recorded 26 the Jura to Oensingen (Mümliswil), Lake Lucerne and the Upper Lake Zurich as the next 27 environs [2]. Since decades it is discussed wether the occurrences of C. purpurascens 28 north of the alps is native or if it was introduced. 29

30

31 In 2011 Slovak et al. published an interesting paper about sequencing noncoding DNA

regions of *C. purpurascens* to distinguish geographic origins [3]. Unfortunately the
polymorphisms in the sequenced regions were too low to generate an useful mapping.
Nevertheless the idea of geographic mapping by sequencing of specific DNA regions
seems to be challenging but also fascinating. Since chloroplast DNA sequences don't give
enough data for phylogenetic analysis of *C. purpurascens* we investigated different
approaches.

38

In an analysis of phylogenetic interrelationships of the genus *Cyclamen L.*, Anderberg *et al.* sequenced the internal transcribed spacers of nuclear ribosomal DNA [4]. Ribosomal DNA (rDNA) consists of a tandem repeat of an operon, composed of non-transcribed spacer (NTS), external transcribed spacer (ETS), 18S, internal transcribed spacer 1 (ITS1), 5.8S, internal transcribed spacer 2 (ITS2) and 26S tracts (Fig 1). In preliminary studies we could find some variations not just in ITS1 and ITS2, but also upstream of 18S in the region of NTS/ETS in *C. purpurascens* from different geographic regions.

The aim of this study was to investigate the sequence of the NTS/ETS, ITS1 and ITS2 to do a geographic mapping of *C. purpurascens*. For this we collected and sequenced 97 leaves of alpine cyclamen of different geographical origin.

50

Fig 1. Schematic representation of ribosomal DNA (rDNA). *C. purpurascens* rDNA of
NTS/ETS, 18S, ITS1, 5.8S and ITS2 is a part of a tandem repetitive cluster of 3155
basepairs. The rDNA contains NTS/ETS of ~600 basepairs, 18S of ~1800 basepairs,
ITS1/5.8S/ITS2 of ~660 basepairs and 26S.

55 Materials and Methods

56 Plant material

57 A total of 97 leaves of C. purpurascens from different geographic origins were collected

⁵⁸ and rDNA was sequenced (Fig 2; Table 1).

59 **DNA region**

60 DNA sequences from the ribosomal DNA were used for the present analysis. Ribosomal DNA (rDNA) consists of a tandem repeat of an operon, composed of non-transcribed 61 spacer (NTS), external transcribed spacer (ETS), 18S, internal transcribed spacer 1 62 (ITS1), 5.8S, internal transcribed spacer 2 (ITS2) and 26S tracts. The spacers are regions 63 within the nuclear ribosomal DNA gene that separates the 18S, 5.8 S and 26S genes. The 64 ITS1 and ITS2 regions have been used in several phylogenetic reconstructions and 65 proved to be variable to a suitable degree for investigations [4]. Here we also analyzed the 66 NTS/ETS region (Fig 1). 67

68 DNA extraction, PCR and sequencing

50 mg of leave material was grinded in 1 ml buffer HS (10 mM Tris-HCl, pH 7.6, 10 mM
KCl, 10 mM MgCl2, 400 mM NaCl, 2 mM EDTA, 1% SDS, 0,1 mM DTT, 20 µg Proteinase
K, 10 µg RNAse) and incubated for 3 hours at 50°C. Debris was collected by centrifugation
and DNA was precipitated with isopropanol and washed with 70% EtOH. Genomic DNA
was also purified with columns from Roti Prep Genomic DNA kit from Roth.
PCR was performed with Polymerases (One Taq or Phusion) from New England BioLabs
and primers indicated in Table 2. Temperatures were calculated with Tm Calculator from

- 76 New England BioLabs. NTS/ETS was amplified with primer HM95/HM96.18S was
- amplified with primer HM84/93, HM92/89 and HM94/93. ITS1/5.8S/ITS2 with primer
- 78 HM102/HM82 or HM81/HM82. PCR products were gel purified with Monarch DNA Gel
- 79 Extraction Kit from New England BioLabs and sequenced.
- ⁸⁰ The PCR product of NTS/ETS was sequenced with primes HM96, HM100 or HM 95. The
- PCR product of 18 S was sequenced with primers HM 84, HM93, HM92, HM89, HM94.
- ⁸² The PCR product of ITS1/5.8S/ITS2 was sequenced with primes HM78, HM82 or HM79.
- 83 Sequencing was performed by GATC Biotech (now Eurofins Genomics) in Cologne.
- 84 Sequences were analyzed by Multiple Sequence Alignment by CLUSTALW, Kyoto
- 85 Bioinformatics Center and SeqDoC by the Bioinformatics Facility of the ARC Special
- ⁸⁶ Research Centre for Functional and Applied Genomics.
- 87

Fig 2. Map of central Europe. Analyzed samples an their voucher numbers are indicated
in red.

90

91 Table 1. Plant materials.

Plant materials used. Region, voucher information, localities and GenBank accession
numbers are indicated.

Region/district	Voucher	Locality	GenBank accession numbers
Lower Austria	85-87	Horn, Waldviertel	MH908834, MH908835, MH908836
	20-22	Kaltenleutgeben	MH908845, MH908846, MH908847
	17-18	Breitenfurt	MH908848, MH908849
	26-28	Rax, Kesselgraben	MH908837, MH908838, MH908839
	23-24	Gerolding, Dunkelsteinerwald	MH908840, MH908841
	32-33	Kreuttal	MH908819, MH908820
	35-37	Leithagebirge	MH908816, MH908817, MH908818
	29-30	Bucklige Welt	MH908821, MH908822
Upper Austria	71-76	Roitham, Viecht, Fallholz	MH908793, MH908794, MH908795, MH908796, MH908797, MH908798,
Salzburg	14-16	Burglstein	MH908842, MH908843, MH908844
	48	Kapuzinerberg	MH908813
	51-52	Mönchsberg	MH908814, MH908815,
	54-60	Unken, Pinzgau	MH908806, H908807, MH908808, MH908809, MH908810, M908811, MH908812
Styria	63-69	Mixnitz	MH908799, MH908800, MH908801, MH908802, MH908803, MH908804, MH908805
	79-84	Saggau	MH908787, MH908788, MH908789, MH908790, MH908791, MH908792
Carinthia	96-97	Karawanks, Bielschitza	MH908783, MH908784
Swiss	7-12	Zurich, botanical garden	MH908857, H908858, MH908859, MH908860, MH908861, MH908862
	13	Schaffhausen, Allerheiligen	MH908823
	38-40	Walensee, St. Gallen	MH908824, MH908825, MH908826
	46-47	Monte Caslano, Lake Lugano	MH908830, MH908831
	94-95	Schleitheim, Schaffhausen	MH908785, MH908786
Croatia	4	Orljavac, Benedictine Abbey of Saint Michael	MH908852
Italy	41-43	Cittiglio, Lake Maggiore, Varese	MH908827, MH908828, MH908829
	44	Arcumeggia, Varese	MH908833
	45	Monte Nudo, Varese	MH908832
France	5-6, 62	Saint-Vincent-de-Mercuze, Isère	MH908853, MH908854, MH908855
Germany	1-2	Brigachtal, Baden-Wurttemberg	MH908850, MH908851
	3	Mühlheim an der Donau, Baden-Wurttemberg	MH908856

94

95 **Table 2. Primers** Primers used for this study.

Sequence
CAAACGACCCGCGAACTT
GCTTAAACTCACGGGTAAT
TGCTTAAACTCACGGGTAATC
TCTCGCATCGATGAAGAAC
CACGGGGAGCCAATATC
GAACCTTATCGGTTTAGAGGA
ACGAATTCATGGTCCGGT
AGATTTTCACGCTGGGCA
AATCCGAACACTTCACCG
GTGGCAGAGTGGCCTTG
CCACTGAGATTCAGCCCT
TCGCACAATTGGTCATC
TCGATCACGGCAATTCCCC
GAATGATGCGTCGCCAG
CTTGGATGTGGTAGCCGTT
ATTGACACCCATCGAAC
CGACTTCTGGAAGGGAT
GGATACATTAGCATGGGA
GGTTCAGTGGACTTCTTG
AGGATCAACCAGGTAGCAT
TCTGTGCCTTGGCTATGT
GTTGCATTGTGCTGAGTC
AATCCATCCACCACTCAC
TGCCCTTTGTACACACC
AGTCATCAGCTCGCGTT

97 **Results**

98 Polygenetic analyses of *C. purpurascens* collected in different

99 geographic regions

We sequenced 97 leaves of different geographical origin of *C. purpurascens* in the region
 of NTS/ETS and ITS1/5.8S/ITS2 (Table 1; Fig 1 and 2).

102 Multiple sequence alignment was done with the 3155 basepair rDNA region (Fig 1). For a better overview some similar sequences were omitted. Also five too divergent sequences 103 were omitted. This were one sequence from Unken (Pinzgau), one from Salzburg, two 104 from Styria and one from Arcumeggia (Italy). Plants from Switzerland (Walensee, St. 105 Gallen and Monte Caslano, Lake Lugano, Schaffhausen) are related to the plants 106 collected in Italy (region Lake Maggiore). Another cluster could be found with three plants 107 from France (St. Vincent de Mercuse, Isère, North of Grenoble). In Austria plants get more 108 109 diverse in the analyzed rDNA region, the farer we collect samples from Lower Austria (Fig. 110 3). So plants from Styria (Mixnitz) and also from Pinzgau (Unken) are highly diverse. Surprisingly leaves collected in Lower and Upper Austria are very much conserved in the 111 region of NTS/ETS/18S/ITS1/5.8S/ITS2. This conserved sequence could also be found in 112 113 some plants from Salzburg, in a sample from Schaffhausen (Switzerland), Mühlheim an der Donau (Germany) and also from Orljavac (Croatia). The conserved sequence could 114 not be found in the plants from Brigachtal (Germany) and from Schleitheim (Schaffhausen, 115 Switzerland). The plants with the conserved sequence similar to the region of Vienna are 116 all growing close to Benedictine gardens. So the leaf from Schaffhausen was collected in 117 the garden of the former abby Allerheiligen, Mühlheim an der Donau is close to Beuron 118 Archabbey and near Orljavac was a Benedictine abbey of Saint Michael. 119

120 Fig 3. Polygenetic tree of *C. purpurascens* from different geographic origins. Plants

- from Switzerland (Walensee, Monte Caslano, Schleitheim) are related to the plants 121 collected in Italy (Cittiglio, Caslano, Monte Nudo). Another cluster could be found with 122 123 plants from France (St. Vincent de Mercuse). In Austria plants get more diverse in the analyzed rDNA region, the farer from Vienna. Plants from Styria (Mixnitz) and also from 124 Pinzgau (Unken) are highly diverse. Leaves collected in Lower and Upper Austria are very 125 much conserved in the region of ETS/18S/ITS1/5.8S/ITS2. This conserved sequence 126 could also be found in some plants from Salzburg, in samples from Schaffhausen, 127 Mühlheim and also from Orljavac. It could not be found in the plants from Brigachtal and 128
- 129 Schleitheim.

Sequence comparison of geographic regions

139	Fig 4. Sequence alignment of nt 100-150 in the NTS/ETS of selected plants. Plants
138	
137	of the rDNA (data not shown).
136	Austria, Switzerland and Italy (Fig 4). Similar signals could be found in the ITS1 and ITS2
135	France are having a unique signal of AAAA instead AAGA like the analyzed plants form
134	from Italy and Switzerland (TGCCC). Nine bases downstream of this signal plants from
133	plants from Austria and France have an additional G (TGGCCC) which is missing in plants
132	show the difference of plants from Switzerland , Italy , France and Austria. So all analyzed
131	Sequence alignment comparison of 50 bases in the ETS of 14 plants from different origins

141 TTGGCC. The plants from France can be distinguished 9 bases downstream by AAAA

from Italy and Switzerland show the signal TTGCC and plants from Austria and France

instead of AAGA in Austria, Italy and Switzerland.

143 Sequence alignment of ETS from two plants of different origin

144	Downstream of this signals we could also find some single nucleotide differences in the
145	region of ETS. Using two chromatograms, we aligned images of the two chromatograms.
146	Here we compare nucleotide 100-500 of ETS of a leaf from Lower Austria to the
147	corresponding sequence of a leaf from Cittiglio (Fig 5). The difference profile in the middle
148	allows identification of base substitutions, insertions and deletions. As shown in Fig 5., at
149	the 5' are two G in the plant from Lower Austria and just one G in the plant from Italy.
150	Downstream of this signal are 5 additional substitutions in the ETF of the two analyzed
151	plants.
152	
153	Fig 5. Alignment of two chromatograms. Alignment of nucleotide 100-500 of ETS
154	sequence from a plant from Lower Austria (upper lane) and one plant from Cittiglio, Italy
155	(lower lane). The lane in the middle is showing the difference with one additional G in the

156 sequence of the Lower Austria region and five C/T substitution.

157 **Discussion**

By sequencing the region of NTS/ETS/18S/ITS1/5.8S/ITS2 in the rDNA of C.

159 *purpurascens* we could clearly distinguish the geographic region of the origin of the plant.

160 So plants from Austria, Switzerland, Italy and France are having a unique signals in

161 NTS/ETS, ITS1 and ITS2 (Fig 1, 3, 4, 5).

162

rDNA of plants from Austria get more diverse the farer we collect samples from Vienna. So plants from Styria and also from Pinzgau are having several substitutions in the analyzed region. Leaves collected in Lower and Upper Austria are very much conserved in the region of NTS/ETS/18S/ITS1/5.8S/ITS2. This conserved sequence could also be found in some plants from Salzburg, in a sample from Schaffhausen (Switzerland), Mühlheim an der Donau (Germany) and also from Orljavac (Croatia). Surprisingly it could not be found in the plants from Brigachtal (Germany) and Schleitheim (Schaffhausen, Switzerland).

The plants with the conserved sequence similar to the region of Vienna are all growing close to Benedictine gardens. So the leaf from Schaffhausen was collected in the garden of Allerheiligen, Mühlheim an der Donau is close to Beuron Archabbey and near Orljavac was a Benedictine abbey of Saint Michael.

175

The Benedictines had as early as in the 6th century medicinal herb gardens and
distributed many plants across the Alps. Salzburg was and is the center of the
Benedictines with the abbey of St. Peter. Alpine cyclamen were called "Wolfgang
Erdäpferl" by the locals and was said to have a special effect on snakebite, migraine
headaches and as a philter. The roots were sold to Pilgrims as salvation and fertility

symbol [5]. So we suggest that at some point *C. purpurascens* had to be replanted in the
area of Salzburg. We assume that for this reintroduction people used plants from
Benedictine gardens. The plants from Monastery gardens seem to origin from the forests
of Vienna.

185

In the forests of Schleitheim in the Canton of Schaffhausen is another occurrence of *C. purpurascens* which was described in 1989 [1]. The plants found in 1971 are very much related to plants in Switzerland. Unfortunately just beside this plants someone has planted some tubers from the Benedictine gardens. Although there are inflorescences it seems that no seeds germinated, not in Canton Schaffhausen and also not in Germany. That's why there are just small patches of alpine cyclamen and they did not spread.

193 Interestingly plants in canton Schaffhausen are not very close related to the *C*.

194 *purpurascens* growing in Brigachtal which is just 30 km across the border. The plants in

195 Brigachtal seem to relate very much to plants from Austria. But it is possible that alpine

196 cyclamen are naive to limestone in Southern Black Forest / Schaffhausen region.

197 Another very interesting region would be the Tatra Mountains in the Czech Republic which

should be analyzed in further studies. Also molecular cytogenetic mapping of 5S and 35S

rDNA loci was not addressed in this study and should be considered in future studies.

200 Conclusion

201 This is the first molecular analysis of the geographic origin of *C. purpurascens*.

202 An evolutionary and geographically interpretation in a phylogenetic context has been

203 possible. rDNA sequences are variable within the species and some regions show a

specific patten. With this information it is possible to determine the geographic origin of

²⁰⁵ alpine cyclamen and to hypothesizing if it is native or was introduced at some point.

206

207 Acknowledgements

208 The author would like to thank the members of the Flora Austria (Verein zur Erforschung

der Flora Österreichs) particularly Hermann Falkner, Stefan Lefnaer, Georg Pflugbeil,

210 Markus Sabor, Michael Strudl and Maria Zacherl for sending leaves of *C. purpurascens*

211 from all over Austria. Without their precious help this work would not have been possible.

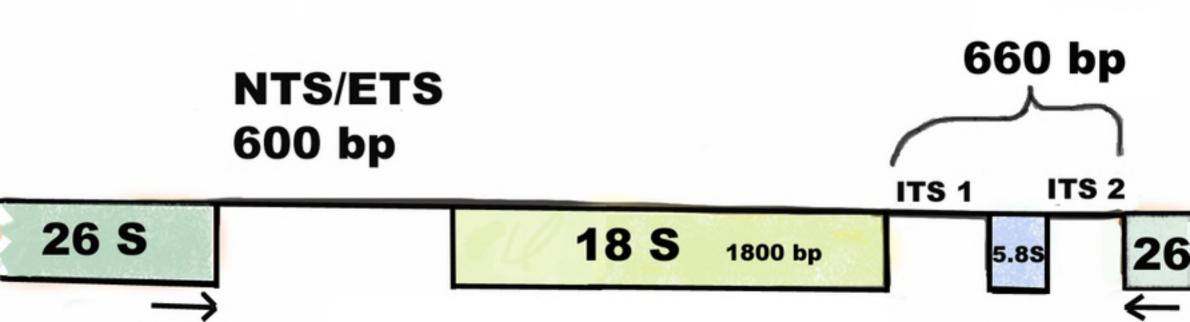
212 Many thanks to Petra Bachmann and Peter Braig of the Canton Schaffhausen and Peter

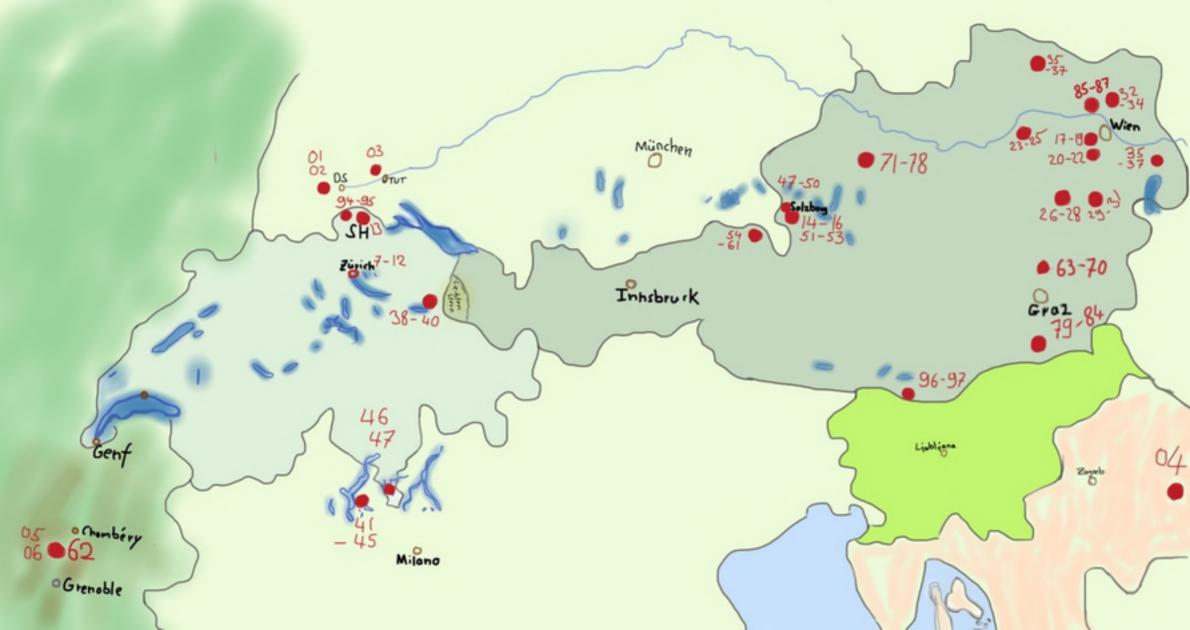
213 Enz, garden manager at the Zurich Botanical Garden for their help. Thanks to Duca Jaag

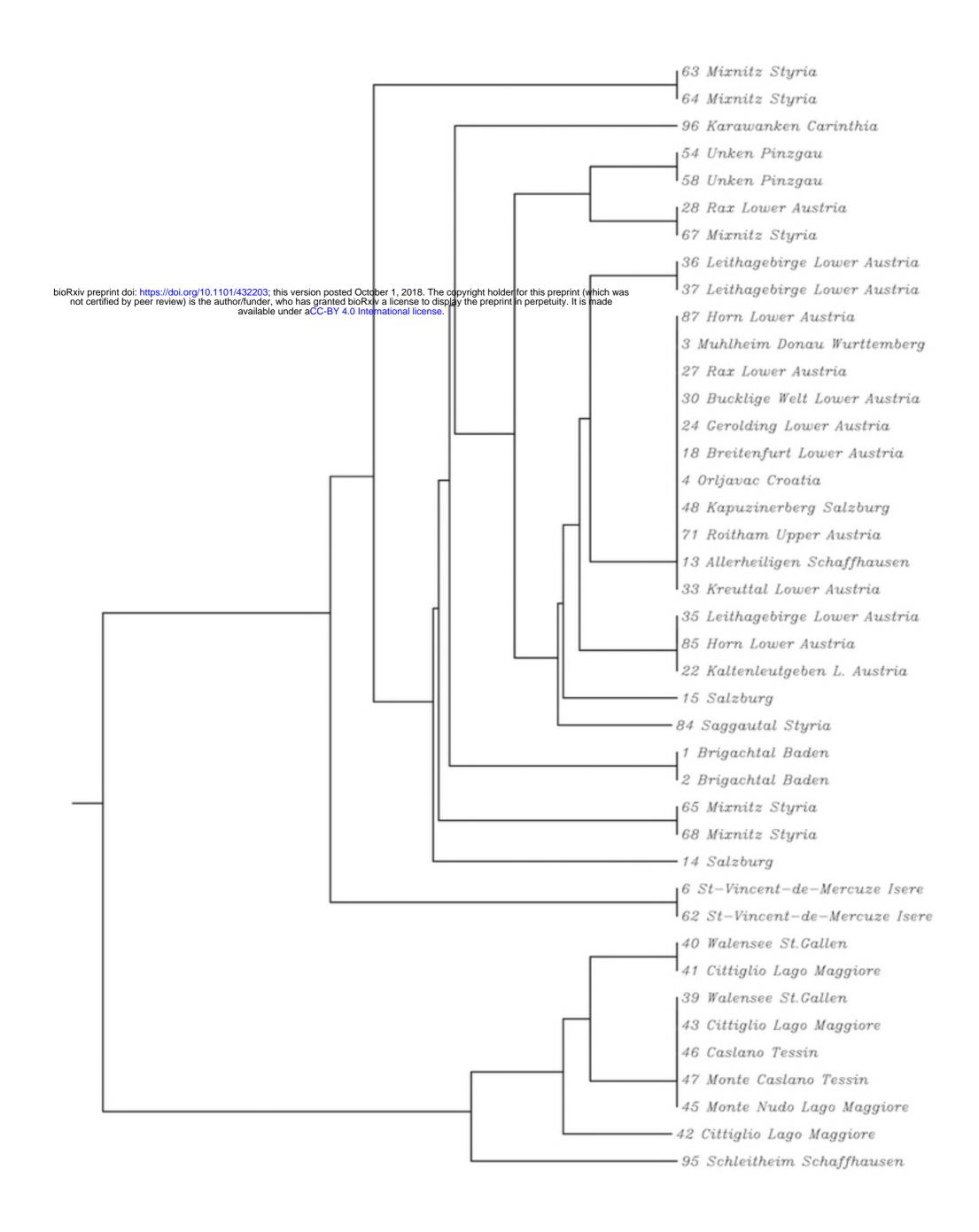
²¹⁴ for the plant from Orljavac. This research was supported by Thomas Kring.

215 The author received no specific funding for this work.

216 **References**

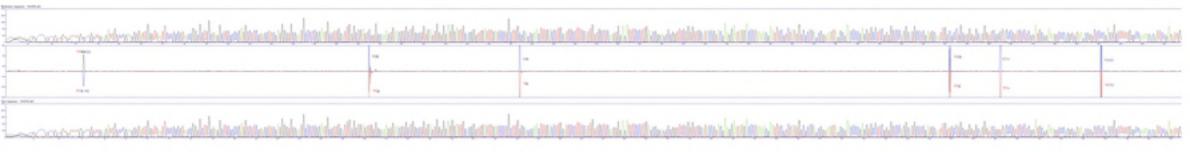

217 **1.** Keller W. Ist das Gemeine Alpenveilchen, Cyclamen purpurascens Mill., im Kanton


218 Schaffhausen ursprünglich? Mitteilungen der Naturforschenden Gesellschaft


219 Schaffhausen, 1998; 43: 25-33.

220 https://www.e-periodica.ch/digbib/view?pid=msh-001:1998:43#30

- 222 2. Welten M, Sutter R. Verbreitungsatlas der Farn- und Blütenpflanzen der Schweiz. 2
- Bde., Basel, Boston, Stuttgart, Birkhäuser. 1982; 716: 698.
- 224
- 225 3. Slovak M, Kucera J, Turis P, Zozomova-Lithova J. Multiple glacial refugia and
- 226 postglacial colonization routes inferred for a woodland geophyte, Cyclamen purpurascens:
- 227 patterns concordant with the Pleistocene history of broadleaved and coniferous tree
- species. Biological Journal of the Linnean Society. 2012; 105: 741–760.
- 229 https://doi.org/10.1111/j.1095-8312.2011.01826.x
- 230
- 4. Anderberg AA, Trift I, Källersjö M. Phylogeny of Cyclamen L. (Primulaceae): Evidence
- ²³² from morphology and sequence data from the internal transcribed spacers of nuclear
- ribosomal DNA. Plant Systematics and Evolution. 2000; 220, 3–4: 147–160.
- 234 https://doi.org/10.1007/BF00985043
- 235
- **5.** Sungler A. Wildes Alpenveilchen. Salzburg Wiki. 2018.
- 237 https://www.sn.at/wiki/Wildes_Alpenveilchen



- 06 St-Vincent-de-Mercuze Isere
- 62 St-Vincent-de-Mercuze Isere
- 63 | Mixnitz | Styria
- 54 Unken Pinzgau
- 18 Breitenfurt | Lower.Austria
- 03 Muhlheim.Donau Wurttemberg
- 04|Orljavac|Croatia
- 13 Allerheiligen Schaffhausen
- 71 Roitham Upper.Austria
- 40 |Walensee | St.Gallen
- 41 Cittiglio Lago.Maggiore
- 95|Schleitheim|Schaffhausen
- 46 Caslano Tessin
- 45 | Monte.Nudo | Lago.Maggiore

TCCCGTTGGTATTTTGGCCCCGTTTCAAAATTGTCCCCGAACGTGATTGGTT TCCCGTTGGTATTTTGGCCCCGTTTCAAAATTGTCCCCGAACGTGATTGGTT TCCCGTTGGTATTTTGGCCCGTTTCAAGATTGTCCCGAACGTGATTGGTT TCCCGTTGGTATTTTGGCCCCGTTTCAAGATTGTCCCCGAACGTGATTGGTT TCCCGTTGGTATTTTGGCCCCGTTTCAAGATTGTCCCCGAACGTGATTGGTT TCCCGTTGGTATTTTGGCCCCGTTTCAAGATTGTCCCCGAACGTGATTGGTT TCCCGTTGGTATTTTGGCCCCGTTTCAAGATTGTCCCCGAACGTGATTGGTT **TCCCGTTGGTATTTGGCCCCGTTTCAAGATTGTCCCCGAACGTGATTGGTT** TCCCGTTGGTATTTTGGCCCGTTTCAAGATTGTCCCGAACGTGATTGGTT TCCCTTTGGTATTTTG-CCCGTTTCAAGATTGTCCCGAACGTGATTGGTT TCCCTTTGGTATTTG-CCCGTTTCAAGATTGTCCCGAACGTGATTGGTT TCCCGTTGGTATTTTG-CCCGTTTCAAGATTGTCCCCGAACGTGATTGGTT TCCCGTTGGTATTTTG-CCCGTTTCAAGATTGTCCCGAACGTGATTGGTT TCCCGTTGGTATTTTG-CCCGTTTCAAGATTGTCCCGAACGTGATTGGTT

