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ABSTRACT	
Antigenic	variation	is	employed	by	many	pathogens	to	evade	the	host	immune	response,	and	Trypanosoma	
brucei	has	evolved	a	complex	system	to	achieve	this	phenotype,	involving	sequential	use	of	variant	surface	
glycoprotein	 (VSG)	genes	encoded	 from	a	 large	 repertoire	of	~2,000	alleles.	T.	brucei	 express	multiple,	
sometimes	closely	related,	VSGs	in	a	population	at	any	one	time,	and	the	ability	to	resolve	and	analyse	this	
diversity	has	been	limited.	We	applied	long	read	sequencing	(PacBio)	to	VSG	amplicons	generated	from	
blood	extracted	from	batches	of	mice	sacrificed	at	time	points	(days	3,	6,	10	and	12)	post-infection	with	T.	
brucei	TREU927.	The	data	showed	that	 long	read	sequencing	 is	 reliable	 for	resolving	allelic	differences	
between	VSGs,	and	demonstrated	that	there	is	significant	expressed	diversity	(449	VSGs	detected	across	
20	mice)	 and	 across	 the	 timeframe	 of	 study	 there	was	 a	 clear	 semi-reproducible	 pattern	 of	 expressed	
diversity	(median	of	27	VSGs	per	sample	at	day	3	post	infection	(p.i.),	82	VSGs	at	day	6	p.i.,	187	VSGs	at	day	
10	p.i.	and	132	VSGs	by	day	12	p.i.).	There	was	also	consistent	detection	of	one	VSG	dominating	expression	
across	replicates	at	days	3	and	6,	and	emergence	of	a	second	dominant	VSG	across	replicates	by	day	12.	
The	 innovative	 application	 of	 ecological	 diversity	 analysis	 to	 VSG	 reads	 enabled	 characterisation	 of		
hierarchical	VSG	expression	in	the	dataset,	and	resulted	in	a	novel	method	for	analysing	such	patterns	of	
variation.		Additionally,	the	long	read	approach	allowed	detection	of	mosaic	VSG	expression	from	very	few	
reads	–	this	was	observed	as	early	as	day	3,	the	earliest	that	such	events	have	been	detected.	Therefore,	our	
results	indicate	that	long	read	analysis	is	a	reliable	tool	for	resolving	diverse	allele	expression	profiles,	and	
provides	 novel	 insights	 into	 the	 complexity	 and	 nature	 of	 VSG	 expression	 in	 trypanosomes,	 revealing	
significantly	 higher	 diversity	 than	 previously	 shown	 and	 identifying	 mosaic	 gene	 formation	
unprecedentedly	early	during	the	infection	process.	
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INTRODUCTION	
Antigenic	variation	is	used	by	many	pathogens	as	a	means	of	staying	one	step	ahead	of	the	host’s	adaptive	
immune	response.	Trypanosoma	brucei	has	long	been	a	paradigm	for	the	study	of	antigenic	variation,	and	
the	protein	responsible,	the	variable	surface	glycoprotein	(VSG)	has	been	the	focus	of	much	research	[1-3].	
Each	trypanosome	in	a	population	expresses	a	single	species	of	protein,	and	an	inherent,	parasite-driven	
switching	process	causes	a	proportion	of	the	population	to	replace	their	active	VSG	gene	with	a	different	
VSG	gene,	resulting	in	the	expression	of	a	protein	in	those	cells	with	different	epitopes	exposed	to	the	host	
immune	system	(at	a	rate	of	up	to	10-2	switches	per	cell/generation	[4]).	The	post-genomic	era	has	revealed	
T.	brucei’s	antigenic	variation	system	to	be	unrivalled	in	its	elaboration,	particularly	in	terms	of	the	scale	of	
the	numbers	of	genes	that	comprise	the	VSG	family.	Sequencing	the	genome	of	T.	brucei	has	uncovered	a	
gene	family	much	greater	in	numbers	and	complexity	than	was	previously	thought.	Characterisation	to	date	
suggests	that	at	least	2,000	VSG	genes	are	in	the	genome	of	each	trypanosome,	providing	a	spectacularly	
large	repertoire	of	potential	antigens	[5,	6],	particularly	when	compared	to	other	pathogens	that	undergo	
antigenic	variation,	such	as	Plasmodium	Falciparum	(60	genes	in	PfEMP1	family	[7]),	Anaplasma	marginale	
(~10	members	in	the	msp2	&	msp3	gene	families	[8]),	and	Borrelia	burgdorferi	(15	members	in	the	vls	gene	
family[9]).		

The	scale	of	the	gene	family	size	is	also	reflected	in	the	complexity	of	switching	mechanisms	employed	to	
change	 the	 identity	 of	 the	 surface	 antigen.	 The	 VSGs	 are	 expressed	 from	 one	 of	 approximately	 20	
bloodstream	 expression	 sites	 (BES)[10],	 the	 active	 expression	 occurring	 in	 a	 dedicated	 sub-nuclear	
organelle,	the	expression	site	body	(ESB)[11],	with	the	remainder	of	BESs	being	transcriptionally	silent.	A	
minor	 mechanism	 of	 VSG	 switching,	 accounting	 for	 only	 approximately	 10%	 of	 events	 in	 wild	 type	
trypanosomes	[12],	 is	 to	 turn	off	 the	 transcription	of	 the	active	BES	and	activate	one	of	 the	silent	BESs	
(‘transcriptional	switching’).	However,	the	majority	of	switching	is	through	replacing	the	gene	sequence	in	
the	active	BES	via	gene	duplication,	which	involves	the	copying	of	variable	amounts	of	sequence,	ranging	
from	within	 the	 gene	 to	 the	whole	 telomere	 [13,	 14].	 Insights	 into	mechanisms	 involved	 in	 switching	
suggest	 that	 replacing	 allelic	 sequence	 is	 driven	 by	 DNA	 recombination,	 and	 DNA	 repair/homologous	
recombination	 pathways	 and	 proteins	 (e.g.	 RAD51)	 have	 been	 identified	 to	 be	 involved	 in	 the	 gene	
duplication	 process	 of	 VSG	 switching	 [15]	 (reviewed	 in	 [16]).	 A	 further	 layer	 of	 complexity	 is	 the	
construction	of	novel	VSG	sequences	in	the	BES	from	multiple	donor	VSG	sequences,	a	form	of	segmental	
gene	 conversion	 termed	 ‘mosaic’	 gene	 conversion	 [17,	 18].	 Mosaic	 gene	 formation	 was	 previously	
considered	to	be	a	rare	and	minor	mechanistic	component	of	overall	VSG	switching	in	an	infection	(e.g.	
[14]).	However,	the	revelation	upon	the	sequencing	of	the	T.	brucei	genome	that	a	significant	proportion	of	
the	VSG	repertoire	(80-90%)	consisted	of	pseudogenes	[19]	that	cannot	be	expressed	as	functional	proteins	
began	to	alter	that	perception	[5,	20].	It	has	become	clear	from	subsequent	experimental	work	that	mosaic	
gene	formation	is	an	integral	component	of	VSG	switching,	particularly	after	the	early	stages	of	infection	
(i.e.	beyond	the	first	peak	of	parasitaemia	in	mouse	infections)[5,	21].	

One	 of	 the	 challenges	 of	 analysing	 VSG	 expression	 in	 vivo,	 and	 in	 particular	 gaining	 an	 accurate	
measurement	of	the	level	of	expressed	diversity	given	the	extent	of	the	VSG	repertoire	(i.e.	to	what	extent	
is	 the	 repertoire	 actually	 used	 during	 infection),	 has	 been	 the	 relatively	 limited	 resolution	 of	 available	
techniques	 –	 in	 particular	 the	manual	 cloning	 and	 sequencing	 of	 individual	 VSG	 cDNAs	 that	 has	 been	
undertaken	 in	recent	studies	[5,	21]).	While	this	approach	clearly	provides	accurate	data	at	 the	 level	of	
individual	VSG	transcripts,	the	limitations	have	undoubtedly	resulted	in	a	low	estimate	of	the	diversity	and	
complexity	 of	 VSG	 expression	 at	 the	 population	 level,	 and	 particularly	 with	 respect	 to	 minor	 variant	
populations.	 Additionally,	 although	 transcriptomics	 potentially	 provides	 the	 ability	 to	 overcome	 the	
resolution	limitations	of	manually	cloning	and	sequencing	transcripts,	the	application	of	RNAseq	to	VSG	
expression	from	in	vivo	samples	has	long	been	deemed	challenging,	due	to	the	requirement	for	assembling	
multiple	 closely	 related	 alleles	 from	 a	mixed	 population	 using	 short	 reads	 of	 100-200	 base	 pairs	 (e.g.	
Illumina)	–	this	has	similarly	been	an	issue	when	attempting	to	resolve,	for	example,	the	diversity	of	the	
mammalian	 B	 cell	 repertoire	 underpinning	 the	 antibody	 response	 (e.g.	 [22]).	 However,	 a	 recent	 study	
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subjected	in	vivo	samples	to	Illumina	sequencing	(100bp,	single-end	reads)	and	demonstrated	the	utility	
of	transcriptomics	in	terms	of	increased	resolution	[23],	and	were	able	to	detect	minor	populations	(0.1%	
of	population)	and	up	to	79	variants	at	a	 time	point,	although	they	were	not	able	to	 identify	significant	
mosaic	gene	expression.		

Long	read	sequencing	potentially	provides	the	ability	to	further	increase	our	resolution,	particularly	as	the	
length	of	reads	commonly	reached	with	such	technologies	(average	read	length	in	Pacbio,	for	example,	is	
quoted	 as	 10-20,000	 bp;	 http://www.pacb.com/smrt-science/smrt-sequencing/read-lengths/)	 far	
exceeds	the	length	of	the	VSG	transcript	(approximately	1600	bp),	meaning	that	the	issue	of	assembly	of	
closely	VSGs	from	multiple	reads	should	be	bypassed.	Here,	we	present	analysis	of	VSG	expression	from	
replicate	in	vivo	T.	brucei	TREU927	infections	in	mice	at	4	time	points	over	12	days	using	almost	500,000	
Pacbio	Sequencing	reads.	We	demonstrate	that	long	read	technologies	provide	significant	advantages	for	
analysing	the	diversity	of	VSG	expression.	Our	data	suggest	that	the	VSG	population	comprises	significantly	
more	variants	even	at	an	early	stage	of	 infection	(up	 to	190	variants	at	day	10	post-infection),	 that	 the	
pattern	of	VSG	expression	is	surprisingly	reproducible	(using	the	novel	application	of	ecological	diversity	
indices),	and	that	mosaic	gene	expression	can	be	detected	much	earlier	in	infection	than	has	been	possible	
previously.	Our	data	also	provides	insights	into	the	nature	of	mutations	introduced	by	Pacbio	long-read	
sequencing	technology,	as	the	dataset	includes	significant	coverage	of	one	sequence	(>140,000	reads).	

RESULTS	

LONG	READ	SEQUENCING	MAPS	THE	VSG	TRANSCRIPTOME	AT	UNPRECEDENTED	
RESOLUTION	
Using	PacBio	long	read	RNA	sequencing	of	20	blood	samples	enriched	for	VSG	transcripts	from	replicate	in	
vivo	T.	brucei	TREU927	infections	in	mice	at	3,	6,	10	and	12	days	post	infection,	we	obtained	486,343	reads	
with	an	average	read	length	of	insert	of	1,569	bp	(Table	1,	Figure	1B).	Reads	were	filtered	by	length	(1400-
2000bp)	based	upon	both	literature	on	VSG	genes	[21,	24]	and	the	read	distribution	in	our	dataset	(Figure	
1B)	to	remove	reads	resulting	from	sequencing	artefacts	and	shorter	fragments	(i.e.	partial	reads),	and	on	
the	basis	of	similarity	to	known	VSGs	(blastn	≥60%	alignment	against	TriTrypDB-v26	[25])	(Figure	1C).	
This	resulted	in	a	dataset	of	296,937	reads,	with	an	average	of	6.50	full	passes	per	read	(summarised	in	
Table	1;	full	data	in	S1	Table),	and	a	robust	identification	of	a	donor	gene	for	the	N-Terminal	domain	(NTD),	
where	we	have	high	confidence	in	the	reads	containing	all	of	the	features	necessary	to	be	consistent	with	
being	full	length	VSG	transcripts.	The	296,937	reads	represent	a	total	of	449	VSGs	(74.77%	of	VSG	a-type	
and	25.22%	VSG	b-type	[24])	across	20	samples,	with	the	number	of	reads	per	VSG		following	a	power-law	
distribution	(Figure	1D),	and	provide	a	unique	insight	into	the	in	vivo	VSG	transcriptome	across	time	and	
animal	replicate.		

PACBIO	SEQUENCES	CONTAIN	RANDOM	ERRORS	EVEN	AT	HIGH	NUMBER	OF	FULL	PASSES	

ORFs	 were	 identified	 in	 the	 296,937	 reads	 with	 a	 conservative	 minimum	 nucleotide	 size	 of	 1200	
nucleotides	(reported	size	ranges	of	VSG	NTDs	and	C-Terminal	domains	[CTDs]	are	approximately	300-
350	 and	100	 amino	 acids,	 respectively	 [5,	 21,	 24]).	 	 Surprisingly,	 only	 33,234	 reads	 (11%)	 resulted	 in	
predicted	ORFs.	Although	the	percentage	of	reads	with	predicted	ORF	increased	with	increasing	number	
of	full	passes,	it	remained	well	below	50%	even	for	reads	having	10	full	passes	or	more	(Figure	2A).	Since	
the	distribution	of	the	number	of	reads	with	a	detectable	ORF	over	all	VSGs	was	similar	to	total	expression	
level	distribution	(Table	2),	we	hypothesize	that	the	lack	of	identified	ORFs	was	due	to	random	sequencing	
errors	rather	than	any	systematic	biases	in	the	data,	despite	PacBio	claiming	an	accuracy	of	more	than	99%	
for	reads	with	15-fold	coverage	[26].	To	investigate	this	hypothesis	in	more	detail,	we	focused	on	the	most	
abundant	VSG	(Tb08.27P2.380,	1551bp,	141,822	high-confidence	reads)	and	annotated	each	discrepant	
base	 pair	 of	 each	 aligned	 read	 as	 either	 an	 insertion,	 deletion	 or	 mismatch	 with	 respect	 to	 the	
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Tb08.27P2.380	reference	genome	sequence.	All	reads	had	an	alignment	score	greater	than	90%	over	the	
first	1266bp	 (the	N-Terminal	domain)	 (Figure	2B).	The	distribution	of	 sequence	errors	 showed	a	 clear	
bimodal	 pattern	 across	 the	 N-Terminal	 domain,	 with	 145	 nucleotide	 positions	 having	 a	 consistent	
mismatch	(131),	deletion	(10)	or	insertion	(4)	across	more	than	80%	of	the	reads,	and	1,112	nucleotide	
positions	having	errors	 in	at	 least	one	but	 fewer	 than	10%	of	reads	(Figure	2B).	This	suggests	 that	 the	
former	 represent	 genuine	 mutations	 already	 present	 in	 our	 inoculum	 (with	 respect	 to	 the	 reference	
genome	sequence),	whereas	the	latter	represent	either	random	sequencing	errors	introduced	by	Pacbio	or	
low	level	genuine	mutations	that	we	cannot	currently	distinguish	from	Pacbio	error.		Previous	studies	have	
indicated	accumulation	of	mutations	over	time	in	expressed	VSGs,	and	we	examined	this	in	our	data	for	
reads	aligning	to	Tb08.27P2.380	(for	the	N-terminal	domain)	by	assessing	the	error	rate	for	mismatches,	
insertions	and	deletions	(S2	Figure).	While	these	data	indicated	statistical	support	for	differences	in	the	
data	 distribution	 across	 time	 points	 for	 all	 3	 mutation	 classes,	 due	 to	 the	 skewed	 nature	 of	 the	 data	
distribution	(most	bases	have	an	error	rate	close	to	zero)	this	conclusion	must	be	treated	with	a	degree	of	
caution.	 	The	assertion	 that	 the	errors	present	 in	>80%	of	 reads	were	 ‘genuine’	mutations	was	 further	
supported	 by	 these	 145	mutations	 being	 consistently	 present	 in	 PCR	 amplicons	 generated	 from	 cDNA	
extracted	 from	multiple	 samples	 that	were	 sequenced	by	Sanger	 sequencing	 (n=12	 for	Tb08.27P2.380;	
representing	sequences	independently	cloned	and	sequenced	from	7	mice	on	days	3,	6	and	10;	data	not	
shown).		Deletions	were	by	far	the	most	common	Pacbio-introduced	error	(average	per-base	error	rate	of	
3.2%	 across	 the	 N-terminal	 domain	 sequence),	 followed	 by	mismatches	 (0.8%)	 and	 insertions	 (0.3%)	
(Figure	2C),	 in	agreement	with	what	has	been	reported	before	[27].	Consistent	with	the	ORF	prediction	
pattern	(Figure	2A),	the	overall	error	percentage	was	lower	for	reads	with	higher	number	of	passes,	but	
introduced	sequencing	errors	(i.e.	interpreted	as	mutations	not	present	in	the	genome	of	the	inoculated	
trypanosomes)	remained	present	at	more	than	1000	nucleotide	positions	even	for	reads	with	10	passes	
(Figure	2D).	The	nature	of	our	data,	comprising	>141,000	reads	of	the	same	sequence,	therefore	provides	
an	unusually	 robust	 insight	 into	 the	nature	of	Pacbio	 errors	 and	 the	 caveats	 that	must	be	placed	upon	
interpretation	of	such	data,	as	most	studies	involve	much	less	coverage	per	single	base	pair.	

VSG	 POPULATION	 COMPRISES	 MORE	 VARIANTS	 THAN	 EXPECTED	 AND	 IS	 HIGHLY	
REPRODUCIBLE	

Our	data	demonstrate	that	we	can	detect	multiple	VSGs	in	each	sample,	and	that	we	can	identify	changes	
in	VSG	expression	and	diversity	over	time.	We	identified	a	median	of	27	unique	VSGs	per	sample	at	day	3	
post	 infection	 (p.i.),	which	 progressed	 to	 82	VSGs	 at	 day	 6	 p.i.,	 peaking	 at	 187	VSGs	 at	 day	 10	p.i.	 and	
reducing	to	132	VSGs	by	day	12	p.i.		(Figure	3A).	When	identified	VSGs	that	mapped	to	single	reads	from	
single	samples	were	removed,	this	resulted	in	an	identification	of	334	VSGs	(median	of	27,	81,	170	and	126	
VSGs	per	sample	at	3,	6,	10,	and	12	days	p.i.,	respectively).	

Not	 only	were	 the	number	of	 distinct	VSGs	 consistent	 across	 samples	 for	 the	 same	 time	point,	 but	 the	
expression	 pattern	 (proportion	 of	 reads	 per	 sample	 mapping	 to	 particular	 VSGs)	 was	 also	 highly	
reproducible	between	samples	and	over	time	(Figure	3B),	albeit	bearing	in	mind	that	these	analyses	are	of	
batches	of	mice	at	four	different	time	points	rather	than	longitudinal	samples	of	the	same	mice.	The	VSG	
that	is	dominant	at	day	3	(Tb08.27P2.380),	presumably	introduced	as	the	dominant	VSG	in	the	inoculum,	
remains	dominant	in	all	mice	at	day	6,	but	is	only	the	VSG	with	the	most	reads	aligned	in	only	two	of	five	
mice	at	day	10.	Interestingly,	by	day	12,	the	VSG	with	the	most	reads	per	sample	is	the	same	in	all	five	mice	
(Tb09.v4.0077)	 and	 this	 VSG	 was	 also	 most	 common	 at	 similar	 timepoint	 in	 previous	 analyses	 [21].	
Additionally,	the	other	eight	VSGs	that	reads	map	to	in	mice	at	days	10	and	12	(Tb927.4.5730,	Tb927.10.10,	
Tb11.v5.0932,	 Tb927.9.300,	 Tb09.v4.0088,	 Tb05.5K5.330,	 Tb927.9.16490	 and	Tb927.3.480;	 Figure	 3B)	
are	present	 in	all	 ten	mice	 suggesting	a	degree	of	 conservation	 in	 the	 sequential	 expression	of	VSGs	 in	
independent	infections,	consistent	with	previous	observations	[21,	28,	29].	However,	in	all	mice	there	were	
reads	that	mapped	to	VSGs	distinct	to	these	most	favoured	10	VSGs	(‘others’	in	Figure	3B,	which	account	
for	10.36%	of	all	VSG-mapped	reads),	and	in	some	mice	this	proportion	was	particularly	high	(e.g.	mice	3.5,	
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6.1	 and	 10.4;	 Figure	 3B).	 This	 is	 particularly	 evident	 at	 day	 6,	 where	 although	 the	 dominant	 VSG	
(Tb08.27P2.380)	makes	up	most	reads,	the	majority	of	reads	that	do	not	map	to	Tb08.27P2.380	map	to	
VSGs	other	 than	 the	other	 top	9	VSGs	 in	all	mice.	Additionally,	 at	Day	10	we	observe	both	 the	greatest	
number	of	VSGs	and	the	least	domination	by	any	single	VSG,	but	the	proportion	of	‘others’	either	reduces	
or	remains	stable.	These	analyses	combine	to	indicate	that	while	there	is	a	broad	hierarchy	in	expression,	
with	dominant	VSGs	at	the	beginning	and	end	of	infections,	in	between	these	timepoints	there	is	a	degree	
of	stochasticity	in	the	system	–	although	eight	VSGs	comprise	the	majority	of	reads	that	do	not	map	to	either	
of	the	two	dominant	VSGs,	the	relative	proportion	of	these	‘minority’	VSGs	is	not	consistent,	and	there	are	
furthermore	many	VSGs	that	are	expressed	at	very	low	levels	in	all	mice.			

The	analysis	described	 thus	 far	 (Figure	3)	has	not	 taken	 into	account	any	 sequence	 similarity	between	
VSGs,	but	relied	on	mapping	reads	to	identified	VSGs	in	the	reference	database.	To	analyse	the	population	
diversity	of	VSGs	within	and	across	samples	using	a	method	that	 is	 independent	of	mapping	to	existing	
databases	(which	are	likely	to	be	incomplete),	we	applied	information	theoretic	measures	more	commonly	
used	to	quantify	the	biodiversity	of	ecosystems	[30].	This	approach	initially	applied	a	clustering	algorithm	
to	a	proportion	of	reads	(n=33,205;	comprising	reads	with	predicted	ORF)	in	order	to	enable	identification	
of	the	reads	that	clustered	on	the	basis	of	sequence	similarity,	as	putatively	distinct	VSGs	(Figure	4A).	These	
data	showed	significant	congruity	with	those	described	for	the	VSG	mapping	approach	described	above	
(Table	2).	The	top	10	clusters	comprised	89.34%	of	all	reads,	compared	to	89.68%	for	the	VSG	mapping	
approach,	and	the	relative	proportion	of	reads	that	either	map	to	VSGs	or	cluster	by	sequence	similarity	is	
very	comparable	for	the	10	most	abundant	VSGs	(Table	2).	These	data	indicate	that	the	clustering	algorithm	
applied	was	robust	in	terms	of	identifying	individual	VSGs,	and	therefore	indicated	a	very	similar	pattern	
of	a	dominant	early	VSG,	followed	by	an	intermediate	period	of	significant	greater	VSG	diversity,	ending	up	
with	a	second	dominant	VSG	by	day	12.		

The	sequence	similarity	data	also	allowed	the	analysis	of	variability	between	mice	using	a	new	measure	of	
population	differentiation	called	normalised	beta	diversity	[30]	(Figure	4B).	When	looking	at	a	single	day,	
beta	diversity	is	the	effective	number	of	distinct	VSG	profiles	present	on	that	day,	giving	information	on	the	
differentiation	between	the	animals.	This	analysis	indicates	(similar	to	the	VSG	mapping	data)	the	greatest	
beta	diversity	across	individuals	is	at	day	10	(Figure	4B	solid	line).	

	Further	exploring	each	time	point	and	variation	between	mice	(Figure	4B	dots),	we	can	see	that	although	
the	mice	 at	 day	 3	 show	 some	distinct	 VSG	profiles	 (albeit	with	 overexpressed	VSGs	 in	 individual	mice	
common	to	all	mice,	SI	Figure	3),	at	day	6	most	mice	(except	for	mouse	6.5)	are	broadly	consistent	with	
respect	 to	 which	 VSGs	 are	 present	 and	 how	 common	 they	 are.	 The	 effective	 number	 of	 VSG	 profiles	
increases	further	on	day	10	with	maximal	divergence	between	mice	at	any	time	point,	(Figure	4B,	solid	
line).	This	value	then	decreases	on	day	12	(though	mouse	12.2	is	distinct),	as	the	mice	begin	to	express	
similar	 profiles	 again.	 These	 analyses	 again	 indicate	 that	 there	 is	 stochasticity	 in	 the	 process	 of	 VSG	
expression	considered	as	a	progression	over	12	days,	and	there	 is	semi-predictability	rather	than	strict	
hierarchical	progression	through	VSG	expression,	as	has	been	described	previously	[21,	29,	31,	32]		

MOSAIC	VSG	GENES	ARE	PRESENT	EARLY	IN	INFECTION	
Mosaic	 genes	 were	 identified	 where	 BLAST	 hits	 for	 a	 particular	 read	 demonstrated	 non-overlapping	
homology	 to	more	 than	one	distinct	VSG	 in	 the	 reference	database.	 This	was	 commonly	 seen	 in	 the	C-
Terminal	domain,	where	the	same	N-Terminal	domain	was	in	many	instances	observed	with	different	C-
Terminal	 domains	 (“3’	 donation”	 in	 [21]).	 Using	 pairwise	 alignments	 of	 all	 reads	 that	 mapped	 to	
Tb08.27P2.380,	based	on	the	alignment	coverage	over	the	gene,	donors	were	filtered	based	on	the	region	
representing	the	C-Terminal	domain	(the	3’	region	approximating	to	30%	of	the	gene	shown	in	Figure	5A).	
Donors	were	selected	based	at	least	80%	alignment	coverage	to	the	CTD.	These	data	show	that	the	reads	
aligning	to	Tb08.27P2.380	consists	of	three	subgroups	based	on	their	CTD	donors,	which	are	derived	from	
either	 the	 reference	 gene	 Tb08.27P2.380	 (43%	 of	 all	 reads),	 but	 also	 from	 Tb10.v4.0158	 (29%)	 or	
Tb927.6.5210	 (28%).	 	 The	 proportion	 of	 the	 three	 donor	 CTDs	 varies	 across	 time	 points,	 with	 the	
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proportion	of	reads	deriving	from	the	donor	Tb08.27P2.380	gene	decreasing	by	days	10	and	12	(reducing	
from	 46.55%	 at	 day	 3	 to	 day	 26.19%	 at	 day	 12,	 although	 the	 number	 of	 reads	 in	 total	 aligning	 to	
Tb08.27P2.380	is	low	by	days	10	and	12).	The	frequent	nature	of	this	recombination	has	been	observed	
previously	[21].	We	detected	N-Terminal	domain	mosaics	(within	the	constraints	of	our	stringent	selection	
criteria)	at	a	much	lower	frequency	(n=45	over	all	20	mice;	three	sequences	at	day	3,	five	at	day	6,	13	at	
day	10	and	23	and	day	12	–	S3	Table),	and	in	most	cases	these	are	single	read	examples,	and	so	must	be	
treated	with	some	caution	(albeit	12	of	the	putative	mosaic	reads	have	coverage	of	at	least	7	full	passes,	a	
coverage	level	at	which	our	analysis	–	Figure	2D	–	suggests	should	effectively	remove	sequencing-derived	
error).	However,	we	have	two	examples	where	we	have	more	than	one	read	indicating	N-Terminal	domain	
mosaicism,	with	the	additional	support	for	one	of	these	sequences	that	it	is	only	detected	in	one	mouse	–	
given	the	complex	nature	of	previously	 identified	mosaic	N-Terminal	domains	[5,	21],	 it	 is	unlikely	that	
identical	 mosaics	 would	 emerge	 in	 separate	 individual	 infections.	 Nevertheless,	 we	 do	 also	 have	 one	
putative	 mosaic	 sequence	 that	 occurs	 in	 two	 separate	 mice	 (balbc_6_0/100673/ccs5	 and	
balbc_12_1/30571/ccs9	in	mice	6.1	and	12.1,	respectively;	S3	Table)	–	this	may	either	represent	a	gene	
currently	not	annotated	in	the	TREU927	genome	or	be	a	true	mosaic	gene	that	was	present	in	the	initial	
inoculum	and	has	remained	at	low	levels	throughout	infection.	The	N-Terminal	domain	mosaic	examples	
we	have	detected	are	mostly	relatively	simple	mosaic	genes	(e.g.	Figure	5B).	Although	at	a	low	frequency,	
these	are	the	earliest	in	trypanosome	infections	that	N-Terminal	domain	mosaic	gene	formation	has	been	
detected,	and	the	increased	frequency	over	time	is	consistent	with	expectations	that	this	process	is	rarest	
early	in	infection.	

DISCUSSION	
The	results	illustrate	the	power	of	long	read	sequencing	when	applied	to	expressed	allelic	diversity	–	we	
identified	449	VSGs	across	20	individual	samples,	covering	four	time	points	post-infection	(3,	6,	10	and	12	
days).	The	identification	of	the	VSGs	was	achieved	by	two	approaches;	mapping	reads	to	a	reference	VSG	
database,	and	clustering	read	sequences	to	identify	distinct	variants	–	these	independent	approaches	were	
highly	congruent	in	the	number	of	VSGs	and	the	proportion	of	reads	that	were	attributed	to	individual	VSGs	
(Table	2).	When	compared	with	previous	approaches,	such	as	manual	cloning	(801	VSG	sequences	that	
comprised	93	distinct	VSGs	or	‘sets’	across	11	mice	across	19	days	of	sampling	each	[21])	or	short	read	
Illumina	sequencing	(289	VSGs	for	4	mice	–	3	mice	sampled	9	times	over	30	days	and	one	mouse	sampled	
13	times	over	105	days),	the	Pacbio	approach	gives	significantly	higher	resolution	per	sample.	It	must	be	
acknowledged	that	in	the	present	study	the	starting	volume	of	infected	blood	for	each	sample	was	higher	
(200	µl	versus	50-100	µl	 in	[23]	and	approximately	15	µl	 in	[21]),	and	additionally	the	 inoculum	in	the	
current	study	was	significantly	greater	and	not	clonal,	meaning	the	study	design	may	predispose	to	more	
expressed	variants	being	detectable.	The	TREU927	clone	used	was	also	highly	virulent,	giving	rise	to	a	high	
parasitaemia	 early	 that	was	maintained	 for	 the	 12	 days	 of	 infection	 –	 this	 is	 not	 representative	 of	 the	
classical	 fluctuating	 profile	 of	 less	 virulent	 strains	 (or	 clones	 of	 this	 strain,	 e.g.	 [33]);	 however,	 for	 the	
purposes	of	 assessing	 the	utility	 of	 pacbio	 this	was	 advantageous.	 	A	proportion	of	 the	 identified	VSGs	
(115/449)	derive	from	single	reads	in	single	samples,	and	therefore	a	degree	of	caution	must	be	employed	
with	these	variants.	However,	when	the	singleton	VSGs	are	removed,	we	can	confidently	conclude	that	we	
have	identified	334	VSGs	across	our	datasets	–	this	ranges	from	a	median	of	27	VSGs	in	day	3	samples	to	
170	in	day	10	samples.	Therefore,	despite	these	caveats,	we	can	still	conclude	that	the	resolution	in	terms	
of	diversity	is	significant	for	the	long	read	approach,	and	likely	to	be	of	great	utility	for	studies	incorporating	
VSG	diversity	going	forward.		

Despite	the	limitations	of	the	study	design,	where	we	have	analysed	batches	of	mice	at	four	time	points	
rather	than	longitudinal	surveys	of	individual	mice,	our	data	across	20	mice	and	four	time	points	are	very	
consistent	with	a	highly	reproducible	of	pattern	of	VSG	expression	over	time	(Figure	3	&	Table	2).	There	
was	 a	 remarkable	 degree	 of	 consistency	 in	 identity	 of	 dominant	 VSGs	 across	 independent	 infections	 –	
particularly	as	the	inoculum	used	was	not	a	single	cell	or	a	cloned	inoculum	(this	is	very	distinct	from,	for	
example,	Borrelia,	where	Pacbio	analysis	has	indicated	very	little	overlap	in	expressed	antigen	diversity	
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across	replicates	from	the	same	starting	inoculum	[34]).	The	data	demonstrated	a	consistent	emergence	of	
the	two	sequentially	dominant	variants	at	the	beginning	and	end	of	the	infection	period	(Tb08.27P2.380	
and	 Tb09.v4.0077),	 although	 during	 the	 period	 in	 between	 the	 dominant	 VSGs	 there	 was	 significant	
diversity	in	expressed	VSGs	that	was	consistent	with	an	inherent	degree	of	stochasticity	in	the	system.	This	
was	reinforced	by	the	application	of	biodiversity	analysis	(Figure	4),	which	illustrated	the	semi-predictable	
nature	of	 the	variant	progression	across	 the	mice	and	timepoints.	This	chimes	with	previous	work	that	
described	the	semi-hierarchical	expression	of	VSGs	in	T.	brucei	[21,	28,	29],	and	modelling	approaches	that	
have	also	reflected	semi-ordered	use	of	the	VSG	repertoire	[31,	32,	35].		

When	analysing	our	data	set	and	comparing	with	that	of	Hall	et	al,	2013,	who	used	the	same	TREU927	
strain,	we	have	significant	overlap	in	detected	expressed	variants.	90%	of	our	reads	correspond	with	a	VSG	
detected	in	Hall	et	al.	The	dominant	early	VSG	is	different	(corresponding	to	‘Set_23’	in	the	Hall	data,	Table	
2),	although	the	Tb09.v4.0077	which	becomes	dominant	by	day	12	was	similarly	dominant	by	~day	20	in	
Hall	et	al;	differences	are	presumably	due	to	the	use	of	either	a	stabilate	with	a	distinct	passage	history,	or	
the	 use	 of	 a	 larger	 inoculum	 rather	 than	 single	 trypanosomes	 (i.e.	 inoculation	 of	 a	 population	 from	 a	
previous	infection	presumably	expressing	the	dominant	VSG	at	that	particular	stage).	The	dominant	VSG	in	
our	dataset	 (Tb08.27P2.380)	was	annotated	as	a	pseudogene	 in	 the	reference	genome	(predicted	 to	be	
truncated	due	to	insertion	of	a	stop	codon);	this	is	not	consistent	with	our	data	as	a	dominant	early	VSG	as	
it	would	suggest	mosaic	gene	formation	providing	a	dominant	early	gene	–	indeed,	recent	reannotation	has	
classified	this	gene	as	intact,	which	would	be	more	in	keeping	with	early	expression	favouring	intact	over	
pseudogene	or	mosaic	VSGs	[5,	21]	(although	given	the	1	×	105	inoculum	used	in	this	study,	it	is	feasible	
that	the	transfer	of	Tb08.27P2.380	as	the	dominant	expressed	VSG	from	the	donor	mouse	infection	may	
have	given	rise	to	this).	

We	have	 identified	mosaic	genes	 (classified	as	 reads	demonstrated	non-overlapping	homology	 to	more	
than	one	distinct	VSG	N-Terminal	domain	in	the	reference	database)	earlier	in	infection	than	has	previously	
been	identified.		The	rate	of	mosaic	gene	formation	was	very	low	in	our	study,	mostly	either	single	or	very	
few	reads,	which	probably	reflects	our	timeframe	being	only	12	days	post-infection.		The	nature	of	the	long	
read	sequencing	is	highly	beneficial	in	terms	of	mosaic	gene	identification;	even	low	frequency	expressed	
genes	(within	the	limitation	of	the	four	orders	of	magnitude	of	coverage	that	the	read	number	per	sample	
provides)	can	be	identified	with	some	confidence	due	to	the	acquisition	of	the	whole	gene	sequence	–	in	
order	to	achieve	this	with	short	read	approaches	a	reasonable	degree	of	read	coverage	would	be	required	
to	identify	and	confirm	putative	mosaic	genes.	This	has	potential	implications	for	the	application	of	long	
read	sequencing	to	significantly	further	our	understanding	of	infection	dynamics	and	the	role	of	mosaic	
genes	 as	 infections	 progress.	 This	 is	 likely	 to	 be	 important	 in	 terms	 of	 ability	 to	 gain	 insights	 into	 the	
mechanisms	 of	 mosaic	 gene	 formation	 because	 of	 consequent	 increased	 ability	 to	 resolve	 defects	 in	
switching	rate	(e.g.	analysis	of	DNA	recombination	gene	mutants	such	as	RAD51	that	have	been	implicated	
in	DNA	recombination-based	VSG	switching	[15])	–	at	present	 it	 is	not	known	if	mosaic	gene	formation	
involves	 a	 mechanistic	 switch	 in	 terms	 of	 pathways;	 the	 ability	 to	 detect	 low	 frequency	 mosaic	 gene	
expression	should	provide	the	ability	to	study	this.	Additionally,	detection	of	low	frequency	VSGs	would	
enhance	 the	ability	overall	 to	more	 fully	analyse	 the	 temporal	kinetics	of	VSG	switching	–	providing	an	
avenue	 for	 improved	 quality	 of	 inputs	 into	 modelling	 dynamics	 of	 VSG	 expression.	 The	 approach	 of	
mapping	reads	to	a	defined	VSG	reference	database,	and	in	particular	the	clustering	approach	developed	in	
this	study,	would	also	make	analysing	expressed	VSGs	in	the	animal	trypanosomes,	T.	congolense	&	T.	vivax,	
feasible	(one	challenge	being	the	lack	of	conserved	3’	UTR	sequence	in	expressed	VSGs	to	enrich	transcripts	
in	 both	 species);	 this	 may	 be	 particularly	 enlightening	 given	 different	 structure	 and	 content	 of	 VSG	
repertoires	recently	described	between	the	three	genomes	[36,	37].	

We	detected	indels	consistently	when	comparing	Pacbio	transcripts	to	the	reference	gene	(Figure	2).	While	
these	 differences	 may	 indeed	 be	 real,	 with	 our	 protocol	 we	 have	 somewhat	 limited	 resolution	 for	
conclusively	differentiating	 indels	 introduced	by	the	trypanosome	from	those	potentially	 introduced	by	
PCR.	However,	PCR	is	unlikely	to	be	the	sole	cause	of	the	observed	mutations,	because	in	the	dominant	VSG	
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in	 our	dataset	 (Tb08.27P2.380),	which	 represents	141,822	 reads	 across	 all	 20	 samples	 –	 therefore,	 20	
independent	PCR	reactions	-	we	observe	a	consistent	set	of	variations	from	the	reference	genome	sequence	
(10%	 mismatches,	 1.47%	 deletions,	 1.07%	 insertions	 average	 per	 base)	 across	 all	 reads	 –	 these	 are	
consistently	present	across	all	 reads	 for	 this	variant,	 including	 those	reads	with	high	 fold	coverage	(i.e.	
greater	than	10	full	passes	per	read)	(Figure	2).	These	data,	across	technical	and	biological	replicates,	lead	
us	to	conclude	that	these	differences	were	present	in	most	likely	the	genome	copy,	but	also	potentially	a	
distinct	BES-resident	copy	of	this	VSG	that	has	accumulated	mutations	distinct	to	the	genome	basic	copy	of	
the	gene,	and	mutations	were	not	introduced	by	PCR.	One	possible	explanation	for	this	is	that	there	is	very	
likely	a	significant	(and	unknown)	divergence	in	passage	history	between	the	sequenced	reference	genome	
TREU927	trypanosomes	and	those	used	in	this	experiment.	This	would	be	consistent	with	data	from	many	
pathogens	 of	 the	 increased	 mutability	 of	 telomeric/subtelomeric	 gene	 families	 [38].	 Previous	 data	
indicated	accumulation	of	point	mutations	in	expressed	VSGs	over	time	within	infections	[5,	21],	and	in	our	
data	we	saw	some	support	for	this	process,	but	the	skewed	nature	of	the	data	distribution	limits	our	ability	
to	conclude	increased	mutations	over	time	as	an	important	aspect	of	VSG	expression,	and	it	should	be	noted	
that	a	timeframe	of	12	days	is	relatively	short	and	will	have	limited	our	resolution	–	however,	our	data	
indicate	that	application	of	long	read	analysis	over	longer	infection	timeframes	is	likely	to	be	a	useful	means	
of	characterising	the	nature	and	role	of	this	mechanism.		

However,	the	multiple	mutations	that	were	present	across	multiple	VSG	sequences	in	our	data,	did	enable	
detailed	analysis	of	 the	nature	of	mutations	detected	in	Pacbio	sequencing	(Figure	2).	 Ideally,	 to	enable	
clear	differentiation	of	PCR	bias	and	artefact,	errors	introduced	by	Pacbio,	and	mutations	introduced	by	the	
trypanosome,	unique	molecular	 identifiers	 (UMIs)	would	be	added	prior	 to	PCR	amplification	 (e.g.	 [22,	
39]).	While	we	did	not	 incorporate	 this	 step,	we	can	draw	some	conclusions	 from	analysis	of	our	data.		
When	 data	 for	 Tb08.27P2.380,	 which	 represents	 141,822	 reads,	 is	 analysed	 across	 the	 range	 of	 fold	
coverage	per	read,	it	is	clear	that	most	of	these	mutations	are	removed	as	the	coverage	increases	(Figure	
2)	 –	 although	notably	 even	 at	 a	 high	number	of	 passes	 (>10)	 some	 introduced	mutations	 remain.	This	
strongly	 suggests	 that	 most	 of	 these	 are	 errors	 that	 are	 introduced	 by	 the	 Pacbio	 process,	 and	 the	
proportion	we	observed	across	the	dataset	(4%	per	base	pair)	 is	consistent	with	that	reported	in	other	
studies	(e.g.	[40]).	The	mutations	also	directly	influenced	the	ability	to	predict	open	reading	frames	in	our	
data	-	ORFs	only	being	detected	in	11.22%	of	VSG	reads	(33,234	of	296,937).	Clearly,	with	these	reads	being	
generated	from	cDNA	one	would	have	expected	most	if	not	all	to	have	identifiable	ORFs.	Therefore,	these	
data	indicate	some	of	the	limitations	when	using	Pacbio,	even	with	data	that	comprises	multiple	passes	–	
the	introduction	of	mutations	does	provide	a	layer	of	complexity	to	the	analysis	that	must	be	addressed	
with	care.	This	 is	particularly	pertinent	when	trying	to	analyse	multiple	closely	related	alleles,	as	 in	the	
case	of	VSGs	–	we	were	able	to	draw	conclusions	on	the	basis	of	sufficient	coverage	of	a	highly	expressed	
dominant	 allele,	 combined	with	 the	 inclusion	 of	multiple	 biological	 replicates;	 without	 these	 elements	
interpretation	would	 have	 been	 very	 difficult	without	 parallel	 short	 read	 sequencing	 to	 correct	 errors	
introduced	by	the	technology.	

A	further	issue	for	consideration	for	the	application	of	long	read	technologies	to	the	analysis	of	expressed	
allelic	diversity	is	the	number	of	reads	per	sample;	with	coverage	over	four	orders	of	magnitude	-	although	
significantly	greater	in	resolution	than	previous	manual	and	laborious	methods,	this	contrasts	relatively	
poorly	with	the	numbers	of	reads	that	short	read	applications	deliver	(millions)	–	although	it	should	be	
noted	that	with	the	short	read	approach	many	reads	will	be	required	to	robustly	identify	full	length	single	
variants	 (in	 particular	 to	 enable	 differentiation	 of	 closely	 related	 transcripts,	 either	 similar	 genome-
encoded	alleles	or	related	lineages	of	mosaic	genes	[5,	21]),	whereas	in	theory	at	least	a	single	pacbio	read	
should	 provide	 the	 ability	 to	 robustly	 identify	 a	 particular	 VSG	 transcript.	While	 the	 coverage	 is	 being	
improved	with	the	newer	platforms	(e.g.	the	Pacbio	Sequel	potentially	delivers	a	further	tenfold	increase	
in	data	per	run),	this	may	limit	resolution	in	terms	of	detecting	minor	variants,	for	example.	We	did	detect	
significant	expressed	diversity,	and	this	is	partly	explained	by	our	use	of	a	relatively	large	inoculum,	that	
was	not	cloned,	of	a	virulent	isolate	that	resulted	in	high	and	sustained	parasitaemia	–	therefore,	we	started	
with	 what	 was	 probably	 a	 relatively	 diverse	 population	 (albeit	 dominated	 by	 expression	 of	
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Tb08.27P2.380),	 reflected	 in	 the	 diversity	 of	 VSGs	 detected	 at	 day	 3	 post-infection,	 which	 would	 be	
significantly	lower	in	the	event	of	a	clonal	or	smaller	initial	inoculum.		

While	our	data	indicate	that	long	read	sequencing	provides	increased	resolution	in	terms	of	identifying	VSG	
diversity,	clearly	questions	still	remain.	For	example,		why	the	VSG	repertoire	is	so	evolved	and	large?	Our	
data	suggest	an	increased	proportion	of	repertoire	is	involved,	even	at	early	stages,	compared	to	previous	
studies,	which	 indicates	 a	bigger	proportion	of	 the	 repertoire	may	be	utilised	during	 the	 lifetime	of	 an	
infection	(which	in	cattle	can	be	many	hundreds	of	days)	than	previous	data	suggests.	This	is	consistent	
with	 the	 data	 of	 Mugnier	 et	 al	 [23],	 where	 multiple	 minor	 variants	 were	 observed	 using	 an	 Illumina	
sequencing	 approach.	 However,	 that	 study	 and	 ours	 both	 have	 limitations,	 one	 with	 relatively	 few	
biological	replicates	(albeit	one	mouse	was	followed	for	~120	days)	and	one	that	only	ventured	to	12	days	
post-infection.	Therefore,	assessing	antigen	dynamics	in	the	chronic	phase	of	infections	with	tools	that	give	
significant	resolution	of	expressed	antigen	diversity	will	be	critical	to	furthering	our	understanding	of	the	
mechanisms	of	trypanosome	antigenic	variation.		Key	to	studying	this	will	be	analysing	the	picture	in	the	
truly	chronic	stages	of	 infection	 (as	was	done	by	Mugnier	et	al	 in	 the	context	of	mouse	 infections),	but	
particularly	doing	so	in	relevant	hosts	(e.g.	cattle	[41])	where	the	total	population	of	trypanosomes	in	the	
animal	will	be	potentially	1,000	times	greater	at	peak	parasitaemia	and	where	infections	may	last	for	100s	
of	days	–	this	will	have	a	profound	influence	on	the	usage	of	 the	repertoire	(our	data,	 for	example,	was	
representative	of	a	total	population	of		approximately	1	×	108	parasites	per	mouse).	Additionally,	recent	
studies	indicates	T.	brucei	populations	inhabit	different	niches	in	the	mammalian	host	(e.g.	skin	and	adipose	
[42,	43]),	to	the	extent	that	some	show	evidence	of	local	adaptation	with	respect	to	metabolism	([43])	–	
how	this	population	compartmentalisation	interacts	with	antigenic	variation	and	immunity	is	likely	to	be	
important	for	parasite	maintenance	and	transmission.	Therefore,	understanding	the	dynamics	in	both	the	
chronic	stages	of	 infection	and	in	clinically	relevant	hosts	will	potentially	provide	ideas	on	the	selective	
pressures	that	maintain	such	an	elaborate	system.	Additionally,	given	the	significant	advantages	described	
above	in	terms	of	identifying	low	frequency	variants	(including	mosaic	VSGs),	it	may	be	that	a	combined	
long	 and	 short	 read	 approach	 is	 likely	 to	 be	 the	 optimal	way	 of	 holistically	 and	 accurately	 identifying	
expressed	VSG	diversity;	the	increased	read	number	of	short	read	technologies	in	combination	with	the	
better	resolution	of	long	read	technologies	would	provide	significant	power	to	examine	the	complexity	of	
VSG	expression	in	trypanosomes.	
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MATERIALS	AND	METHODS	

TRYPANOSOMES	AND	MOUSE	INFECTIONS	
All	mice	were	infected	with	Trypanosoma	brucei	brucei	TREU927,	the	genome	reference	strain	[19,	44].	A	
cryostabilate	from	liquid	nitrogen	was	thawed	and	inoculated	into	BALB/c	mice	in	order	to	amplify	a	viable	
in	 vivo	 population.	 Donor	 mice	 were	 euthanased	 at	 first	 peak	 parasitaemia	 (approximately	 1	 ×	 107	
trypanosomes/ml),	 and	 blood	 extracted.	 Trypanosomes	were	 counted	 in	 triplicate	 under	 an	 improved	
Neubauer	haemocytometer,	diluted	to	 inocula	of	1	×	105	trypanosomes	 in	200	µl	Carter’s	Balanced	Salt	
Solution,	which	were	 then	 inoculated	via	 the	 intraperitoneal	route	 into	20	recipient	BALB/c	mice.	Mice	
were	maintained	for	12	days	post-infection,	and	groups	of	5	mice	were	euthanased	at	3,	6,	10	and	12	days	
post-infection.	Parasitaemia	was	monitored	daily	by	venesection	of	the	 lateral	tail	veins	using	the	rapid	
matching	technique	[45],	and	was	counted	in	triplicate	under	an	improved	Neubauer	haemocytometer	on	
the	sampling	days.	Care	and	maintenance	of	animals	complied	with	University	regulations	and	the	Animals	
(Scientific	Procedures)	Act	(1986;	revised	2013).	

RNA	EXTRACTION,	CDNA	GENERATION	&	PCR	AMPLIFICATION	OF	VSG	TRANSCRIPTS	
At	each	sampling	day,	RNA	was	extracted	from	200	µl	infected	blood	using	the	Qiagen	RNeasy	kit	(Qiagen),	
according	 to	 the	manufacturer’s	 instructions.	 Approximately	 1	µg	 RNA	was	 treated	with	 DNase	 Turbo	
(Ambion),	according	to	manufacturer’s	instructions,	and	cDNA	was	generated	as	in	Hall	et	al,	2013	[21],	
including	a	column	purification	step	on	generated	cDNA	using	the	PCR	Purification	kit,	according	to	the	
manufacturer’s	 instructions	 (Qiagen).	 VSG	 transcripts	 were	 enriched	 by	 carrying	 out	 PCR	 with	 proof	
reading	 Herculase	 II	 Fusion	 polymerase	 (Agilent)	 on	 the	 cDNA	 template	 with	 oligonucleotide	 primers	
specific	to	the	T.	brucei	spliced	leader	sequence	(TbSL)	and	a	reverse	primers	complementary	to	a	13	base	
pair	conserved	region	in	VSG	3’	untranslated	regions	(3UTR);	primer	sequences	and	PCR	conditions	were	
as	previously	described	[21,	23].	A	subset	of	PCR	transcripts	was	subjected	to	cloning	and	sequencing;	PCR	
products	were	 ligated	 into	 pGEMT-Easy	 vectors,	 transfected	 into	 One	 Shot	 TOP10	 cells,	 bacteria	were	
grown	up	and	cloned	under	suitable	antibiotic	selection	(all	using	the	TOPO	cloning	kit,	Invitrogen),	and	
plasmid	DNA	extracted	using	a	Miniprep	kit	(Qiagen);	these	procedures	were	all	carried	out	according	to	
manufacturer’s	instructions.	Extracted	plasmid	DNA	of	appropriate	concentration	was	sent	for	sequencing	
(Eurofins	MWG).		

PACBIO	SEQUENCING	
1	µg	of	PCR	amplicon	template	as	measured	by	Nanodrop	(ThermoScientific)	and	Bioanalyser	(Agilent)	
was	submitted	to	the	Centre	for	Genomic	Research,	University	of	Liverpool	for	sequencing	using	the	Pacbio	
RSII	platform	(Pacific	Biosciences).	DNA	was	purified	with	1x	cleaned	Ampure	beads	(Agencourt)	and	the	
quantity	 and	 quality	 was	 assessed	 using	 Nanodrop	 and	 Qubit	 assay.	 Fragment	Analyser	(using	a	high	
sensitivity	genomic	kit)	was	used	to	determine	the	average	size	of	the	DNA	and	the	extent	of	degradation.	
DNA	was	 treated	with	 Exonuclease	 V11	 at	 37	 °C	 for	 15	minutes.	 The	 ends	 of	 the	 DNA	were	 repaired	
as	described	by	 the	Pacific	Biosciences	 protocol.	 Samples	were	 incubated	 for	 20	minutes	 at	 37	 °C	with	
damage	 repair	mix	 supplied	 in	 the	 SMRTbell	 library	kit	 (Pacific	Biosciences).	This	was	 followed	by	a	5	
minute	 incubation	 at	 25	 °C	with	end	 repair	mix.	DNA	was	 cleaned	using	0.5x	Ampure	beads	and	70%	
ethanol	washes.	DNA	was	ligated	to	adapter	overnight	at	25	°C.	Ligation	was	terminated	by	incubation	at	
65°C	for	10	minutes	followed	by	exonuclease	treatment	for	1	hour	at	37°C.	The	SMRTbell	libraries	were	
purified	with	0.5x	Ampure	beads.	The	quantity	of	library	and	therefore	the	recovery	was	determined	by	
Qubit	 assay	 and	 the	 average	fragment	size	determined	by	Fragment	Analyser.	SMRTbell	 libraries	were	
then	 annealed	 to	 the	 sequencing	 primer	at	 values	 predetermined	 by	 the	 Binding	 Calculator	 (Pacific	
Biosciences)	and	a	complex	made	with	the	DNA	Polymerase	(P4/C2chemistry).	The	complex	was	bound	
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to	 Magbeads	and	 this	was	used	 to	set	up	3	SMRT	cells	 for	sequencing.	 Sequencing	was	done	using	180	
minute	 movie	 times.	Data	 (raw	 sequencing	 files)	 is	 available	 through	 Gene	 Expression	 Omnibus	
(https://www.ncbi.nlm.nih.gov/geo/	-	accession	number	GSE114843).	 

PACBIO	SEQUENCING	ANALYSIS		
RAW	DATA	PROCESSING	
Pacbio	raw	data	was	initially	processed	using	the	Pacbio	SMRT	analysis	protocol	(v2.3),	to	convert	the	data	
into	a	fasta	file	using	the	following	parameter	selections:	minimum	1	full	pass,	minimum	predicted	accuracy	
of	90%.	Based	on	the	read	length	distribution,	a	range	of	1400-2000bp	was	used	to	filter	the	sequenced	
reads	for	downstream	VSG	analysis.		

VSG	READ	ANALYSIS	
Preliminary	VSG	variant	distribution	was	determined	by	locally	aligning	the	reads	to	TREU927	reference	
transcripts.		We	generated	a	local	database	of	TREU927	VSGs,	by	downloading	all	transcripts	annotated	as	
‘VSG’	from	the	most	recent	version	of	the	TREU927	genome	(v26)	on	www.tritrypdb.org	[25].	This	resulted	
in	a	reference	library	of	1,557	VSG	sequences	(including	all	gene	fragments	and	pseudogenes	annotated	as	
VSG	–	available	through	GEO	accession	number	GSE114843).	This	reference	set	was	used	to	set	up	a	local	
BLAST+	 [46]	 database	 to	 create	 files	 of	 curated	protein	 and	nucleotide	 sequences.	 Reads	were	 blasted	
(BLASTn)	against	the	reference	VSG	database	to	identify	the	donor	gene.	A	minimum	alignment	coverage	
of	60%	or	above	to	the	sequence	read	was	used	to	identify	the	dominant	donor	transcript,	and	to	generate	
a	variant	distribution	chart	for	each	sequenced	sample.		We	also	locally	aligned	the	sequenced	VSG	reads	
to	 a	 blast	 database	 of	 515	 previously	 identified	 cloned	 reads	 from	 T.	 brucei	 TREU927	 infections	 [5,	
21](available	through	GEO	accession	number	GSE114843)		

MOSAIC	GENE	IDENTIFICATION	
We	 reasoned	 that	 putative	 mosaic	 genes	 could	 be	 identified	 as	 PacBio	 sequences	 with	 partial,	 non-
overlapping	alignments	to	multiple	VSG	genes.	We	therefore	undertook	full	pairwise	alignment	using	local	
blast	of	the	296,937	reads	that	align	to	VSGs	at	a	60%	identity	threshold	post	size-selection	filtering	(see	
above)	against	the	curated	VSG	database	described	above.	This	resulted	in	all	possible	donors	and	their	
alignment	regions	for	any	specific	read	being	identified.		

To	distinguish	mosaics	where	 the	 same	NTD	 region	occurs	with	multiple	CTD	 regions	 (which	happens	
frequently)	 from	mosaics	with	multiple	NTD	donors	 (which	are	 rare),	we	plotted	 the	number	of	donor	
alignments	per	nucleotide	across	all	 reads,	with	 read	 (VSG)	 scaled	 to	100	 to	enable	 comparison	across	
multiple	variant	lengths	–	this	also	enabled	analysis	of	the	number	of	donor	VSGs	across	the	scaled	VSG	
representatives	 of	 our	 296,937	 VSG	 dataset.	 A	 distinctive	 increase	 in	 the	 number	 of	 alignments	 was	
observed	 at	 approximately	 75%	of	 the	 sequence	 length	 (consistent	with	 the	 start	 of	 the	 CTD),	 and	we	
conservatively	defined	the	NTD	region	of	each	sequence	as	the	first	70%	of	its	nucleotides	(see	Figure	5A).	
This	allowed	us	to	define	approximate	NTD	regions	of	all	sequences,	including	those	without	ORF.	

Pairwise	alignments	were	then	filtered	based	on	the	criteria	that	the	start	of	the	alignment	should	be	within	
the	NTD	region,	and	the	remaining	alignments	were	used	to	generate	parameters	for	each	read,	including	
NTD	length,	alignment	coverage	start	and	stop	sites,	NTD	alignment	coverage	percentage,	number	of	donor	
sequences,	 alignment	 coverage	 of	 the	 longest	 donors,	 and	 difference	 (expressed	 as	 percentage	 non-
identity)	 between	 the	 total	 aligned	 region	 and	 the	 top	donor	 alignment.	 	Most	 sequenced	NTD	 regions	
resulted	in	full	length	or	partial	match	to	the	known	VSG	database.	In	order	to	confidently	identify	putative	
mosaic	genes,	data	were	further	filtered	based	upon	the	following	criteria;	(1)	number	of	donor	VSGs	is	
more	 than	one,	 (2)	alignment	 coverage	of	 the	 largest	donor	 is	 less	 than	80%,	and	 (3)	 the	difference	 in	
alignment	regions	between	donors	is	greater	than	10%	of	the	sequence.		The	remaining	sequences	were	
then	inspected	manually	to	select	mosaic	genes.	
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SOFTWARE	
All	scripts	for	raw	data	processing,	VSG	read	analysis	and	mosaic	gene	identification		-are	available	through	
GitHub	(https://github.com/siddharthjayaraman/longread-application).	

CLUSTERING	ANALYSIS	
We	 used	 similarity-based	 clustering	 to	 identify	 VSG	 clusters	 among	 the	 sequences.	 Since,	 as	 described	
above,	PacBio	reads	are	prone	to	introduction	of	insertion	and	deletion	indels,	to	reduce	the	impact	of	these	
errors	on	the	quantification	of	variants	detected,	we	proceeded	with	only	those	reads	which	generated	an	
ORF	longer	than	400	amino	acid	residues.		We	pool	all	of	these	sequences	from	each	day	and	each	mouse.	
We	used	Clustal	Omega	to	calculate	genetic	distances	between	each	pair	of	sequences	[47]	and	clustered	
sequences	using	a	6%	threshold	 (employed	 in	many	clustering	algorithms,	e.g.	UClust)	 for	 intra-cluster	
dissimilarity.	 To	 resolve	 the	 problems	 surrounding	 cluster	 identification	 a	 novel	 dynamically	 resizing	
clustering	algorithm	was	implemented	(full	details	are	given	in	S4	Appendix).			

DIVERSITY	ANALYSIS	
For	a	de-novo	approach	to	quantify	the	observed	variation	in	VSG	variants	in	our	samples	over	time	we	
used	novel	diversity	metrics	 [30],	 that	have	been	developed	 in	 theoretical	ecology	 in	order	 to	measure	
biodiversity	across	scales.	We	regard	VSGs	as	the	‘ecological	species’	in	this	setting,	so	in	the	very	simplest	
case	biodiversity	would	simply	be	how	many	species	or	VSGs	we	observe.		The	measures	go	a	step	further	
than	this	and	weight	for	the	relative	abundance	of	the	VSGs	via	a	parameter	q	(in	the	main	text	we	use	q=1,	
for	other	values	of	q	and	a	discussion	of	this	see	S4	Appendix).	In	addition,	the	measures	account	for	the	
similarity	of	the	sequences	in	such	a	way	that	if	two	sequences	differed	in	only	one	base	pair	they	would	be	
essentially	regarded	as	the	same	“species”	or	VSG,	as	they	would	have	close	to	100%	similarity.	

Within	the	diversity	framework,	normalised	beta	diversity	[30]		quantifies	population	differentiation.	We	
consider	 the	 VSGs	 from	 all	 mice	 on	 a	 given	 day	 as	 our	 population	 (the	 metacommunity	 level)	 and	
normalised	beta	diversity	measures	the	number	of	distinct	mouse	(the	subcommunity	level)	VSG	profiles	
that	are	present	on	that	day	(see	S4	Appendix,	S5	&	S6	Figures).		
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TABLES	
	TABLE	1.	Summary	of	data	per	sample.	

Sample*	 Reads	 of	
Insert	

Mean	
Read	
Length	 of	
Insert	

Mean	
Read	
Quality	of	
Insert	

Mean	
Number	
of	Passes	

Number	
of	filtered	
reads	

Mean	
Number	of	
Passes	 for	
filtered	
reads	

3.1	 5560	 1443	 0.9875	 10.74	 3744	 7.45	
3.2	 15244	 1689	 0.9824	 8.06	 13471	 6.92	
3.3	 10500	 1688	 0.9802	 7.95	 9015	 6.79	
3.4	 18245	 1532	 0.9816	 8.79	 11842	 6.73	
3.5	 17716	 1521	 0.9774	 7.91	 11814	 6.30	
6.1	 21453	 1586	 0.9803	 8.49	 13881	 7.40	
6.2	 24101	 1634	 0.9751	 7.21	 16719	 6.05	
6.3	 22451	 1647	 0.9753	 7.26	 16527	 6.18	
6.4	 19513	 1603	 0.978	 7.41	 12732	 5.77	
6.5	 23063	 1453	 0.9751	 8.03	 11493	 6.09	
10.1	 35071	 1483	 0.9739	 7.48	 18893	 6.47	
10.2	 28168	 1572	 0.9721	 6.87	 14077	 6.04	
10.3	 21462	 1631	 0.9788	 7.35	 12829	 6.43	
10.4	 41434	 1562	 0.9761	 7.41	 17230	 6.60	
10.5	 38637	 1591	 0.9772	 7.5	 19240	 6.48	
12.1	 34765	 1531	 0.9766	 7.69	 23332	 6.38	
12.2	 27774	 1541	 0.972	 6.88	 18659	 5.87	
12.3	 31753	 1576	 0.9766	 7.29	 22634	 6.25	
12.4	 9291	 1619	 0.9846	 8.04	 6908	 7.05	
12.5	 40142	 1496	 0.9735	 7.46	 21897	 6.76	
TOTAL	 486343	 1569.9	 0.977715	 7.791	 296937	 6.50	
	

*data	available	at	GEO	accession	number	GSE114843.	
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TABLE	2.	Top	20	variants;	number	of	reads	across	dataset	as	measured	by	(i)	mapping	to	reference	VSG	
database	 and	 by	 (ii)	 sequence	 clustering;	 the	 relevant	 TREU927	 reference	VSG	 is	 indicated	 in	 the	 first	
column.		

VSG	 reference	
gene	

Reads	 by	
mapping	
to	VSGs	

Percentage	
of	total	

Reads	 by	
sequence	
clustering*	

Percentage	
of	total	

Hall	
Sets	

Total	 296937	 100	 33205	 100	 		
Tb08.27P2.380	 141822	 47.76	 14543	 43.80	 Set_23	
Tb09.v4.0077	 46264	 15.58	 5951	 17.92	 Set_08	
Tb927.4.5730	 23643	 7.96	 2499	 7.53	 		
Tb927.10.10	 13167	 4.43	 1294	 3.90	 		
Tb11.v5.0932	 10187	 3.43	 1435	 4.32	 		
Tb927.9.300	 8751	 2.94	 913	 2.75	 		
Tb09.v4.0088	 7947	 2.67	 1223	 3.68	 Set_36	
Tb05.5K5.330	 7865	 2.64	 874	 2.63	 Set_22	
Tb927.9.16490	 3669	 1.23	 413	 1.24	 		
Tb927.3.480	 2984	 1	 368	 1.11	 		
Tb11.57.0047	 2783	 0.93	 379	 1.14	 		
Tb927.11.20300	 2353	 0.79	 247	 0.74	 		
Tb927.1.05	 1990	 0.67	 280	 0.84	 		
Tb927.4.5570	 1622	 0.54	 200	 0.60	 		
Tb10.v4.0061	 1414	 0.47	 181	 0.55	 Set_04	
Tb11.v5.0599	 1400	 0.47	 -	 -	 		
Tb927.9.580	 1276	 0.42	 -	 -	 		
Tb927.5.4700	 1168	 0.39	 175	 0.53	 		
Tb09.v4.0075	 1133	 0.38	 140	 0.42	 Set_35	
Tb11.1451	 1126	 0.37	 121	 0.36	 		
	

*	The	subset	of	reads	with	predicted	ORFs	was	used	for	the	clustering	algorithm	analysis.	
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FIGURES	
	

	

FIGURE	1.	(A)	Parasitaemia	measurements	for	the	batches	of	mice	sacrificed	at	days	3,	6,	9	and	12	days	
post-infection.	 	A	summary	of	analysis	of	pacbio	data	generated	from	these	samples	is	shown,	including	
main	decision	steps	(black	boxes	represent	data	filtering	steps;	data	within	black	boxes	was	included),	(B)	
read	 length	distribution,	(C)	alignment	of	reads	to	VSG,	(D)	correlation	of	read	number	with	number	of	
VSGs	identified.	
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FIGURE	2.	Analysis	of	pacbio	sequence	data:	(A)	number	of	reads	aligning	to	VSGs	per	number	of	full	
passes,	with	proportion	of	those	reads	comprising	predicted	ORF	in	yellow;	red	line	shows	percentage	of	
reads	at	each	threshold	of	full	pass	number	that	contained	a	predicted	VSG	ORF.		(B)	percentage	of	reads	at	
each	position	in	the	N-Terminal	domain	that	contained	a	mutation	with	respect	to	the	reference	genome	
sequence	for	VSG	Tb08.27P2.380;	alignment	coverage	is	shown	by	the	black	line,	insertions	by	green	dot,	
deletions	by	red	dot	and	mismatch	by	blue	dot.	Highlighted	dots	(with	circle	around	dot)	are	those	that	
were	 different	 to	 both	 the	 reference	 sequence	 and	 Sanger	 sequence	 cloned	 VSG	 sequences	 from	 the	
inoculated	stabilate	at	a	high	percentage	of	reads	at	that	position	(>70%),	(C)	focussed	representation	of	
data	in	2B,	with	only	mutations	with	respect	to	the	genome	reference	sequence	<10%	at	each	position	in	
the	N-Terminal	domain	VSG	Tb08.27P2.380	shown;	insertions	shown	by	green	dot,	deletions	by	red	dot	
and	mismatch	by	blue	dot.	(D)	percentage	error	rate	plotted	against	number	of	full	passes;	red	line	indicates	
number	 of	 nucleotide	 positions	 for	 those	 aligning	 to	 VSG	 Tb08.27P2.380	 that	 contained	 an	 error	with	
respect	to	genome	reference	sequence	against	number	of	full	passes.	
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FIGURE	3.	VSGs	per	sample.	(A)	Average	number	of	donor	VSGs	mapped	at	each	time	point,	plotted	with	
and	without	VSGs	identified	from	single	reads	of	at	least	one	full	pass	(‘singletons’),	(B)	Proportion	of	reads	
that	map	 to	 identified	donor	VSGs	 for	 each	mouse	 and	 each	 timepoint;	 reads	 that	map	 to	 the	10	most	
abundant	identified	donors	(across	the	whole	dataset	from	20	mice)	are	shown;	reads	that	map	to	donor	
genes	other	than	these	ten	are	represented	as	‘others’).	
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FIGURE	4.	VSGs	are	expressed	in	a	semi-predicatable	order.	(A)	Expressed	VSG	sequences	were	clustered	
by	sequence	similarity	(Materials	and	Methods	and	S4	Appendix)	and	ordered	on	the	x-axis	according	to	
the	 cluster	 they	 were	 assigned	 to.	 The	 average	 similarity	 of	 each	 sequence	 to	 others	 from	 the	 same	
population	was	calculated	(‘ordinariness’,	a	measure	of	how	common	that	sequence	is)	and	is	plotted	for	
each	sequence	on	the	y-axis.	Grey	lines	indicate	the	profiles	of	individual	mice,	while	coloured	lines	indicate	
the	average	for	that	particular	cluster,	coloured	according	to	the	cluster.	(B)	Diversity	analysis	showing	the	
effective	number	of	distinct	VSG	profiles	found	on	day	3,	6,	10	and	12	for	each	mouse	(dots)	on	that	day,	
with	the	average	across	the	days	represented	by	the	solid	line.			
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FIGURE	5.	Mosaic	gene	identification.	(A)	Average	number	of	donor	VSGs	(y-axis)	per	position	across	
scaled	VSG	reads	(gene	length	scaled	to	100	(x-axis);	data	derived	from	296,937	VSG	amplicons)	–	blue	line	
shows	data	for	all	reads,	red	line	shows	data	for	all	data	without	reads	that	map	to	Tb08.27P2.380.	(B)	
Example	mosaic	gene	candidates,	represented	by	read	identifier,	and	displayed	to	scale	from	5’	to	3’	(N-
terminal	domain	only),	with	colour	of	each	segment	indicating	most	likely	donor	VSG	from	the	TREU927	
VSG	repertoire	(VSG	gene	shown	in	key;	where	relevant	sequences	are	identical	for	more	than	one	potential	
reference	gene	donor;	all	possibilities	are	shown	in	key).		
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SUPPORTING	INFORMATION	

S1	TABLE.		
Amplicon	read	count	per	sample	for	each	identified	VSG	transcript	(xlsx	file).	
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S2	FIGURE.		

	

Error	(mutation)	rate	distribution	over	time	(day	3,	6,	10	and	12	post-infection)	for	reads	aligning	to	VSG	
Tb08.27P2.380	for	(A)	mismatches,	(B)	insertions	and	(C)	deletions;	each	defined	as	differences	relative	to	
the	 reference	genome	sequence	of	 	Tb08.27P2.380.	For	each	mutation	class	and	 timepoint,	 the	boxplot	
showns	median	values	and	25th	and	75th	percentiles,	whiskers	extend	to	data	extremes,	and	data	outliers	
are	plotted	individually	(red	plus	symbols).	
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S3	TABLE.		
Putative	VSG	mosaic	transcripts.	

Day3	 Day6	 Day10	 Day12	

balbc_3_4/151297/ccs3	(3.5)	 balbc_6_0/100673/ccs5	(6.1)	 balbc_10_0/102388/ccs3	(10.1)	 balbc_12_1/114076/ccs2	(12.1)	

balbc_3_4/156604/ccs3	(3.5)	 balbc_6_1/88751/ccs2	(6.2)	 balbc_10_0/118718/ccs6	(10.1)	 balbc_12_1/146680/ccs3	(12.1)	

balbc_3_4/75350/ccs6	(3.5)	 balbc_6_2/21985/ccs8	(6.2)	 balbc_10_0/128573/ccs2	(10.1)	 balbc_12_1/148981/ccs3	(12.1)	

	 balbc_6_5/151460/ccs7	(6.5)	 balbc_10_0/48011/ccs2	(10.1)	 balbc_12_1/30571/ccs9	(12.1)	

	 balbc_6_5/78761/ccs13	(6.5)	 balbc_10_0/6845/ccs4	(10.1)	 balbc_12_1/40149/ccs2	(12.1)	

	 balbc_6_5/86021/ccs7	(6.5)	 balbc_10_2/138490/ccs5	(10.3)	 balbc_12_1/48081/ccs4	(12.1)	

	  balbc_10_4/106314/ccs2	(10.4)	 balbc_12_1/9710/ccs9	(12.1)	

	  balbc_10_4/13775/ccs2	(10.4)	 balbc_12_1/97157/ccs2	(12.1)	

	  balbc_10_4/82822/ccs2	(10.4)	 balbc_12_2/126314/ccs8	(12.2)	

	  balbc_10_5/110598/ccs2	(10.5)	 balbc_12_2/90072/ccs7	(12.2)	

	  balbc_10_5/125683/ccs15	(10.5)	 balbc_12_3/102971/ccs2	(12.3)	

	  balbc_10_5/14682/ccs9	(10.5)	 balbc_12_3/105707/ccs7	(12.3)	

	  balbc_10_5/26181/ccs4	(10.5)	 balbc_12_3/128221/ccs3	(12.3)	

	   balbc_12_3/156428/ccs2	(12.3)	

	   balbc_12_3/40832/ccs2	(12.3)	

	   balbc_12_3/50618/ccs4	(12.3)	

	   balbc_12_3/67024/ccs3	(12.3)	

	   balbc_12_3/75428/ccs8	(12.3)	

	   balbc_12_3/83905/ccs2	(12.3)	

	   balbc_12_5/135299/ccs5	(12.5)	

	   balbc_12_5/145884/ccs2	(12.5)	

	   balbc_12_5/40253/ccs3	(12.5)	

	   balbc_12_5/46204/ccs6	(12.5)	

			

*The	coloured	cells	represent	identical	sequences		
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S5	APPENDIX.	CLUSTERING	ALGORITHM	AND	DIVERSITY	ANALYSIS	DETAILED	
METHODS.			
CLUSTERING	ALGORITHM	
Performing	 a	 non-dynamics	 clustering	 analysis,	 using	 a	 fixed	 standard	 6%	 threshold	 for	 intra-cluster	
dissimilarity	we	observed	that	most	sequences	fell	into	clusters,	but	there	was	a	large	number	(~6000)	of	
unclustered	reads	many	of	which	were	only	just	outside	the	6%	threshold	for	a	cluster	and	so	should	have	
been	assigned	to	that	cluster.		To	address	this	a	dynamic	clustering	algorithm	was	designed	which	would	
allow	the	cluster	threshold	to	grow	for	each	cluster	independently	allowing	us	to	correctly	deal	with	the	
unclustered	reads.	The	algorithm	proceeded	as	follows:	

1. We	used	Clustal	Omega	to	calculate	genetic	distances	between	each	pair	of	sequences	[45]	and	
converted	these	into	similarities	using	a	6%	threshold	for	dissimilarity.	All	sequence	pairs	below	
the	threshold	for	dissimilarity	were	given	a	similarity	of	1	and	those	above	given	0.	This	strict	cut-
off	was	chosen	to	allow	our	method	to	be	comparable	to	traditional	clustering	approaches.	

2. Centroid	sequences	that	would	start	off	each	new	cluster	were	chosen	using	the	core	measure	from	
the	diversity	 framework,	ordinariness	 [46].	 Initial	ordinariness	O1i	of	 sequence	 i	 is	 the	average	
similarity	of	any	sequence	to		sequence	i,	or	here	the	number	of	sequences	within	6%	sequence	
dissimilarity	of	sequence	i.	The	sequence	with	the	highest	ordinariness	was	chosen	as	the	centroid	
of	the	first	cluster,	and	all	sequences	within	6%	genetic	distance	were	included	in	that	cluster.	

3. Ordinarinesses,	 Oci,	 were	 then	 recalculated	 for	 cluster	 c	 (c=	 2,	 3	 …)	 from	 all	 of	 the	 remaining	
sequences	not	currently	allocated	to	a	cluster	and	the	method	for	identifying	a	new	centroid	(step	
2)	was	repeated.	

4. From	the	third	cluster	onwards	(c	>	2),	however,	any	sequence	with	a	higher	initial	ordinariness	
O1i	than	the	previous	cluster	centroid	must	have	derived	that	ordinariness	from	similarity	to	an	
earlier	cluster	(as	otherwise	it	would	have	been	selected	earlier),	and	is	therefore	assigned	to	its	
closest	cluster	rather	than	forming	a	new	cluster.	The	cluster	threshold	for	that	closest	cluster	is	
then	 re-calculated	 to	 accommodate	 the	 new	 sequence,	 and	 any	 other	 sequences	 that	 now	 fall	
within	the	new	sequence	dissimilarity	threshold	for	that	cluster	are	added	to	it.	

5. The	clustering	algorithm	repeats	until	no	more	sequences	are	present	or	the	cluster	sizes	grow	too	
large	and	begin	to	overlap,	leaving	residual	unique	(unclustered)	sequences.	

DIVERSITY	ANALYSIS	
For	the	diversity	analysis	we	need	to	define	the	metacommunity	which	is	the	VSG	profile	on	a	given	day	
when	we	pool	the	data	from	all	the	mice	from	that	day	(SI	Figure	1A).		The	subcommunity	is	then	the	VSG	
profile	for	a	particular	mouse	on	that	day.		So	each	metacommunity	(day)	is	made	up	of	5	subcommunities	
(mice).		By	VSG	profile	we	mean	the	distribution	of	VSGs	as	illustrated	by	the	pie	charts	in	SI	Figure	1A.	

When	looking	at	how	different	each	mouse’s	VSG	profile	is	within	each	day	one	might	start	by	asking:	of	all	
the	VSGs	seen	on	 that	day	how	many	are	seen	 in	mouse	 i	 from	that	day?	 If	 each	mouse	has	half	of	 the	
possible	VSGs	from	that	day	then	we	say	there	are	effectively	2	distinct	VSG	profiles	on	that	day	because	
this	is	the	minimum	number	of	distinct	VSG	profiles	we	would	need	to	account	for	all	the	diversity	we	see,	
because	 any	 given	 profile	 only	 contains	 half	 of	 that	 day’s	 diversity.	 This	 number	 of	 distinct	 profiles	 is	
referred	to	as	normalised	beta	diversity	 for	q=0,	and	is	calculated	for	each	mouse	on	a	given	day	(see	SI	
Figure	1B).		The	parameter	q	weighs	the	extent	to	which	the	relative	proportion	of	each	VSG	is	taken	into	
account	when	we	assess	normalised	beta	diversity.	When	q=0	we	ignore	the	relative	proportions	of	each	
VSG,	we	only	consider	if	each	VSG	is	present	or	not.	As	q	increases	we	no	longer	simply	care	about	how	
many	of	the	VSGs	are	present	in	each	mouse,	but	also	how	faithfully	the	mouse	(subcommunity)	preserves	
the	proportions	of	each	VSGs	observed	across	all	the	mice	from	that	day	(metacommunity).	Unless	the	VSGs	
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are	evenly	distributed	across	each	mouse	we	find	that	increasing	q	results	in	an	increase	in	the	normalised	
beta	diversity	as	more	VSG	profiles	are	needed	to	make	up	for	the	unevenness	in	the	proportions	of	VSGs.	

We	see	that	for	our	dataset	normalised	beta	diversity,	or	the	effective	number	of	distinct	VSG	profiles	is	
close	to	1	for	q=0	on	each	day	(SI	Figure	2B).	This	is	because	each	mouse	on	a	given	day	expresses	at	least	
some	of	almost	every	VSG	present	on	that	day,	so	there	is	only	one	VSG	profile	when	we	ignore	the	role	of	
relative	 abundances	 of	 the	 VSGs.	 However,	 as	 q	 increases,	 and	we	 start	 to	 care	 about	 accuracy	 of	 the	
abundances	in	the	profiles	and	we	are	able	to	detect	that	some	of	the	mice	become	increasingly	divergent	
from	the	rest	(e.g.	mouse	3.4	and	3.5	in	day	3),	because	they	have	some	VSGs	that	are	more	common	when	
compared	to	the	rest	of	the	mice	in	that	day.		This	is	contrast	to	day	6	where	most	mice	(except	for	mouse	
6.5)	broadly	agree	on	not	only	which	VSGs	are	present	(q=0),	but	also	on	how	common	those	VSGs	are	on	
that	day	(shown	by	the	closeness	of	the	lines	in	SI	Figure	2B,	day	6	for	q>0).		Day	10	has	the	most	distinct	
VSG	profiles,	with	a	lot	of	variability	between	the	mice,	while	on	day	12	the	mice	begin	to	express	similar	
VSG	profiles	again	(though	mouse	12.2	is	distinct).	

These	results	are	further	supported	by	additional	clustering	analysis.	We	can	apply	the	clustering	algorithm	
to	each	mouse	individually	(SI	Figure	2).		Looking	at	day	3	we	see	that	the	orange	and	yellow	clusters	only	
appear	in	3	of	the	mice	on	day	3	(mice	3.1,	3.4,	3.5),	highlighting	the	diversity	between	the	mice	that	we	
saw	 from	 the	normalised	beta	diversity	 analysis.	 	 Similarly,	 the	day	10	mice	 show	a	 lot	 of	 variation	 in	
clusters	of	VSGs	they	express,	whereas	on	day	12	the	clustering	is	broadly	the	same	for	each	mouse.	
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S5	FIGURE.		

	
Diversity	analysis	(A)	Structuring	of	the	data	for	diversity	analysis.	The	combined	VSG	profile	from	all	mice	
on	a	given	day	form	the	metacommunity,	which	is	the	unit	of	analysis;	the	VSG	profile	from	each	individual	
mouse	form	a	single	subcommunity	of	reads	within	that	metacommunity.	So	each	metacommunity	(day)	is	
made	up	of	5	subcommunities	(mice).	(B)	Normalised	beta	diversity	analysis	for	varying	weightings	(q)	of	
VSG	proportional	abundance.	 	The	y-axis	shows	the	effective	number	of	distinct	VSG	profiles	found	on	a	
given	day	seen	from	the	perspective	of	each	mouse	(coloured	lines)	on	that	day,	with	the	average	across	
the	day	given	by	the	dashed	line.	The	x-axis	indicates	how	much	relative	proportions	of	VSGs	rather	than	
just	 the	 presence-absence	 of	 the	 VSG	 is	 weighted	 in	 the	 assessment	 of	 diversity.	 	When	 q=0	 only	 the	
presence	or	absence	of	the	VSG	is	considered	when	comparing	an	individual	mouse’s	VSG	profile	to	the	
profile	obtained	from	pooling	all	the	mice	from	that	day.	For	large	q,	we	compare	not	only	the	presence	and	
absence	of	VSGs	but	also	their	relative	proportions.	The	larger	the	value	of	q	the	less	importance	is	placed	
on	rare	VSGs	in	a	profile.	The	more	a	mouse	differs	from	the	pooled	data	the	higher	the	value	of	normed	
beta	diversity.	
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S6		FIGURE.		

	

Clustering	analysis	of	reads	from	each	mouse.	The	y-axis	indicates	how	common	the	cluster	is	in	that	mouse	
and	the	x-axis	indicates	how	many	sequences	fall	within	that	cluster.	Clusters	are	colour	coded	such	that	a	
red	cluster	in	mouse	3.1	is	defined	by	the	same	centroid	and	clustering	threshold	as	the	red	cluster	in	mouse	
10.5	etc.		
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