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The current work aims to study how people make predictions, under a reinforcement
learning framework, in an environment that fluctuates from trial to trial and is corrupted
with Gaussian noise. We developed a computer-based experiment where subjects were re-
quired to predict the future location of a spaceship that orbited around planet Earth. Its
position was sampled from a Gaussian distribution with the mean changing at a variable
velocity and four different values of variance that defined our signal-to-noise conditions.
Three reinforcement learning algorithms using hierarchical Bayesian modeling were pro-
posed as candidates to describe our data. The first and second models are the standard
delta-rule and its Bayesian counterpart, the Kalman Filter. The third model is a delta-
rule incorporating a velocity component which is updated using prediction errors. The
main advantage of the later over the first two is that it assumes participants estimate the
trial-by-trial changes in the mean of the distribution generating the observations. We used
leave-one-out cross-validation and the Widely Applicable Information Criterion to compare
the predictive accuracy of the models. In general, our results provided evidence in favor of
the model with the velocity term and showed that the learning rate of velocity and the de-
cision noise change depending on the value of the signal-to-noise ratio. Finally, we modeled
these changes using an extension of its hierarchical structure that allows us to make prior
predictions for untested signal-to-noise conditions.
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Introduction

Decisions often take place in environments that change over time. Availability of food
in foraging animals may vary gradually as a function of source growth or continuous intake,
likewise, the position of objects in space can change at a certain rate. Having accurate esti-
mates of relevant variables under these circumstances allows behavior to be better allocated.
For example, by changing to a richer foraging location or predicting the correct position of
an object moving towards us. In stable environments, prediction error models accomplish
this task by reducing the discrepancy of estimates and outcomes as new observations arrive.
A straightforward expression to compute this is the Delta-rule:

V̂t+1 = V̂t + αδt (1)

where, the estimate at time t + 1 (V̂t+1), depends on the previous estimate (V̂t) and the
prediction error (δt), weighted by the learning rate parameter (α). Evidence from Exper-
imental Psychology (Bush & Mosteller, 1951; Dayan & Nakahara, 2018; Miller, Barnet, &
Grahame, 1995; Rescorla, Wagner, et al., 1972) and Neuroscience (Daw & Tobler, 2014;
Niv, 2009; Schultz, Dayan, & Montague, 1997) provides support for this algorithm as a
plausible mechanism of learning in mammals, and it has also been implemented as an ef-
fective solution in multiple machine learning problems (Sutton & Barto, 1998). However,
one of its limitations is the inability to describe behavior in non-stationary environments,
partly, due to the fixed nature of the learning rate parameter (O’Reilly, 2013). For ex-
ample, in change-point problems, having a low α makes predictions during stable periods
accurate but causes a slow adaptation after a change. A high α has the opposite effect,
making inaccurate predictions during stability but having a quick adaptation to changes.
Adjusting this parameter after the change-point (Nassar, Wilson, Heasly, & Gold, 2010)
and using multiple delta-rules with their own learning rates (Wilson, Nassar, & Gold, 2013)
are some of the possible solutions that have been proposed. On the other hand, when the
environment changes gradually over trials such as in a random walk process, the learning
rate is assumed to vary as function of the relative uncertainty in the estimates and the
outcomes as expressed in the Kalman filter equations (Gershman, 2015, 2017; Kakade &
Dayan, 2002; Kalman, 1960; Navarro, Tran, & Baz, 2018; Speekenbrink & Konstantinidis,
2015; Speekenbrink & Shanks, 2010; Zajkowski, Kossut, & Wilson, 2017). An important
limitation of this approach is that, when trial-to-trial changes are large (i.e. the rate of
change is high), the learning rate asymptotes at values close to one (Daw & Tobler, 2014),
making the model extremely sensitive to outcome noise. This problem is likely to occur
because there is not an explicit computation of the rate of change of the environment.

In this work we show that when the environment is changing at certain rate, a concrete
estimation of this variable is necessary to guide decisions. Additionally, we show that the
updating process of the rate of change is influenced by the level of noise in the observations
as expressed by the signal-to-noise ratio (S/N). Previous research has shown that people
are sensitive to higher order statistics of the environment such as the volatility (Behrens,
Woolrich, Walton, & Rushworth, 2007; O’Reilly, 2013) or the functions controlling changes
(Ricci & Gallistel, 2017) and that they are able to adapt their behavior accordingly.

In our experiment, subjects were required to predict the angular location of a spaceship
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moving around planet Earth. Its position was generated from a Gaussian distribution with
the mean changing at a variable velocity (rate of change for position) and four values of
variance that defined the S/N conditions. We proposed a reinforcement learning model
incorporating a velocity component to describe participants predictions throughout the
task. The main assumption of the model is that prediction errors are used to update an
estimate of the velocity of change in the outcomes mean, which is later incorporated to the
computations of new predictions.

We compared the performance of this model at describing behavior with the standard
delta-rule and its Bayesian counterpart, the Kalman Filter. Importantly, all models were
built using a hierarchical Bayesian structure where individual parameters were generated
from Gaussian distributions defined at the level of conditions. In general, hierarchical
modeling allows to specify the generative process of relevant psychological variables rather
than assuming they simply exist (Lee, 2018; Shiffrin, Lee, Kim, &Wagenmakers, 2008). One
of the main advantages of this type of models is their ability to generalize the results to new
conditions or participants (Lee, 2018). In the current work, we initially assume hierarchies
that allow all models to make predictions of new subjects on each condition. After showing
that the model with the velocity component outperforms the other two, we extended its
structure to allow predictions for untested S/N values. In particular, we assumed that the
means of the Gaussian distributions for two of the model parameters (the rate of learning
for the velocity component and the decision noise) followed a hyperbolic function of the
S/N values.

Our results show that errors between the generative mean of the spaceship and partic-
ipants’ predictions remain close to zero in the four conditions and that accuracy increases
with the S/N. The model-based analysis indicates that a prediction error model incorporat-
ing a velocity component is better at describing participants’ behavior than the standard
delta-rule and the Kalman Filter. A formal model comparison, using a recent approach
to leave-one-out cross validation developed by Vehtari, Gelman, and Gabry (2017) and the
Widely Applicable Information Criterion (WAIC), also suggests that this model has the
best predictive power. Furthermore, we found that the extended version of the wining
model is able to make sensible predictions about a new participant in the four conditions
and potentially to new S/N values. We further discuss the implications of our findings for
reinforcement learning models and alternative approaches to similar prediction problems.

Learning models

We evaluated three error-driven algorithms using hierarchical Bayesian modeling (Lee,
2018; Shiffrin et al., 2008). Hierarchical models assume that individual parameters are
generated from higher-order distributions, e.g., placed at the level of populations or experi-
mental conditions (Lee, 2018; Shiffrin et al., 2008). Some of their applications involve mod-
eling individual differences assuming participants are not completely independent (Pratte
& Rouder, 2011), and predicting behavior of a new subject based on the information of
the population (Lee, 2018; Shiffrin et al., 2008). As it is frequently done given its sim-
ple interpretation for variability (Lee, 2018; Matzke, Dolan, Batchelder, & Wagenmakers,
2015; Zajkowski et al., 2017), we assumed that the higher-order distributions were Gaussian.
Importantly, these distributions were set at the level of conditions implying that what is
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Figure 1 . Graphical representation of a hierarchical delta-rule.

learned from one participant in a given condition affects what is learned about the rest in
the same condition.

Standard delta-rule (SD). As specified in equation 1, this model updates a variable
V̂ using prediction errors weighted by a learning rate. We now assumed a decision rule in
which the behavior for trial t+1, Bt+1, is generated from a Gaussian distribution with mean
V̂t+1 and precision 1

η (where η is the variance of the distribution and represents decision
noise). 1 Formally:

V̂t+1 = V̂t + α(rt − V̂t)

Bt+1 ∼ N(V̂t+1,
1
η

)
(2)

where rt is the observed outcome in trial t. The learning rate α and the decision noise
η are generated from Gaussian distributions with hyperparameters (µαc , 1

ξαc
) and (µηc , 1

ξηc
),

respectively, for each experimental condition c. Figure 1 is the graphical representation of
this model. In this notation, nodes correspond to variables and arrows connecting them
refer to dependencies. Shaded nodes are observed variables, whereas unshaded nodes are
latent variables. Stochastic and deterministic variables are represented using single- and
double-boarded nodes, respectively, and continuous variables are represented using circular
nodes. Plates refer to replications of the process inside them. On the right-hand side of the
graphic, we show the detailed relations among variables and the prior distributions of the
hyperparameters.

1Throughout the text, we use the parametrization of the Gaussian distribution in terms of a mean and
a precision, where the precision is the reciprocal of the variance. This is largely because the software used
for our model-based analysis (JAGS) adopts this convention.
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Although a useful model of animal and machine learning, the core structure of equation
2 has difficulties performing under changing conditions (Gallistel, Krishan, Liu, Miller, &
Latham, 2014; Nassar et al., 2010; Ricci & Gallistel, 2017; Ritz, Nassar, Frank, & Shenhav,
2018; Wilson et al., 2013). In particular, for the purpose of this work, we will emphasize
that it is unable to track potential trends (e.g. a velocity) underlying the data.

Delta-rule with velocity term (VD).. This model incorporates to SD an estimate
of the trial-by-trial change (labeled as velocity) in the generative process. VD model consists
of an update equation and a prediction equation. The update equation is expressed as:

vt︸︷︷︸
Updated vector

=
Prediction vector︷︸︸︷

v̂t + a︸︷︷︸
Learning rate vector

Prediction error︷ ︸︸ ︷
(rt −Hv̂t) (3)

where H = [1 0], vt =
[
Vt

V ′t

]
,v̂t =

[
V̂t

V̂ ′t

]
and a =

[
α

β

]
. Vt and V ′t are the updated values

for the position and velocity, respectively, after the outcome rt is observed. V̂t and V̂ ′t
are predicted values for the position and velocity before outcome rt is observed. α and
β correspond to the learning rates for position and velocity, respectively. The prediction
equation is computed following:

v̂t+1 = Fvt (4)

where F =
[
1 1
0 1

]
, which gives: [

V̂t+1

V̂ ′t+1

]
=

[
Vt + V ′t

V ′t

]
(5)

By expressing equation 5 in terms of equation 3, we have:[
V̂t+1

V̂ ′t+1

]
=

[
V̂t + V̂ ′t + (α+ β)(rt − V̂t)

V̂ ′t + β(rt − V̂t)

]
(6)

Which can be rearranged as:[
V̂t+1

V̂ ′t+1

]
=

[
V̂t + V̂ ′t+1 + α(rt − V̂t)

V̂ ′t + β(rt − V̂t)

]
(7)

Finally, we assume the same response rule as in SD model, where the behavior for trial
t+ 1, Bt+1, is generated from a Gaussian distribution with mean V̂t+1 and precision 1

η :

Bt+1 ∼ Gaussian(V̂t+1,
1
η

)
(8)

The key difference between VD over SD model, is the incorporation of the velocity com-
ponent V̂ ′ along with its update equation. If observations are generated from a Gaussian
distribution (as we do in this work), this term tracks the trial-by-trial changes of the mean.
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Figure 2 . Simulations of the SD (left) and VD (right) models tracking the mean of a
Gaussian distribution changing at a variable velocity. In both panels, red points represent
the observations in the environment (r in equation 13), the blue line is the true mean of the
generating process (x) and the gray lines represent the mean predicted by each model given
the observations with different parameter values. The bottom panels show the interquartile
range and the median error of the simulations (left) and the true velocity v (right) along
with the prediction of the model (V̂ ′).

In the Method section, we will detail that such variations are controlled by the v term of
equation 13. In the absence of an estimate for this variable, SD model can only adapt to
changes using the learning rate, where faster adaptation occurs when this parameter ap-
proaches one. However, in this case, the model predictions would resemble the just-observed
outcome and not the generative mean. Top panels of figure 2 show simulations (gray lines)
of the SD and VD models tracking the moving mean (blue line) of a Gaussian distribution
based on samples from it (red dots). Changes of the mean occur at a variable velocity repre-
sented by the blue line of the bottom right panel. Each gray line in the top plots corresponds
to a simulation using a different value of α for SD, and of α and β for the VD model. It can
be observed that SD makes poor predictions for many values of α. In particular, the lower
the learning rate the worse the predictions of SD. On the other hand, by incorporating an
estimate of changes in the mean, VD model makes better predictions with different values
of α and β. The bottom left panel shows the errors between the generative mean and the
simulations on every trial. It is important to note that, as the mean begins to increase
(around trial 15 and 40) or decrease (around trial 30) errors for SD are considerably greater
compared to the ones of VD. The bottom right panel shows the estimate of the changes in
the mean by the velocity component of VD compared to the actual velocity of the mean.
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Figure 3 . Graphical representation of a hierarchical delta-rule with a velocity term.

In contrast to dynamic models that propose that the learning rate changes over trials
(Nassar et al., 2010), we assumed that α and β of VD are free parameters for each condition.
Our analysis was based on this assumption given that in non-stationary environments like
ours (see Method section), learning rates stabilize in values that asymptotically correspond
to the free parameters (Daw & Tobler, 2014). Additionally, the performance of subjects
remained stable within conditions indicating that they weighted prediction errors similarly
over trials (See Online Resource 1). Figure 3 shows the graphical representation of VD
(based on equations 7 and 8) using hierarchical modeling. In the same way as α and η in
SD model, β is generated from a Gaussian distribution with hyperparameters (µβc , 1

ξβc
) for

each experimental condition c. Apart from that, and the update equation for the velocity
component, specifications of the graphical model in figure 3 are the same as in figure 1.

Kalman Filter. This model is a Bayesian form of SD which updates the learning rate
on a trial-by-trial basis depending on the current level of uncertainty (Gershman, 2015, 2017;
Kakade & Dayan, 2002; Kalman, 1960; Navarro et al., 2018; Speekenbrink & Konstantinidis,
2015; Speekenbrink & Shanks, 2010; Zajkowski et al., 2017). The Kalman Filter estimates
the mean of the Gaussian distribution generating the observations following:

V̂t+1 = V̂t + αt(rt − V̂t)
(9)

where αt is known as the Kalman gain and is computed as:
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αt = ηt + ζ

ηt + ζ + ω

(10)

ηt is the variance of the Gaussian distribution and is updated following:

ηt+1 = (1− αt)(ηt + ζ) (11)

where ζ corresponds to the innovation variance and refers to non-directional changes as-
sumed by the model from trial-to trial. ω is the error variance, and corresponds to the
estimated noise in the observations. Both the innovation and the error variance are free
parameters of this model. Finally, we assumed a response rule where the behavior for trial
t+ 1, Bt+1, is generated from a Gaussian distribution with mean V̂t+1 and precision 1

ηt+1+ζ :

Bt+1 ∼ Gaussian(V̂t+1,
1

ηt+1 + ζ
) (12)

Note that the precision includes the term ζ (therefore increasing the variance of the predic-
tion), as the model considers that for the next trial the position can change. In contrast to
VD model, this estimate of change has no direction, and only modulates the influence of new
outcomes in the updating process. Figure 4 is the graphical representation of the Kalman
Filter using hierarchical modeling. Parameters ζ and ω are generated from Gaussian dis-
tributions with hyperparameters (µζc , 1

ξζc
) and (µωc , 1

ξωc
), respectively, for each condition

c.

Method

Participants. Seventy two undergraduate students (55 female, mean (SD) age = 19.8
(2.03)) from the School of Psychology at the National Autonomous University of Mexico
participated in the study after providing informed consent.

Behavioral task. The experiment was programmed using the commercial software
Matlab and the extension Psychophysics Toolbox (Brainard & Vision, 1997; Kleiner et al.,
2007; Pelli, 1997) to create visual stimuli. A standard mouse and keyboard, and a screen
of 1920 x 1080 pixels were used.

Figure 5 displays a representation of the task. In this scenario, participants were required
to predict the future position of a spaceship moving around planet Earth along a specified
orbit (blue dotted circle). Its location was given in radians (rad) using the center of the
orbit as reference. On every trial, the spaceship appeared for half a second on a given point
of its orbit, after which it disappeared. Participants had to click on the position where
they thought it would reappear in the next trial. After their choice, a red dot indicated
the location they selected and a red circle a fixed margin of error. At the same time,
the spaceship showed up in its new position. If it fell inside the red circle, it turned red
indicating the new location was accurately predicted or remained the same color otherwise.
There was no time limit for participants to emit their responses. This sequence was repeated
throughout the experiment. Moreover, if the spaceship gave a full lap in a counterclockwise
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Figure 4 . Graphical representation of a hierarchical Kalman filter.

direction, i.e. moving 2π rad, the second lap would continue from 2π rad to 4π rad, and
so on. Similarly, if the spaceship completed a full lap in a clockwise direction, its next
position was given according to values of the previous lap. We followed the same logic to
register participant’s responses. This transformation allowed the range of possible values
of observations and responses to span from -∞ to ∞, and was particularly useful to avoid
sudden changes of position from 2π rad to 0 every time a full lap was completed.

Experimental design. On every trial t the position of the spaceship r was generated
from a moving Gaussian distribution following:

vt+1 ∼ N(vt, σ2
v)

xt+1 = xt + vt

rt+1 ∼ N(xt+1, σ
2
r )

(13)

where x is the mean of the distribution, v is a velocity term following a Gaussian random
walk with variance σ2

v , and σ2
r is the variance in the actual observations. Our experiment

consisted of four conditions that varied the S/N values represented by σ2
v
σ2
r
. Intuitively, this

quantity indicates how easy it is to discriminate changes due to velocity, relative to changes
due to random noise; smaller ratios indicate noisier observations. We fixed the numerator
of the ratio σ2

v so participants faced the same generative process for the velocity component,
but varied the denominator σ2

r to change the noise in their observations. Table 1 shows the
values of S/N used in the experiment. An experimental session consisted of four conditions
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Figure 5 . Representation of the behavioral task. Participants predicted the position of a
spaceship that moved around planet Earth along the blue dotted line. Selected positions
were indicated with a red point surrounded by a red circle representing a margin of error.
Graphics of the task were developed using the on-line site http://planetmaker.wthr.us/.
See the main text for a detailed explanation of the task.

Table 1
Experimental conditions. Units for S and N are given in rad2

Condition S
N S N Trials

1 0.05 0.0049 0.098 300
2 0.5 0.0049 0.0098 300
3 1 0.0049 0.0049 300
4 2 0.0049 0.00245 300

with 300 trials each and order of presentation was randomized for all participants. Before
the experimental task started, a practice phase was completed that consisted of at least 30
trials, after which participants decided whether to continue acquiring more practice or begin
the experiment. After completing each condition, there was a time break and participants
decided when they were ready to start the next round of trials.

Results

As a measurement of performance we report the error between the generative mean of
the spaceship and participants’ predictions. These values are shown in the bottom panels of
figure 6 for all subjects on the four S/N conditions. It is clear that, in all conditions, most
errors remain close to zero, however, accuracy increases with the S/N. This is evident when
observing the proportion of values around zero for each condition and the corresponding
standard deviation. In other words, participants had greater errors for noisier observations.
Top panels are graphical representations of bottom plots where dark and light blue represent
±σ and ±2σ, respectively, and the figure of the spaceship represents the generative mean.
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Figure 6 . Overall performance of subjects in the experiment. Bottom panels show the error
between the generative mean of the spaceship and the predictions of participants for all
trials on each of the conditions indicated with their corresponding S/N values. A graphical
representation of the errors is shown in the top panels where dark and light blue indicate
±σ and ±2σ, respectively, and the spaceship represents the generative mean.

Bayesian Inference

Posterior distributions of parameters and hyperparameters were approximated using
the software JAGS (Just Another Gibbs Sampler; Plummer 2003) implemented in R code.
This procedure uses a sampling method known as Markov chain Monte Carlo (MCMC) to
estimate parameters in a model. For our three graphical models we used three independent
chains with 105 samples each and a burn-in period (samples that were discarded in order
for the algorithm to adapt) of 8 × 104. A thinning of 10 was used (i.e., values were taken
every 10 samples of the chain) to reduce autocorrelation within chains. Convergence was
verified by computing the R̂ statistic (Gelman, Rubin, et al., 1992) which is a measure of
between-chain to within-chain variance where values close to 1 indicate convergence (Lee
& Wagenmakers, 2013). In general, values between 1 and 1.05 are considered as reliable
evidence for convergence. All of the nodes for our three models had R̂ values within this
interval.

Figure 7 shows the results of Bayesian inference about parameters for the SD, VD and
Kalman Filter models. All panels, except for the one at the bottom right, display maxi-
mum posterior values (modes) of parameters for each participant, ordered by experimental
condition (S/N values). Error bars correspond to the interquartile range and dots represent
the medians. It can be observed that for SD and VD models, the learning rate α has values
close to one in all conditions (for SD model however values are not visually different from
one and do not show any variability between participants). According to both models, this
means that the just-observed outcome highly influenced participants’ predictions. For SD,
the above implies that a new prediction for participants equalled the just-observed outcome
(as the learning rate is not visually different from one), and for VD, that the new prediction
equalled a value close to the just-observed outcome (as the learning rate is high but visually
different from one) plus the estimation of velocity (see equations 5 and 7). Importantly,
values for η for SD were higher in all conditions compared to the ones of the VD, indicating
that, according to SD, a higher degree of noise influenced participants’ decisions. How-
ever, η values for both SD and VD models decrease for higher S/N. This relation indicates
that when observations were less noisy so were the predictions of participants. In the case
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Figure 7 . Bayesian inference results for SD, VD and Kalman Filter models. Error bars
represent the interquartile range and dots the medians of the Maximum posterior (MAP)
for each subject. The bottom right panel displays the RMSE generated with the posterior
predictions of each model compared to the actual RMSE of participants.

of the learning rates for velocity β, we observe a gradual increment of values as the S/N
increases, which suggests that the velocity term was updated faster for less noisy observa-
tions. Interestingly, the error variance ω of the Kalman Filter is not different from zero in
any condition. If we look at equation 10, this means that the Kalman gain approximates
one which makes the model closely similar to SD. Additionally, values for the innovation
variance ζ tightly resemble the behavior of η in SD, which probably arises as the variance ηt
of the Kalman Filter approaches zero over trials and the precision in equation 12, approx-
imates 1

ζ . The bottom right panel of figure 7 shows the root mean squared error (RMSE)
generated from the posterior predictions of each model compared to the actual RMSE of
participants. Posterior predictions were obtained by simulating data with 300 samples with
replacement from the joint posterior distribution of parameters and the actual observations
of participants. The similarity between the RMSE of the simulated data and the actual
RMSE is an indicator of the descriptive adequacy of the models. Note that in all conditions
the model incorporating the velocity component recovers the actual RMSE better than the
SD and the Kalman Filter. As expected from the parameter values of SD and the Kalman
Filter, both models have almost identical RMSE (overlapping gray and red dots and error
bars).
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Model comparison

Although RMSE provides a useful measurement of how accurately models can recover
actual data, it cannot be used as a metric of model comparison as it ignores complexity,
and generally more complex models will capture data better. In order to overcome this
limitation, we implemented two standard methods in Bayesian modeling that incorporate
model complexity into their computation. The first, is leave-one-out cross-validation (LOO),
and the second, the Widely Applicable Information Criterion (WAIC). These techniques
compute a pointwise estimator of the predictive accuracy of models for all data points
taking one at a time. On the one hand, LOO is a type of cross-validation where the training
dataset (the one used to tune the model) consist of all observations but one, which forms the
validation dataset (the one to be predicted). In particular, we used a new approach to LOO
developed by Vehtari et al. (2017) where a Pareto distribution is implemented to smooth
weights in an importance sampling procedure, and that the authors termed PSIS-LOO (for
Pareto smoothed importance sampling). On the other hand, WAIC works as an estimate
of out-of-sample deviance which overcomes previous limitations of the deviance information
criterion (DIC). Unlike DIC, WAIC is based on the entire posterior distribution and is
valid under non-Gaussian assumptions. In practice, PSIS-LOO and WAIC can be easily
computed using the R package loo (Vehtari et al., 2017) and the log-likelihood evaluated
at the posterior simulations of the parameter values (for more details on the computation
of PSIS-LOO and WAIC, see equations 3, 10 and 11 of Vehtari et al. (2017)). These two
methods return a measurement of deviance at predicting a new dataset and penalize model
complexity. Differences of PSIS-LOO and WAIC between each model and the model with
the lowest values for each metric are reported in table 2. More positive values indicate worse
predictive performance. It is clear that VD outperforms the other models according to both
metrics. As expected from parameter estimation and the descriptive adequacy of models,
SD and the Kalman Filter have a very close predictive performance. It is important to note
that model complexity in PSIS-LOO and WAIC is not defined in terms of parameter counts
like in AIC or BIC. Instead, these metrics consider the variability of posterior predictions.
When models make a wide range of predictions they are automatically penalized for the
poor ones as in Bayes Factors. This is a relevant feature as in hierarchical models usually
increasing the number of parameters reduces the variability of the predictions and, therefore,
the complexity of the model (Lee & Vanpaemel, 2018).

Table 2
Differences of PSIS-LOO (∆PSIS−LOO) and WAIC (∆WAIC) between each model and the
model with the lowest value for each metric. Higher values indicate worse predictive perfor-
mance.
Model ∆PSIS−LOO ∆WAIC

SD 85730 85534
Kalman 85715 85517
VD 0 0
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Figure 8 . Extension of the hierarchy of VD model using hyperbolic functions.

Predictions for new S/N values

The three models evaluated in this work are able to make predictions for new subjects
for each experimental condition given their hierarchical structure. However, neither of
them inform us of what would be expected for different values of S/N. This limitation is
overcome by extending their hierarchical structure formalizing the relation of parameters
between conditions. Given that VD showed the best descriptive adequacy and predictive
performance, we will use this model for the hierarchical extension. By visual inspection of
figure 7, we can tell that values of α are invariant for the evaluated conditions. Thus, we
can simplify the model by assuming they are generated by a Gaussian distributions for the
whole experiment. However, this is not the case for β and η. These parameters appear
to gradually increase and decrease, respectively, as the S/N increases. To formalize this
pattern, we assumed that β and η are generated from Gaussian distributions with means
following a hyperbolic function of the S/N values. Each hyperbola takes the S/N values as
argument and two parameters with positive value control the shape of the function (aβ and
bβ for the hyperbola of µβc and aη and bη for the hyperbola µηc ). The graphical model of
figure 8 (labeled as HVD) specifies each hyperbola.

Figure 9 shows the results of Bayesian inference for the HVD model. Top panels corre-
sponds to hyperbolas for the hierarchical means of the learning rates for velocity µβ (left)
and decision noise µη (right). These functions were generated within the interval (0,2) using
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Figure 9 . Results of Bayesian inference for the HVD model. Top panels correspond to
the hyperbolas of the hierarchical means of β (left) and η as a function of the S/N. Each
hyperbola was generated by sampling with replacement from the joint posterior distribution
of aβ and bβ, for learning rates of velocity, and aη and bη, for decision noise. The bottom left
panel shows posterior samples of the hierarchical mean for α. The bottom right panel shows
the RMSE generated with the posterior predictions of the model for all subjects compared
to the actual RMSE of participants. Error bars represent the interquartile range and points
the median.

300 samples with replacement from the joint posterior distribution of the parameters that
constitute each hyperbola. In the bottom left panel we show the posterior samples of the
mean of learning rates for position µα. As there is a single distributions for the whole exper-
iment, values of the S/N were omitted. In the bottom right panel, we show the descriptive
adequacy of the HVD model using the same sampling procedure as in the previous models.
It can be observed that model HVD is able to recover the actual RMSE of subjects just as
accurately as VD in figure 7.

Importantly, given that the functions are continuous, we are now able to make predic-
tions about the average behavior of parameters for untested S/N values. In figure 10, we
show simulations of VD and HVD for a new participant in our experimental conditions, and
for two new S/N values (0.35 and 1.5). Predictions for the new conditions were generated
taking 100 samples with replacement from the joint posterior distribution of the parameters
of the hyperbolas and from the single hierarchical mean of α. On the other hand, predictions
for the known conditions (S/N values of 0.05, 0.5, 1 and 2) were generated using the same
number of samples from the joint posterior distribution of the model parameters (α, β and
η). Top panels show the RMSE of the simulations on each condition. It can be noted that
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Figure 10 . Predictions for a new subject on each experimental condition. Top panels
represent the predicted RMSE for VD and HVD models. Error bars correspond to the
interquartile range and dots to the medians from the 100 simulations. Bottom panels
correspond to trial-by-trial predictions of VD, and HVD models for a new sequence of
observations. The red line represents the mean of the generative process. The gray panels
represent simulations for untested values of S/N ratio.

both models have similar RMSE for the known conditions but VD generates large RMSE
values compared to HVD for the untested ones. Bottom panels show the trial-by-trial pre-
dictions of the models for each of the simulations. It is evident that the variance of the
predictions of VD for the new conditions is considerably high compared to the one of HVD,
which results from a lack of information of parameter values that a participant would use
for those S/N values. Importantly, HVD is able to make predictions about new conditions
without loosing the descriptive adequacy of VD in the known conditions as shown in fig-
ure 9. Additionally, it has similar values of PSIS-LOO and WAIC (∆PSIS−LOO = 27 and
∆WAIC = -20, where values of VD are subtracted from the ones of HVD for both metrics.
In other words, for PSIS-LOO VD is a better, but WAIC favors HVD).

Discussion

Humans and other animals often face environments that change over time. In some
situations, these changes may occur gradually following a rate, and, in order to make ac-
curate predictions, individuals should have a good estimate of this variable. However, the
rate of change may not be readily inferred when peoples’ observations are corrupted with
random fluctuations. In this paper, we tested people’s predictions in an environment with
these characteristics by using a perceptual-decision making task. In our experiment, sub-
jects predicted the future location of a spaceship that moved at a variable velocity and
was corrupted with different levels of Gaussian noise. Our results show participants were
able to predict the most likely future location of the spaceship with accuracy increasing
for less noisy conditions. A standard reinforcement learning model (SD) was unable to
qualitatively describe these results, and Bayesian inference showed learning rates for this
model are not visually different from one in all conditions. This strategy is optimal only
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for a deterministic task and useful after the environment suffers abrupt and unpredictable
changes, but inaccurate in a probabilistic setting that is changing gradually over trials. In
an attempt to capture deviations from participants’ predictions, SD model assumes decision
noise is high. This is likely to happen when a model is ignoring a crucial signal in data
(namely the velocity component) and construing it as random variations. By incorporating
a velocity term to the standard delta-rule (VD model), we were able to describe data in a
more reasonable fashion. Furthermore, Bayesian inference showed that learning rates for
velocity and decision noise increase and decrease, respectively, with the S/N. The above
suggests that, in general, subjects updated their estimate of velocity faster and had less
noisy predictions when observations were less corrupted by noise.

Furthermore, the modeling results showed that the Kalman filter, a Bayesian alternative
to the delta rule (Gershman, 2015; Speekenbrink & Konstantinidis, 2015), was unable to
capture participants’ behavior. In this case, the posterior distributions from the innovation
variance (ζ) showed a behavior similar to the decision noise η in the SD, while the value of
the error variance ω was indistinguishable from zero. These results imply that the Kalman
gain would approximate one for almost all of the trials of the conditions, which would
explain why the RMSE between the SD and the Kalman Filter are indistinguishable from
one another. Previously, it has been noted that the SD model can be interpreted as the
Kalman Filter with a fixed learning rate (Speekenbrink & Konstantinidis, 2015). A formal
model comparison of these three modes using PSIS-LOO and WAIC shows that VD model
has the best predictive performance overall.

An extension of VD model suggests that the overall behavior of learning rates for velocity
and decision noise can be modeled using a hyperbolic function. This model was able to
capture participants’ errors as accurately as its not-constrained counterpart and to make
reasonable predictions about the expected behavior of a new participant under the same
experimental conditions. The hyperbolic function inferred for the learning rates of velocity
and decision noise can take practically any positive value of S/N as input and provide an
overall prediction of parameter values. The results show that this extension can be used
to make predictions about the expected behavior of participants under untested conditions
of S/N. Further work could show whether this predictions can account for the behavior of
participants in a similar task. A formal model comparison between the VD model and the
hyperbolic extension using PSIS-LOO and WAIC shows that both models have a similar
predictive performance.

This work accords with other studies that propose humans are sensitive to higher-order
variables that control the dynamics of the environment (Behrens et al., 2007; Courville,
Daw, & Touretzky, 2006; McGuire, Nassar, Gold, & Kable, 2014; Meder et al., 2017; Ricci
& Gallistel, 2017; Wittmann et al., 2016; Yu & Dayan, 2005). In particular, our model
suggests that when the environment is changing smoothly at a variable velocity, subjects
have an estimate of this quantity and use it to make predictions as suggested in figure
2. Furthermore, we showed that this process is influenced by the level of noise in the
observations, which enables faster learning for higher S/N values.

Although reinforcement learning models are common in tasks of belief updating in chang-
ing environments (Behrens et al., 2007; Nassar et al., 2010; Speekenbrink & Shanks, 2010;
Wilson et al., 2013), some studies suggest that this process may not take place on a trial-
by-trial basis as suggested by delta-rule models either when the environment suffers abrupt
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(Gallistel et al., 2014; Robinson, 1964) or gradual changes (Ricci & Gallistel, 2017). In-
stead, these works suggest that people follow a step-like pattern, some times updating their
estimates after hundreds of trials have passed. This is true when people infer the parameter
of a Bernoulli distribution (Gallistel et al., 2014; Ricci & Gallistel, 2017), however, the con-
ditions under which people follow this pattern or a trial-by-trial update are not clear yet.
Of particular interest to our paper is a recent error-driven approach to adaptive behavior
using a control theoretic model known as PID (proportional-integral-derivative controller,
Ritz et al. 2018). This model incorporates to the standard delta rule (proportional part), a
weighted sum of the history of errors (integral part) and the difference between the current
and previous error (derivative part). It is worth noting that the PI part of the model is alge-
braically equivalent to our VD model (without hierarchical modelling) when there is perfect
integration. A simple rearrangement of the integral part as a Markov process provides the
update equation of the velocity term in the VD model (when the memory persistence pa-
rameter of PI equals one). We believe our approach is computationally less expensive as
it does not require estimating the full history of errors and their corresponding weights on
every trial, but only the previous estimate of change and the current error. However, it is
important to note that the model proposed here would perform poorly in task with abrupt
changes of position or velocity as it suffers from the same pitfalls of models with fixed learn-
ing rates. PID model ameliorates this concern by incorporating the derivative part, which
allows for sudden corrections when the model estimates depart from the generative process.

In summary, in this work we have provided evidence that people can use prediction
errors to update an estimate of the rate of change (velocity) when the environment is
varying gradually over trials, and to update this quantity faster when observations are
more reliable. Additionally, we have shown that a hierarchical Bayesian approach provides
benefits in terms of predictive power and generalization. Finally, our results are in line
with evidence that people and other animals can learn about higher order statistics of their
environment and use that information to guide predictions.
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