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2 Andrew M. Stein et al

Abstract Guiding the dose selection for monoclonal antibody oncology drugs
is often done using methods for predicting the receptor occupancy of the drug
in the tumor. In this manuscript, previous work on characterizing target in-
hibition at steady state using the AFIR metric [1] is extended to include a
“target-tissue” compartment and the shedding of membrane-bound targets. A
new potency metric AFTIR (Averarge Free Tissue target to Initial target ra-
tio at steady state) is derived, and it depends on only four key quantities: the
equilibrium binding constant, the fold-change in target expression at steady
state after binding to drug, the biodistribution of target from circulation to
target tissue, and the average drug concentration in circulation. The AFTIR
metric is useful for guiding dose selection, for efficiently performing sensitivity
analyses, and for building intuition for more complex target mediated drug
disposition models. In particular, reducing the complex, physiological model
to four key parameters needed to predict target inhibition helps to highlight
specific parameters that are the most important to estimate in future experi-
ments to guide drug development.
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Guiding dose selection of monoclonal antibodies 3

Introduction

During biologic drug development, prediction of target engagement at the site
of action plays a critical role in dose regimen selection [2]. Because target
engagement measurements at the site of action are often impossible to ob-
tain, model-based predictions of target engagement at the site of action are
often used to help justify the dose regimen selection. The methods used to
predict target engagement vary significantly in their assumptions and in their
level of complexity. For example, consider the model-based dose selection of
pembrolizumab and atezolizumab.

For the PD-1 inhibitor pembrolizumab, a physiologically based model for
antibody distribution and target engagement was developed to predict the dose
needed to achieve target engagement and tumor suppression [3]. This model
involved many assumptions about a large number of parameters and how these
parameters scale from mice to humans. For the PD-L1 inhibitor atezolizumab,
a much simpler approach was taken to guide the dosing regimen [4]. The tumor
biodistribution coefficient (B) and in vivo binding affinity (Kd) were chosen
based on preclinical data. The steady state trough concentration (Ctrough) was
estimated from clinical observations. The receptor occupancy (RO) formula
in Equation 1 was then used to identify the dosing regimen needed to achieve
95% target occupancy. This approach made fewer assumptions about model
parameters than in [3]. However, in choosing this simple model, many implicit
assumptions were made about the system. For example, this simple model
assumes that the rate of PD-L1 internalization does not change when it is
bound to atezolizumab.

RO = B · Ctrough/(B · Ctrough +Kd) (1)

The complex, mechanistic model used for pembrolizumab, captures more
details of the underlying physiological processes. However, this model was
more difficult to analyze due to it’s complexity; it also had a large number of
unknown parameters which were difficult to estimate accurately. The simple
model used for atezolizumab was easier to analyize and had fewer unknown
parameters to estimate. However, this model required certain implicit assump-
tions which do not necessarily hold.

In this paper, a mathematical analysis of a physiologically-based model for
drug distribution and target turnover is performed to derive a simple potency
factor for characterizing target engagement. This theoretical calculation is
validated using simulations of the model. All assumptions made in deriving this
formula are explicitly stated. This paper extends previous work that focused on
target engagement in circulation, as characterized by the Average Free target
to Initial target Ratio (AFIR) at steady state in circulation [1].
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4 Andrew M. Stein et al

Theory

In this section, an expression for the Average Free Tissue target to Initial
target Ratio in tissue (AFTIR) is derived for the model in Figure 1.

Model Description

The model in Figure 1 is based on the standard target mediated drug dis-
positon (TMDD) model [5], where a drug (D) binds its target. The model is
extended to include the following processes:

– Shedding of the membrane-bound target (M) to form soluble target (S).
– Binding of the drug to both the membrane-bound target and the soluble

target to form complexes DM and DS, respectively.
– Distribution of drug, target, and complexes from central (1) to tissue (3)

compartment via either passive processes (soluble target) or active pro-
cesses such as cell-trafficking (membrane-bound target).

As with the standard TMDD model, the peripheral compartment (2) contains
the drug only; it is included so that the two-compartment pharmacokinetics of
the drug can be described. The ordinary differential equations for describing
this system are given by Equations (2) - (12).
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Guiding dose selection of monoclonal antibodies 5

dD1

dt
=

1

VC
Doseiv(t)− k12DD1 +

VD2

VD1

k21DD2 − k13DD1

+
VD3

VD1

k31DD3 − keD1D1 − kon1D1 · S1 + koff1(DS1)

− kon1D1 ·M1 + koff1(DM1) (2)

dD2

dt
= k12D

VD1

VD2

D1 − k21DD2 (3)

dD3

dt
=
VD1

VD3

k13DD1 − k31DD3 − keD3D3 − kon3D3 ·M3 + koff3(DM3)

− kon3D3 · S3 + koff3(DS3) (4)

dM1

dt
= ksynM1 − kshedM1

M1 − k13MM1 +
VM3

VM1

k31MM3 − keM1M1

− kon1D1 ·M1 + koff1(DM1) (5)

dM3

dt
= ksynM3 − kshedM3

M3 +
VM1

VM3

k13MM1 − k31MM3 − keM3M3

− kon3D3 ·M3 + koff3(DM3) (6)

dS1

dt
= ksynS1 + kshedM1

M1 − k13SS1 +
VS3

VS1

k31SS3 − keS1S1

− kon1D1 · S1 + koff1(DS1) (7)

dS3

dt
= ksynS3 + kshedM3

M3 +
VS1

VS3

k13SS1 − k31SS3 − keS3S3

− kon3D3 · S3 + koff3(DS3) (8)

d(DM1)

dt
= −kshedDM1

DM1 − k13DM (DM1) +
VDM3

VDM1

k31DM (DM3)

− keDM1DM1 + kon1D1 ·M1 − koff1(DM1) (9)

d(DM3)

dt
= −kshedDM3DM3 +

VDM1

VDM3

k13DM (DM1)− k31DM (DM3)

− keDM3DM3 + kon3D3 ·M3 − koff3(DM3) (10)

d(DS1)

dt
= kshedDM1

DM1 − k13DSDS1 +
VDS3

VDS1

k31DSDS3

− keDS1(DS1) + kon1D1 · S1 − koff1(DS1) (11)

d(DS3)

dt
= kshedDM3DM3 +

VDS1

VDS3

k13DSDS1 − k31DSDS3

− keDS3(DS3) + kon3D1 · S3 − koff1(DS3) (12)

The initial conditions for all variables are zero, except for the free target
concentrations M1, M3, S1, and S3. The equations used to determine these
four initial concentrations are provided in Appendix A.1.1.
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6 Andrew M. Stein et al

Checking for tumor homogeneity using the Thiele Modulus

In setting up the compartmental model in Figure 1, an implicit assumption
is made that all compartments can be treated as homogeneous, well-mixed
tissues. This assumption is reasonable for the circulating compartment, and
it is not needed for the peripheral compartment, which is an empirical model
feature that is used to get the standard 2-compartment PK. But when the
target is membrane-bound, then for the tissue compartment, this assumption
will not be correct for low doses where the drug may be internalized and elim-
inated before it penetrates through the tissue. For membrane-bound targets,
the assumption of a homogeneous, well-mixed tissue compartment can be eval-
uated by checking whether the Thiele modulus given below is less than one.
[6,7]

φ2
M =

Drug Elimination from Tumor

Drug Penetration into Tumor
=

(kshedDM3 + keD3 + keDM3) ·M3tot

k13D · Cavg · (VD1/VD3)
(13)

The Thiele Modulus is a non-dimensional parameter which is the ratio of recep-
tor elimination (due to shedding and internalization) to the drug penetration
into the tissue. Here, M3tot is the total concentration of receptors in the tissue
at steady state, which is often assumed to be equal to M30, but could also
be set to M30 · Tfold, where Tfold is the fold-change in receptor expression at
steady state and is discussed further below. Tfold is derived in Appendix A.1.
To our knowledge, it has not been established yet how much less than one the
Thiele modulus must be for the assumption of tissue homogeneity to hold.

AFTIR derivation

AFTIR definition

Average Free Tissue target to Initial target Ratio (AFTIR) is defined as

AFTIR :=
1

τ

∫ tss+τ

tss

T3(t)

T30
dt =

T3avg,ss

T30
=

(
T3avg,ss

T3tot,ss

)(
T3tot,ss

T30

)
. (14)

This equation applies for both membrane-bound (M) and soluble (S) targets,
where T3(t) is the time series target concentration in the tumor compartment,
T30 is the baseline target, T3avg,ss is the average free target concentration
at steady state, and T3tot,ss denotes the total target concentration at steady
state. AFTIR gives a measure of target inhibition in the tissue of interest
(compartment 3) where the lower the AFTIR value, the greater the inhibition.
The objective of this section is to derive the following estimate for AFTIR:

AFTIR ≈ Keq · Tfold

Keq · Tfold +BISF
sat · Cavg

, (15)

where Keq is an equilibrium constant measuring how fast the drug and target
bind to form complexs, Tfold is the fold-change in the target levels at steady
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Guiding dose selection of monoclonal antibodies 7

state compared to baseline, BISF
sat is the biodistribution coefficient (i.e. the

fraction of the drug from circulation that is found in the tissue of interest),
and Cavg is the average drug concentration in circulation. Expressions for each
of these terms are derived below.

Keq definition

Three different equilibrium constants are defined below. (1) The quasi-equilibrium
approximation for both membrane and soluble target is [8]

Kd :=
koff3

kon3
(16)

(2) The quasi-steady state approximation for soluble targets is [8]

Kss,sol :=
koff3 + keDS3

kon3
. (17)

For membrane-bound targets, the formula is similar, though shedding needs
to be taken into account as well:

Kss,mem :=
koff3 + keDM3 + kshedDM3

kon3
. (18)

(3) A new equilibrium constant is introduced in this paper, called the quasi-
steady-state with distribution constant, denoted Kssd. This new equilibrium
constant outperforms Kd and Kss in terms of accuracy of approximating AF-
TIR.

The derivation of Kssd for membrane-bound targets is shown below, and a
similar process is followed for the soluble target version. To begin, assume a
constant infusion of drug and that the system has reached steady state. Setting
Equation (10) to zero and rearranging terms gives

kon3D3 ·M3 = kshedDM3(DM3) + k31DM (DM3) + keDM3(DM3)

+ koff3(DM3) +
VDM1

VDM3

k13DM (DM1)
(19)

Dividing each side by kon3 ·DM3 gives

D3 ·M3

DM3
=
kshedDM3

+ k31DM + keDM3 + koff3

kon3

+
VDM1

VDM3

DM1

DM3

k13DM

kon3
.

(20)

We then define Kssd (for membrane-bound target and soluble target) as

Kssd,mem :=
kshedDM3

+ k31DM + keDM3 + koff3

kon3
, (21)

Kssd,sol :=
k31DS + keDS3 + koff3

kon3
. (22)
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8 Andrew M. Stein et al

Substituting Equation (21) into Equation (20) gives

D3 ·M3

DM3
= Kssd,mem +

VDM1

VDM3

DM1

DM3

k13DM

kon3

= Kssd,mem +
AmtDM1

AmtDM3

k13DM

kon3
,

where AmtDM1 = VDM1
·DM1 is the amount of complex in the central com-

partment, and AmtDM3 = VDM3
·DM3 is the amount of complex in the tissue

compartment. If the membrane-bound target is unable to move to the central
compartment (i.e., k13DM = k31DM = 0), or if the amount of complex is much
larger in the tissue than in circulation such that AmtDM1/AmtDM3 ≈ 0, then

D3 ·M3

DM3
= Kssd,mem. (23)

And similarly for soluble targets,

D3 · S3

DS3
= Kssd,sol. (24)

Regardless of which Keq is used, the following approximation is assumed
to hold:

Keq =
D3 · T3

DT3
(25)

Tfold, BISF
sat , and Cavg definition

The total target in tissue is defined as T3tot := T3+DT3. The fold-accumulation
of the target in tissue at steady state is defined as

Tfold :=
T3tot,ss

T30
. (26)

The analytical formula for Tfold is derived in Appendix (A.1) for the scenario
where there is shedding of membrane-bound target to form soluble target.
The scenario where no shedding takes place is calculated by setting either all
shedding rates (kshed) terms to zero (so that there is no shedding), or, for
soluble targets, by setting all membrane-bound target synthesis rates (ksynM )
to zero.

For large drug concentrations that saturate the target, the steady state
biodistribution coefficient (BISF

sat ) gives the the ratio of the drug concentration
in tissue interstitial fluid (ISF) to that in circulation. The average steady state
circulating concentration is defined as Cavg := D1avg,ss. The analytical formula
for BISF

sat is derived in Appendix (A.2) and is in Equation 27.

BISF
sat :=

D3avg,ss

D1avg,ss
=
D3avg,ss

Cavg
=
VD1

VD3
· k13D

(keD3 + k31D)
. (27)

The above formula only applies to large doses that saturate the target. For low
doses that do not saturate the target, binding to the target can significantly
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Guiding dose selection of monoclonal antibodies 9

impact amount of drug that distributes to the tissue. Besides BISF
sat , there

are two other biodistribution terms that are also referenced in the literature:
Bfree(Cavg, T,Keq) and Btot(Cavg, T,Keq), which refer to the fraction of free
drug and total drug that is found in tissue compared to circulation. Both
Bfree and Btot depend on the circulating drug concentration, level of target
expression, and binding affinity. Throughout this manuscript, it is BISF

sat that
will be used.

Putting it all together

Using the definitions of T3tot and Keq, substituting the equation DT3 = T3tot−
T3 into the equation Keq = D · T/(DT ), and solving for T3/T3tot gives

T3

T3tot
=

Keq

Keq +D3
≈ Keq

D3
≈ Keq

D3tot
. (28)

The first approximation holds when D3 � Keq, and the second approximation
holds when D3tot ≈ D3, which occurs when drug is dosed in vast molar excess
to the target, as is the case for most monoclonal antibody (mAb) drugs at the
approved dosing regimen.

Using Equations (26) and (28) gives

T3

T30
=

(
T3

T3tot

)(
T3tot

T30

)
≈ Keq · Tfold

D3tot
. (29)

Integrating this ratio over one dosing cycle at steady state gives

AFTIR =
1

τ

∫ tss+τ

tss

T3(t)

T30
dt ≈ 1

τ

∫ tss+τ

tss

Keq · Tfold

D3tot(t)
dt (30)

When the drug is given as an infusion at a rate Dose/τ , then the steady-
state drug concentration is a constant (D3tot,ss), giving

AFTIR ≈ Keq · Tfold

D3avg,ss
. (31)

Substituting the biodistribution expression from Equation (27) gives what
we call a simple expression for AFTIR.

AFTIRsimple ≈
Keq · Tfold

BISF
sat · Cavg

. (32)
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10 Andrew M. Stein et al

TEC50 definition

In deriving the above formula for the AFTIR metric, which we call the “sim-
ple” AFTIR formula, large drug concentrations are assumed. However, for
arbitrarily small drug concentrations, AFTIRsimple is unbounded:

lim
Dose→0

AFTIRsimple =∞.

Realistically, AFTIR should approach one for arbitrarily small drug concen-
trations since the average free tissue target at steady state should approach
the baseline tissue target concentration. Motivated by [9], we then modify the
AFTIR approximation by adding an additional factor to the denominator:

AFTIR ≈ Keq · Tfold

Keq · Tfold +BISF
sat · Cavg

=
TEC50

TEC50 +BISF
sat · Cavg

, (33)

where the approximate concentration for 50% target engagement (TEC50) is
given by

TEC50 := Keq · Tfold. (34)

TEC50 is equivalent to the “L50” parameter in [9]. With this reformulation,
we have

lim
Dose→0

AFTIR = 1.

This new formulation still converges to the previously derived formula such
that

lim
Dose→∞

AFTIR = AFTIRsimple.

Both the TEC50 and simple formulas for AFTIR are checked against numer-
ical simulations in the Results section. We attempted to derive the above
expressions for AFTIR by extending the work from [9], but the derivation
proved difficult for the model shown here. Thus, we instead posit that this
approximation holds and will check it in the following sections.

Definition of TFTIR

Besides AFTIR, another quantity that can be used to guide dosing regimen
is TFTIR (the Trough Free Tissue target to Initial target Ratio). It measures
the minimum ratio of the free tissue target (e.g. within a tumor) to the initial
tissue target at steady state and is defined as

TFTIR :=
T3,trough

T30
(35)

Like AFTIR, TFTIR can be approximated by

TFTIR ≈ Keq · Tfold

Keq · Tfold +BISF
sat · Ctrough

(36)
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Guiding dose selection of monoclonal antibodies 11

From [10], Ctrough is given by

Ctrough = Dose ·
(
C1 · exp(−α · τ)

1− exp(−α · τ)
+
C2 · exp(−β · τ)

1− exp(−β · τ)
+
C3 · exp(−γ · τ)

1− exp(−γ · τ)

)
,

where all constants can be computed from the model parameters [11]. We will
numerically check whether this approximation for TFTIR is accurate in the
next section.

Linear PK and CL

In the case that the PK is linear, and there is no elimination from the tumor
compartment (i.e., keD3 = 0), one can write Cavg in terms of the dosing regi-
men and the parameters governing the pharmacokinetics: bioavailability (F ),
clearance (CL), and dosing interval (τ). It is given by

Cavg =
F ·Dose

CL · τ
. (37)

If there is elimination from the tumor (i.e., keD3 6= 0), then the formula above
does not apply with CL = keD1/VD1. However, a similarity transform can be
applied where keD3 can be forced to be zero, and all the other PK parameters
k12D, k21D, k13D, k31D, keD1, CL can be transformed such that the concen-
tration time profiles for D1(t) and D3(t) do not change. See Appendix A.3 for
this similarity transformation. Thus, once CL is estimated by fitting a com-
partmental model, the formula above for Cavg holds whether or not there is
elimination from the tissue compartment.

Methods

Under the assumption of large doses and a constant infusion of drug, we have
arrived at the following expression for AFTIR:

AFTIR ≈ Keq · Tfold

Keq · Tfold +B · Cavg
(38)

We hypothesize that this expression also holds for TFTIR, replacing Cavg with
Ctrough.

To check the accuracy of this formula, we compare the theoretical AFTIR
to the simulated AFTIR. The theoretical AFTIR is computed by Equation (38)
for a given set of parameters. The simulated AFTIR is computed directly by
simulating Equations (2) - (12) for the same set of parameters and then taking
the ratio of the steady state average (or trough) free target concentration
to the baseline target concentration. In addition, the Thiele Modulus is also
computed using Equation (13). The model is implemented using the RxODE
package in R, and correct implementation of the model is checked by comparing
the simulated and analytical expressions for BISF

sat , Cavg, Ctrough and Tfold.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 6, 2019. ; https://doi.org/10.1101/432500doi: bioRxiv preprint 

https://doi.org/10.1101/432500
http://creativecommons.org/licenses/by-nc/4.0/


12 Andrew M. Stein et al

This simulations are performed for four mAbs that are used to treat can-
cer: trastuzumab (anti-HER2), atezolizumab (anti-PD-L1), pembrolizumab
(anti-PD-1), and bevacizumab (anti-VEGF). Key properties of these drugs
are summarized in Table (1), and the specific parameters used in this analy-
sis are provided in Table S1. The references and equations used for select-
ing each parameter are provided in the Excel spreadsheets available here:
https://github.com/iamstein/TumorModeling/tree/master/data and in
the Supplementary Material. An overview for how the parameters are selected
is provided below. For atezolizumab and pembrolizumab, membrane-bound
target is shed to form soluble target. For trastuzumab, only membrane-bound
target is simulated (shedding is set to zero), while for bevacizumab, only sol-
uble target is simulated (synthesis of membrane-bound target is set to zero).

Parameter Selection

The PK parameters (keD1, k12D, k21D, VD1, VD2) are taken from PopPK model
fits from the literature. The volumes for the target tissue are assumed to be
0.1 L, corresponding to a tumor with radius of 3 cm. The binding affinity (Kd

or Kss) is also taken from the literature, and, when needed, a typical value
for koff3 between 1/day-100/day was assumed [12, Figure 12]. The binding and
unbinding rates are assumed to be the same in both the central and tissue com-
partments. For baseline soluble and membrane-bound target levels, data from
the literature is used. For membrane-bound targets, target expression (M10,
M30) is provided in terms of receptors per cell (N), which is then converted
to nanomolar concentration with

Mi0[nM ] = N · ρi · φ ·
109

6.02 · 1023
, (39)

where i = 1, 3 refer to the central and target tissue compartments respectively.
Here ρi is the cell density of the tissue of interest (ρ1 = 6 ·109 cells/L in blood
for targets expressed on white blood cells, and ρ3 = 3 · 1011 cells/L for targets
expressed in tumor tissue [7]), and φ is the fraction of cells in the tissue of
interest expressing the target, assumed to be 0.1− 1.

The target elimination and shedding rates are chosen to have reasonable
values (1/day - 10/day) [13], and the synthesis rates are chosen so that baseline
target levels matched the estimates for Mi0 above.

It is assumed that the rates of distribution of drug into the tumor are
proportional to the rates of distribution into the peripheral tissue, scaled by
the ratio of tissue volumes:

k13D = k12D ·
VD3

VD2
.

These estimates were similar to estimates from a more physiological model
that accounted for drug perfusion into the tumor [7], as documented in the
parameter Excel tables. The biodistribution coefficient (BISF

sat ) is assumed to
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be around 30% [4], and assuming no elimination of drug from the tumor, k31D

is estimated by assuming that at steady state, the transit rates into and out
of the tumor are equal:

k31D ·D3 · VD3 = k13D ·D1 · VD1,

k31D · (BISF
sat ·D1) · VD3 = k13D ·D1 · VD1,

k31D =
k13D

BISF
sat

· VD1

VD3
.

Soluble targets are then assumed to distribute two times faster than the drug,
and soluble drug-taget complexes are assumed to distribute two times slower
than the drug. It is recognized that this approach is empirical, and as a check,
these rates were found to be comparable to the rates estimated using the Krogh
cylinder approach for modeling tissue distribution [14].

For membrane-bound targets, where immune trafficking may occur (pem-
brolizumab, atezolizumab), it is assumed that the rate of distribution of cells
expressing those targets into and out of tissue is k13M = 0.048/d, and k31M =
5.5/d [15, Table 4, parameters kin and kout].

Further parameter exploration

In the above definition of AFTIR, three different approximations are used for
the equilibrium binding constant Keq: quasi-equilibrium (Kd), quasi-steady-
state (Kss), and the newly derived constant, quasi-steady-state with distribu-
tion (Kssd). The accuracy of each of these constants over a range of doses is
compared for the four drugs above.

To further check the accuracy of the AFTIR approximation, we varied a
few of the 47 model parameters over a large range with the dose fixed at a
dose of 10 mg/kg every three weeks.

– k13D - the rate of distribution of the drug from the central compartment
to the tissue compartment. This will impact the biodistribution (BISF

sat ) of
drug in the tissue.

– k13DT - the rate of distribution/trafficking of the drug-target complex from
the central compartment to the tissue compartment. This parameter is
included because it is often excluded from TMDD models and it was found
to impact AFTIR.

– ksynT3 - the rate of target synthesis in the tissue compartment. This will
impact whether the drug at a particular dose is in excess to its target.

– kshedDM3 - the rate of shedding of the drug-target complex from membrane-
bound to soluble. This parameter is included because it is also often ex-
cluded from TMDD models.

For pembrolizumab, atezolizumab, and trastuzumab, T denotes the membrane-
bound target, and for bevacizumab, T denotes the soluble target.

To determine the importance of an accurate estimate for the soluble target
accumulation in the tissue of interest, we also explore how AFTIR varies for

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 6, 2019. ; https://doi.org/10.1101/432500doi: bioRxiv preprint 

https://doi.org/10.1101/432500
http://creativecommons.org/licenses/by-nc/4.0/


14 Andrew M. Stein et al

the parameter keS3 for bevacizumab, as this parameter has a significant impact
on Tfold = S3tot,ss/S30.

All code for generating the figures shown here is provided at: https://
github.com/iamstein/TumorModeling/tree/master/ModelF.

Results

AFTIR calculated by simulation is compared to the theoretical formula in
Equation (38). The results are shown in Figures (2, 3, and 4).

Figure (2) (top row) shows comparisons of the approximations over a range
of doses using the three equilibrium constants, Kd, Kss, and Kssd. In general,
Kssd, the new equilibrium constant derived here, best matches the model sim-
ulation. Note, however, that for trastuzumab, the drug with the highest target
levels, the theory does not match the simulation at all. This is because the
AFTIR approximation requires the assumption that the drug is in vast ex-
cess to its target and that the tumor can be treated as a homogeneous tissue.
The bottom row of Figure (2) shows how the Thiele modulus changes with
dose. When the Thiele Modulus is less than 0.2, there is relatively good visual
agreement between the theory and the simulation. Because the Thiele mod-
ulus is primarily applicable for membrane-bound targets, it is not computed
for Bevacizumab.

Note that for Atezolizumab, the agreement improves when the dose drops
to 0.1 mg/kg, despite the Thiele Modulus being greater than 0.2. This is
because for any drug given at sufficiently low doses, AFTIR ≈ 1 for both
theory and simulation because no drug is present.

Another feature to note is that the Kss approximation differs from the Kssd

approximation by less that 2-fold. Thus, the Kss approximation is still reason-
able, and if one wanted a more conservative estimate for target engagement,
a 2× ”safety factor” could multiply Kss. Similar findings are also observed for
TFTIR (see supplementary material).

In Figure (3), it is shown that at high doses, AFTIR and AFTIRsimple agree
well at values below 0.3. But above 0.3, and especially at small concentrations
where AFTIR approaches 1, the simple approximation no longer holds, as
expected.

Figure (4) shows the sensitivity of AFTIR to other parameters, namely
the rate of trafficking of the drug from the central compartment to the tissue
compartment (k13D), the rate of trafficking of the drug-target complex from
the central compartment to the tissue compartment (k13DT ), the rate of shed-
ding of the drug-target complex from membrane-bound to soluble (kshedDM3),
and the rate of target synthesis in the tissue compartment (ksynT3). The red
horizontal line denotes the regime where the Thiele Modulus is greater than
0.2, indicating that the assumptions of tissue homogeneity and drug in excess
of the target are inaccurate. For bevacizumab and pembrolizumab, there is
generally good agreement between theory and simulation. For trastuzumab,
the theory does not match the simulation due to the very high target concen-

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 6, 2019. ; https://doi.org/10.1101/432500doi: bioRxiv preprint 

https://github.com/iamstein/TumorModeling/tree/master/ModelF
https://github.com/iamstein/TumorModeling/tree/master/ModelF
https://doi.org/10.1101/432500
http://creativecommons.org/licenses/by-nc/4.0/


Guiding dose selection of monoclonal antibodies 15

tration. And for atezolizumab, the theory matches the simulation only when
the Thiele modulus is below 0.2

For atezolizumab, the parameter for which there is the greatest discrep-
ancy between theory and simulation is ksynT3. At low ksynT3 values, the theory
overpredicts the AFTIR value, while for high ksynT3 values, the theory under-
predicts the AFTIR value. The reason for the discrepancy at high ksynT3 values
is that the target expression becomes so high that the drug is no longer in ex-
cess to the target, as in the trastuzumab case. The reason for the discrepancy
at low ksynT3 values is that the assumption of negligible complex transport
from circulation into the tissue of interest no longer applies. And so the ap-
proximation for deriving Kssd in Equation (21) is no longer accurate. As a
check of this phenomenon, we set k13DT to zero. As a result, there is better
agreement between theory and simulation in Figure (S1).

In Figure (5), it is shown that for a drug (bevacizumab) with a soluble
target (VEGF), the fold-accumulation of the target is a critical factor in pre-
dicting the amount of target inhibition in the tissue of interest. This is also
observed in Equation (31), where AFTIR is directly proportional to Tfold.

Discussion

Review of key AFTIR parameters

The key insight from this work is that under many clinically relevant scenarios,
AFTIR can be estimated using four parameters, a binding constant (Keq), the
fold-change in target levels upon binding to drug (Tfold), the average drug
concentration in circulation (Cavg), and the biodistribution coefficient for the
drug to the tissue of interest (BISF

sat ):

AFTIR =
Keq · Tfold

Keq · Tfold +BISF
sat · Cavg

.

This simple formula provides intuition for how changing the dosing regimen,
improving the binding affinity of the drug, or enhancing tissue penetration
would be expected to alter target inhibition. For example, at large drug con-
centrations, when AFTIR ≈ AFTIRsimple = Keq · Tfold/(B

ISF
sat · Cavg), one can

see that either halving the dosing interval, halving the binding affinity (with
a more potent drug), or doubling the tissue accessibility (with a drug that
enhances tissue penetration) would reduce the free target concentration by
approximately 50%. Even though the model in Figure (1) has many parame-
ters, some of which are difficult to estimate, the AFTIR formula shows that
under many practical scenarios, predicting the target inhibition can be done
with an estimate of only four lumped parameters. The method for estimating
each of these parameters is described below.

The drug concentration (Cavg or Ctrough) is estimable from PK data
from Phase 1 clinical trials. For monoclonal antibodies, it can also be readily
predicted from preclinical data [16].
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The binding affinity (Kd, Kss or Kssd) can either be estimated in vitro
with surface plasmon resonance and cell binding assays, or in the clinic with
a model-based analysis of soluble target data [1] or receptor occupancy assays
[17]. Often there is good agreement between the in vitro and in vivo estimates,
though it is critical that the assays be carefully validated as there have been
instances of 1000-fold differences between the in vitro and in vivo estimates
[18, Figure 8]. Also, assays measuring free or bound target concentrations,
rather than total target concentrations, can be difficult to validate [19]. While
Kssd provided the best match between theory and simulation, it is difficult
to measure directly because it requires target occupancy measurements in the
tissue of interest. Thus a modeler may also use an estimate for Kss and, if
desired, multiply this binding affinity by a safety factor (e.g. 2×) for a more
conservative estimate of target engagement.

The biodistribution coefficient (BISF
sat ) has been estimated for many

tissues in monkeys [20], where it ranges from 5 − 15% in the total tissue
or 15 − 45% in the tissue interstitial fluid (assuming that 1/3 of the tissue
is interstitial fluid). In mouse tumors, BISF

sat = 30% [4], and this is similar
in human skin for secukinumab [21]. However, others have used predictions
of tumor distribution based on rates of extravasation and diffusion to predict
that the antibody concentration in a tumor should be only 0.1−1% [6]. Due to
this disagreement in estimates for BISF

sat and the limited data in the literature,
further work in estimating biodistribution would be of value [22].

The fold-change in target concentration (Tfold) in the tissue of inter-
est can be estimated from in vitro experiments for membrane-bound targets
by estimating the internalization rates of bound and unbound receptors. It
is generally around Tfold = 0.5 [23], [24, page 15]. Care must be taken when
interpreting biopsy staining data from immunohistochemistry (IHC) assays to
estimate Tfold.

For soluble targets, Tfold is often directly measured in circulation [1], but
to our knowledge, it has only been measured once in tissue, namely for IL-6
in mouse synovial fluid [25]. This data was difficult to interpret since many
measurements were below the limit of quantification of the assay. Therefore,
a significant challenge in applying this formula to soluble targets is that the
extent of target-accumulation in the tissue of interest is not known. Some of
the methods for estimating BISF

sat can also be employed for measuring Tfold; in
particular, techniques such as dermal open flow microperfusion (skin) [21] or
microdialysis (tumor) [26] could be employed to measure both drug concen-
tration and soluble target concentration.

Review of assumptions and caveats

The following assumptions are needed for the theoretical estimate of AFTIR
to be accurate.

The drug concentration is much larger than the target concentra-
tion, and the tissue can be treated as homogeneous. This assumption
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should be checked in two ways. First, by comparing estimates of target ex-
pression in the tissue of interest to estimates of the drug concentration in that
tissue. And second, for membrane-bound targets, one can check whether the
Thiele Modulus is small. [6,7] For this model, it is found that the Thiele mod-
ulus has to be less than 0.2 for the theory to describe the simulation well.
The assumption of homogeneity fails for trastuzumab at all doses and for ate-
zolizumab at doses less than 3 mg/kg q3w. In the future, it would be useful
to check whether this threshold of 0.2 holds for other drugs and other models.

Distribution of the drug-target complex from circulation into the
tissue is relatively small. This assumption was required for the calculation
ofKssd. If distribution of the complex from circulation into the tissue of interest
plays a significant role, then the AFTIR formula may not apply. One instance
where it may need to be checked is for a soluble target that accumulates
100−1000 times in circulation but not in the tissue of interest. This assumption
is difficult to check and requires knowledge of the underlying biology. If it is
known that the target is primarily expressed in the tumor, or if its a membrane-
bound target that doesn’t move from circulation into the tumor, then this
assumption would be reasonable.

The degree of inhibition needed for efficacy is known. Often, 90-
95% inhibition is assumed to be needed [27], though for a drug that works
by stimulating the immune system to attack the tumor, much less inhibition
may be needed. Examples include trastuzumab, which may also work via anti-
body dependent cell-mediated cytotoxicity and bispecific T-cell engagers like
blinatumomab, which facilitates the interaction between T cells and cancer
cells.

Competition for target binding sites between drug and endoge-
nous ligand. If the binding between a target and its endogenous ligand is
much lower than the binding affinity of the drug, the formulas derived here
may not applicable because the drug may not be disrupting the interactions
between the target and its endogenous ligand. In this analysis, avidity is also
not included in the analysis. In the scenario where the monoclonal antibody
is in vast excess to the target, each drug molecule is expected to bind at most
only one target molecule, and thus avidity was not addressed in this analysis.

Distribution of target and complex to peripheral tissue can be
neglected. A more realistic model would include distribution of the drug,
target, and complex to each tissue; a lumped, minimal PBPK model could also
be considered that also allows for distribution of all components to peripheral
tissue. However, we note that this approach using a peripheral compartment
for just drug concentrations is often used for predicting tissue distribution
[7,28,3]. Moreover, the expression for Tfold for this model was already quite
complex, and thus the analysis of this more complex system is left to future
research.
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Applications

Phase 2 dose selection. A key application of this work is to provide an
updated methodology for guiding Phase 2 dose selection for biologics when
the safety, efficacy, and biomarker data are insufficient to guide dose selection.
With this approach, one uses a PopPK model based on Phase 1 PK data to
predict the steady state trough concentration of the drug. Then, together with
estimates for the binding affinity, fold accumulation of target upon treatment,
and biodistribution of drug to tissue, one can apply the AFTIR or TFTIR
equation to identify the dose at which, say, 90% of patients are expected to
achieve 90% target inhibition. While a similar methodology was used previ-
ously for atezolizumab [4], Kssd and Tfold were not explicitly accounted for.

Rapid assessment of drugs. The AFTIR potency metric also allows for
a rapid assessment of new drugs without a need for extensive simulations. In
particular, given that AFTIRsimple = (Keq · Tfold · CL · τ)/(F · BISF

sat · Dose),
this formula shows how changing the dosing regimen, clearance, and binding
affinity would impact target engagement.

Moreover, rather than specify every rate constant of the complex system
of Figure (1), or an even more complex physiological model, it is sufficient
in many scenarios to provide estimates for only four parameters: Keq, Tfold,
BISF

sat , and Cavg, all of which can in principle be measured directly.
Rapid sensitivity analyses. While all parameters can in principle be

measured directly, there will often be scenarios where there is uncertainty
about the specific parameter values. In that case, the AFTIR potency metric
also allows for a rapid calculation of the impact of this uncertainty on the
predicted receptor occupancy. Given the uncertainty, one can then either try
to collect additional information about the parameters with the highest degree
of uncertainty, or factor this uncertainty into the analysis when informing drug
development decisions. For instance, if a drug is relatively safe, one may choose
to take forward a higher dose into Phase 2 to ensure that more patients achieve
a high degree of target engagement.

Conclusions

In summary, we have extended previous work to develop potency metrics AF-
TIR and TFTIR that characterize target inhibition in a tissue, such as a
tumor. These metrics predict the target inhibition at steady state under a
repeated dosing regimen using four quantities: the average (or trough) drug
concentration at steady state, the biodistribution of drug to its target tissue,
the equilibrium binding constant, and the fold-accumulation of the target. AF-
TIR and TFTIR provide intuition for how various physiological properties of
the system impact target engagement. In addition, AFTIR and TFTIR can be
used for rapid assessment of new targets and exploration of the binding affin-
ity, half-life, bioavailability, and dosing regimen needed for a second-generation
drug to achieve comparable or superior efficacy to a marketed compound. Thus
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far, a significant challenge in applying AFTIR is in obtaining accurate, clinical
estimates in tissue for biodistribution and fold-accumulation of target in the
tissue of interest. It is our hope that this work will motivate scientists to use
assays like dermal open flow microperfusion or microdialysis to better estimate
these parameters in the future.
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Appendix

Fold-Accumulation (Tfold)

Recall that the fold-accumulation of target is given by

Tfold :=
T3tot,ss

T30
=

{M3tot,ss

M30
, for membrane-bound targets

S3tot,ss

S30
, for soluble targets

, (40)

where T3tot,ss denotes the sum of target and drug-target complex concentration at steady
state, and T30 denotes target concentration at the initial state. In the sections below, we
solve for the baseline target and the steady state target (for large drug concentrations) using
similar approaches. Then, we compute Tfold as the ratio of the two.

Baseline target (T10 and T30)

Before the drug is given, the system is at steady state. And we have D1 = D2 = D3 =
DM1 = DM3 = DS1 = DS3 = 0. Using the ODE system, we solve for the nonzero initial
membrane-bound targets. Setting Equations (5) and (6) to zero, we get a system of two
linear equations,(

0
0

)
=

d

dt

(
M1

M3

)
=

(
−(kshedM1

+ k13M + keM1) (VD3/VD1)k31M

(VD1/VD3)k13M −(kshedM3
+ k31M + keM3)

)(
M1

M3

)
0

+

(
ksynM1

ksynM3

)
.

Rearranging yields(
(kshedM1

+ k13M + keM1) −(VD3/VD1)k31M

−(VD1/VD3)k13M (kshedM3
+ k31M + keM3)

)(
M1

M3

)
0

=

(
ksynM1

ksynM3

)
Then, using the formula for inverting a 2D matrix gives

M10 =
(kshedM3

+ k31M + keM3)ksynM1 + (VD3/VD1)k31MksynM3

(kshedM1
+ k13M + keM1)(kshedM3

+ k31M + keM3) − k31Mk13M
, (41)

M30 =
(VD1/VD3)k13MksynM1 + (kshedM1

+ k13M + keM1)ksynM3

(kshedM1
+ k13M + keM1)(kshedM3

+ k31M + keM3) − k31Mk13M
. (42)

To solve for the nonzero initial soluble targets, we set Equations (7) and (8) to zero,
resulting in a system of two linear equations,(

0
0

)
=

d

dt

(
S1

S3

)
=

(
−(k13S + keS1) (VD3/VD1)k31S

(VD1/VD3)k13S −(k31S + keS3)

)(
S1

S3

)
0

+

(
ksynS1 + kshedM1

ksynS3 + kshedM3

)
.

Similar to above, we get

S10 =
(k31S + keS3)(ksynS1 + kshedM1

M10) + (VD3/VD1)k31S(ksynS3 + kshedM3
M30)

(k13S + keS1)(k31S + keS3) − k31Sk13S
,

(43)

S30 =
(VD1/VD3)k13S(ksynS1 + kshedM1

M10) + (k13S + keS1)(ksynS3 + kshedM3
M30)

(k13S + keS1)(k31S + keS3) − k31Sk13S
,

(44)

where M10 and M30 are given by (41) and (42).
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Steady State Value

After the drug is given, the system reaches steady state. We assume that the drug is in vast
excess to the amount of target so that almost all of the target is bound to the drug. Then we
have M1 = M3 = S1 = S3 ≈ 0, M3tot,ss = M3 +DM3, and S3tot,ss = S3 +DS3. Using the
ODE system, we solve for the nonzero steady state of the total membrane-bound targets.
Adding the equations for the target and complex, Equations (5) and (6) added to Equations
(9) and (10), respectively, gives differential equations for the total target that are similar to
that when no drug is on board. We set these differential equations to zero, resulting in a
system of two linear equations. We solve as in the previous section to get

M1tot,ss =
(kshedDM3

+ k31DM + keDM3)ksynM1 + (VD3/VD1)k31DMksynM3

(kshedDM1
+ k13DM + keDM1)(kshedDM3

+ k31DM + keDM3) − k31DMk13DM
,

(45)

M3tot,ss =
(VD1/VD3)k13DMksynM1 + (kshedDM1

+ k13DM + keDM1)ksynM3

(kshedDM1
+ k13DM + keDM1)(kshedDM3

+ k31DM + keDM3) − k31DMk13DM
.

(46)

Likewise, the nonzero steady state of total soluble targets are given by

S1tot,ss =
(k31DS + keDS3)(ksynS1 + kshedDM1

DM1tot,ss) + (VD3/VD1)k31DS(ksynS3 + kshedDM3
DM3tot,ss)

(k13DS + keDS1)(k31DS + keDS3) − k31DSk13DS
,

(47)

S3tot,ss =
(VD1/VD3)k13DS(ksynS1 + kshedDM1

DM1tot,ss) + (k13DS + keDS1)(ksynS3 + kshedDM3
DM3tot,ss)

(k13DS + keDS1)(k31DS + keDS3) − k31DSk13DS
,

(48)

where M1tot,ss and M3tot,ss are given by (45) and (46).

A summary of all the of equations is provided below. To calculate Tfold, one then uses
the formulas below to compute M3tot,ss/M30 or S3tot,ss/S30.
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M10 =
(kshedM3

+ k31M + keM3)ksynM1 + (VD3/VD1)k31MksynM3

(kshedM1
+ k13M + keM1)(kshedM3

+ k31M + keM3) − k31Mk13M
(49)

M30 =
(VD1/VD3)k13MksynM1 + (kshedM1

+ k13M + keM1)ksynM3

(kshedM1
+ k13M + keM1)(kshedM3

+ k31M + keM3) − k31Mk13M
(50)

S10 =
(k31S + keS3)(ksynS1 + kshedM1

M10) + (VD3/VD1)k31S(ksynS3 + kshedM3
M30)

(k13S + keS1)(k31S + keS3) − k31Sk13S

(51)

S30 =
(VD1/VD3)k13S(ksynS1 + kshedM1

M10) + (k13S + keS1)(ksynS3 + kshedM3
M30)

(k13S + keS1)(k31S + keS3) − k31Sk13S

(52)

M1tot,ss =
(kshedDM3

+ k31DM + keDM3)ksynM1 + (VD3/VD1)k31DMksynM3

(kshedDM1
+ k13DM + keDM1)(kshedDM3

+ k31DM + keDM3) − k31DMk13DM

(53)

M3tot,ss =
(VD1/VD3)k13DMksynM1 + (kshedDM1

+ k13DM + keDM1)ksynM3

(kshedDM1
+ k13DM + keDM1)(kshedDM3

+ k31DM + keDM3) − k31DMk13DM

(54)

S1tot,ss =
(k31DS + keDS3)(ksynS1 + kshedDM1

DM1tot,ss) + (VD3/VD1)k31DS(ksynS3 + kshedDM3
DM3tot,ss)

(k13DS + keDS1)(k31DS + keDS3) − k31DSk13DS

(55)

S3tot,ss =
(VD1/VD3)k13DS(ksynS1 + kshedDM1

DM1tot,ss) + (k13DS + keDS1)(ksynS3 + kshedDM3
DM3tot,ss)

(k13DS + keDS1)(k31DS + keDS3) − k31DSk13DS

(56)

Biodistribution (BISF
sat )

For very large infusion where the target concentration is negligable, we can write the three
equations for the drug (D1, D2, D3) from Equations (2), (3), and (4) as below to solve for
steady state.

−

 kinf

0
0

 =
d

dt

D1

D2

D3


=

−(keD1 + k12D + k13D) (VD2/VD1)k21D (VD3/VD1)k31D

(VD1/VD2)k12D −k21D 0
(VD1/VD3)k13D 0 −(keD3 + k31D)

 ·

D1

D2

D3


= A ·

D1

D2

D3

 .

BISF
sat is given by the ratio of D3,ss/D1,ss where ss denotes steady state, such that when

the drug concentration is large

D3tot,avg = BISF
sat ·D1tot,avg = BISF

sat · Cavg, (57)

where we define Cavg := D1tot,avg.
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BISF
sat is computed as follows:

D1

D2

D3


ss

= A−1 ·

−kinf

0
0


=

−kinf

detA

 a22a33 − a23a32

a23a31 − a21a33

a21a32 − a22a31

 =
−kinf

detA

 k21D(keD3 + k31D)
k21D(VD2/VD1)(keD3 + k31D)

k21D(VD1/VD3)k13D

 .

Thus the biodistribution coefficient for the tissue interstitial fluid compartment is given by

BISF
sat :=

(
D3

D1

)
ss

=
k21D(VD1/VD3)k13D

k21D(keD3 + k31D)
=
VD1

VD3
·

k13D

(keD3 + k31D)
.

For drugs dosed with linear PK at regular intervals, drug concentration much larger than
target concentration, and free drug elimination occuring only in the central compartment,
we have D1tot,avg = Dose/(CL · τ), where CL = keD1 ·VD1 is the drug clearance. As shown
in Section A.3, we can derive a similar formula with coefficient matrix A′ in which keD3 = 0,
while D′1 and D′3 in the new model are the same as D1 and D3 in the original model. From
Section A.3, we have

A′ =


−(k13D + k12D + keD1)

VD2

VD1
k21D

VD3

VD1
(keD3 + k31D)

VD1

VD2

(
k12D −

k13DkeD3

k21D

)
−k21D −

VD3

VD2

(
keD3 −

k31DkeD3

k21D
−
k2
eD3

k21D

)
VD1

VD3
k13D 0 −(k31D + keD3)

 .

Then, as above,

D′1
D′2
D′3


ss

=
−kinf

detA′

 a22a33 − a23a32

a23a31 − a21a33

a21a32 − a22a31


=

−kinf

detA′

 k21D(k31D + keD3)

(VD1/VD2)(k12Dk31D + k12D
keD3

+ k13D
keD3

)

(VD1/VD3)k21Dk13D


And the biodistribution coefficient for the tissue interstitial fluid compartment is given by

BISF
sat
′

:=

(
D′3
D′1

)
ss

=
(VD1/VD3)k21Dk13D

k21D(k31D + keD3)
=
VD1

VD3
·

k13D

(k31D + keD3)
,

which is the same as BISF
sat in the original model above.

Similarity Transform

We consider the model in Figure (1). A drug (D) binds to its target (M) to form a complex
(DM). It has three compartments, central, tissue, and peripheral.
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The drug and target dynamics are modeled with the following system of ordinary dif-
ferential equations

dD1

dt
=

1

VC
Doseiv(t) − k12DD1 +

VP

VC
k21DD2 − k13DD1

+
VT

VC
k31DD3 − kon1D1 ·M1 + koff1(DM1) − keD1D1 (58)

dD2

dt
= k12D

VC

VP
D1 − k21DD2 (59)

dD3

dt
=
VC

VT
k13DD1 − k31DD3 − kon3D3 ·M3 + koff3(DM3) − keD3D3 (60)

dM1

dt
= ksyn1 − k13MM1 +

VT

VC
k31MM3 − kon1D1 ·M1 + koff1(DM1)

− keM1M1 (61)

dM3

dt
= ksyn3 +

VC

VT
k13MM1 − k31MM3 − kon3D3 ·M3 + koff3(DM3)

− keM3M3 (62)

d(DM1)

dt
= −k13DM (DM1) +

VT

VC
k31DM (DM3) + kon1D1 ·M1 − koff1(DM1)

− keDM1(DM1) (63)

d(DM3)

dt
=
VC

VT
k13DM (DM1) − k31DM (DM3) + kon3D3 ·M3 − koff3(DM3)

− keDM3(DM3) (64)

We will calculate D3tot,avg, which is the average drug concentration at steady state
in the tissue compartment. We have D3tot,avg = BISF

sat · D1tot,avg, where D1tot,avg is the
average drug concentration at steady state in the central compartment, and BISF

sat is the
antibody biodistribution coefficient. Assume that drug elimination only occurs in the central
compartment, i.e., keD3 = 0. Then for drugs dosed with linear PK at regular intervals and
concentration much larger than target concentration, we have D1tot,avg = Dose/(CL · τ),
where CL = keD1 · VC is the drug clearance [10].

For the model with drug elimination in both the central and tissue compartments, we
will derive an alternative model with keD3 = 0 that is indistinguishable from the existing
model by using the similarity transform technique [29]. We consider drug concentration large
enough that target binding does not affect drug distribution. Then the model equations for
the drug can be written as

dD

dt
= A ·D(t) +BISF

sat · Doseiv(t), (65)

with measurement

m(t) = C ·D(t), (66)

where

D =

D1

D2

D3

 , (67)

A =


−(k13D + k12D + keD1)

VP

VC
k21D

VT

VC
k31D

VC

VP
k12D −k21D 0

VC

VT
k13D 0 −(k31D + keD3)

 , (68)
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BISF
sat =


1

VC
0
0

 , (69)

C =

(
1 0 0
0 0 1

)
. (70)

We transform this model into an indistinguishable model with coefficient matrices A′,
BISF

sat
′
, and C′ such that k′eD3 = 0. This is accomplished with the similarity transform

A′ := TAT−1, BISF
sat
′

:= TB, C′ := CT−1, (71)

for some transformation matrix

T =

t11 t12 t13

t21 t22 t23

t31 t32 t33

 , T−1 =

t̂11 t̂12 t̂13

t̂21 t̂22 t̂23

t̂31 t̂32 t̂33

 . (72)

Alternatively, one can get this similarity transform with the change of variables D = T−1D′.
Then from (65) and (66), we have

d(T−1D′)

dt
= A · (T−1D′)(t) +BISF

sat · Doseiv(t), m(t) = C · (T−1D′)(t). (73)

Multiplying the first equation in (73) on the left by T yields

dD′

dt
= TAT−1 ·D′(t) + TB · Doseiv(t). (74)

Then we have the new model equation and measurement

dD′

dt
= A′ ·D′(t) +BISF

sat
′ · Doseiv(t), m(t) = C′ ·D′(t), (75)

where A′, BISF
sat
′
, and C′ are given by (71).

Regardless of model formulation, the same dose is given to D1, that is,

BISF
sat
′

= BISF
sat . (76)

From this and (71), we get t11 = 1, t21 = 0, and t31 = 0. Regardless of model formulation,
we measure D1 and D3, that is,

C′ = C. (77)

From this and (71), we get t̂11 = 1, t̂12 = 0, t̂13 = 0, t̂31 = 0, t̂32 = 0, and t̂33 = 1. For a
3 × 3 matrix, the inverse is given by

T−1 =
1

detT

t22t33 − t23t32 t13t32 − t12t33 t12t23 − t13t22

t23t31 − t21t33 t11t33 − t13t31 t13t21 − t11t23

t21t32 − t22t31 t12t31 − t11t32 t11t22 − t12t21

 , (78)

with the determinant given by

detT = t11(t22t33 − t23t32) − t12(t21t33 − t23t31) + t13(t21t32 − t22t31). (79)

Putting the above findings into T−1 yields t12 = 0, t13 = 0, t32 = 0, and t33 = 1. From
TT−1 = I, we get t22 = 1. Then we have

T =

1 0 0
0 1 t23

0 0 1

 T−1 =

1 0 0
0 1 −t23

0 0 1

 . (80)
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Putting this into (71) yields

A′ =


−(k13D + k12D + keD1)

VP

VC
k21D −

VP

VC
k21Dt23 +

VT

VC
k31D

VC

VP
k12D +

VC

VT
k13Dt23 −k21D (k21D − k31D − keD3)t23

VC

VT
k13D 0 −(k31D + keD3)

 . (81)

Now we impose

k′eD3 := −a′33 −
VC

VT
a′13 = 0, (82)

from which we get t23 = −(VT /VP )(keD3/k21D). After putting this last piece into A′, we
have

A′ =


−(k13D + k12D + keD1)

VP

VC
k21D

VT

VC
(keD3 + k31D)

VC

VP

(
k12D −

k13DkeD3

k21D

)
−k21D −

VT

VP

(
keD3 −

k31DkeD3

k21D
−
k2

eD3

k21D

)
VC

VT
k13D 0 −(k31D + keD3)

 . (83)

We get k′eD1 from

k′eD1 = −a′11 −
VP

VC
a′21 −

VT

VC
a′31

= keD1 −
k13D · keD3

k21D
. (84)

Thus CL′ = k′eD1 ·VC , with k′eD1 given by (84). And finally we get Dtot,avg1 = Dose/(CL′ ·
τ), and Dtot,avg3 = BISF

sat ·Dtot,avg1.

Remark : In the similarity transform, we measure D1 and D3, which is indicated by C.
As a result of imposing C′ = C, the original model and the transformed model output the
same values for these variables. D′2, however, differs from D2.

Figures and Tables

Drug Bevacizumab Pembrolizumab Atezolizumab Trastuzumab
Target Type Soluble Membrane-Bound Membrane-Bound Membrane-Bound
Target VEGF PD-1 PD-L1 HER-2
Baseline Target (nM) 0.01 0.2 3 800
Shedding Included no yes yes no

Table 1 Summary of drugs in this analysis. Details on all model parameters are provided
in the Supplementary Material.
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D1

+ S1 DS1

D2

kon1
koff1

keD1
k12D
k21D

Doseiv

ksynS1

keS1 keDS1

D3 +
S3 DS3

kon3
koff3

k13D
k31D

k13S
k31S

k13DS
k31DS

keDS3

Target
Tissue (3)

Peripheral (2)

Central (1)

+
M1 DM1

kon1
koff1

keM1 keDM1

keD3

kshedM1
ksynM1

kshedDM1

ksynS3

keS3

kshedM3 kshedDM3

M3 DM3
kon3
koff3

keM3 keDM3

ksynM3

+

k13M
k31M

k13DM
k31DM

Fig. 1 The extended target mediated drug disposition model. Vertical arrows represent
distribution, horizontal arrows represent dosing and binding, and diagonal arrows represent
synthesis and elimination.
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Fig. 2 Average Free Tissue target to Initial target Ratio (AFTIR, top row) and Thiele
Modulus (φ2, bottom row) for four drugs with different baseline target expression levels
(T0) over a range of doses. The Kssd approximation matches the simulation better than Kss

and Kd. When the Thiele Modulus is less than 0.2, the AFTIR Kssd approximation matches
the data well. For trastuzumab in particular, φ2 > 10, target expression is high (800 nM),
and so the theory does not match the simulation.
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Fig. 3 Average Free Tissue target to Initial target Ratio (AFTIR, top row) and Thiele
Modulus (φ2, bottom row) for four drugs with different baseline target expression levels
(T0) over a range of doses. The AFTIR approximation better matches the simulation than
the AFTIRsimple approximation for very small doses because at these doses, AFTIR asymp-
totically approaches 1, whereas AFTIRsimple is unbounded.
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Fig. 4 Exploration of how other parameters impact the Average Free Tissue target to
Initial target Ratio (AFTIR) using the Kssd approximation. The parameter at the top of
each column is changed from 0.01× to 10× from its baseline value. The red line indicates the
regime where the assumption of tissue homogeneity does not hold. Here, this assumption
is checked by testing whether the Thiele Modulus is greater than 0.2. It is in the regime
covered by the red line that the theory and simulation do not agree.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 6, 2019. ; https://doi.org/10.1101/432500doi: bioRxiv preprint 

https://doi.org/10.1101/432500
http://creativecommons.org/licenses/by-nc/4.0/


32 Andrew M. Stein et al

0.01

0.1

1

10 100

Target Accumulation (Tfold)

A
F

T
IR

Fig. 5 Simulated Average Free Tissue target to Initial target Ratio (AFTIR) as a function
of fold change in target (Tfold) for Bevacizumab.

Supplementary Material

All parameters and code for executing the model are stored here: https://github.com/

iamstein/TumorModeling
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Model Parameters

Parameter Units Atezolizumab Bevacizumab Pembrolizumab Trastuzumab
k12D 1/d 0.17 0.43 0.23 0.17
k13D 1/d 0.0046 0.014 0.0056 0.013
k13DM 1/d 0.048 0 0.048 0
k13DS 1/d 0.0046 0.014 0.0056 0
k13M 1/d 0.048 0 0.048 0
k13S 1/d 0.0092 0.028 0.011 0
k21D 1/d 0.15 0.45 0.2 0.28
k31D 1/d 0.45 1.3 0.59 0.83
k31DM 1/d 5.5 0 5.5 0
k31DS 1/d 0.45 1.3 0.59 1
k31M 1/d 5.5 0 5.5 0
k31S 1/d 0.9 2.7 1.2 1
keD1 1/d 0.061 0.056 0.063 0.1
keD3 1/d 0 0 0 0
keDM1 1/d 0 1 0 1
keDM3 1/d 0 1 0 2.9
keDS1 1/d 0.005 0.07 0.063 1
keDS3 1/d 0 0.07 0 1
keM1 1/d 0 1 0 1
keM3 1/d 0 1 0 2.9
keS1 1/d 0.3 7 0.47 1
keS3 1/d 0 7 0 1
koff1 1/d 3 2 3.5 30
koff3 1/d 3 2 3.5 30
kon1 1/(nM*d) 1.2 36 8.2 60
kon3 1/(nM*d) 1.2 36 8.2 60
kshedDM1 1/d 6 1 6 0
kshedDM3 1/d 6 1 6 0
kshedM1 1/d 3 1 3 0
kshedM3 1/d 3 1 3 0
ksynM1 nM/d 0.45 0 0.03 0
ksynM3 nM/d 22 0 1.5 2400
ksynS1 nM/d 0 0.014 0 0
ksynS3 nM/d 0 0.1 0 0
VD1 L 3.3 3.2 3.5 2.1
VD2 L 3.6 3.1 4.1 1.3
VD3 L 0.1 0.1 0.1 0.1
VDM1 L 3.3 3.2 3.5 2.1
VDM3 L 0.1 0.1 0.1 0.1
VDS1 L 3.3 3.2 3.5 2.1
VDS3 L 0.1 0.1 0.1 0.1
VM1 L 3.3 3.2 3.5 2.1
VM3 L 0.1 0.1 0.1 0.1
VS1 L 3.3 3.2 3.5 2.1
VS3 L 0.1 0.1 0.1 0.1

Table S1 Parameters used for the simulations. To find the references and calculations for
how these parameters were derived, consult https://github.com/iamstein/TumorModeling/
tree/master/data
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AFTIR Simulations

Bevacizumab Pembrolizumab Atezolizumab Trastuzumab
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Fig. S1 Parameter exploration for ksynT3. k13DT has been set to zero gives better agree-
ment for ksynT3. Here, the parameter at the top of each column is changed from 0.01×
to 10× from its baseline value. There is in general good agreement between theory and
experiment, except for trastuzumab, when the target expression is high.
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Fig. S2 Parameter exploration where the parameter at the top of each column is changed
from 0.01× to 10× from its baseline value. There is in general good agreement between
theory and experiment, except for trastuzumab, when the target expression is high. Kss
approximation.
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Fig. S3 Parameter exploration where the parameter at the top of each column is changed
from 0.01× to 10× from its baseline value. There is in general good agreement between
theory and experiment, except for trastuzumab, when the target expression is high. Kd
approximation.
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TFTIR simulations
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Fig. S4 Parameter exploration where the parameter at the top of each column is changed
from 0.01× to 10× from its baseline value. There is in general good agreement between
theory and experiment, except for trastuzumab, when the target expression is high. Kssd
approximation.
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Fig. S5 Parameter exploration where the parameter at the top of each column is changed
from 0.01× to 10× from its baseline value. There is in general good agreement between
theory and experiment, except for trastuzumab, when the target expression is high. Kss
approximation.
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Fig. S6 Parameter exploration where the parameter at the top of each column is changed
from 0.01× to 10× from its baseline value. There is in general good agreement between
theory and experiment, except for trastuzumab, when the target expression is high. Kd
approximation.
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