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Abstract 
The grouping of cancers across tissue boundaries is central to precision 
oncology, but remains a difficult problem.  Here we present EPICC (Experimental 
Protein Interaction Clustering of Cancer), a novel technique to cluster cancer 
patients based on DNA mutation profile, that leverages knowledge of 
protein-protein interactions to reduce noise and amplify biological signal.  We 
applied EPICC to data from The Cancer Genome Atlas (TCGA), and both 
recapitulated known cancer clusterings, and identified new cross-tissue cancer 
groups that may indicate novel cancer molecular subtypes.  Investigation of 
EPICC clusters revealed new protein modules which were recurrently mutated 
across cancers, and indicate new avenues for research into cancer biology. 
EPICC leveraged the Vodafone DreamLab citizen science platform, and we 
provide our results as a resource for researchers to investigate the role of 
protein modules in cancer. 
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Introduction 
The grouping of cancers by molecular subtype, independent of site of origin, 
underpins precision oncology.  This paradigm is transforming cancer treatment, 
but is critically dependent on the identification of molecular cancer subtypes that 
accurately stratify patients by clinical course and response to therapy. 
 
Initial global approaches to defining cancer subtypes relied on transcriptome 
measurements (van ’t Veer et al. , 2002).  Although the transcriptome provides a 
holistic readout of cell state that is highly predictive of biological activity (Ray et 
al. , 2014), the lability of the RNA analyte limits its application in the clinic.  This 
limitation has led to efforts to use more stable analytes to identify cancer 
subtypes, most notably somatic DNA changes. 
 
Unfortunately, the analysis of DNA mutations suffers from a multiplicity issue: 
many different mutations, potentially affecting different genes, can have a similar 
biological effect.  An example is the PI3K-AKT-mTOR pathway, which can be 
variously activated in cancer by gain of function mutations in PIK3CA, AKT, or 
mTOR, or loss of function changes in PTEN , TSC1/2, or LKB1  (Janku et al., 2018). 
Cancers sharing these various mutations should be logically grouped by their 
common dysregulation of mTOR, yet this similarity is obscured by mutations 
being spread across the many genes involved. 
 
This challenge has previously been addressed by pathway analysis, in which 
genes are grouped into logical pathways, and cancers compared by their 
mutational profile at the pathway level (Sanchez-Vega et al., 2018).   These 
techniques are powerful but critically dependent on accurate knowledge of 
pathways and their components.  As the majority of the human proteome 
remains unannotated for function (Mi et al., 2017) this dependence on 
manually-defined pathways is a serious limitation. 
 
Global databases of protein-protein interactions (PPIs) offer a solution.  Proteins 
do not act in isolation, but rather interact, often through physical contact.  These 
patterns of interaction can be determined experimentally, and define protein 
complexes and linked function in a manner that is not dependent on human 
annotation.  The utilisation of PPIs to identify clinically relevant protein 
interaction subnetworks in the last decade has established networks science as 
an effective approach to interrogate disease biology (Li et al. , 2017; Ivanov et al., 
2018; Vinayagam et al. , 2011; Barabási et al. , 2011). However, these approaches 
have heavily relied on knowledge of sets of cancer driver genes and the 
directionality of the network architecture, and are limited in facilitating 
discovery of novel subnetworks.  A need remains for an approach to cluster 
cancer patients by mutation profile, and discover protein modules driving the 
clustering, using a minimum of expert knowledge. 
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To address this need we have developed EPICC (Experimental Protein 
Interaction Clustering of Cancer), a novel technique to cluster cancer patients by 
mutational profile.  EPICC combines the sensitivity of pathway-level analysis 
with the unbiased knowledge encoded in experimental protein-protein 
interaction networks, to cluster cancers by both known and novel biological 
patterns.  We implemented EPICC in the Vodafone DreamLab mobile 
computation platform as Projects Decode and Genetic Profile, and applied it to 
mutation data from The Cancer Genome Atlas (TCGA), to reveal both known and 
novel patient clusterings and mutation patterns.  EPICC provides a novel lens to 
analyse and group cancer mutations, and we provide our summary results as a 
resource for cancer researchers worldwide. 
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Results 

EPICC: network-aware cancer clustering 
EPICC is based on the intuition that protein-protein interactions are informative 
of shared function: proteins which physically interact are likely to be functionally 
linked also.  EPICC applies this idea to increase the sensitivity of clustering 
cancers by the presence of shared mutations, by considering not only shared 
mutations in a single gene, but also shared mutations in gene neighbourhoods 
defined by the protein-protein interaction network. 
 
At the core of EPICC is a metric that scores the similarity between two cancers by 
comparing their mutation profiles in the context of protein-protein interaction 
networks (Figure 1).  The EPICC score between cancers A and B is defined as the 
number of protein-protein interactions between proteins mutated in A and 
proteins mutated in B.  The key advantage of this score over other approaches is 
that it can detect similarity between patients even in the absence of common 
mutated proteins or any protein annotations. 
 

 
Figure 1 : The EPICC concept.  Comparing patients by the presence of overlapping mutated genes 
(a) is a straightforward approach, but does not leverage knowledge of protein-protein 
interactions.  Conversely, the analysis of protein-protein interaction networks without mutation 
data (b) can identify fully-connected groups of proteins (cliques) which may form a biological 
unit, but cannot determine the importance of these cliques in cancer.  EPICC combines these two 
approaches, by overlaying mutation data on to protein interaction networks (c).  This enables the 
comparison of patient mutation profiles in a robust and network-aware manner, and also the 
identification of cancer cliques which may be important to cancer biology.  Cancer cliques can 
span multiple patients (d), permitting the identification of consistently mutated protein modules 
even when the particular proteins mutated vary.  Proteins are represented by circles coloured by 
the patients bearing the mutation.  Protein-protein interactions are depicted by lines between 
proteins.  In (c) and (d), interactions contributing to the EPICC score are shown as bold lines. 
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EPICC clusters reveal known and new cancer 
groupings 
We applied EPICC to mutation data from eight cancers profiled in The Cancer 
Genome Atlas project (TCGA), totalling 3,750 patients.  141 patient clusters were 
identified, with a wide distribution of sizes (Figure 2a).  Although some clusters 
were highly specific to a certain cancer primary site, we observed a surprisingly 
broad representation of primary types within each cluster (Figure 2b).  No 
clusters were associated with gender or race after controlling for primary site 
(Figure 2c). 
 

 
Figure 2 : Distribution of EPICC clusters in the TCGA 8-cancer dataset.  EPICC clusters varied 
widely in number of patients in the cluster and primary site distribution (a, b).  Clusters were 
often biased in their primary site composition and some were associated with cancer mutation 
burden, but no gender or race bias was observed (c).  The major interactions driving cluster 60 
are shown to illustrate the EPICC score (d); ellipses represent interacting proteins, and lines are 
labelled with the number of sample pairs with co-mutation in the connected proteins.  EPICC 
clusters with at least 20 patients only are shown; p-values are corrected for familywise error rate 
(Holm’s step-up procedure) considering 271 tests. In (c) the absence of a box indicates the 
relevant test was not performed due to structural zeroes or low pre-test power. 
 
Examination of the shared mutations in selected clusters suggested that the 
EPICC clustering was reflective of known biology.  73% of cluster 36 consisted of 
glioblastoma patients, and co-mutation of the classic interacting drivers PTEN 
and EGFR was a notable feature in this cluster (Crespo et al., 2015).  Cluster 60 
was strongly associated with pancreatic cancer.  Interestingly, this pancreatic 
cancer cluster was not driven by mutations in KRAS  or TP53 , the dominant genes 
affected in pancreatic cancer (Biankin et al., 2012), but rather by co-mutation of 
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second-tier genes CDKN2A, KDM6A, PRRC2A, and UBR4, which through their 
mutual interactions with p53 led to a high EPICC similarity score between 
patients in the cluster (Figure 2d).  This behaviour underscores the gain in 
sensitivity that can be achieved using a network-based clustering like EPICC. 
 
Intriguingly, some EPICC clusters correlated with cancer subtype, rather than 
primary type.  Clusters 3 and 6, although not strongly linked to breast cancer as a 
whole, were significantly associated with the triple negative and HER2 positive 
subtypes of breast cancer (both p < 0.003 after Holm’s correction for 271 tests, 
Figure 2c).  Investigation of mutated genes in these clusters revealed TP53 
mutation as a central driver for membership in these triple negative / HER2 
clusters, consistent with known features of these breast cancer subtypes 
(Darb-Esfahani et al. , 2016) .  In contrast, clusters 25, 26, 27, 38, and 49, which 
were associated with breast cancer but not biased towards a specific subtype, 
were characterised by co-mutation of CDH1 , MAP3K1, and PIK3CA , and seldom 
involved TP53 changes. 
 
Motivated by the observation that although some EPICC clusters were reflective 
of known cancer mechanisms, many clusters did not have a clear biological 
annotation, we undertook a survey to identify protein modules inside EPICC 
clusters which may be indicative of novel cancer biology. 

Identifying cancer cliques inside EPICC clusters 
We developed the concept of a “cancer clique” to investigate patterns of 
recurrent mutation inside EPICC clusters.  Cancer cliques are sets of fully 
interacting proteins which are disrupted in every patient inside a cluster (Figure 
1c,d).  Such fully interacting sets of proteins are likely tightly-coupled 
multi-protein complexes, for which the disruption of any single member protein 
would affect function of the entire complex.  Thus, cancer cliques represent an 
estimate of disrupted functional modules or biological mechanisms within an 
EPICC cluster. 
 
We observed that most EPICC clusters contained several cancer cliques, and that 
no single clique can represent the shared similarity of all patients within one 
cluster. Based on this finding, we identified 48 cliques that were present in 
several clusters, that might represent important recurrently disrupted biological 
mechanisms. To focus on novel biology, we filtered out cliques that aligned with 
known pathways, resulting in 28 novel cliques (Figure 3). 
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Figure 3 : Recurrent novel cancer cliques.  After excluding cliques with known function, 28 novel 
cliques (columns) were identified across all clusters.  These cliques were present in 38 EPICC 
clusters (rows).  Cells denote the composite score describing the incidence of a given clique in the 
row cluster, with higher values indicating that patients in the row cluster are highly enriched for 
mutations in the column clique.  Two cliques were selected for further characterisation, the 
Integrator Complex (IC) and the Intraflagellar Transport group (IFT). 
 
We selected two novel cliques for illustration based on preliminary association 
with patient outcome in the TCGA cohorts.  Clique C3 contained all 15 named 
members of the Integrator Complex (IC), and thus we termed this the Integrator 
Complex clique. Similarly, clique C6 contained predominantly proteins involved 
in intraflagellar transport; this clique we also termed the Intraflagellar Transport 
(IFT) clique.  Interestingly, although these cliques could be linked to likely 
biological processes manually, they were absent from the MSigDB pathways 
database. 

EPICC reveals cliques not identified by pathway 
analysis 
Of the 48 robust recurrent cancer cliques identified inside EPICC clusters, 20 
(42%) had significant overlap with known signalling pathways described by the 
MSigDB database (Subramanian et al., 2005; Liberzon et al., 2011), corroborative 
of biological meaning embedded in these cliques. Notably, the remaining 28 
cancer cliques had no significant correlate in MSigDB, and thus could not have 
been identified by a MSigDB pathway-based analysis.  MSigDB is a 
comprehensive and representative pathway database, and this result 
underscores the value and increased sensitivity from undertaking a global 
unbiased approach to module discovery, as exemplified by EPICC. 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2018. ; https://doi.org/10.1101/432872doi: bioRxiv preprint 

https://paperpile.com/c/tkE2zl/AsLb+JkcKe
https://paperpile.com/c/tkE2zl/AsLb+JkcKe
https://paperpile.com/c/tkE2zl/AsLb+JkcKe
https://paperpile.com/c/tkE2zl/AsLb+JkcKe
https://paperpile.com/c/tkE2zl/AsLb+JkcKe
https://doi.org/10.1101/432872
http://creativecommons.org/licenses/by/4.0/


 

The EPICC resource 
We have developed an interactive front-end for the investigation of EPICC 
clusters and cliques identified in the eight-cancer TCGA cohorts, displaying 
network context and correlations between clique mutation and outcome.  This 
resource is freely-available for researchers wishing to explore EPICC clusterings, 
at https://github.com/shu2010/EPICC. 

Discussion 
Here we have described EPICC, a novel approach to cluster cancers based on 
mutated genes.  EPICC overlays mutation data on the protein-protein interaction 
network, to provide a unique prism through which to examine cancer subtypes. 
EPICC clusters can be further interrogated for constituent cancer cliques, which 
may reflect novel cancer processes that are not captured by methods dependent 
on protein annotation.  The EPICC methodology is broad in its applicability and 
amenable to a range of refinements, which may represent fruitful directions for 
future development.  EPICC has been implemented on the Vodafone DreamLab 
platform and applied to a set of cancers from the TCGA project, and we make our 
results available to cancer researchers interested in interrogating the TCGA data 
for cancer cliques. 
 
EPICC both recapitulated known cancer groupings, and revealed potentially 
significant cross-cancer clusters (Figure 2a-c).  Notably, EPICC identified 
cancer-consistent clusters even when the dominant mutations were not in 
interacting proteins; for example in pancreatic adenocarcinoma the majority of 
cancers bear mutations in KRAS and TP53 (Biankin et al., 2012), but these 
proteins do not interact and so can not directly contribute to EPICC clustering. 
Despite this, EPICC clustered pancreatic cancers together on the basis of 
lower-frequency shared mutations, demonstrating the robustness of the method. 
Such robustness is an attractive feature of transcriptomic clustering approaches, 
with DNA-based methods considered more fragile (Ray et al., 2014).  EPICC’s 
ability to leverage protein interaction network information to extract robust 
clusters from DNA mutations is a distinct advantage, particularly in clinical 
contexts where transcriptomic measurements are challenging to acquire. 
 
Our interrogation of EPICC clusters identified a number of cancer cliques which 
may represent functional modules that are commonly disrupted in cancer.  More 
than half of the cancer cliques we identified did not map to known pathways in 
the comprehensive MSigDB database, underscoring the advantage of a 
network-based approach to cancer clustering and module identification that is 
not reliant on potentially biased databases. 
 
Two of the novel cliques we identified could be linked to known biological 
modules with roles in cancer: the Integrator Complex (IC) and the Intraflagellar 
Transport (IFT) proteins.  The IFT clique includes 13 proteins involved in 
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formation and maintenance of the primary cilium, which is integral to a number 
of cancer signalling pathways (Taschner and Lorentzen, 2016).  The IC clique 
contains 15 members of the Integrator Complex, a major component of the RNA 
polymerase II mediated transcription machinery (Rienzo and Casamassimi, 
2016).  The Integrator Complex  is believed to mediate post-transcriptional 
control of developmental genes and transduction cascades in response to stress, 
growth factors or other stimuli (Gaertner and Zeitlinger, 2014) , and has been 
identified as a common target for mutation in cancer (Federico et al., 2017).  The 
correlation between these cliques and biological modules linked to cancer 
processes suggests that other novel cancer cliques will be fertile ground for 
further investigation. 
 
Our illustration of EPICC on TCGA cancer data represents a first demonstration 
of the technique, and a number of refinements are being explored.  In this work 
we considered all non-synonymous somatic variants as equivalent, and a variant 
of EPICC that weights variants by predicted effect on their protein will likely 
reduce noise, particularly in the case of high mutational burden cancers such as 
melanoma (Chalmers et al. , 2017) .  Numerous adjustments to the protein 
network are also possible, such as more stringent curation of interactions, longer 
range or weighted interaction scoring, or the consideration of directed 
interactions (Vinayagam et al., 2011) .  Finally, we did not exhaustively explore 
clustering thresholds or cancer clique cutoffs, parameters which may further 
improve the purity of detected clusters and cliques. 
 
EPICC resulted from the first projects to be completed on the Vodafone 
DreamLab platform, Project Decode and Genetic Profile.  The DreamLab platform 
provided a unique computational resource that was well-suited to the highly 
distributed calculation of the EPICC metric, but may be more limited for other 
applications.  In our experience the DreamLab platform is particularly 
appropriate for extremely parallel tasks that involve high-intensity calculations 
on small data packets, where rapid analysis iteration is not required and input 
data and analysis code are stable over many months. 

Methods 

Source Data 

Protein interaction network 
EPICC scores were computed using the BioGRID protein-protein interaction 
(PPI) network Release 3.4.160 (Chatr-Aryamontri et al., 2017). A protein pair 
was considered to interact if it contained any of the following BioGRID physical 
protein-protein interactions: Affinity Capture-Luminescence, Affinity 
Capture-MS, Affinity Capture-Western, Co-crystal structure, Co-fractionation, 
Co-purification, Far-Western, FRET, Protein-Fragment Complementation Assay, 
Protein-peptide, Proximity Label-MS, Reconstituted Complex, and Two-hybrid. 
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Interactions due to biochemical activity, such as phosphorylation or 
ubiquitination, were excluded. 

Somatic mutations 
3,750 cancers were identified in The Cancer Genome Atlas (TCGA), constituting 
985 breast invasive carcinomas, 566 lung adenocarcinomas, 493 prostate 
adenocarcinomas, 436 ovarian carcinomas, 467 skin melanomas, 391 
glioblastomas, 237 sarcomas, and 175 pancreatic ductal adenocarcinomas. 
Somatic mutations as of 2017-12-02 were extracted for these cancers using the R 
Package TCGABiolinks (Colaprico et al., 2016).  A protein was considered 
mutated in a sample if it was affected by at least one non-silent somatic mutation 
(consequence fields in the set Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Ins, 
In_Frame_Del, Missense_Mutation, NonSenseMutation, Splice_Site, 
Translation_Start_Site, and Nonstop_Mutation), as called by at least one variant 
caller in the set VarScan, MuSE, MuTect, and Somatic Sniper. 

EPICC Scores 

Raw distance calculation 
Raw undirected EPICC similarity scores between all  cancers were750n = 3  
computed as the matrix product , where  is a  matrixAMC = MT C 750 7503 × 3  
of raw EPICC scores,  is a  adjacency matrix describing theA 0871 08712 × 2  
protein interaction network (  if an interaction is observed betweenAi,j = 1  
proteins  and , else ), and  is a  matrix of samplei j Ai,j = 0 M 0871 7502 × 3  
mutation indicators (  if at least one non-silent mutation in protein  isM i,k = 1 i  
observed in sample , else ).  The raw EPICC scores for all uniquek M k,i = 0  
pairwise sample combinations can be obtained from either the upper or lower 
off-diagonal elements of matrix .  Although not explored in this work, we noteC  
that EPICC similarity scores can also be calculated for directed graphs by a 
modified procedure, which may be advantageous in well-annotated contexts 
such as kinase pathways (Vinayagam et al., 2011). 

Normalisation 
Raw EPICC scores have a variable scale, dependent on the mutation frequency 
and mutated proteins in a given sample pair.  To enable comparison of EPICC 
score magnitude across sample pairs, we undertook quantile normalisation of 
scores against an empirical null.  We generated 1,000 random protein-protein 
interaction networks using a procedure that conserved interaction degree 
between the original and randomised networks (Molloy and Reed, 1995).  For 
each patient pair, EPICC scores were calculated on each of the randomised 
networks, yielding a pair-specific null distribution of EPICC scores.  The observed 
raw EPICC score for a patient pair was then quantile normalised against this 
empirical null for that same pair, to produce a normalised EPICC score. Network 
generation was performed using the igraph R package (Kolaczyk and Csárdi, 
2014), and null scores were computed on the Vodafone DreamLab platform. 
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Clustering 
Given normalised EPICC similarity scores between each pair of patients, we 
clustered patients by affinity propagation (Frey and Dueck, 2007), as 
implemented in the R package apcluster (Bodenhofer et al., 2011).  The square of 
the normalised EPICC score was used as the clustering similarity metric, and the 
median pairwise similarity metric as the input preference parameter.  All other 
parameters were left at defaults. 
 
All patient clusters containing more than 20 patients were tested for association 
with primary site, race, gender, and mutation burden.  Additionally, patient 
clusters containing more than 20 breast cancer cases were tested for association 
with breast cancer subtype, and clusters containing more than 20 lung 
adenocarcinoma cases with pack years smoked.  Tests against discrete variables 
were performed using Fisher’s exact test as implemented in R, for each cluster 
comparing class frequencies within the cluster against frequencies for all 
samples outside the cluster.  Fisher’s test p-values were computed exactly for 2 x 
2 comparisons, and approximated with permutations for larger tables.105  
Mann-Whitney tests were used to compare mutation burden and pack years 
between samples within a group to those outside the group.  In total 271 tests 
were performed; p-values are reported following familywise error rate control 
using Holm’s step-up procedure (Holm, 1979).  All clinico-pathological variables 
were sourced from TCGA data tables; breast cancer subtype was derived from 
reported ER, PR, and HER2 IHC staining positivity.  Mutation burden for a sample 
was the count of proteins bearing non-synonymous mutations. 

Cancer Clique Discovery 
The mutations corresponding to each cluster were transformed into PPI 
subgraphs and interrogated for prevalence of complete polygonal subgraphs or 
cliques. All possible maximal cliques were identified using a variant of the 
Bron–Kerbosch algorithm implemented in R package igraph (Kolaczyk and 
Csárdi, 2014). Only clique(s) that persisted after removal of promiscuous 
proteins (degree ≥ 100) from the network were retained as high confidence 
cliques.  

Identification of recurrent novel cliques 
Robust cliques recurrent across EPICC clusters were selected by a multi-stage 
filtering procedure.  First, highly stable EPICC clusters were identified using five 
affinity propagation clustering runs, using exemplar preferences from the 10th 
to the 50th percentile of similarities.  Clusters identified in at least 4 of 5 runs 
were retained, and cliques extracted.  As some redundancy was observed 
between cliques, redundant cliques were merged by Jaccard similarity 
(threshold > 0.8), and especially small (fewer than five proteins), or large (more 
than 30 proteins) cliques were excluded, as they were either too small for 
pathway correlation, or too large for specific activity annotation.  A total of 48 
cancer cliques derived from 38 EPICC clusters remained following this process. 
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Cliques were tested for significant overlap with MSigDB signalling pathways 
(Liberzon et al., 2011; Subramanian et al., 2005), and a function assigned if a 
significant association was detected (Holm-adjusted p-value < 0.05, 
hypergeometric test).  28/48 cliques had no significant pathway association, and 
were ranked by the product of mutated patient ratio and percentage of mutated 
clique elements in every cluster.  
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