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Abstract 39 

1. Climate change and other anthropogenic drivers of biodiversity change are unequally 40 

distributed across the world. The geographic patterns of different drivers, and the spatial 41 

overlap among these drivers, have important implications for the direction and pace of 42 

biodiversity change, yet are not well documented. Moreover, it is unknown if the 43 

geographic patterns of drivers differ between the terrestrial and marine realm, as expected 44 

due to marked differences in how humans interact with the land and ocean. 45 

2. We compiled global gridded datasets on climate change, land-use, resource exploitation, 46 

pollution, species invasions, and human population density. We used multivariate 47 

statistics to examine the spatial relationships among the datasets and to characterize the 48 

typical combinations of drivers experienced by different parts of the world.  49 

3. We found stronger positive correlations among drivers in the terrestrial than in the marine 50 

realm, leading to areas of high intensities of multiple drivers on land. Climate change 51 

tended to be negatively correlated with other drivers in the terrestrial realm (e.g., in the 52 

tundra and boreal forest with high climate change but low human use and pollution) 53 

whereas the opposite was true in the marine realm (e.g., in the Indo-Pacific with high 54 

climate change and high fishing).  55 

4. We show that different regions of the world can be defined by anthropogenic threat 56 

complexes (ATCs), distinguished by different sets of drivers with varying intensities. The 57 

ATCs can be used to test hypothesis about the pattern of biodiversity change, especially 58 

the joint effects of multiple drivers. More generally, our global analysis highlights the 59 

broad conservation priorities needed to mitigate the effects of anthropogenic change on 60 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/432880doi: bioRxiv preprint 

https://doi.org/10.1101/432880
http://creativecommons.org/licenses/by-nc-nd/4.0/


biodiversity responses, with different priorities emerging on land and in the ocean, and in 61 

different parts of the world.62 
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Introduction 63 

Human activities are reshaping biological communities and impacting ecosystem functioning 64 

across the Earth (Pereira et al. 2010; Barnosky et al. 2011; Dornelas et al. 2014; Isbell et al. 65 

2017). Meeting the global challenge of the conservation and sustainable use of nature requires 66 

not only quantifying biodiversity change, but also identifying the underlying causes of change 67 

(Tittensor et al. 2014; Isbell et al. 2017). Climate change, habitat change, exploitation, pollution 68 

and alien species have been recognized as the most important and widespread causes (Butchart et 69 

al. 2010; Pereira, Navarro & Martins 2012; IPCC 2013). However, the realized impacts of these 70 

drivers on species’ populations depend on the extent of exposure, which varies in space and time, 71 

and species’ sensitivity, which tends to be species-specific (Foden et al. 2013). Many studies 72 

have examined species sensitivity and the role of functional traits in determining sensitivity 73 

(Foden et al. 2013). By contrast, fewer studies have compared the exposure patterns of different 74 

drivers or examined the overlap among them for different regions of the world. Hence, an 75 

important, but so far missing, step towards understanding the global patterns of biodiversity 76 

change is characterizing the exposure patterns of biological communities to environmental 77 

change.  78 

Global maps of pressures such as the terrestrial human footprint (Sanderson et al. 2002; 79 

Venter et al. 2016), marine pressures (Halpern et al. 2008; Halpern et al. 2015a) and river threats 80 

(Vorosmarty et al. 2010) highlight the geographic hotspots of anthropogenic threats to 81 

biodiversity. These maps have estimated that at least 75% of terrestrial land has been exposed to 82 

some sort of land-use change (Venter et al. 2016), while nearly the whole ocean is exposed to 83 

multiple pressures including climate change (Halpern et al. 2015a). Supporting the significance 84 

of these maps for biodiversity, they also explain variation in ecological patterns; for instance, 85 
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reduced animal movement was found in areas with a higher human footprint across different 86 

species (Tucker et al. 2018). 87 

The relative importance of different drivers for biodiversity change and ecosystem 88 

services is a key component of both policy-oriented assessments such as IPBES framework 89 

(Diaz et al. 2015) and conservation targets such as CBD Aichi Biodiversity Targets (Tittensor et 90 

al. 2014). Yet, global maps, such as the human footprint, show the summed pressure of different 91 

drivers related to human activities and ignore any relationships among them. Hence, areas of 92 

high human pressure can be caused by different combinations of underlying drivers, each of 93 

which may have contrasting impacts on biodiversity. Hence, unpacking the spatial patterns of 94 

different drivers, and assessing the extent of their overlap, is essential for better understanding of 95 

their impacts, in isolation and in combination, on biodiversity. For many drivers, it can be 96 

hypothesized that exposure patterns maybe inter-linked due to related local or regional human 97 

activities, driven by local human population density (Ellis et al. 2010). In contrast, climate 98 

change is expected to be distributed differently than other variables because it is an outcome of 99 

processes at regional and global scales (IPCC 2013).  100 

Here, we present the spatial relationships among some of the main hypothesized drivers 101 

of biodiversity change, and show how they overlap in different biogeographic regions, across the 102 

entire surface of the world. We selected global spatial gridded datasets on variables that 103 

characterize dimensions of different anthropogenic drivers (Tables 1 and S1–S2). We conducted 104 

our analysis at the global scale to identify the most general patterns emerging across ecosystems. 105 

Although the specific variables differ among realms, we aligned each variable to the dominant 106 

drivers that are common across both realms (Table 1). We quantified the strengths of the 107 

relationships among the intensities of the different variables related to climate change, habitat 108 
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conversion and exploitation (grouped together as ‘human use’), pollution and species invasions. 109 

Based on these relationships, we defined ‘anthropogenic threat complexes’ that typify the 110 

combinations of drivers impacting different regions of the world. Studies mapping drivers of 111 

biodiversity change have so far considered the terrestrial and marine realms separately. By 112 

employing a standardized analysis for both the terrestrial and marine realms, out study highlights 113 

similarities and differences in anthropogenic environmental changes across the world, including 114 

across realms. 115 

 116 

Methods 117 

Approach to data selection  118 

We selected variables included in previous studies on global drivers of change based on known 119 

impacts (Table 1) (Sanderson et al. 2002; Halpern et al. 2008). We further searched for data on 120 

other relevant variables following the IUCN threats categories (Table S1) (Salafsky et al. 2008). 121 

We focused on a land versus ocean comparison and thus did not specifically consider freshwater 122 

threats (Vorosmarty et al. 2010). Biodiversity change driver variables were obtained from 123 

publically available datasets and as much as possible were based on data between 1990 and 2010 124 

(except climate change, and forest loss; see below). The terrestrial datasets came from various 125 

sources (Table S2). Most of the marine datasets came from the landmark study of Halpern et al. 126 

(Halpern et al. 2008). For interpretation and presentation purposes, variables were grouped by 127 

which global driver of change they were most directly related to, i.e., climate change, habitat 128 

conversion, exploitation, pollution or species invasions. Because habitat conversion and 129 

exploitation were difficult to classify separately across terrestrial and marine ecosystems, we 130 

combined both into a single “human use” category. 131 
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 132 

Climate change 133 

Climate change has multiple components (IPCC 2013), hence we characterized climate change 134 

by several variables using global spatiotemporal gridded temperature data for the terrestrial 135 

(Harris et al. 2014) and marine realm (Rayner et al. 2003). We used data between 1950 and 136 

2010, since 1950 has been proposed as the start of the Anthropocene (Waters et al. 2016). 137 

Temperature trends were estimated by fitting simple linear regression models to annual 138 

temperature means of each grid and extracting the coefficient for the effect of year. Temperature 139 

divergence, following ideas by (Nadeau & Fuller 2015), was inferred from the t-static of this 140 

linear regression and represents the significance of the trend, i.e., the trend after accounting for 141 

the degree of annual variability in temperature. Velocity of climate change (Loarie et al., 2009) 142 

was calculated as the ratio between the temporal temperature trend and the local spatial gradient 143 

in temperature. Trends of extreme temperatures were calculated by whichever was largest of the 144 

temporal trends in mean temperature of the warmest or coolest month. To characterize further 145 

climate change trends, we also included aridity for the terrestrial realm and ocean acidification 146 

for the marine realm. Aridity trend was estimated by taking monthly and annual datasets on 147 

potential evapotranspiration and precipitation, and calculating their ratio (Zorner et al. 2008), 148 

and then the temporal trend of the annual monthly average of this ratio. Ocean acidification, 149 

from the Halpern layers, was based on the change in aragonite saturation state between 1870 and 150 

2000–2009 (Halpern et al. 2008). 151 

 152 

Human use 153 
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In the terrestrial realm, we used human use variables related to different types of land conversion 154 

or use: cropland, pasture land, cattle density, urban land and forest loss. Data on crop land, 155 

pasture land and urban/built land cover were taken from different databases, primarily based on 156 

satellite imagery – crop land (Fritz et al. 2015), pasture land (Ramankutty et al. 2008) and urban 157 

land (Friedl et al. 2010). We additionally included information on forest loss since deforestation 158 

itself is a recognized threat (Barlow et al. 2016; Vijay et al. 2016). Forest loss, based on FAO 159 

wood harvest statistics, was calculated as the loss of primary forest for the same time frame as 160 

our climate change statistics, i.e., between 1950 and 2010 (Hurtt et al. 2011). We also included 161 

data on cattle density, which was based on sub-national livestock data that were statistical 162 

downscaled using multiple predictors (Robinson et al. 2014). In the marine realm, human use 163 

variables were based on different commercial fishing activities separated by gear types (e.g., 164 

dredging or castnets), which determine their selectivity and impact on the surrounding seascape 165 

(Halpern et al. 2008). These fishing types were pelagic low-bycatch, pelagic high-bycatch, 166 

demersal habitat-modifying, demersal non-habitat-modifying low-bycatch, and demersal non-167 

habitat-modifying high bycatch. These data were based on FAO and other commercial catch data 168 

sources and downscaled based on an ocean productivity model (Halpern et al. 2008). 169 

 170 

Pollution 171 

Nitrogen from both fossil fuel combustion and agriculture is one is the biggest pollutants 172 

impacting biodiversity (De Schrijver et al. 2011; Erisman et al. 2013). We included data on 173 

nitrogen pollution for the terrestrial realm in the form of atmospheric nitrogen (Dentener 2006) 174 

and fertilizer use (Potter et al. 2010), and for the marine realm as fertilizer use (Halpern et al. 175 

2008). We also included data on pesticide use in both realms (Halpern et al. 2008; Vorosmarty et 176 
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al. 2010), another important component of agricultural intensification that negatively affects 177 

biodiversity (Geiger et al. 2010). Country-specific estimates of fertilizer use and pesticide were 178 

downscaled to a raster grid by the data providers according to the crop land maps; thus, these 179 

datasets were not fully independent of the cropland data. We also included a layer reflecting the 180 

extent of ocean pollution, based on the distribution of shipping lanes (Halpern et al. 2008). 181 

Finally, we included night-time light pollution detected by satellite imagery (Halpern et al. 182 

2015a), which were also included in previous terrestrial and marine threat maps (Halpern et al. 183 

2015a; Venter et al. 2016). 184 

 185 

Invasions 186 

There are no high-resolution gridded richness maps of alien species (Dyer et al. 2017; van 187 

Kleunen et al. 2019); however, we used maps of human transport connectivity as a proxy of 188 

human-mediated propagule pressure of alien species related to human movement and trade, 189 

which is known to be an important determinant of invasion success (Hulme 2009; Seebens et al. 190 

2015). We used spatial datasets of connectivity based on transport infrastructure (including data 191 

on road and rail networks and navigable rivers) in the terrestrial realm and cargo volume at ports 192 

in the marine realm (Table S1). For the terrestrial realm, information on alien species distribution 193 

is available at a regional, sub-national and national levels for some taxonomic groups, including 194 

birds (Dyer et al. 2017) and plants (van Kleunen et al. 2019). To assess the validity of our 195 

connectivity proxy, we used these datasets, representing taxa with low and high mobility, to test 196 

the correlation between alien species richness and mean connectivity at the spatial scale of the 197 

distribution data. Since we found a significant rank correlation for both datasets (birds, ρ=0.42; 198 

plants, ρ=0.46), our terrestrial proxy variable was reasonably well justified given the coarseness 199 
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of the distribution data (see Fig. S1 for more details). For the marine, there are no readily 200 

available spatial datasets on alien species. However, transportation infrastructure (via ships) is 201 

also regarded as an important factor for biological invasions in the marine realm, via ballast 202 

water, sediments and biofouling (Davidson et al. 2018). Moreover, cargo volume at ports was 203 

included as the proxy for invasion species in Halpern et al. (2008). 204 

 205 

Human population 206 

We also included “human population density” as a separate driver (CIESIN 2017) accounting for 207 

the effects of human activities not falling into the other categories, such as tourism/recreation 208 

activities (Salafsky et al. 2008). By including it, we could also assess the relationship between 209 

human population density and the other drivers.  210 

 211 

Justification for layer exclusion 212 

We did not use data for some variables that were previously included in the terrestrial human 213 

footprint or the Halpern layers. The human footprint includes data on roads, railways and 214 

navigable waterways (Venter et al. 2016). Although we did not separately include these data, 215 

these data were already included in our connectivity variable (for invasions). In the marine 216 

realm, we excluded a shipping lane variable since the ocean pollution variable was already based 217 

on the distribution of shipping lanes (Halpern et al. 2008). Additional available Halpern marine 218 

layers that we did not use were: UV radiation, oils rigs (based on night lights, already included), 219 

inorganic pollution (highly correlated with other land-based coastal pollutants that were already 220 

included) and artisanal fishing (data poor and mostly modelled) (Halpern et al. 2008). 221 
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 222 

Geographic region data 223 

Data on the spatial distribution of terrestrial biomes were taken from WWF (Olson et al. 2001).. 224 

Marine regions were defined by combining coastal/shelf region polygon data – MEOW 225 

(Spalding et al. 2007) and ocean polygon data (naturalearthdata.com). We did not use marine 226 

ecosystem data as used by others (Halpern et al. 2015a) because the ecosystems spatially 227 

overlapped in our coarse 2-D global raster grid, when, in reality, different ecosystems occur at 228 

different depths in the water column. 229 

 230 

Data processing 231 

We harmonized each dataset to a standard global grid. The resolutions of the original datasets 232 

were approximately at a 100 km square grid (or 1°) or finer resolution; hence, we aggregated all 233 

datasets to a standard grid of 100 km square grid cells by taking the mean value of the grid cells. 234 

Atmospheric nitrogen deposition was only available at a courser resolution (see Table S1); 235 

however, we disaggregated this also to 100 km. Datasets were bound between latitudes of -58 236 

and 78 to avoid edge effects. Datasets were re-projected onto a common equal-area map 237 

projection (Eckert IV; ESPG = 54012). Missing values in some of the human activity datasets 238 

were in remote regions (e.g., very high latitudes) with likely absent or low variable values and 239 

were imputed as zero. Greenland was excluded due to missing data in several of the datasets.  240 

Because each dataset comprised data in different units (e.g., temperature data in °C and 241 

fertilizer data in kg/ha), it was not possible to directly compare their absolute values. Instead, we 242 

ranked the values of each dataset and scaled them between 0 and 1 for ease of interpretation (Fig. 243 
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S2 show the distributions of the original values of each variable and Fig. S3 shows global maps 244 

of the ranked and scaled data). This processing also reduced the large skew in the absolute values 245 

of many of the datasets. For all datasets, larger values reflected a greater potential exposure of 246 

that variable on biodiversity. Transformations were needed in only one case to achieve this – we 247 

inverted terrestrial accessibility (i.e., ). 248 

 249 

Data analysis 250 

To examine the relationships among the intensities of different variables, we calculated 251 

Spearman’s rank correlation coefficients (ρ) for each pairwise combination of variables across all 252 

grid cells in each realm. We chose this statistic because it only uses the rankings of the data 253 

values and is equivalent to the commonly used Pearson’s correlation on ranked data. We used 254 

Dutilleul’s modified t-test to account for spatial autocorrelation in each dataset before testing the 255 

significance of the correlations (Dutilleul, Pelletier & Alpargu 2008). We also used Moran’s I 256 

and correlograms to determine the extent of spatial autocorrelation within each variable 257 

(Bjornstad, Ims & Lambin 1999). For the marine realm, correlations were also examined 258 

separately for grid cells whose centroid overlapped with oceanic or coastal regions. To assess the 259 

importance of the drivers in different parts of the world, we calculated the average drivers values 260 

for each region. To do this, we first calculated the mean of the values for each driver for each 261 

grid cell. We then plot the distribution of these mean values across all grid cells within each 262 

terrestrial biome and marine region. 263 

We used k-medoid clustering, with the partitioning around the medoids algorithm with 264 

Manhattan distances (Maechler et al. 2018), for clustering grid cells according to their extent of 265 

exposure of all the variables. We applied the cluster analysis to the dataset of all 16 variables for 266 
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each realm. We selected the number of clusters by comparing the changes in dissimilarly and 267 

cluster silhouette width with increasing cluster number. However, we limited the cluster number 268 

to <10. To slightly smooth the maps, we used a moving window to assign each cell the mode of 269 

its 3 x 3 cell neighborhood. Although, driver combinations vary in a continuous manner, we 270 

chose a clustering method that produces discrete grouping to provide the simplest description of 271 

the main groupings in the data. Finally, to repack the datasets into cumulative driver maps across 272 

the entire surface of the world, we summed the number of driver variables for which each grid 273 

cell was in the upper 10% of values (based on all values greater than zero). Analyses were run in 274 

R v. 3.4.1 (R Core Team 2018), mostly using the packages raster (Hijmans 2017), SpatialPack 275 

(Vallejos, Osorio & Bevilacqua 2018) and cluster (Maechler et al. 2018). 276 

 277 

Sensitivity analyses 278 

To examine the effect of the grain size of our global grid, we repeated the data processing steps 279 

except harmonizing the datasets to a global grid of 500 km resolution and repeated the analysis 280 

of correlations (similar results were obtained – see Fig. S4). To check the effects of ranking the 281 

data values because of the skewed data distributions, we repeated the data processing steps by 282 

logging the values (to the base 10) rather than ranking them, after bounding values above the 283 

upper and lower 2.5% of quantiles to the values of the upper and lower 2.5% quantiles. This 284 

alternative data transformation does not affect the correlation coefficients because Spearman’s 285 

correlations only uses the ranks of the data. We repeated our remaining analysis with this 286 

alternative transformation, calculating the average variable intensities for different terrestrial and 287 

marine regions, and the clustering analysis (generally similar results were obtained – see Fig. S5 288 
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and S6). Since the distributions are still skewed after logging, the patterns are strongly affected 289 

by extreme values with this approach, especially in the marine realm. 290 

 291 

Results 292 

We found that drivers of biodiversity change were more spatially coupled in the terrestrial than 293 

in the marine realm (Fig. 1, Fig. S7). On land, 40% of the possible pair-wise relationships 294 

between variables (excluding climate change-related variables) showed positive correlation 295 

strengths of at least 0.7. Thus, terrestrial areas with high intensities of one variable also tended to 296 

have high intensities of other variables. Moreover, correlations were found between different 297 

types of drivers. High crop land cover was associated with high pollution, high connectivity and 298 

high human population density. Of the terrestrial land cover trend variables, only urban land 299 

cover trend displayed any strong correlations with the other variables. Conversely, in the marine 300 

realm, we found fewer correlations – only 15% of the possible pair-wise relationships (excluding 301 

climate change-related variables) showed a strong positive correlation (> 0.7) – and these 302 

relationships were mostly within, rather than between, different driver types; for instance, among 303 

different types of human use (e.g., pelagic and demersal fishing; Fig. 1). Across all variables, 304 

oceanic regions showed fewer correlations compared to coastal regions (Fig. S8). Spatial 305 

autocorrelation was present in all variables and tended to reach greater distances in the marine 306 

human-uses and climate-change variables (Figs S9 and S10), and shorter distances in the coastal-307 

based marine variables, but the correlations among drivers remained statistically significant (all 308 

P<0.05) after accounting for autocorrelation. In neither realm were there strong negative 309 

correlations among variables (Fig. S11 shows the full correlation matrix).  310 
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Strong correlations between climate change and other drivers were not observed in either 311 

realm (Fig. 1, Fig. S11), as expected based on the broader spatial scale at which carbon 312 

emissions affect climate. However, there were still significant weak correlations, with the 313 

direction of these correlations differing systematically between realms (Fig. 2). Temperature 314 

change was negatively associated with the average intensity of other variables in the terrestrial 315 

realm (ρ = -0.26, P<0.01, Fig. 2), but positively associated with the average intensity of other 316 

variables in the marine realm (ρ = 0.21, P<0.05; Fig. 2). Terrestrial biomes exposed to strong 317 

climate change, such as the tundra, boreal forest and deserts, have experienced relatively low 318 

human use (Fig. 3, Fig. S12) while terrestrial biomes, such as tropical dry broadleaf forest, with 319 

high intensities of human use, pollution and invasions have had lower intensities of climate 320 

change. In contrast, marine areas exposed to strong climate change have also been strongly 321 

exposed to other drivers, especially fishing (Fig. 3). The central and western Indo-Pacific 322 

emerged as regions particularly at risk by being exposed to both rapid climate change and 323 

multiple human uses. Overall, temperate broadleaf and mixed forest and the Central Indo-Pacific 324 

regions were most impacted by multiple drivers in the terrestrial and marine realms, respectively, 325 

while deserts and the South Pacific Ocean were the least impacted by multiple drivers. 326 

The cluster analysis defined six terrestrial and six marine regions according to their 327 

similarity of exposure to the different driver variables (Fig. 4). These exposure patterns can be 328 

regarded as ‘anthropogenic threat complexes’ (ATC) that characterize the typical combinations 329 

of environmental change. ATCs I and VII represent terrestrial and marine areas ranked with 330 

higher exposure to climate change than to other drivers (dark orange regions in Fig. 4), while the 331 

reverse is true for ATCs V and XI (blue regions). ATCs III (terrestrial) and VII and IX (marine) 332 

are regions exposed to relatively high intensities of many variables (grey regions) while ATCs 333 
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VI and XII (light orange regions) represent areas generally exposed to lower intensities of most 334 

variables. The largest terrestrial ATC was ATC 1 (29% of terrestrial grid cells), which defines 335 

regions exposed to high climate change and lower intensities of other drivers. The largest marine 336 

ATC was VIII (20% of marine grid cells), which defines regions exposed to high climate change 337 

as well as high fishing activities. 338 

The global maps (Fig. 5) show areas exposed to high intensities of multiple drivers and 339 

connect the ATCs to previous cumulative human impact maps produced separately for the 340 

terrestrial (Sanderson et al. 2002; Venter et al. 2016)  and marine realms (Halpern et al. 2008; 341 

Halpern et al. 2015a). Regions with the highest cumulative intensities across all variables tended 342 

to be within ATCs III and V (terrestrial), areas with especially high pollution, human population 343 

and connectivity, and VIII and IX (marine), areas with high intensities of almost all drivers. By 344 

contrast, regions with the lowest cumulative intensities include ATCs I and VI (terrestrial) and X 345 

and XII (marine), which have lower human uses, pollution and invasions, but still could have 346 

high exposure to climate change. 347 

 348 

Discussion 349 

Spatial relationships between different land use changes in the terrestrial realm are likely based 350 

on the land requirements to support proximal human populations (Ellis et al. 2010). Venter et al. 351 

(2016) already linked spatial variation in the human footprint to land suitable for agriculture. In 352 

the marine realm, different human uses (i.e., fisheries) largely occur in different areas, explaining 353 

the weaker correlations. For instance, demersal fisheries mostly occur over the continental shelf, 354 

whilst pelagic fisheries can be either continental or oceanic. Coastal regions were intermediate in 355 
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patterns between terrestrial and oceanic regions, suggesting that the prevalence of human 356 

presence may contribute to the differences between the two realms (Halpern et al. 2015b).  357 

Correlations among drivers have important implications because they indicate that 358 

regional biological communities are often jointly impacted by different pressures. When multiple 359 

drivers simultaneously act on a community, they could have additive, synergistic or antagonistic 360 

effects (Travis 2003; Hof et al. 2011; Garcia-Valdes et al. 2015). Our analysis indicates where 361 

interactive effects have most opportunity to occur. In fact, disentangling the independent 362 

contributions of different drivers to biodiversity change may be difficult when multiple drivers 363 

overlap, e.g., within temperate broadleaf and mixed forest. Although spatial heterogeneity at 364 

smaller spatial scales (e.g., neighboring sites with different land cover) can be used to estimate 365 

the local effect of drivers such as habitat conversion (Newbold et al. 2015) , correlated large-366 

scale drivers may affect regional species pools and hence still influence local community 367 

dynamics (Harrison & Cornell 2008). As we found fewer strong correlations among different 368 

driver variables in the marine realm (Fig. 1), separating the effects of different drivers may be 369 

more feasible in marine, especially in open ocean, ecosystems.  370 

Climate change emerged from our analysis as a spatially distinct driver of biodiversity 371 

change. As climate change is only weakly associated with other drivers, there is considerable 372 

opportunity to disentangle climate change impacts from those of other drivers. In areas where 373 

other drivers are weak, climate change has the potential to be the dominant driver of change, for 374 

instance in deserts, tundra and boreal forests. Consequently, climate change impacts on species 375 

abundances, range limits and community compositions (Parmesan & Yohe 2003; Poloczanska et 376 

al. 2013) may be easier to isolate than those of other drivers. Locations in which climate change 377 

is the main driver of change in a community are likely to be especially common in the terrestrial 378 
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realm in which climate change was negatively correlated with other drivers. Indeed, high-latitude 379 

regions that are experiencing pronounced climate change (IPCC 2013; Pithan & Mauritsen 2014) 380 

have historically undergone less human settlement and agriculture. By contrast, the positive 381 

correlation between climate change and other drivers in the marine realm indicates there may be 382 

more opportunity for interactive effects. The Indo-Pacific and North Sea are areas with both 383 

rapid temperature change and also intense fishing activity (Ramirez et al. 2017).  384 

Given the strong spatial correlations among many drivers of biodiversity change, 385 

attributing biodiversity change to human drivers may be most successful if focused on 386 

complexes of environmental change, rather than on each variable individually. Our classification 387 

of ATCs helps regard anthropogenic environmental change as a series of at least 12 natural 388 

experiments across the globe. The differential associations of drivers, summarized by the 389 

proposed ATCs, provide an informed baseline for studies aiming at understanding the joint 390 

effects of multiple drivers on biodiversity and ecosystem services. Moreover, our approach could 391 

be used to inform the design of quasi-experimental observatories that aim to test the additive and 392 

joint effects of different drivers. Observatories could be selected along different driver gradients 393 

(keeping all but one driver constant) or within different driver combinations. Study regions that 394 

are most suitable to isolate the effects of a specific driver could be selected from within 395 

geographic clusters dominated by the driver of interest, to reduce the confounding effects of 396 

other drivers in the landscape. The ATCs could be further used in macroecological studies of 397 

driver impacts. For example, examination of the relationships between the ATCs and the 398 

distributions of threatened species or local/regional estimates of biodiversity change may help to 399 

identify the most harmful combination of drivers. 400 
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Management at specific locations is clearly aided by assessing the local magnitudes of 401 

different drivers. However, there are a number of advantages of having knowledge on the large-402 

scale driver patterns. First, these large-scale patterns allow local management to be modified 403 

according to the wider anthropogenic land- or seascape context, which affects the regional 404 

species pool and hence potentially biodiversity changes at smaller-scales (Harrison & Cornell 405 

2008). Second, managers may only have access to partial data at local scales; thus, the typical 406 

combinations of drivers that we identify can help managers predict the extent to which other 407 

drivers should be of concern. Finally, by characterizing regions of the world in terms of the 408 

nature of environmental change, the ATCs suggest how information and data might be pooled 409 

and synthesized across regions, and even across realms. Regions exposed to the same ATC, 410 

regardless of location, would benefit from exchanging knowledge about prioritization strategies 411 

and management of the multiple drivers, as well as implementing cross-border strategies to 412 

minimize their impact.  413 

Data on global drivers of biodiversity change are still limited (Joppa et al. 2016). Many 414 

of the recognized threats to biodiversity, such as by the IUCN (Salafsky et al. 2008), are not 415 

available as high-resolution global datasets, such as the effects of energy production and mining, 416 

hunting, and other forms of human disturbance (Salafsky et al. 2008). Rather than use proxy 417 

variables, spatially-explicit maps of the number of alien species would have improved our 418 

analysis. Ongoing projects, such as the Copernicus project (http://www.copernicus.eu/), will 419 

greatly increase the availability of high resolution spatiotemporal datasets on different variables 420 

(Skidmore et al. 2015) in the coming years for attribution of biodiversity change to the 421 

underlying drivers. 422 
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Quantifying exposure to environmental change is the first step towards determining 423 

which species, in which places, are most impacted by human activities. However, the realized 424 

outcome of different drivers on biodiversity will ultimately depend on both a combination of the 425 

magnitude of exposure to drivers and species’ sensitivities to environmental change (Foden et al. 426 

2013). We intentionally focused on exposure patterns, and as such our results are not species-427 

specific and are therefore potentially relevant for any taxa or ecosystem. Unlike exposure, 428 

sensitivities vary among taxa according to characteristics such as their life history, traits and 429 

niche breadth among others (Sunday et al. 2015)  and therefore should be examined separately 430 

for different taxa. Hence, despite similar exposure patterns, we can expect a diversity of 431 

biodiversity responses within each ATC due to variation in species’ sensitivities. We also 432 

avoided making any complex assumptions about the relationships between the absolute values of 433 

each driver variable and its impact on organisms. We rather assumed that all variables were 434 

similarly important and that higher variable values would have a stronger impact on biodiversity. 435 

Further work will need to integrate the role of species traits and consider the absolute magnitudes 436 

of each driver to make species or community-level predictions. 437 

Our macroecological approach to mapping the drivers of biodiversity change contributes 438 

to the development of broad conservation policy targeted toward the mitigation of specific driver 439 

complexes. A central focus of modern ecology is to understand global patterns of biodiversity 440 

change. Yet, all too often, scientists and managers are reading, citing, and focusing on system 441 

and realm-specific influences of global change drivers. By using a cross-realm approach, we 442 

hope to encourage information exchange across regions of the world that are exposed to similar 443 

suites of drivers, regardless of environmental realm, and the development of joined-up 444 

conservation policies across the terrestrial-marine interface. 445 
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 446 

Data availability 447 

Table S2 shows the sources of each dataset and links to where each dataset can be downloaded. 448 

Datasets produced during our analysis (raster layers shown in Figures 4 and 5) are available as 449 

georeferenced TIFF files in the SOM. 450 

 451 

Code availability 452 
 453 

R script to harmonize the raster to a standard grid is found here: 454 

https://github.com/bowlerbear/harmonizeRasters 455 

R script for the subsequent analysis is found here: 456 

https://github.com/bowlerbear/geographyDrivers457 
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Fig. 1 Strong and positive relationships among anthropogenic drivers of biodiversity 

change. We find a higher number of correlations between drivers in the terrestrial versus the 

marine realm. Each link represents a significant and strong positive correlation with strength 

>0.7 between two variables across 100 square km grids covering the world.  
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Fig. 2 Relationships between climate change and other drivers. Comparing the relationships 

between each variable and temperature change (air or sea surface temperature – SST) or the 

velocity of climate change (VOCC), we find weak negative (>-0.3) correlations in the terrestrial 
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realm and weak positive (<0.4) correlations in the marine realm. The length of each bar shows 

the correlation coefficient between temperature change (upper bar) or VOCC (lower bar) and 

each variable. * denotes statistical significance after accounting for spatial autocorrelation. 
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Fig. 3 Regions of the terrestrial and marine realms are exposed to distinct combinations of 

drivers. The violin plots show the distribution of values for each driver in each terrestrial and 

marine region. Violins with a median greater than the global median of each driver (centered on 

the dashed zero line) are colored in a darker color shade. Regions are presented in declining 

order of the sum of the driver means. Names of the terrestrial regions were shortened for 
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presentation purposes. Figure S12 shows the full distributions for each individual driver variable 

in each region as well as gives the full names of the terrestrial regions.
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Fig. 4 Geography of the Anthropocene. Different geographic regions of the world are exposed 

to different Anthropogenic Threat Complexes (numbered I to XII). These regions were obtained 

by k-medoid clustering of their similarity of exposure to different drivers of biodiversity change. 

ATCs are colored to reflect a dominant variable and are harmonized across realms to facilitate 

comparison. The bars in the legend show the intensities (between the lower and upper quartiles) 

of each variable in each complex from 0 (no impact) to 1 (highest impact). White regions were 

not included in the analysis of each realm. Fig. S13 provides a larger plot of the legend.  
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Fig. 5 Regions of the world exposed to high intensities of multiple drivers. The number of the 

16 driver variables that each grid cell was in the highest 10% of values within each realm. 

Regions in the darkest orange are exposed to high intensities of multiple variables, while those in 

off-white are exposed to lower intensities (i.e., within the 90% quantile) of all. The same is 

shown for each of the separate drivers, i.e., the intensity of the color is scaled by the number of 

variables within each driver (Table 1) with a value in the highest 10%. Note: Greenland was not 

included in the analysis due to missing data in several of the datasets. Larger versions of the 

driver plots are presented in Fig. S14. 
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Table 1 Anthropogenic drivers of biodiversity change and their respective variables based on 

available global spatial datasets (Tables S1 and S2). Variables in the same line do not necessarily 

represent the equivalent variable in each realm.  

 

 

 

 

 

 

 

 
Anthropogenic driver of 

biodiversity change 

 
Associated variables 

 
Terrestrial 

 
Marine 

Climate Change 

Temperature trend 
Temperature divergence 

Change in climate extremes 
Velocity of climate change 

Aridity trend 

 
Temperature trend 

Temperature divergence 
Change in climate extremes 
Velocity of climate change 

Ocean acidification 
 

Human use 
(land/sea use or change, 

resource extraction, 
exploitation) 

Crop cover 
Pasture cover 
Urban cover 
Forest loss 

Livestock density 

Destructive demersal fishing 
Low by-catch demersal fishing 
High by-catch demersal fishing 

Low by-catch pelagic fishing 
High by-catch pelagic fishing 

 
Human population 

density 
 

Population density Coastal population density 

Pollution 

 
Atmospheric nitrogen deposition 

Nitrogen fertilizer application 
Pesticide application 

Light pollution 
 

Ocean pollution  
Fertilizer coastal pollution 
Pesticide coastal pollution 

Light pollution 

Invasions Connectivity (transport 
infrastructure) Port cargo volume 
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