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Daniela Amann-Zalcenstein1,2, Tom S. Weber1,2, Azadeh Seidi6, Jafar S. Jabbari6, Shalin H. Naik1,2,
Matthew E. Ritchie1,2*

1 The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052,
Australia.

2 Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
3 College of Life Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province,

310058, P.R. China.
4 Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
5 Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of

Melbourne, Parkville, VIC 3010, Australia.
6 Australian Genome Research Facility, Level 13, Victorian Comprehensive Cancer Centre, 305

Grattan Street, Melbourne, VIC 3000, Australia.

* Corresponding authors: tian.l@wehi.edu.au; mritchie@wehi.edu.au

Abstract

Single cell RNA sequencing (scRNA-seq) technology has undergone rapid development in recent years,
bringing with new challenges in data processing and analysis. This has led to an explosion of tailored
analysis methods for scRNA-seq data to address various biological questions. However, the current lack
of gold-standard benchmark datasets makes it difficult for researchers to systematically evaluate the
performance of the many methods available. Here, we designed and carried out a realistic benchmark
experiment that included mixtures of single cells or ‘pseudo cells’ created by sampling admixtures of cells
or RNA from up to 5 distinct cancer cell lines. Altogether we generated 14 datasets using droplet and
plate-based scRNA-seq protocols, compared multiple data analysis methods in combination for tasks
ranging from normalization and imputation, to clustering, trajectory analysis and data integration.
Evaluation across 3,913 analyses (methods × benchmark dataset combinations) revealed pipelines suited
to different types of data for different tasks. Our dataset and analysis present a comprehensive
comparison framework for benchmarking most common scRNA-seq analysis tasks.
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The rapid development of transcriptomic technology for single cell analysis has created a need for
systematic benchmarking in order to understand the strengths and weaknesses of different computational
methods. To date, there have been several comparison studies of different protocols and computational
methods for single cell RNA sequencing (scRNA-seq). Tung et al. [47] assessed the batch variation in
scRNA-seq data and highlighted the importance of experimental designs that avoid confounding of
biological and technical effects. The performance of particular scRNA-seq data analysis methods have
been evaluated for tasks including normalization [6], feature selection [51], differential gene expression
analysis [43], clustering [8, 9] and trajectory analysis [39]. These studies compare methods using either
experimental data where cell type labels are available or simulated datasets. Such ground truth is
however imperfect for reasons outlined below, and simulations rely on assumptions that may not reflect
the true nature of scRNA-seq data. Also, by focusing only on specific tasks, these studies lack a
complete picture of performance at the pipeline level of scRNA-seq data analysis.

Considering the heterogeneity between scRNA-seq datasets in terms of the number of clusters (cell
types/states) and the presence of various technical artifacts, we set out to design a realistic
gold-standard scRNA-seq control experiment that combines ground truth with varying levels of
biological complexity. Two strategies are commonly employed to create such gold-standard gene
expression datasets. The first uses small collections of exogenous spike-in controls (such as ERCCs [21])
that vary in expression in a predictable way and have been widely adopted in scRNA-seq studies [45].
The second involves either the dilution of RNA from a reference sample or mixing of RNA or cells from
two or more samples to induce systematic genome-wide changes. An early example of an scRNA-seq
control dataset was presented in Brennecke et al. [3] and involved a dilution series to explore sensitivity
of the Smart-seq protocol. Grün et al. [11] generated a benchmark dataset using single mouse embryonic
stem cells (mESC) together with bulk RNA extracted from the same population, diluted to single cell
equivalent amounts to quantify biological and technical variability. A limitation of these experiments is
their lack of biological heterogeneity which makes them less useful for comparing analysis methods.
Mixture designs, in which RNA or cells are mixed in different proportions to generate biological
heterogeneity with in-built truth have been successfully used to benchmark microarray [7], RNA-seq [42].

To combine the strengths of these approaches, we designed a series of experiments using mixtures of
either cells or RNA from up to 5 cancer cell lines and included a dilution series to simulate variations in
the RNA content of different cells as well as ERCC spike-in controls wherever possible. Data were
generated across four single-cell platforms (CEL-seq2, SORT-seq, 10X Chromium and Drop-seq). Our
scRNA-seq mixology design simulates varying levels of biological noise, with sample sizes varying from
around 200 cells to 4,000 cells and known population structure to allow benchmarking of different
analysis tools.

In this article we specifically highlight data normalization and imputation, clustering, trajectory
analysis and data integration to showcase the broad range of tasks that our unique collection of datasets
allows us to benchmark. We chose popular methods for each task that use different algorithms and are
mostly implemented in R for convenience. Using a novel software platform (CellBench), we examine
3,913 analyses representing different combinations of methods across these datasets to assess performance
of various pipelines. Our analyses across multiple datasets allows evaluation of the generalizability of
different methods and their combinations to help inform best practice in scRNA-seq data analysis.

Results

scRNA-seq mixology provides ground truth for benchmarking

As summarised in Supplementary Table 1, the scRNA-seq benchmarking experiment spanned 2
plate-based and 2 droplet-based protocols and involved 3 different experimental designs with replicates,
yielding 14 datasets in total. Our experiment used the 5 human lung adenocarcinoma cell lines H2228,
H1975, HCC827, A549 and H838. The experimental design involved either mixtures of RNA or single
cells from these cell lines and single cells. For the single cell designs, 3 cell lines (H2228, H1975, HCC827)
were mixed equally and processed by 10X Chromium, Drop-seq [30] and CEL-seq2 [14] (referred to as
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sc 10X, sc Drop-seq and sc CEL-seq2, respectively). Similarly, 5 cell lines were mixed equally and
processed by 10X Chromium and CEL-seq2 (referred to as sc 10x 5cl and sc CEL-seq2 5cl p1,
sc CEL-seq2 5cl p2 and sc CEL-seq2 5cl p3 for three plates respectively). For the ‘pseudo cell’ designs,
we used plate-based protocols to mix and dilute samples in 2 different ways. First, we created 9-cell
mixtures by sorting different combinations of cells from 3 cell lines (H2228, H1975, HCC827) and
generating libraries using CEL-seq2. The material after pooling from 384 wells were sub-sampled to
either 1/9 or 1/3 of the total mixture to simulate cells with varying mRNA content and using different
PCR product clean up ratios (sample:beads) ranging from 0.7:1 to 0.9:1. These data are referred to as
cellmix1 to cellmix4 (Supplementary Figure 1B; Supplementary Table 1). For each mixture, we also
created a reference comprised of mixtures of 90 cells for each mixture (referred to as cellmix5). The
second design created ‘pseudo cells’ by mixing bulk RNA obtained from 3 cell lines (H2228, H1975,
HCC827), which were diluted to create single cell equivalents (varying from 3.75, 7.5, 15 to 30 pg per
well) to again create controlled variations in RNA content. Data were generated for this RNA mixture
design using CEL-seq2 and SORT-seq [32] (referred to as RNAmix CEL-seq2 and RNAmix Sort-seq,
Supplementary Figure 1A; Supplementary Table 1).

The three designs incorporate ground truth in various ways. For the single cell mixture datasets, the
ground truth is the cell line identity which can be determined for each cell based on known genetic
variation of each cell line. The single cell mixtures were generated using three different technologies,
which allows for comparisons of data integration methods. The cell mixture and RNA mixture datasets
contain 34 and 7 groups respectively that give a continuous structure. For the mixture data, the
composition of cells/RNA that make up each ‘pseudo cell’ are known, which serves as ground truth.
Moreover, the RNA mixture dataset contains technical replication and a dilution series, which is ideal for
benchmarking normalization and imputation methods that are intended to deal with such technical
variability. The data characteristics and analysis tasks each experimental design is best suited to
benchmark are summarised in Supplementary Table 2.

By comparing a range of quality control metrics collected across datasets using scPipe [46], we
observed that the data from all platforms were of consistently high quality in terms of their exon
mapping rates and the total unique molecular identifier (UMI) counts per cell (Supplementary Figure 2).
Interestingly, we found substantial differences in the percentage of reads mapping to intron regions in
datasets generated from different protocols and experimental designs (Supplementary Figure 2A). After
normalization by scran, the Principal Component Analysis (PCA) plots from four representative datasets
show that our single cell and mixture datasets successfully recapitulate the expected population
structure induced by our design (Figure 1C; t-SNE and UMAP visualisations provided in Supplementary
Figure 3A).

A summary of the method comparisons performed using these data and the CellBench R package is
shown in Figure 1D. After quality control, each dataset was processed using different combinations of
normalization and imputation methods. Next, each normalized and imputed gene expression matrix was
used as the input for several downstream steps, including clustering, trajectory analysis and data
integration. The performance of each method was evaluated using different metrics tailored to the
ground truth available.

Comparisons of normalization and imputation methods

Normalization is an important step in the analysis of scRNA-seq data, with the general goal of removing
technical noise while retaining biological signal. Imputation on the other hand recovers missing data due
to dropout events, which are excess zero counts caused by the limited capture efficiency of scRNA-seq
protocols. We evaluated 8 popular normalization methods, including methods developed primarily for
bulk RNA-seq such as TMM [36], CPM [35] and DESeq2 [28], and others tailored for scRNA-seq,
including scone [6], BASiCS [48], SCnorm [2], Linnorm [52] and scran [29]. Three imputation methods,
including kNN-smoothing [49], DrImpute [10] and SAVER [18] were also evaluated using input data
normalized by different methods. Benchmarking was performed across 438 analyses representing
combinations of normalization and imputation methods.

Performance was evaluated using 2 metrics: the silhouette width of clusters for all datasets, and the
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Pearson correlation coefficient of normalized gene expression within each group for the RNA mixture
data, where the group is defined by the known cell line mixing proportions. The silhouette width was
calculated based on the PCA results obtained for each method with the cluster identities defined
according to the experimental design. Although a wide range of silhouette widths was observed amongst
different methods in different datasets, most of the normalization methods, apart from TMM,
significantly increased silhouette width compared to the unnormalized data (Figure 2A, Supplementary
Figures 4A and 4B). Methods tailored to single cell data tend to perform better than methods designed
for bulk RNA-seq analysis, with the exception of DESeq2, which generated good results. Across all the
methods compared, Linnorm was the top performer on average, followed by scran and scone.

The RNA mixture experiment included pseudo cells with varying amounts of input RNA to simulate
dropout events, making it an ideal dataset for evaluating the performance of imputation methods. In
general, imputation induces higher intra-group correlation, although considerable differences are observed
depending on the normalization method chosen (Figure 2C). KNN-smoothing and DrImpute show similar
results with different normalization methods. SAVER has greatest variation in performance, with either
the best or worst depending upon the input normalization method applied (Figure 2B-iv and 2C).

In addition to examining the ability of different combinations of methods to recover true signal from
noisy data, we also investigated whether spurious cell states could be introduced during imputation. We
chose cells from two distinct groups (pure H2228 and HCC827) in the RNA mixture dataset and looked
at the correlations among samples. Overall, the sample correlation within the same group is lower when
the mRNA amount decreases (Figure 2D-i), and is recovered by imputation (Figure 2D-ii-iv). All three
methods clearly separate the two pure groups, however kNN-smoothing introduces a spurious intra-group
correlation structure that is also shown in the PCA of the imputed data (Figure 2B-ii), which is similar
to what has been found in another recent study [1]. Moreover, we found the extra clusters were related
to the input RNA amount, which implies that kNN-smoothing is sensitive to dropout events.

Comparisons of clustering methods

The benchmark datasets we designed varied in the expected cluster number (3 or 5 for the single cell
dataset, 7 for theRNA mixtures and 34 for the cell mixtures) and the degree of cluster separability (low
for the cell mixtures, moderate for the RNA mixtures and high for the single cell datasets. This allowed
us to assess clustering performance in a variety of settings. Five representative methods, including
RaceID3 [15], RCA [25], Seurat [30], clusterExperiment [33] and SC3 [23], were evaluated across all
datasets. As there is no function to choose the optimal number of clusters in Seurat, two resolutions, 0.6
and 1.6 were used. The resolution parameter controls the number of clusters, with higher values
producing more clusters. In addition to the various normalized gene expression matrices, we also
evaluated Seurat using its own default pipeline that starts from the raw gene count matrix (denoted
Seurat pipe).

We measured the performance of clustering methods by calculating both the entropy of cluster
accuracy (ECA) and entropy of cluster purity (ECP). After clustering, we have both the cluster labels
assigned by the different methods, and the known group labels that provide us with ground truth. The
entropy of cluster accuracy measures the diversity of the true group label within each cluster assigned by
the clustering algorithm. ECA does not account for over-clustering, and in an extreme case, a method
that assigns a unique cluster for each cell will have an ECA of 0. In contrast, the entropy of cluster
purity measures the diversity of the calculated cluster labels within each of the true groups and offers no
control of under-clustering (a method that assigns all cells into one cluster will have an ECP of 0, which
is indicative of high cluster purity). Therefore, we consider these two metrics together to account for
both under and over-clustering, with methods that have both low ECP and low ECA having optimal
cluster assignments (Figure 3A). We found good correlation between these two metrics and the Adjusted
Rand Index (ARI) [19], which is a commonly used metric to evaluate clustering performance by
computing the similarity to the annotated clusters (Supplementary Figure 5A).

As shown in Figure 3B, which presents the best two results for each method, no particular algorithm
consistently outperformed others across all experimental designs under default settings. In general,
Seurat achieved a good balance between under-clustering and over-clustering across all datasets, and

4/32

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/433102doi: bioRxiv preprint 

https://doi.org/10.1101/433102
http://creativecommons.org/licenses/by-nd/4.0/


performs best when there was clear separation between cell types, as was the case in the single cell
datasets (Figure 3B-iii,iv). RaceID3 outperformed all other methods in the more complex cell mixture
datasets. The accuracy of all methods was lowest in the cell mixture datasets (Figure 3D), due to the
continuous population structure which gives less separation between different clusters compared to the
other datasets. For the single cell datasets, we note that the true cluster number given by genotype
information is likely to be an underestimate, with subtle sub-clusters present within each cell line, as
highlighted in the t-SNE and UMAP visualisations (Supplementary Figure 3Ai-ii). Methods that
over-cluster the single cell data may well capture true biological signal.

In addition to showing the best results for each method, a linear model was fitted to 2,323 analysis
combinations (different normalization, imputation and clustering methods applied across different
datasets) using either ARI or the ‘true’ number of clusters as dependent variables and the different
methods as covariates (Supplementary Figures 5A and 5B) to further investigate the contribution of each
method to the results. Similar to what has been shown in Figure 3B, the clusterExperiment method
frequently failed to recover the expected population structure, and SC3 under-clusters most datasets.
Interestingly, we found that kNN-smoothing was associated with lower ARI and higher cluster numbers,
which is consistent with our previous results (Figure 2D-ii), and serves as a further indication that this
method can readily introduce spurious clusters.

Comparisons of trajectory analysis methods

Five methods, including Slingshot [44], Monocle2 [34], SLICER [50], TSCAN [20] and DPT [12] were
evaluated using the RNA mixture and cell mixture datasets. These datasets were chosen as they both
contain clear ‘pseudo trajectory’ paths from one pure cell line to another that are driven by controlled
variations in RNA amount. For simplicity, we chose H2228 as the root state of the trajectory
(Figure 4A). We evaluated the correlation between the pseudotime generated from each method and the
rank order of the path from H2228 to the other cell lines based on the RNA mixture information
(Figure 4B) to examine whether each method can position cells in the correct order. In addition, we
calculated the coverage of the trajectory path (Figure 4C), which is the percentage of cells that have
been assigned to the correct path, and assesses the sensitivity of the method. We used data generated
from combinations of normalization and imputation methods as input to each trajectory analysis
method, to assess their impact on performance. In total, 683 analysis combinations (different
normalization, imputation and trajectory analysis methods applied to different datasets) were evaluated.

For each method in each dataset, we selected their best results from all combination based on the
performance metrics (Figure 4B, 4C). In addition to that, a linear model was used to characterize the
average performance for each method (Supplementary Figure 8A, 8B). Slingshot and Monocle2 showed
robust results according to both metrics and generated meaningful representations of the trajectory,
while Slingshot sometimes gave an extra trajectory path (Figure 4A, Supplementary Figure 6). In
contrast, SLICER places all cells in the correct path but was unable to order them correctly or recover
the expected structure induced by the mixture designs.

Despite the similar performance of Slingshot and Monocle2, their results differ in terms of the way
they position the cells. Slingshot does not perform dimensionality reduction itself and presents the result
as is, whereas Monocle2 uses DDR-tree for dimensionality reduction, and tends to place cells at the
nodes of the tree rather than in transition between two nodes (Figure 4A). For example, the RNA
mixture dataset has 7 clusters by design which are equally distributed along the path between one pure
cell line and another. Monocle2 assigns most of the cells to the three terminal states, leaving only a few
in between, which does not reflect the designed structure. Indeed, this feature might fit real situations in
cell differentiation, where most cells are in defined cell states with only a small proportion in transition
between different groups. However, such an assumption may not always hold and care is therefore
needed when interpreting the results.
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Comparisons of data integration methods

Whilst combining scRNA-seq data between studies is an attractive way to increase cell number and
ensure reproducible results, there are many challenges to address including high drop-out rates, technical
noise introduced during library preparation and variations in sequencing depth per cell. None of the
methods proposed so far have been compared on well-designed benchmark datasets generated using
multiple protocols. We used the single cell (sc CELseq2, sc 10X, sc Dropseq and sc 10x 5cl) and RNA
mixture (RNAmix CELseq2 and RNAmix Sortseq) experiments to compare state-of-art methods
including MNNs [13], Scanorama [16], scMerge [27], Seurat [4] and MINT [37]. The 5 cell line CEL-seq2
datasets (sc CELseq2 5cl p1, sc CELseq2 5cl p2 and sc CELseq2 5cl p3) were excluded due to their high
doublet rates (Supplementary Figure 3B). As expected, when naively combining the independent
datasets (Figure 5B-i, 5D-i), clear separations related to the different protocols were observed in the
PCA plots. The input data for each data integration method resulted from different combinations of
normalization and imputation methods. Results from 469 different analyses were assessed in total, made
up of different normalization, imputation and data integration methods applied across two datasets.

MNNs, Scanorama and scMerge generate batch-corrected data which can then be analyzed using
other downstream analysis tools, while Diagonal Canonical Correlation Analysis combined with Dynamic
Time Warping from Seurat and MINT [37] output a low-dimensional representation of the data. MINT
includes an embedded gene selection procedure whilst projecting the data into a lower dimensional space.
We assessed the methods’ performance with the silhouette width according to protocol and known cell
line or mixture group information (Figure 5A, 5C). As Seurat uses t-SNE for visualisation and dimension
reduction where distances are not preserved, we also used kBET [5] to quantify the remaining batch
effect variation (Supplementary Figure 7A and 7B). When considering the best normalization and
imputation methods as input data, most methods performed similarly for the single cell design, with the
exception of Seurat that had a low kBET acceptance rate, Supplementary Figure 7A. We observed
differences in performance between methods for the RNA mixture design that includes a larger number
of groups (7) and a smaller number of cells per group than the single cell design. MNNs led to the best
performance according to silhouette width distance, while Seurat had the highest kBET acceptance rate
in this analysis (Supplementary Figure 7B), suggesting a homogeneous mix of batches consistent with
the t-SNE visualisation.

Discussion

We designed and generated a comprehensive scRNA-seq benchmarking dataset with varying levels of
biological noise and in-built ground truth via population structure that ranges from simple to complex.
These datasets incorporate various mixture designs processed using multiple scRNA-seq technologies to
facilitate comparisons of many different analysis tasks. Our analysis highlights systematic differences in
intron reads between protocols, which has not been reported before. To demonstrate the broad utility of
these data, we performed systematic methods comparisons for 4 key analysis tasks: normalization and
imputation, clustering, trajectory analysis and data integration. To manage the large number of
comparisons performed, we developed the CellBench R package which allows different methods to be
combined into pipelines and evaluated more conveniently. This represents an advance over previous
studies that typically focus on a specific analysis task. By incorporating many different combinations of
normalization and imputation in downstream analyses, we were able to assess the robustness and
variability of the final outputs in light of their inputs.

As summarised in Figure 6, the performance of methods varied across different datasets, with no
clear winners in all situations. However, consistently satisfactory results were observed for scran,
Linnorm, DrImpute and SAVER for normalization and imputation; Seurat for clustering; Monocle2 and
Slingshot for trajectory analysis as well as MNNs for data integration. Some normalization and
imputation method combinations were also found to give good results in most downstream analysis tasks,
such as Linnorm and SAVER. Variations were also observed in the ability of methods to handle different
inputs. Methods, such as Linnorm and SC3 produced relatively consistent results regardless of their
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input dataset, while others such as SAVER was more sensitive to these inputs. By evaluating the results
from method combinations across different tasks, we observed a number of interesting trends related to
the suitability of different preprocessing methods in downstream analysis. For example, we found that
although imputation generally improves the results of clustering and trajectory analyses, it can lead to
poor mixing of data from different batches (Supplementary Figure 7D) in data integration analyses.

The average running time for most of the methods compared was under 30 minutes, except for
SAVER and BASiCS. Apart from running time, the scalability for each method could also be evaluated
since the sample sizes of our datasets varied from 200 to 4,000 cells. We found some methods, such as
DrImpute and RaceID3, have reasonable running time but poor scalability, which suggests that they may
not be suitable for analysing very large scRNA-seq datasets, such as the Tabula Muris mouse cell
atlas [41].

Interestingly, the various ensemble methods, which combine results from multiple algorithms in a bid
to improve performance, did not always outperform individual methods. The ensemble method SC3 and
clusterExperiment did not outperform other clustering methods, scone also gave mixed results on different
datasets. Having multiple benchmark datasets with different numbers of cells, and groups and varying
levels of biological noise allowed us to objectively assess performance with different data characteristics.

Our comparison is subject to a number of limitations such as the linear mixture settings, which may
not be a realistic model for developmental trajectories where regulatory gene expression may be
non-linear and non-systemic. Also methods are mostly compared under default settings, which may not
give optimal performance across all datasets.

Our benchmarking study serves as a demonstration of the different types of comparisons that can be
performed using these comprehensive designs. The number of methods for each task can be easily
expanded using our CellBench software for a more in depth analysis of specific tasks. CellBench can also
be used to explore the effect different choices of starting parameters have on the results. These data can
also be used to test the performance of other analysis methods, such as data preprocessing (alignment,
UMI deduplication, gene-level quantification), feature selection and differential expression analysis. Our
benchmarking platform will benefit future package developers as it allows new methods to be evaluated
on the same standards, avoiding ambiguity caused by cherry-picking evaluation datasets. We hope that
this study will reinvigorate interest in the important area of benchmark data generation and analysis,
providing new insights into current best practice and guide the development of better scRNA-seq
algorithms in the future to ensure the biological insights derived from single cell technology stand the
test of time.

Methods

Study design

Five human lung adenocarcinoma cell lines HCC827, H1975, A549, H838 and H2228 were cultured
separately and the same batch was processed in three different ways (Figure 1). Firstly, single cells from
each cell line were mixed in equal proportions, with libraries generated using three different protocols:
CEL-seq2, Drop-seq with Dolomite equipment and 10X Chromium.

Secondly, single cells from three cell lines HCC827, H1975 and H2228 were sorted from the three cell
lines into 384-well plates, with an equal number of cells per well in different combinations. For most of
the wells, we sorted 9 cells in total, with different combinations of three cell lines distributed in ‘pseudo
trajectory’ paths (Supplementary Figure 1B), where the major trajectory is similar to the RNA mixture
design while the minor trajectory is the combination that only contains cells from two cell lines instead
of three, which is similar in design to our previous study [17]. For the major trajectory, we also included
the population control for each combination, which includes 90 cells in total (i.e a large sample) instead
of 9, while maintaining the cell combinations from the different cell lines. Apart from the trajectory
design, we also varied the cell numbers and qualities to study the data characteristics in these
configurations. We included 9 replicates with 3 cells in total with one cell from each cell line, to simulate
“small cells”. 20 cells with low integrity identified by PI staining. The 9-cell wells were sub-sampled after
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pooling to get single cell equivalents of RNA, with three replicates in 1/9 and one in 1/3. We applied
different clean up ratios to the three replicates after library generation to induce batch effects of a purely
technical nature and study how clean up affects the data.

Thirdly, RNA were extracted in bulk from three cell lines (HCC827, H1975 and H2228), mixed in 7
different proportions and diluted to single cell equivalent amounts (Supplementary Figure 1A). In total,
there are 8 mixtures in the plate layout with 49 replicates of each mixture. The mix1 and mix2 samples
have the same proportions of the three cell lines (H2228:H1975:HCC827 1

3 : 1
3 : 1

3 ) but were prepared
separately in order to assess the variation introduced during the RNA dilution and mixture step. In
addition to the RNA mixtures, we also designed a dilution series in the same plate to create variations in
the amount of RNA added. The amounts ranged from 3.75pg to 30pg (Supplementary Figure 1A-ii) and
were intended to simulate differences in cell size. In total, each mixture will have 4 different RNA starting
amounts with replicate numbers per mixture of 6:14:14:14 for the 3.75:7.5:15:30 pg group respectively.

Cell culture and mRNA extraction

The human lung adenocarcinoma cell lines H2228, H1975, HCC827, A549 and H838 were retrieved from
ATCC (https://www.atcc.org/) and cultured in Roswell Park Memorial Institute (RPMI) 1640 medium
with 10% fetal calf serum (FCS) and 1% Penicillin-Streptomycin. Firstly, three cell lines H2228, H1975
and HCC827 were cultured for the cell mixture, RNA mixture and single cell experiments. Later, five cell
lines (H2228, H1975, HCC827, A549 and H838) were grown separately for another single cell experiment.
The cells were grown independently at 37◦C with 5% carbon dioxide until near 100% confluency.

For the three cell lines (HCC827, H1975 and H2228), cells were dissociated into single cell suspensions
in FACS buffer and sorted for the cell mixture and single cell experiment (see below for sorting strategy).
The remaining cells were centrifuged and frozen at -80◦C for later RNA extraction. RNA was extracted
using a Qiagen RNA miniprep kit. The amount of RNA was quantified using both Invitrogen Qubit
fluorometric quantitation and an Agilent 4200 bioanalyzer to get an accurate estimation. The extracted
RNA was then diluted to 60 ng/µl and then mixed in different proportions, according to the study
design. The different mixtures were further diluted to create an RNA series that ranged from 3.75pg to
30pg, each of which was dispensed into CEL-seq2 and SORT-seq primer plates using a Nanodrop II
dispenser. Prepared RNA mixture plates were sealed and immediately frozen upside down at -80◦C.

Cell sorting and single cell RNA sequencing

For CEL-seq2, single cells were flow sorted into chilled 384-well PCR plates containing 1.2µl of
primer/ERCC mix using a BD FACSAria III flow cytometer. Sorted plates were sealed and immediately
frozen upside down at -80◦C. These plates, together with the RNA mixture plates, were taken from -80◦C
and processed using an adapted CEL-Seq2 protocol with the following variations. The second strand
synthesis was performed using NEBNext Second Strand Synthesis module in a final reaction volume of 8
µl and NucleoMag NGS Clean-up and Size select magnetic beads were used for all DNA purification and
size selection steps. For the 9-cell-mixture plates, clean up of the PCR product was performed with
2×0.7-0.9 bead/DNA ratio. For the single cell and RNA mixture plates, two different clean up ratios for
the PCR product were used (0.8 followed by 0.9). The choice of clean up ratio was optimized from the
QC results of the 9-cell-mixture data and the SORT-seq protocols. For the 5 cell line single cell mixture
experiment, the protocol was further optimised by pooling the sample after first strand cDNA synthesis.

The 9-cell-mixture plates were sorted according to the plate design. Each well contained 9 cells in
total in different combinations, and was processed using our adapted CEL-seq2 protocol described above
with variations in the pooling step. After the second strand synthesis, materials from the 9-cell-mixtures
and 90-cell population controls were pooled separately into different tubes and the volumes were
measured. Then for the 9-cell-mixture sample, 3×1/9 and 1×1/3 of the total pooled material were taken
and these four samples were processed separately in the following step. At the PCR product clean up
stage, the clean up ratios for the 3×1/9 samples were 0.7, 0.8 and 0.9 respectively, and 0.7 for the 1/3
9-cell-mixture sample and the 90-cell population controls. The SORT-seq protocol is similar to CEL-seq2
but uses oil to prevent evaporation. This allows reductions in the reaction volume which can be
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dispensed using the Nanodrop II liquid handling platform (GC biotech). In summary, 2.0µl vapor-lock
oil was added to each well of the plate, followed by 0.1µl of primer/ERCC mix. The reaction volume for
RT and first strand synthesis are 0.075µl and 0.568µl respectively. The composition of the various mixes
was the same as for CEL-seq2. The sample pooling was achieved by centrifuging the plates upside down
into a container covered with parafilm and carefully separating the oil from the other materials. The
PCR clean up ratio used for SORT-seq was 0.8 followed by 0.9. We experienced significant sample loss
during sample pooling such that only 60% of the total volumes were recovered, which is lower compared
to the CEL-seq2 protocol (90%).

For the 10X and Drop-seq protocols, cells were PI stained and 120,000 live cells were sorted for each
cell line by FACS to acquire an accurate equal mixture of live cells from the three cell lines. This
mixture was equally split into three parts, where one part was then processed by the Chromium 10X
single cell platform using the manufacturer’s (10X Genomics) protocol. The second part was processed
by Dolomite Drop-seq with standard Drop-seq protocols [24]. The third part was sorted in a 384-well
plate and processed using the standard CEL-seq2 protocol, with a PCR clean up ratio of 0.8 followed by
0.9. For the five cell line experiment, cells were counted using Chamber Slides and roughly 2 million cells
from each cell line were mixed and processed by 10X. Three CEL-seq2 plates were sorted from the same
sample, referred to as sc CEL-seq2 5cl p1, sc CEL-seq2 5cl p2 and sc CEL-seq2 5cl p3 in our analyses.
All samples, including Drop-seq, 10X and CEL/SORT-seq, were sequenced on an Illumina Nextseq 500.

Data preprocessing and quality control

scPipe was used for data preprocessing and quality control to generate a UMI-deduped gene count
matrix per dataset. In general all data was aligned using Rsubread [26] to the GRCh38 human genome
and its associated annotations, with ERCC spike-in sequences added as special chromosomes. For 10X,
we processed the 5,000 most enriched cell barcodes, with comp=3 used in the function
scPipe::detect outliers for quality control to remove poor quality cells. For CEL-seq2 and
SORT-seq, we used the known cell barcode sequences for cell barcode demultiplexing and comp=2 was
used in the function scPipe::detect outliers for quality control. For the single cell datasets, the
population structure is informed by the cell line identity, while for the mixture data, it depends on the
mixture combination. The background contamination was high for Drop-seq, so we first ran
scPipe::detect outliers with comp=3 to remove outlier cells and then ran it again with comp=2 to
remove the background noise which consists of droplets that did not contain beads. The quality control
metrics, including intron reads for each cell, were generated during cell barcode demultiplexing by the
function scPipe::detect outliers. Intron reads are defined as any reads that map to the gene body
but do not overlap an annotated exon. The PCA and t-SNE results were generated using runPCA and
runTSNE in the scater package with default parameters and perplexity was set to 30. The UMAP results
were calculated using umap from the umap package.

Data normalization and imputation

The raw counts were used as input to each normalization algorithm and all methods were blind to the
biological groups. To have a fair comparison, the normalized counts from algorithms such as BASiCS
(1.4.0) [48] and SCnorm (1.4.2) [2] which do not generate values on a log-scale were log2 transformed
after an offset of 1 was added to the counts. The raw counts were also log2 transformed before
calculating the Pearson correlation and silhouette width.

We used edgeR [35] (3.24.2) to calculate count-per-million (CPM) and TMM (trimmed mean of
M -values) values. The BASiCS method requires spike-in genes, so we did not apply it to our datasets
generated by 10X or Drop-seq which both lacked ERCC spike-ins. For scone [6], we set the maximum
number of unwanted variation components to 0 for the removal of unwanted variation method (RUV)
and ignored QC metrics. For other methods, we used their default parameters.

Data analysis using scran (1.8.2), DrImpute (1.0), DESeq2 (1.20.0) , and SCnorm (1.4.2) was
performed with default settings. For the RNA mixture data, kNN-smoothing (2.0) was run with k = 16.
The size.factor parameter was set to 1 in SAVER (1.1.1) to override its internal normalization
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procedure. BASiCS (1.4.0) was run with 5,000 MCMC iterations, 500 warm up iterations and a thinning
parameter of 10.

Imputation methods were applied to input data generated by the different normalization algorithms,
and non-normalized raw data using the apply methods function in CellBench (0.99.4).

The Pearson correlation coefficient was calculated using gene expression after normalization or
imputation for samples with the same RNA mixture proportion, as these samples are replicates and any
differences in gene expression should be contributed by variations in RNA amount and technical noise.
We performed PCA using normalized counts and calculated the silhouette width on the first two PCs to
assess whether normalization was able to preserve the known structure. For any clustering of n samples
(here a cluster refers to a particular mixture or a cell line), the silhouette width of sample i is defined as

sil(i) ≡ b(i)− a(i)

max(a(i), b(i))
∈ [−1, 1] (1)

where a(i) denotes the average distance (Euclidean distance over the first two PCs of expression
measures) between the ith sample and all other samples in the cluster to which i belongs to, and b(i) is
calculated as below: for all other clusters C,

b(i) = minCd(i, C) (2)

where d(i, C) denotes the average distance (the same as described above) of i to all observations to C.
Methods with better performance have higher silhouette width. The function silhouette from the
package cluster [31] was used to calculate the silhouette width.

Clustering

Our comparison of clustering methods used all mixture datasets apart from cellmix5 (which is the
population control). To obtain truth for the single cell datasets sc CEL-seq2, sc 10x, sc Drop-seq,
sc 10x 5cl, sc CEL-seq2 5cl p1, sc CEL-seq2 5cl p2 and sc CEL-seq2 5cl p3, we used Demuxlet [22],
which exploits the genetic differences between the different cell lines to determine the most likely identity
of each cell. The predicted cell identities in each dataset corresponded largely to clusters seen when
visualising the data. Five methods, including clusterExperiment (2.2.0), RaceID3 (0.1.3), RCA (1.0), SC3
(1.10.0) and Seurat (2.3.4) were compared. Each method is used as specified by the authors in its
accompanying documentation. For each dataset, the inputs for each method were normalized and
imputed by different methods and the top 1,000 highly variable genes were selected using the trendVar

and decomposeVar functions in scran. The same gene selection method was also applied in other
downstream analyses such as trajectory analysis and data integration. The Seurat package has its own
data preprocessing pipeline that takes raw UMI counts as inputs and includes normalization and gene
selection (referred to as Seurat pipe in the results). Most methods besides Seurat have functions to help
choose the optimal cluster numbers. Therefore two resolutions, 1.6 (Seurat 1.6) and 0.6 (Seurat 0.6)
were applied to get greater or fewer clusters.

In order to compare the performance of the clustering methods, we looked at two measures: entropy
of cluster accuracy, Haccuracy, and entropy of cluster purity, Hpurity. With M and N representing the
cluster assignment generated from clustering methods and annotations (ground truth), we define these
measures as follows:

Haccuracy = −
∑M

i=1

∑Ni

j=1 p(xj)log(p(xj))

M
(3)

Hpurity = −
∑N

i=1

∑Mi

j=1 p(xj)log(p(xj))

N
(4)

For the Haccuracy, M denotes the cluster generated from a method, and Ni is the real clusters in ith
generated cluster. Similarly, in the Hpurity the N denotes the real clusters while Mi is the generated
cluster for ith real cluster.
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Trajectory analysis

The comparison of trajectory analysis methods used all 9-cell mixture datasets (cellmix1 to cellmix4) and
the RNA mixture dataset generated by the CEL-seq2 and SORT-seq protocols. For each dataset, the
gene count matrix is normalized using different normalization methods and imputation methods. The
top 1,000 most highly variable genes were selected using the trendVar and decomposeVar functions in
scran. Five methods, including Slingshot (1.0.0), Monocle2 (2.8.0), SLICER (0.2.0), TSCAN (1.20.0) and
DPT (0.6.0) were compared on the above dataset. Slingshot requires the dimensionally reduced matrix
and cluster assignment as input. Similar to the approach described in their paper, we used PCA
(scater::runPCA) for dimensionality reduction and Gaussian mixture model was performed on the first
two PCs to obtain the cluster assignments, using mclust::Mclust functions. Next, the first two PCs and
the clustering results were used as input for Slingshot. DDR-Tree, a scalable reversed graph embedding
algorithm, was used for monocle2 for dimensionality reduction and tree construction. SLICER applies
locally linear inference to extract features and reduce dimensions. To make it easier for comparison, the
samples that contains pure H2228 RNAs were selected as the root cells or root state when generating the
trajectory and computing pseudotime. Then for the branching structure generated by each method, we
searched for the best match to the two branches: H2228 to H1975 and H2228 to HCC827 and calculated
the percentage of overlap of cells between the real path and the branch calculated by each method.

Data integration

The main characteristics of the data integration methods applied are described in Supplementary
Table 3. These analyses made use of the R packages scran (1.8.2) for MNNs, Seurat (2.3.4) for Diagonal
Canonical Correlation Analysis (CCA) and scMerge (0.1.14). PCA and MINT analyses were performed
using mixOmics (6.6.1) [38] and Scanorama (1.0) using the Python library from Hie et al. (2018) [16].
The input data for each analysis were the normalized and imputed results from different methods for
each dataset. scMerge method was run in both unsupervised (referred to as scMerge us) and supervised
(scMerge s) modes using cell identity or RNA mixtures as groups.

We calculated the silhouette width coefficient to compare the clustering performance of the different
methods to combine different protocols. In the single cell and RNA mixture datasets, the clusters are
defined based on either known batch/platform information or known groups. Silhouette coefficients were
calculated on the first two principal components from PCA for each method that output a data matrix
(MNNs, scMerge and Scanorama) or the first two resulting components for MINT. A high value for the
batch indicates that a strong protocol effect remains, whilst a high value for the biological group
information indicates that the biological variation is retained after data integration process. The kBET
acceptance rate was calculated using kBET (0.99.5) with default parameters, with a high rate indicating
homogeneous mix of samples among batches.

Performance summary

The results from all analysis combinations including the performance scores are listed in Supplementary
Table 4 and are also available from GitHub. To summarise the results of each analysis, we fitted a linear
model with the performance score as dependent variable, and type of method and experimental designs
as binary covariates. The coefficient of each method indicates the degree to which the method is
positively or negatively associated with performance. This analysis is summarised in Supplementary
Figures 4A, 4B and 8.)

Figure 6 summarises the performance across all evaluated methods. For each task, we considered a
specific metric. Clustering performance was assessed with the ARI coefficient, trajectory with the
correlation between pseudotime and ground truth and integration across protocols, along with a
combination of normalization and imputation approaches, with the silhouette width coefficient and
kBET. The best performance is defined as the average of the best two results for each design, and the
average performance is calculated across all results. Variability refers to the variation of all results. For
normalization and imputation methods, the coefficients of the linear model were scaled and shown in the
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heatmap to summarise performance and indicate which method yields better results in the downstream
analysis compared with others.

The running time for each combination is given in Supplementary Table 5. For each method, a linear
model was fitted on the running time and the number of cells on log scale. The coefficient of the number
of cells indicate the scalability of the method. The scalability is classified to poor if the coefficient is
larger than 2, good if the coefficient is smaller than 1 and fair if between 1 and 2. The running time for a
method was regarded as poor if it was longer than 30 minutes, good if shorter than 5 minutes and fair if
in between.

Data and code availability

These data are available under GEO SuperSeries GSE118767. A summary of the individual accession
numbers is given in Supplementary Table 1. The processed SingleCellExperiment R objects, including
all code used to perform the comparative analyses and generate the figures are available from
https://github.com/LuyiTian/CellBench data. CellBench is an R package developed for the
benchmarking of single cell analysis methods. It contains functions and data structures that simplify the
testing of combinations of analysis methods without duplicating code. In addition to a benchmarking
framework, CellBench also provides functions to access pre-processed data objects for the samples
described in this study. The CellBench software is available from https://github.com/Shians/CellBench.
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Figure 1. Overview of our scRNA-seq mixology experimental design. The benchmark exper-
imental design involving single cells and ‘pseudo cells’. (A) Single cells from three cell lines (H2228,
H1975, HCC827) were combined in equal proportions and scRNA-seq was performed using the CEL-
seq2 (sc CEL-seq2), 10X Chromium protocols (sc 10x) and Drop-seq (sc Drop-seq) protocols. Similarly,
equal mixtures of 5 cell lines were processed by CEL-seq2 (sc CEL-seq2 5cl p1, sc CEL-seq2 5cl p2 and
sc CEL-seq2 5cl p3) and 10X Chromium (sc 10x 5cl). (B) ‘Pseudo cells’ were created by mixing cells or
RNAs. For cell mixtures, we sort different combinations of 9-cells from the three cell lines into 384-well
plates and subsequently diluting them to obtain single cell equivalent amounts of RNA (cellmix1 to
cellmix4). 90-cell mixtures were also include to create pseudo bulk references for each mixture (cellmix5).
The RNA mixtures were created by mixing RNA that obtained from bulk samples from the three cell
lines in different proportions (RNAmix CEL-seq2, RNAmix Sort-seq). (C) PCA plots from representative
datasets for each design (normalized using scran) highlight the structure present in each experiment.
The amount of variation explained by each PC is included in the respective axis labels. (D) Workflow
for benchmarking different analysis tasks. After quality control, each dataset was processed by different
normalization and imputation methods. Each processed gene expression matrix was then used as input
to various downstream tasks. This resulted in 3,913 different analysis (methods × dataset) combinations
that allowed performance assessment at the pipeline level. The CellBench R package facilitated these
combinatorial analyses.
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Figure 2. Comparisons of normalization and imputation methods using multiple mixture
datasets (A) Silhouette widths calculated using the known cell/mixture groups after different normal-
ization methods, summarised across all datasets and normalized against the Silhouette widths obtained
without normalization (‘none’). (B) Example PCA plots after normalization or with imputation by
different methods using the RNAmix CEL-seq2 dataset. The amount of variation explained by each PC
is included in the respective axis labels. (C) Average Pearson correlation coefficients for ‘pseudo cells’
within the same groups in the RNAmix CEL-seq2 dataset for different combinations of normalization
and imputation methods. (D) Heatmap of Pearson correlation coefficients of samples that have pure
H2228 or HCC827 RNA obtained from different imputation methods, clustered by hclust.

17/32

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/433102doi: bioRxiv preprint 

https://doi.org/10.1101/433102
http://creativecommons.org/licenses/by-nd/4.0/


A

B

!"
#$%
&'
(%
)(*
+,
-#
!$
(.
**
,$
.*
'

!"#$%&'(%)(*+,-#!$(&,$/#'

0/10(.**,$.*'(
2,#(+%3(&,$/#'

+%3(.**,$.*'(
2,#(0/10(&,$/#'

0/10(.**,$.*'(
0/10(&,$/#'

%&#/4.+(*+,-#!$(",42!$

,"5!$6*+,-#!$/"1

%7!$6*+,-#!$/"1

Seurat_0.6
Seurat_1.6

RaceID3
RCA

Seurat_pipe
SC3

clusterExperiment

Linnorm_SAVER

Linnorm_SAVER

none_DrImpute
Linnorm_SAVER

none_no_impute
none_no_impute

Linnorm_SAVER

Linnorm_SAVER

scran_SAVER
scran_DrImpute

scran_SAVER
Linnorm_SAVER

Linnorm_knn_smooth2

Linnorm_knn_smooth2

1.0

1.5

2.0

0.25 0.50 0.75 1.00

en
tro

py
 o

f c
lu

st
er

 a
cc

ur
ac

y DESeq2_DrImpute

scran_DrImpute

SCnorm_SAVER

logCPM_no_impute

none_no_impute
none_no_impute

none_knn_smooth2
DESeq2_SAVER

Linnorm_SAVER

DESeq2_SAVER

Linnorm_no_impute
scran_SAVER

Linnorm_no_impute

Linnorm_SAVER

0.0

0.2

0.4

0.6

0.0 0.1 0.2 0.3

Linnorm_knn_smooth2
scran_knn_smooth2

SCnorm_DrImpute

Linnorm_DrImpute

none_no_impute

none_no_impute

none_knn_smooth2
Linnorm_knn_smooth2

BASiCS_SAVER
scran_no_imputescran_no_impute

scran_SAVER
0.00

0.05

0.10

0.15

0.0 0.3 0.6 0.9 1.2
entropy of cluster purity

none_knn_smooth2

logCPM_DrImpute

Linnorm_SAVER
Linnorm_SAVER

none_no_impute

none_no_impute

logCPM_DrImpute

none_DrImpute

none_knn_smooth2

Linnorm_no_impute

logCPM_DrImpute

scone_SAVER

BASiCS_DrImpute

scone_SAVER

0.05

0.10

0.15

0.25 0.50 0.75

i. cellmix ii. RNAmix

iii. single cell (3 cell lines) iv. single cell (5 cell lines)

Figure 3. Comparisons of scRNA-seq clustering methods. (A) An overview of the evaluation
approach. Entropy of cluster accuracy measures the degree of over-clustering, while Entropy of cluster
purity measures under-clustering. The clustering tree adapted from the package Clustree [53] allows
conceptual visualisation of the two measurements. (B) Entropy of cluster purity and entropy of cluster
accuracy for the top performing results for each method. Colours denote different clustering methods and
labels indicate the combination of normalization and imputation methods used as input to the clustering
algorithms).
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Figure 4. Comparisons of scRNA-seq trajectory analysis methods. (A) The trajectory path
chosen for the RNA mixture dataset (top) and cell mixture dataset (bottom) along with visualisations
of the output from Slingshot, Monocle-DDRTree and SLICER. Cells are coloured by the proportion of
H2228 RNA present, which was chosen as the root of the trajectory. (B) Boxplot showing the Pearson
correlation coefficient between the calculated pseudotime and the ground-truth, for the best performing
combination of each method on each dataset. (C) The proportion of cells that are correctly assigned to
the trajectory.
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Figure 5. Comparisons of data integration methods for batch effect correction for the RNA
mixture (A, B) and the 4 single cell experiments (C, D). (A,C) Silhouette width calculated on
either batch information or known sample group. Input data were based on a combination of different
normalization and imputation methods, with top performing combination indicated for each method.
(B,D) Examples of dimension reduction visualisations for some data integration methods (ii, iii, iv).
Seurat results were visualised with t-SNE and other methods’ results with PCA. scMerge s: supervised
scMerge; scMerge us: unsupervised scMerge.
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Figure 6. Summary of results from methods comparisons using scRNA-mixology datasets.
Methods are ranked by the best performance in each category. The average performance and variability
show the average result and the variance when given different input dataset and processed by different
upstream methods. For normalization and imputation, the impact each method have on downstream
analysis is also shown, which measures the changes in results when applying such method. Results have
been scaled and standardised to apply to the same colour scale.
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Dataset	name Experimental	design Protocol GEO	number Protocol	parameters

sc_CEL-seq2
single cells from the mixture 
of three cell lines CEL-seq2 GSM3336845

1X384 well plate X0.8 then X0.9 clean up 
for PCR products

sc_10x
single cells from the mixture 
of three cell lines 10X Chromium GSM3022245 standard 10X scRNA-seq protocol

sc_Drop-seq
single cells from the mixture 
of three cell lines Drop-seq Dolomite GSM3336849 standard Dolomite Drop-seq protocol

sc_10x_5cl
single cells from the mixture 
of five cell lines 10X Chromium GSM3618014 standard 10X scRNA-seq protocol

sc_CEL-seq2_5cl_p1
single cells from the mixture 
of five cell lines CEL-seq2 GSM3618022

1X384 well plate. Pooling after first strand 
synthesis

sc_CEL-seq2_5cl_p2
single cells from the mixture 
of five cell lines CEL-seq2 GSM3618023

1X384 well plate. Pooling after first strand 
synthesis

sc_CEL-seq2_5cl_p3
single cells from the mixture 
of five cell lines CEL-seq2 GSM3618024

1X384 well plate. Pooling after first strand 
synthesis

cellmix1
9 cell mixtures from three 
cell lines CEL-seq2 GSM3295024

subsampled 1/9 from the same 384 plate. 
2X0.7 clean up for PCR products

cellmix2
9 cell mixtures from three 
cell lines CEL-seq2 GSM3295025 

subsampled 1/9 from the same 384 plate. 
2X0.8 clean up for PCR products

cellmix3
9 cell mixtures from three 
cell lines CEL-seq2 GSM3295026

subsampled 1/9 from the same 384 plate. 
2X0.9 clean up for PCR products

cellmix4
9 cell mixtures from three 
cell lines CEL-seq2 GSM3295027

subsampled 1/3 from the same 384 plate. 
2X0.7 clean up for PCR products

cellmix5
90 cell mixture (population 
controls) CEL-seq2 GSM3295023

24 samples 2X0.7 clean up for PCR 
products

RNAmix_CEL-seq2
mixture of RNA extracted 
from bulk population CEL-seq2 GSM3305230

1X384 plate X0.8 then X0.9 clean up for 
PCR products

RNAmix_Sort-seq
mixture of RNA extracted 
from bulk population Sort-seq GSM3305231

1X384 plate X0.8 then X0.9 clean up for 
PCR products

Supplementary Table 1. Summary of the benchmarking datasets generated. Information on
the 3 experimental designs employed, the single cell protocols used, the GEO accession numbers and
parameters applied when generating cDNA libraries is listed.
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Single	cell Cell	mixture RNA	mixture
Number	of	datasets 7 5 2
Number	of	protocols 3 1 2
Number	of	cell	populations 3	(5) 34 7

Population	controls

Bulk	RNA-seq	
from	previous	
study

RNA-seq	from	90	
cell	controls	
(cellmix5)

Technical	replicates No No Yes

Source	of	biological	variation different	cell	lines

Cell	combinations	
from	three	cell	
lines

RNA	mixing	
proportion	from	
three	cell	lines

Source	of	gene	count	noise

Gene	expression	
noise	+	technical	
noise

Gene	expression	
noise	+	sampling	
noise	+	technical	
noise Technical	noise

Annotations
Cell	identity	from	
Demuxlet Cell	combination

RNA	proportion	
and	amount

Protocol	comparison *** **
Quality	control * *** *
Normalization ** ** ***
Imputation * * ***
Differential	expression	
analysis ** ** ***
Clustering ** * ***
Trajectory	analysis *** **
Data	integration *** * ***

Tasks	to	be	
compared

Data	
characteristics

Experimental	design

Supplementary Table 2. Summary of the data characteristics and data analysis tasks that
can be compared by each experimental design. The suitability of each experimental design to
benchmark specific tasks is indicated by the scale * < ** < *** i.e. the RNA mixture datasets include a
dilution series which induces different dropout levels, making it an ideal dataset for comparing imputation
methods.
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Supplementary Table 3. Summary of integrative methods used to combine data from
different protocols and scRNA-seq studies. Methods can be classified into batch effect correction -
where a batch-corrected data matrix is output, batch effect adjustment where the batch effect is accounted
for in the model and dimension reduction where components or factors summarising the batch-corrected
data are output. Their hyperparameters are listed, with italic indicating default parameters. HVG:
Hyper-Variable Genes, SEG: Stably Expressed Genes.

Method Correct Adjust Dim.
reduc-
tion

# genes Main parameters Ref

MNNs
X HVG - Number of nearest neigh-

bors
[13]

- Bandwidth of smoothing
kernel

MINT supervised
X all genes - Number of components [37]

- If gene selection: Number
of genes to select

Seurat
X X HVG - Number of components [40]

- Reference dataset
- If multiCCA: number of
iterations

scMerge

X HVG - Number of K-means clus-
ters

[27]

(+ SEG) - Number of factors
- Ratio of pseudo replicates
- Distance metric

Scanorama

X HVG - Number of HVG [16]
- Number of nearest neigh-
bors (NN)
- Choice of approximate
kNN
- Gaussian kernel function
parameter
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i.	Mixing	proportions ii.	Plate	layout
A.	RNA	mixture	design

B.	9	cells	mixture	design
i.	9	cell	combinations

H2228:H1973:HCC827	
7:1:1

H2228:H1973:HCC827	
1:0:8

x 20	replicates	for	each	9-cell	combination+
x 3	replicates	for	90-cell	combination

x 5	replicates	for	each	9-cell	combination

• 10	replicates	of	3-cell	with	1:1:1	
combination	to	mimic	small	cells

• 9	replicates	of	sorted	poor	quality	9	
cells	with	3:3:3	combination

Trajectory	
design

Quality	control
design

ii.	experimental	design

Supplementary Figure 1. An overview of the RNA mixture and cell mixture designs from the
benchmark study. (A) Mixing RNA extracted from bulk samples to get 8 mixtures with different
proportions of RNA from 3 cell lines (A-i), with different amounts of RNA for each ranging from 3.75pg
to 30pg (A-ii). (B) Cell mixtures, with 9 cells in total for each well in various combinations from the 3
cell lines (B-i). The number of replicates for each combination varies, as does the number of low quality
control samples included (B-ii).
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Supplementary Figure 2. Box plots of quality control metrics for the samples from each
benchmarking dataset. (A) The percentage of reads that map to introns. (B) The percentage of
reads that map to exons. (C) The number of reads that map to exons. (D) The total number of counts
per cell after UMI deduplication. (E) The amplification rate, which is defined by the ratio between the
reads mapping to exons and the UMI counts after UMI deduplication. This measure reflects the library
complexity.
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Supplementary Figure 3. Visualisation using t-SNE and UMAP and boxplot of the number
of doublets. (A) t-SNE and UMAP visualisation of datasets from 4 experimental designs, which are
single cell using 3 (i) or 5 (ii) cell lines, cell mixtures (iii) and RNA mixtures (iv). Each dot represent a
cell or a ‘pseudo cell’. (B) Boxplot of doublets in each dataset, identified using Demuxlet (DBL: doublet,
SNG: single cell). The number of single cells and doublets are shown on top of each box. Doublets were
excluded when calculating the performance metrics.
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Supplementary Figure 4. Boxplots of silhouette widths for different normalization methods.
Silhouette widths calculated using the known biological groups after data have been normalized by different
methods. The input to the silhouette width calculation is the distance between cells, which have been
calculated using either (A) the gene expression matrix with 1,000 highly variable genes or (B) the first
two PCs obtained from PCA.
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Supplementary Figure 5. Comparisons of clustering methods using ARI and the number
of clusters. (A,B) Linear models were fitted using the ARI or the number of clusters as dependent
variables, and experimental design, normalization methods, imputation methods and clustering methods
as covariates. The coefficients measure whether particular features have positive or negative associations
with the dependent variables. (C) Examples of clustering results visualised by PCA (top) and t-SNE
(bottom), with different colours representing the cluster assignments made by selected method.

29/32

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/433102doi: bioRxiv preprint 

https://doi.org/10.1101/433102
http://creativecommons.org/licenses/by-nd/4.0/


● ●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

● ●

●

●

●

●

●

●

●
●

●

PC1

PC
2

●

●
●

●

●

●
●●●

●

●

●
●

● ● ●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

PC1
PC

2

●

●

●
●●

●
●

●
●●

●

●
●

●
●

●●
● ●
●●

●

●●
●

●●
●●

● ●
●
●

●

●

●

●
●

●

●

●●
●●● ●●●●●

●
● ●

●

●

●
●●

●

●

●
●

●
●

●
●

●●●
● ●●

●

●● ●

●
●●●

●
●●●

●

●

●

●

●
●

●
●●

●

●

●

●
●
●

●

●

●
●

●

●

●●
●● ●

●

●

●

●

●● ●●●●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●
●

●
●
●●●

●●●●●
● ●

●

●

●
●

●

●

●
●●●

●●
●

●

●●●

●

●●
●

●
●

●

● ●●

●
● ●● ●

●

●●
●

●
● ●●

●●

●

●●

●

●
●

● ●●●
●●

●
●
●●
●

●

●●

●

●

●
●

●●
●

●●●

●

●●
●●

●

●

●●

●
●
●

●
●

●

●●
●

●●●
● ●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●●●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

● ●●

●
●●●

●

●
● ●
●

●
●

PC1

PC
3

●●

●

●●
●

●

●
●

●●●
●

●●
●

●

●

●●●● ●

●

●
●● ●

●●●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

● ●●

●

●●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●●●●●
●
●

●●
●
●
●●

●●●●
●

Dim1

D
im

2

●●●●
●
●●●●●●●●●●●
●●

●
●●
●●
●

●

●●●●

●●
●●●

●●

●

●●●●●
●

●

●

●● ●

●

●
●

●

●

●
●

●●

●

●●
● ●

●

●

●

●

●
●

●
●

●

●

●
●●

● ●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●●

●

●

● ●
●
●●

●

●

●
●●
●
●

●
●

●

●

●
●
●●

●

●
●●●

Dim1

D
im

2

●

●

●

●

●

●

●●
●

●

●

●●

●●

●

●

●

●

● ●

●
●

●
●

●

●● ●●

●

●

●●●

●

●

●●
●

●

●

●

●●

●

●●
●
●

●
●●

●

●

●

●

● ●

●

● ●

●

●●

●

●●●
●

●

●

●

●

●

●

●●

●
●
●●●
●●
●

●

●
●●
●

●●

●
●

●
●

●

●

●
●

●

●
●

●
●●
●●

●●
●

●

●●●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●●
●●
●

●●●
●●
●

●

●
●●
●

●

●●●●
●●

●
●

●

●
●●●

●

●●
●

●● ●

●

●

● ●●●
●

●

●● ●● ●

●

●
●●●●
●

●

●

●●●

●

●

●

●

●●●●

●

●
●

●
●
●

●

●

●●
●
●
●●

●

●
●

●
●●

●

●

●
●●●

●

●●

●●●●●
●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
● ●●●

●

●
●

●
●

●
●● ●●

●●

●

●
●● ●

●
●

Dim1
D

im
2

●

●

●

●● ●
●

●

●●

●

●

●●
●

● ●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
● ●

●

Dim1

D
im

2

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

Dim1

D
im

2

●

● ●●●● ●● ●
●● ●●

●●●●● ●●●●●●
●

●●●●●● ●●●
●

●●●● ●● ●●●●
●

● ●●●
●● ●●● ● ●●●

●
●● ●

●
●●●●● ●
●● ●●●●

●●●●●●●●●●●●●● ●●●
● ●●● ●●● ●●●●● ●●● ●

●
●

● ●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●
●
●
●●

●●●
●

●

●

●

●
●

●

●

●
●●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●● ● ● ●●●●
● ●● ●●● ● ●●● ●●

●● ●●● ●●●●●●● ●●● ●
●

●●●●●●●●●●●●● ●● ●●●●● ●●● ●●●● ●●●●●●●●●●●●● ●●●●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●
●●

●●●
●●

●

●

●
●

Dim1

D
im

2

● ●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●

●
●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
●

●

●
●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

● ●

●

●

●

●

●

●

●
●

●

1

2
3

4
5

6

7

8

9

10

Dim1

D
im

2

●

●
●

●

●

●

●●●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

12

3
4

5

6 7

8 9
10

Dim1

D
im

2

●

●

●
●●

●
●

●
●●

●

●
●

●
●

●●

● ●

●
●

●

●●
●

●●
●●

●●
●
●

●

●

●

●
●

●

●

●●
●●

● ●●●●●

●
● ●

●

●

●

●
●
●

●

●
●

●
●

●
●

●●●
● ●

●
●

●
● ●

●
●●●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●● ●

●

●

●

●

●● ●●●●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●
●
●●

●

●●
●

●
●

● ●

●

●

●
●

●

●

●
●●
●
●
●
●

●

●
●●

●

●●
●

●
●

●

● ●●

●

●
●
●

●

●

●●
●

●
●

●●
●●

●

●
●

●

●
●
● ●●●
●●

●

●

●●
●

●

●●

●

●

●
●

●●

●
●●
●

●

●
●

●●

●

●

●●

●
●

●

●
●

●

●
●

●
●
●●

● ●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●
●

●

●●●

●

●

● ●
●

●
●1

2 3

4

5

6

7
8

9

10

Dim1

D
im

2

Slingshot

Monocle2

cellmix1 cellmix2 RNAmix_Sort-seq

SLICER

TSCAN

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

Dim1

D
im

2

●

●

●●

●

●
●●

●●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

Dim1

D
im

2

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

● ●

●
●
●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●
●●

●●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●
●
●

●

●●●

●

●

●

●

●

●

●

●

● ●

●●

●●

●
●

●
●●

●

●●●
●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●●

● ●

●
● ●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●●

●
●

●●

●● ●
●

●

●

●
●

●

● ●●●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●
●
●●

●

●
●

●

●●
●
●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●

●
●

● ●●

●

●

● ●

●

●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●●
●●●●

●

●

● ●●

●●

Dim1

D
im

2 DPT

Supplementary Figure 6. Visualisation of results from all trajectory methods evaluated in
our study. Results for cellmix1, cellmix2 and the RNAmix Sort-seq analyses are shown. The dimension
reduction method chosen for each method was as follows: PCA for Slingshot and TSCAN, DDR tree
for Monocle2, diffusion map for DPT and LLE for SLICER. For this figure, data were normalized using
scran, and the 1,000 most variable genes were input to each trajectory analysis method.
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Supplementary Figure 7. Additional data integration results for the single cell and RNA
mixture datasets. (A-B) Sihouette width coefficient vs. kBET acceptance rate of each method with 2
results that have the highest sihouette width. Sihouette coefficient distance assesses the ability of a given
method to group biologically similar cells together while kBET assesses whether different batches are
homogeneous after batch effect correction. scMerge s: supervised scMerge; scMerge us: unsupervised
scMerge) (C) Additional PCA and (D) t-SNE (perplexity = 30) visualisations where cells are coloured
according to batch information (t-SNE for MNNs and Scanorama were based on batch corrected expression
matrices).
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Supplementary Figure 8. Coefficient from linear models used to quantify the impact dif-
ferent methods have on the trajectory and data integration results. Linear models were fitted
using the evaluation metrics as dependent variables, with experimental design, normalization methods, im-
putation methods and trajectory analysis or data integration methods as covariates. Positive coefficients
indicates that a method is positively associated with the performance metrics. The evaluation metrics
used as dependent variables for each plot were: (A) the correlations between calculated pseudotime
and ground truth; (B) the overlap between the calculated trajectory and the known trajectory; (C) the
average silhouette width of the known groups and (D) the kBET acceptance rate.
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