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3

Abstract4

The successful establishment of a population into a new empty habitat outside5

of its initial niche is a phenomenon akin to evolutionary rescue in the presence of6

immigration. It underlies a wide range of processes, such as biological invasions7

by alien organisms, host shifts in pathogens or the emergence of resistance to8

pesticides or antibiotics from untreated areas.9

In this study, we derive an analytically tractable framework to describe the10

coupled evolutionary and demographic dynamics of asexual populations in a11

source-sink system. In particular, we analyze the influence of several factors12

— immigration rate, mutational parameters, and harshness of the stress induced13

by the change of environment — on the establishment success in the sink (i.e.14

the formation of a self-sufficient population in the sink), and on the time until15

establishment. To this aim, we use a classic phenotype-fitness landscape (Fisher’s16

geometrical model in n dimensions) where source and sink habitats determine dis-17

tinct phenotypic optima. The harshness of stress, in the sink, is determined by18

the distance between the fitness optimum in the sink and that of the source. The19

dynamics of the full distribution of fitness and of population size in the sink are20

analytically predicted under a strong mutation strong immigration limit where21

the population is always polymorphic.22
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The resulting eco-evolutionary dynamics depend on mutation and immigra-23

tion rates in a non straightforward way. Below some mutation rate threshold,24

establishment always occurs in the sink, following a typical four-phases trajec-25

tory of the mean fitness. The waiting time to this establishment is independent of26

the immigration rate and decreases with the mutation rate. Beyond the mutation27

rate threshold, lethal mutagenesis impedes establishment and the sink population28

remains so, albeit with an equilibrium state that depends on the details of the29

fitness landscape. We use these results to get some insight into possible effects of30

several management strategies.31

1 Introduction32

Most natural populations are spread over a heterogeneous set of environments, to which33

local subpopulations may be more or less adapted. When these local populations ex-34

change migrants we can define “source” and “sink” populations. Source populations,35

where the local genotypes have positive growth rate, are self-sustained and can send36

migrants to the rest of the system. They may be connected to sink populations, where37

local genotypes are so maladapted that they have negative growth rates (Pulliam, 1988).38

A recent review (Furrer and Pasinelli, 2016) showed that empirical examples of sources39

and sinks exist throughout the whole animal kingdom. In the absence of any plastic40

or evolutionary change, source-sink systems are stable, with the sources being close to41

their carrying capacity and the sinks being only maintained by incoming maladapted42

migrants from source environments. In the literature, different source-sink systems have43

been categorized by their pattern of immigration and emigration (for more detail on44

these different categories see Fig. 1 in Sokurenko et al. (2006) and Table 1 in Loreau45

et al. (2013)). One particular system, defined as “black-hole sink” (Gomulkiewicz et al.,46

1999), corresponds to a demographic dead-end, from which emigration is negligible.47

These black-hole sinks, and their demographic and evolutionary dynamics, are the48

canonical model for studying the invasion of a new environment, outside of the initial49

species “niche”, and thus initially almost empty (Holt et al., 2003, 2004). In this arti-50

cle, we will only consider black-hole sinks: for compactness, we hereafter simply use the51

term ’sink’, when in fact referring to a black-hole sink population. The demographic52

and evolutionary process leading, or not, to the invasion of a sink is akin to evolu-53

tionary rescue in the presence of immigration. It underlies a wide range of biological54

processes: invasion of new habitats by alien organisms (Colautti et al., 2017), host shifts55

in pathogens or the emergence of resistance to pesticides or antibiotics, within treated56
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areas or patients (discussed e.g. in Jansen et al. (2011) and Sokurenko et al. (2006)).57

The issues under study in these situations are the likelihood and timescale of successful58

invasions (or establishment) of sinks from neighboring source populations. “Establish-59

ment” in a sink is generally considered successful when the population is self-sustaining60

in this new environment, even if immigration was to stop (e.g., Blackburn et al., 2011,61

for a definition of this concept in the framework of biological invasions).62

A rich theoretical literature has considered the effects of demography and/or evolu-63

tion in populations facing a heterogeneous environment connected by migration, both64

in sexuals (e.g., Kirkpatrick and Barton, 1997) and asexuals (e.g., Débarre et al., 2013).65

The source-sink model is a sub-case of this general problem, that has received partic-66

ular attention (for a review, see Holt et al., 2005): below, we quickly summarize the67

relevance and key properties of source-sink models. The asymmetric migration (from68

source to sink alone), characteristic of black-hole sinks, provides a key simplification,69

while remaining fairly realistic over the early phase of invasion, where success or failure70

is decided. For the same reason, some models further ignore density-dependent effects71

in the sink, although both high (logistic growth) and/or low (Allee effect) densities72

could further impact the results, when relevant (discussed in Holt, 2009).73

Some source-sink models (e.g., Drury et al., 2007; Garnier et al., 2012), focus on de-74

tailed demographic dynamics, in the absence of any evolutionary forces. Evolutionary75

forces (selection, mutation, migration, drift and possibly recombination/segregation)76

can greatly alter the outcome. These forces may yield both local adaptation or maladap-77

tation, favoring or hindering (respectively) the ultimate invasion of the sink (“adaptive78

colonization”, Gomulkiewicz et al., 2010), however harsh. In this context, mutation79

and migration are double edged swords, both increasing the local variance available80

for selection but generating mutation and migration loads (resp.), due to the adverse81

effects of deleterious mutations and maladapted migrant inflow (resp.). For a review82

of the ambivalent effects of mutation and migration see e.g., (Lenormand, 2002) and83

(Débarre et al., 2013). Disentangling the complex interplay of these forces with demo-84

graphic dynamics is challenging, and modelling approaches have used various ecological85

simplifications: e.g. no age or stage structure, constant stress, constant migration rate.86

The associated evolutionary processes are also simplified. As for evolutionary rescue87

models (discussed in Alexander et al., 2014), evolutionary source-sink models may be88

divided into two classes, based on the presence or absence of context-dependence in the89

genotype-fitness map they assume (Gomulkiewicz et al., 2010). In context-independent90

models, fitness in the sink is additively determined by a single or a set of freely recombin-91

ing loci, and adaptation occurs by directional selection on fitness itself (Gomulkiewicz92
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et al., 2010; Barton and Etheridge, 2017). In context-dependent models, which arguably93

forms the vast majority of source-sink models, fitness is assumed to be a concave func-94

tion (typically quadratic or Gaussian) of an underlying phenotype, with the source95

and sink environments corresponding to alternative optima for this phenotype (e.g.,96

Holt et al., 2003, 2004). Such nonlinear phenotype-fitness maps, with environment97

dependent optima, generate context-dependent interactions for fitness (epistasis and98

genotype x environment or “G x E” interactions): the effect of a given allele depends99

on the genetic and environmental background in which it is found. These models repro-100

duce observed empirical patterns of mutation fitness effects across backgrounds (Martin101

et al., 2007; MacLean et al., 2010; Trindade et al., 2012), reviewed in (Tenaillon, 2014).102

However, their analysis is more involved. Most analytical treatments have thus relied on103

stationarity assumptions: e.g. describing the ultimate (mutation-selection-migration)104

equilibrium in asexuals (Débarre et al., 2013), or assuming a constant genetic variance105

and Gaussian distribution for the underlying trait in sexuals (e.g., Gomulkiewicz et al.,106

1999; Holt et al., 2004). While numerical explorations (by individual-based simula-107

tions) often relax these stationarity assumptions, they are necessarily bound to study108

a limited set of parameter value combinations.109

In this paper, we explore a complementary scenario: a source-sink system, out110

of equilibrium, in an asexual population. The focus on asexuals is intended to bet-111

ter capture pathogenic microorganisms or microbial evolution experiments. We ignore112

density-dependence by assuming that it is negligible (no Allee effects) before and dur-113

ing the critical early phase of the sink invasion (far below the population reaches the114

carrying capacity). Considering asexuals and density-independent populations implies115

that several complex effects of migration (both genetic and demographic) can be ig-116

nored. Because migrants do not hybridize/recombine with locally adapted genotypes117

or use up limiting resources, the maladaptive effects of migration are limited. Mi-118

gration meltdown and gene swamping (see Lenormand, 2002) are thus expected to be119

absent. This simplification allows to analytically track out-of-equilibrium dynamics, in120

a context-dependent model (with epistasis and G x E), without requiring stable variance121

or Gaussian and moment-closure approximations for the phenotypic distribution.122

More precisely, we study the transient dynamics of a sink under constant immigra-123

tion from a source population at mutation-selection balance and a sink initially empty124

(invasion process). We use the classic quadratic phenotype-fitness map with an isotropic125

version of Fisher’s geometrical model (FGM) with mutation pleiotropically affecting n126

phenotypic traits. To make analytical progress, we use a deterministic approxima-127

tion (as in Martin and Roques, 2016) that neglects stochastic aspects of migration,128
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mutation and genetic drift, but tracks the full distribution of fitness and phenotypes.129

Under a weak selection strong mutation (WSSM) regime, when mutation rates are130

large compared to mutation effects, we further obtain an analytically tractable coupled131

partial-ordinary differential equation (PDE-ODE) model describing the evolutionary132

and demographic dynamics in the sink. This framework allows us to derive analytic133

formulae for the demographic dynamics and the distribution of fitness, at all times,134

which we test by exact stochastic simulations. We investigate the effect of demographic135

and evolutionary parameters on the establishment success, on the establishment time,136

and on the equilibrium mean fitness in the sink. In particular, we focus on the effects of137

the immigration rate, the harshness of stress (distance between source and sink optima),138

and mutational parameters (rate, phenotypic effects and dimension n).139

2 Methods140

Throughout this paper, we follow the dynamics of the fitness distribution of the in-

dividuals in the sink environment, under the joint action of mutation, selection and

immigration from the source. The latter remains stable at mutation-selection balance,

as migration is asymmetric in this black-hole sink. We consider an asexual population

evolving in continuous time. Consistently, we focus on Malthusian fitness m (hereafter

’fitness’): the expected growth rate (over stochastic demographic events) of a given

genotypic class, per arbitrary time units. Absolute Malthusian fitnesses r are therefore

(expected) growth rates, and without loss of generality, m is measured relative to that

of the phenotype optimal in the sink, with growth rate rmax. We thus have m = r−rmax,

and the mean absolute fitness r(t) and mean relative fitness m(t), at time t, satisfy:

r(t) = rmax +m(t).

We use a deterministic approximation which neglects variations among replicate pop-141

ulations. Under this approximation, r(t) (respectively m(t)), the mean absolute (resp.142

relative) fitness within each population can be equated to their expected values (across143

stochastic events). In general, the bar denotes averages taken over the sink population.144

The main notations are summarized in Table 1.145

2.1 Demographic model and establishment time t0146

In our simple scenario without density-dependence, evolutionary and demographic dy-147

namics are entirely coupled by the mean absolute Malthusian fitness (mean growth148
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Notation Description

n number of pleiotropic phenotypes

x
(breeding value for) phenotype of a given

genotype

x∗ Optimal phenotype (source)

d Immigration rate

U Genomic mutation rate

λ Mutational variance per trait

µ
√
U λ

m
Malthusian fitness in the sink, relative to a

genotype optimal in the sink

mD

Harshness of stress (fitness distance

between source and sink optima)

rD
Decay rate, in the sink, of a genotype

optimal in the source rD = mD − rmax

msource Fitness of the migrants in the source

mmigr Fitness of the migrants in the sink

pmigr Probability density of mmigr

rmax Maximum absolute fitness (sink)

r
Absolute Malthusian fitness: genotypic

growth rate r = rmax +m

N(t) Population size at time t

m(t) Mean relative fitness

r(t)
Mean absolute fitness: mean growth rate

of the population r(t) = rmax +m(t)

t0 Establishment time

Ct(z)
Cumulant generating function of the

relative fitness distribution in the sink

Table 1: Main notations
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rate). We consider a sink population with mean growth rate r(t) at time t, receiving149

on average d individuals per unit time by immigration. Under the deterministic ap-150

proximation, the population size dynamics in the sink environment are therefore given151

by:152

N ′(t) = r(t)N(t) + d, (1)

with N ′(t) the derivative of N with respect to t at time t.153

In the absence of adaptation, r is constant, leading to an equilibrium population size154

N = d/(−r) when r < 0, as mentioned in the Introduction. When genetic adaptation155

is taken into account, we need further assumptions to describe the dynamics of r(t) in156

the sink.157

We always assume that the new environment is initially empty (N(0) = 0) and that

the individuals from the source are, on average, maladapted in the sink (r(0) < 0).

Following a classic definition (Blackburn et al., 2011), we define the establishment time

t0 as the first time when the growth rate of the sink becomes positive in the absence of

immigration:

t0 := inf{t > 0 s.t. r(t) > 0}.

This means that, from time t0, the sink population is self-sustaining in the absence158

of immigration and further adaptation. By definition (assuming that r is continuous),159

t0 satisfies r(t0) = 0. Depending on the behavior of r(t), t0 may therefore be finite160

(successful establishment) or infinite (establishment failure).161

2.2 Fisher’s geometric model162

We use Fisher’s geometric model (FGM) to describe the relationships between geno-163

types, phenotypes and fitnesses in each environment. This phenotype-fitness landscape164

model has the advantage of yielding realistic distributions of mutation effects on fit-165

nesses (Trindade et al., 2012; Hietpas et al., 2013; Tenaillon, 2014) and of generating166

a coupling between stress levels, the distribution of fitnesses among migrants from the167

source and that among de novo random mutants arising in the sink (Anciaux et al.,168

2018).169

170

Phenotype-fitness relationships in the two environments. The FGM assumes that171

each genotype is characterized by a given breeding value for phenotype at n traits172

(hereafter simply denoted ’phenotype’), namely a vector x ∈ Rn. Each environment (the173

source and the sink) is characterized by a distinct phenotypic optimum. The distance174

between these optima determines the stress induced by a change of the environment.175
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An optimal phenotype in the sink has maximal absolute fitness rmax (relative fitness176

m = 0) and sets the origin of phenotype space (x = 0). Fitness decreases away from this177

optimum. Following the classic version of the FGM, Malthusian fitness is a quadratic178

function of the breeding value r(x) = rmax − ‖x‖2/2 and m(x) = −‖x‖2/2.179

In the source, due to a different phenotype optimum x∗ ∈ Rn, the relative fitness is180

m∗(x) = −‖x−x∗‖2/2. As the population size is kept constant in the source (see below),181

only relative fitness matters in this environment. The harshness of stress mD > 0 is the182

fitness distance between source and sink optima:183

mD = −m(x∗) = ‖x∗‖2/2. (2)

The decay rate, in the sink, of a population composed of individuals with the optimal184

phenotype from the source, is thus rD = mD − rmax.185

186

Mutations. In the two environments, mutations occur at rate U and create indepen-187

dent and identically distributed (iid) random variations dz around the phenotype of188

the parent, for each trait. We assume here a standard Gaussian distribution of the mu-189

tation phenotypic effects (Kimura, 1965; Lande, 1980): dz ∼ N (0, λIn), where λ is the190

mutational variance at each trait, and In is the identity matrix in n dimensions. These191

assumptions induce a distribution of the mutation effects on fitness, given the relative192

fitness mp ≤ 0 of the parent. This distribution has stochastic representation (Mar-193

tin, 2014) s ∼ − mp − λ
2
χ2
n (− 2 mp/λ), where χ2

n (− 2 mp/λ) denotes the noncentral194

chi-square distribution with n degrees of freedom and noncentrality −2 mp/λ. This dis-195

tribution is detailed elsewhere (reviewed in Tenaillon, 2014), its mean is E[s] = −n λ/2.196

Alternatively, it can be characterized by its moment generating function:197

E[es z|mp] = M∗(z) eω(z)mp , (3)

with198

M∗(z) =
1

(1 + λ z)n/2
and ω(z) =

−λ z2

1 + λ z
. (4)

199

Migration events. Migration sends randomly sampled individuals from the source200

into the sink, at rate d > 0 per unit time. Their relative fitness in the sink is mmigr(x) =201

−‖x‖2/2, with x randomly sampled from the source’s standing phenotype distribution.202

2.3 Fitness distribution of the migrants203

We assume that the distribution of phenotypes in the source is at mutation-selection bal-204

ance. The resulting equilibrium distribution of phenotypes yields an equilibrium fitness205
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distribution in the source. Under a weak selection strong mutation (WSSM) regime, a206

simple expression for this equilibrium fitness distribution is (Martin and Roques, 2016,207

equation (10)): msource ∼ −Γ(n/2, µ), with µ :=
√
U λ, where Γ(a, b) denotes a gamma208

deviate with shape a and scale b. This WSSM regime can be quantitatively defined by209

the inequality U > Uc := n2 λ/4 (Martin and Roques, 2016, Appendix E).210

To understand the dynamics of the fitness distribution in the sink, we need to211

compute the distribution of the relative fitness of the migrants mmigr when they arrive212

into the sink. In our case, a handy way to describe this distribution is to compute213

its moment generating function: eφ(z) := E[emmigr z], for any z ≥ 0. Computations in214

Appendix A show that for any z ≥ 0:215

φ(z) = −n
2

ln(1 + µz)−mD z +
mD µ z

2

1 + µ z
. (5)

The corresponding distribution of mmigr (see Appendix A) is:216

pmigr(m) =

 1
µ

(
|m|
mD

) 1
2(n2−1)

e
m−mD

µ In
2
−1

[
2
√
mD|m|
µ

]
, if m < 0

0, if m ≥ 0

, (6)

where Iν is the modified Bessel function of the first kind. The accuracy of this formula217

is illustrated in Fig. 1. We observe that the mean absolute fitness of the migrants,218

which coincides with r(0) = lim r(t) as t→ 0, is given by219

r(0) = rmax + φ′(0) = rmax −mD − µn/2 = −rD − µn/2, (7)

with φ defined by (5). This initial growth rate is negative and corresponds to the220

decay rate (rD) of the mean phenotype from the source (which is optimal there) plus a221

variance load (µn/2) due to the equilibrium variation around this mean.222

The assumption that the individuals from the source are initially decaying (r(0) < 0)223

can therefore be expressed by the inequality rmax − µn/2 < mD.224

2.4 Trajectories of fitness in the sink: a PDE approach225

Assume that at time t, the population in the sink consists of the phenotypes {xi(t)}i=1,...,N(t)226

(with N(t) ∈ N), with the corresponding values of relative fitnesses {mi(t)}i=1,...,N(t). In227

the absence of demography and immigration, the dynamics of the fitness distribution228

is traditionally investigated by a moment closure approximation (Burger, 1991; Gerrish229

and Sniegowski, 2012): the variations of the moment of order k depend on the moments230
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Figure 1: Distribution of absolute fitness of the migrants in the sink. The dashed

line corresponds to the theoretical expected values of this distribution pmigr(· − rmax) given

by formula (6). The histogram corresponds to the distribution of migrants obtained in exact

stochastic simulations after reaching the mutation-selection balance in the source (see Sec-

tion 2.5). When the sink is empty, individuals are ’counter-selected’ if their fitness is below

the mean fitness r(0) given by (7), ’selected’ if their fitness is above r(0), and ’growing’ if

their fitness is positive. The parameter values are rmax = 0.1, U = 0.1, mD = 0.3, λ = 1/300,

n = 6 and N = 106.

of order larger than (k + 1) through a linear ordinary differential equation, and the re-231

sulting system is solved by assuming that the moments vanish for k larger than some232

value. A way around this issue is the use of cumulant generating functions (CGFs),233

which handle all moments in a single function. In a relatively wide class of evolution-234

ary models of mutation and selection, the CGF of the fitness distribution satisfies a235

partial differential equation (PDE) that can be solved without requiring a moment clo-236

sure approximation (Martin and Roques, 2016, Appendix B). We follow this approach237

here. The empirical CGF of the relative fitness in a population of N(t) individuals with238

fitnesses m1(t), . . . ,mN(t)(t) is defined by239

Ct(z) = ln

 1

N(t)

N(t)∑
i=1

emi(t) z

 , (8)

for all z ≥ 0. The mean fitness and the variance in fitness in the sink can readily be240

derived from derivatives, with respect to z, of the CGF, taken at z = 0: m(t) = ∂zCt(0)241

(and r(t) = rmax + ∂zCt(0)), and V (t) = ∂zzCt(0) (the variance in fitness). In the242

absence of demography and immigration, and under a weak selection strong muta-243

tion (WSSM) regime, (Martin and Roques, 2016, Appendix A) derived a deterministic244
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nonlocal PDE for the dynamics of Ct. We extend this approach to take into account245

immigration effects and varying population sizes. This leads to the following PDE246

(derived in Appendix B):247

∂tCt(z) = ∂zCt(z)− ∂zCt(0)︸ ︷︷ ︸
selection

−µ2
(
z2 ∂zCt(z) +

n

2
z
)

︸ ︷︷ ︸
mutation

+
d

N(t)

(
eφ(z)−Ct(z) − 1

)
︸ ︷︷ ︸
migration, demography

, z ≥ 0,
(9)

where we recall that µ :=
√
U λ. The immigration term depends on φ(z), which is given248

by (5), and on N(t), which satisfies the ODE (1), i.e. N ′(t) = (∂zCt(0)+rmax)N(t)+d.249

This leads to a well-posed coupled system (1) & (9) which can be solved explicitly, as250

shown in Appendix C.251

The selection term in eq. (9) stems from the increase in frequency of each lineage252

proportionally to its Malthusian fitness (frequency-independent selection). The second253

term is the WSSM approximation (U > Uc) to a more complex term (Martin and254

Roques, 2016, Appendix A) describing the effect of mutation: it depends on the current255

background distribution (on Ct(z)) because of the fitness epistasis inherent in the FGM.256

The last term describes the effect of the inflow of migrants on lineage frequencies. It257

tends to equate Ct(z) with φ(z), the CGF of fitnesses among migrants, proportionally258

to d/N(t), the dilution factor of migrants into the current sink population.259

2.5 Individual-based stochastic simulations260

To check the validity of our approach, we used as a benchmark an individual-based,261

discrete time model of genetic drift, selection, mutation, reproduction and migration262

with non-overlapping generations.263

Source population. A standard Wright-Fisher model with constant population size was264

used to compute the equilibrium distribution of phenotypes in the source. Our compu-265

tations were carried out with N∗ = 106 individuals in the source. Each individual i =266

1, . . . , N∗ has phenotype xi ∈ Rn and relative Malthusian fitness mi = −‖xi − x∗‖2/2,267

with corresponding Darwinian fitness emi (discrete time counterpart of the Malthusian268

fitness). At each generation, N∗ individuals are sampled with replacement proportion-269

ally to their Darwinian fitness. Mutations are simulated by randomly drawing, every270

generation and for each individual, a Poisson number of mutations, with rate U . Mu-271

tation acts additively on phenotype, with individual effects dx drawn into an isotropic272
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multivariate Gaussian distribution with variance λ per trait (see Section 2.2). Simu-273

lations were started with a homogeneous population (xi = x∗ for all i at initial time)274

and ran for 20/
√
µ generations (the predicted time taken to reach a proportion q of the275

final equilibrium mean fitness is atanh(q)/
√
µ, see Appendix E, Section “Characteris-276

tic time” in Martin and Roques (2016); with atanh(q) = 20, one can consider that the277

equilibrium has been reached). An example of the distribution of absolute fitness in the278

resulting (equilibrium) source population, after migrating into the sink (distribution of279

rmax − ‖xi‖2/2) is presented in Fig. 1.280

281

Sink population. We started with N(0) = 0 individuals in the sink. Then, the process282

to go from generation t to generation (t+1) is divided into three steps: (i) migration: a283

Poisson number of migrants, with rate d, was randomly sampled from the equilibrium284

source population, and added to the population in the sink; (ii) reproduction, selection285

and drift: each individual produced a Poisson number of offspring with rate exp(ri) =286

exp(rmax + mi) (absolute Darwinian fitness in the sink); (iii) mutation followed the287

same process as in the source population. The stopping criterion was reached when288

N(t) > 1.5 · 106 individuals or t > 5 · 103 to limit computation times.289

290

All the Matlabr codes to generate individual-based simulations are provided in291

Supplementary File 1.292

3 Results293

3.1 Trajectories of mean fitness294

Dynamics of r(t) and N(t). The system (1) & (9) leads to an expression for the295

mean absolute fitness (Appendix C):296

r(t) =
f(t)− 1∫ t
0
f(τ) dτ

, with f(t) = exp

[(
rmax − µ

n

2

)
t+

mD

2µ
(e−2µ t − 1)

]
. (10)

It also leads to an expression for the population size thanks to N ′(t) = r(t)N(t) + d.297

(see eq. (16) in Appendix C).298

The good accuracy of eq. (10) is illustrated in Figs. 2-4, by comparing it with299

the results of individual-based stochastic simulations, under the WSSM assumption300

(U > Uc := n2 λ/4). Both the individual-based simulations and the analytic expres-301

sions show that sink invasion tends to follow four different phases, which are all the302
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more pronounced as the harshness of stress mD increases. Phase 1: During the first303

generations, the mean fitness slightly increases; Phase 2: The mean fitness remains304

stable. Phase 3: Rapid increase in mean fitness. Phase 4: The mean fitness stabilizes305

at some asymptotic value. In the case of establishment failure (Fig. 4), the adaptation306

process remains in Phase 2.307

In all cases, formula (7) gives an accurate prediction of the mean fitness of the308

migrants, as shown by the agreement between theoretical and simulated values of r(0).309

Other trajectories, outside of the WSSM regime (U < Uc) are presented in Appendix D310

(and discussed in Section 3.3).311

Phenotypic dynamics over the different phases of invasion. Obviously the312

dichotomy into four phases could be deemed somewhat arbitrary, and it is clearly less313

marked with milder stress (top panels of Fig. 2). However, it does convey the qualitative314

chronology of the whole process in all cases. This can be further understood by exploring315

the dynamics of the phenotypic distribution over time: a typical example for a single316

simulation is given in Fig. 3, at four times corresponding to each of the four phases.317

We show here the phenotypic distribution along the one meaningful dimension, that for318

which the optimum is shifted between source and sink (the optimum in the sink is 0,319

and the optimum in the source x∗ = (
√

2mD, 0, . . . , 0)). The corresponding trajectories320

of fitness and population size are available in Appendix E (Fig. 9). A video file of the321

phenotype distribution is also available as Supplementary File 2.322

During Phases 1 and 2, the phenotypic distribution is fairly stable and slightly323

shifted from the source distribution towards the sink optimum. The short Phase 1324

merely witnesses an increase in population size from zero to the semi-stable Phase 2.325

We suggest that this semi-stable state approximately corresponds to a macroscopic326

“equilibrium” between migration and selection on the bulk of phenotypes. Here, we327

conjecture a negligible impact of mutation on this bulk because simulations in the328

absence of mutation in the sink yield a very similar phenotypic distribution during329

Phase 2 (Appendix J, Fig. 12). However, over the course of Phase 2, a second mode330

slowly appears closer to the sink optimum, due to the invasion of rare, better adapted,331

phenotypes (generated by the combined effects of rare adapted migrants and de novo332

mutation in the sink). When this second mode becomes significant in frequency, Phase333

3 starts with a rapid increase of the second mode (and of mean fitness), because phe-334

notypic and fitness variance are then maximized. The last Phase 4 corresponds to the335

new equilibrium dominated by a mutation selection balance around the sink optimum.336

In the present model without density limitations, migration becomes ultimately negligi-337
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(a) mD = 0.2 (b) mD = 0.2

(c) mD = 0.3 (d) mD = 0.3

(e) mD = 0.4 (f) mD = 0.4

Figure 2: Trajectories of mean fitnesses and population sizes in a WSSM regime,

depending on the harshness of stress. Solid lines: analytical predictions given by formu-

lae (1) and (10) vs 100 trajectories obtained by individual-based simulations (blue curves for

r(t) and red curves for N(t); dashed lines: mean values averaged over the 100 populations).

Horizontal dashed-dotted lines: theoretical value of r(∞) = rmax − µn/2 (left panels) and

equilibrium population size −d/r(0) in the absence of adaptation (right panels). The four

phases of invasion (Phases 1-4, see main text) are illustrated by distinct shaded areas on

panel (e). The parameter values are U = 0.1 (thus, U > Uc = 0.03, which is consistent with

the WSSM regime), rmax = 0.1, λ = 1/300, n = 6 and d = 104. Due to the stopping criterion

N(t) = 1.5 · 106 was reached, the mean values could not be computed over the full time span.
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(a) Phase 1: t = 10 (b) Phase 2: t = 60

(c) Phase 3: t = 220 (d) Phase 4: t = 300

Figure 3: Phenotype distribution in the sink, along the direction x1. The vertical

dotted lines correspond to the sink (x1 = 0) and source (x1 =
√

2mD) optima. The black

dotted curve corresponds to the theoretical distribution of migrant’s phenotypes in the sink

(Gaussian distribution, centered at x1 =
√

2mD, and with variance µ =
√
U λ). In all cases,

the parameter values are mD = 0.4, U = 0.1, rmax = 0.1, λ = 1/300, n = 6 and d = 104.

ble as the sink population explodes, and its phenotypic distribution ultimately reaches338

exactly a new mutation-selection balance.339

Effect of the immigration rate. Unexpectedly, the value of r(t) in formula (10)340

does not depend on the immigration rate d. Thus, only the population size dynamics are341

influenced by the immigration rate, but not the evolutionary dynamics. To understand342

this phenomenon, we may divide the equation N ′(t) = r(t)N(t) + d by d, leading to343

P ′(t) = r(t)P (t) + 1 with P (t) = N(t)/d. Then, we observe that the main system344
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(1) & (9) can be written in terms of P (t), independently of N and d. This means that345

the ratio N(t)/d is not influenced by d. This yields the independence of the evolutionary346

dynamics of d, because the effect of migration on mean fitness in (9) only depends on347

d/N(t).348

A simple mathematical argument (Appendix F) shows that this property will apply349

beyond the present model. The result arises for any model where (i) the evolutionary350

and demographic dynamics in the sink are density-independent (apart from the impact351

of migration) and (ii) the sink is initially empty (or at least d� N(0)). This means that352

it should apply for a broad class of models of asexual evolution in black-hole sinks. Note353

however, that sex and recombination, for example, necessarily create density-dependent354

evolution as recombination with migrants affects the genotype frequencies beyond the355

pure demographic impact of migration.356

An intuition for the independence of r(t) on d might be framed as follows: if d is357

increased (resp. decreased), the sink fills in more (resp. less) rapidly, from N(0) = 0,358

proportionally to the increase (resp. decrease) in d, at all times. Therefore things cancel359

out in the migration contribution on frequencies (d/N(t) is unaffected), and this con-360

tribution is the only one where d enters the dynamics. Overall increasing or decreasing361

d thus has no effect on genotype frequency dynamics, although it does affect popula-362

tion sizes. This balanced effect likely exists qualitatively in even more general condi-363

tions, but the exact cancelling out only happens with exponential (density-independent)364

growth/decay, density independent mutation and selection, and an initially empty sink.365

Large time behavior. As seen in Fig. 2, r(t) converges towards an asymptotic value366

r(∞) at large times. The expression (10) shows that this value depends on rmax, µ and367

n. Interestingly, it becomes dependent on the harshness of stress mD, only in the case368

of establishment failure. More precisely, we get:369

if rmax − µn/2 ≥ 0 then r(∞) = rmax − µn/2, and N(∞) =∞
if rmax − µn/2 < 0 then r(∞) = rmax − µn/2− δ(mD), and N(∞) = −d/r(∞),

(11)

for some function δ(mD) such that mD > δ(mD) > mD/8 for µ large enough (the370

inequality δ(mD) > mD/8 is true whatever the phenotype dimension n). When n is371

large enough, sharper lower bounds can be obtained, e.g. δ(mD) > 3mD/8 for n ≥ 6),372

see Appendix G.373

These asymptotic results can be interpreted as follows. Below some threshold (U <374

Ulethal := 4r2max/(λn
2), or equivalently µ < µlethal := 2rmax/n), establishment is always375

successful and the sink population ultimately explodes (as we ignore density-dependence376
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in the sink). As d/N(∞) = 0, the demographic and evolutionary effects of migrants377

thus become negligible (being diluted in an effectively infinite population). The sink378

population thus reaches mutation-selection balance, with a mutation load µn/2, as if379

it was isolated. It ultimately grows exponentially at rate rmax − µn/2 as illustrated in380

Fig. 2.381

On the contrary, large mutation rates (U ≥ Ulethal or equivalently µ ≥ µlethal) lead382

to establishment failure, which is a form of lethal mutagenesis (see Bull et al. (2007)383

for viruses and Bull and Wilke (2008) for bacteria) illustrated in Fig. 4. In this regime,384

the mutation load µn/2 is larger than the absolute maximal fitness rmax in the sink.385

Therefore, at mutation-selection balance and even in the absence of any migration,386

the population could never show positive growth: establishment is impossible because387

the fitness peak is too low, given the mutation rate and effect. We further identify a388

“jump” of amplitude δ(mD) in the equilibrium mean fitness, as µ increases beyond the389

lethal mutagenesis threshold (illustrated in Fig. 5). Then, the population ultimately390

reaches a stable size determined by an immigration - decay equilibrium: a migration391

load can build up at equilibrium (δ(mD)) together with the mutation load (µn/2). This392

migration load is produced by the constant inflow of maladapted genotypes from the393

source and does depend on the harshness of stress mD. It is this migration load that394

creates the “phase transition” in equilibrium fitness as µ crosses beyond µlethal, the395

lethal mutagenesis threshold (Fig. 5). Note, however, that contrary to what happens396

with sexuals, migrants entering an asexual population do not interbreed with locally397

adapted genotypes, which simplifies the effect of migration. Note also that, in this398

lethal mutagenesis regime, the sink population does establish to a stable size, that may399

be higher than that expected in the absence of mutation and adaptation. However, this400

is not an establishment in that the population would still get extinct if migration was401

to be stopped.402

3.2 Establishment time t0403

Of critical importance is the waiting time until the sink becomes a source, when this404

happens, namely the time t0 at which r(t) becomes positive. This section is devoted to405

the analysis of this time.406

Derivation of an analytical expression. Using the expression (10), we can solve407

the equation r(t0) = 0. We recall that, due to our assumptions, t0 > 0, i.e. r(0) =408

rmax − µn/2−mD < 0.409
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(a) U = 0.44 > Ulethal (b) U = 0.44 > Ulethal

Figure 4: Trajectories of mean fitnesses and population sizes, lethal mutagenesis

regime. Same legend as in Fig. 2. Other parameter values are mD = 0.2, rmax = 0.1,

λ = 1/300, n = 6 and d = 104, leading to a theoretical threshold value for lethal mutagenesis

Ulethal = 4r2max/(λn
2) = 0.33. The panel (a) illustrates the bifurcation in the behavior of the

equilibrium mean fitness as rmax − µn/2 becomes negative.

Figure 5: Mean fitness at large times, dependence with µ and mD. The solid lines

are the values given by formula (11). The crosses correspond to the result of individual-based

simulations. The dashed-dot line corresponds to rmax − µn/2; the gap between the dashed-

dot line and the solid lines represents the amplitude of the jump δ(mD). Parameter values:

rmax = 0.1, n = 6.
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The result in (11) shows that t0 = ∞ if rmax − µn/2 ≤ 0 (establishment failure).410

In the case of successful establishment (mD > r(∞) = rmax − µn/2 > 0), the waiting411

time to this establishment is:412

t0 =
1

2µ

[
c+W0

(
−c e−c

)]
, c =

mD

rmax − µn/2
, (12)

with W0 the principal branch of the Lambert-W function (see Appendix H).413

First of all, eq. (12) shows that the waiting time is independent of the dispersal414

rate d. This was further sustained by individual-based simulations (Fig. 6a) as t0415

was found to drop rapidly to its predicted value as d increases (as the deterministic416

approximation becomes accurate), to then become independent of d. The waiting time417

shows a transition (around c = 1) from t0 ≈ c/2µ for small c to t0 ≈ c/µ for large c,418

so the establishment time always increases close to linearly with the harshness of stress419

mD. This was also the case in individual-based simulations (Fig. 6c), at least until420

stress becomes too strong, compared to mutation and migration. In that case, the sink421

population remains fairly small for a long time and our deterministic approximation422

no longer applies, at least in the early phases (1 and 2) of invasion (see Section 3.3).423

Eq. (12) also implies that the establishment time t0 decreases with rmax and increases424

with n. The dependence with respect to the mutational parameter µ is more subtle:425

as µ is increased, t0(µ) first decreases until µ reaches an ’optimal value’ (minimizing426

invasion time), then t0(µ) increases until µ reaches the lethal mutagenesis threshold427

(µlethal = 2 rmax/n). This behaviour always holds, as proven analytically in Appendix H.428

This non-monotonous variation of t0 with mutation rate (here with µ =
√
Uλ) was also429

found in individual-based simulations (Fig. 6b).430

Most of these effects are fairly intuitive: it takes more time to establish from a431

more maladapted source (mD), with a smaller mutational variance (Uλ), although their432

particularly simple quantitative effect on t0 was somewhat unexpected. The effect of433

rmax, although quantitatively simple, has multiple aspects. Indeed, rmax affects various434

parameters of the establishment process, all else being equal: it decreases the initial rate435

of decay (r̄(0) = rmax −mD − µn/2) and increases the proportion of migrants that are436

resistant to the sink environment (fitness peak height) which both speed adaptation. It437

also increases the ultimate exponential growth rate of the population (r̄(∞) = rmax −438

µn/2). The latter effect is likely irrelevant to t0, however, as this growth phase occurs439

after the establishment time.440

Effect of an intermediate sink. The simulations identify a sharp transition, in the441

harshness of stress, beyond which establishment does not occur (or occurs at very large442
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(a) (b)

(c)

Figure 6: Establishment time t0, dependence with the immigration rate d, the

mutational parameter µ and the harshness of stress mD. Theoretical value of

t0 (black curve) vs value obtained with individual-based simulations (red crosses) and 95%

confidence intervals, with fixed mD = 0.2, U = 0.1 (panel a), mD = 0.2, d = 103 (panel b)

and fixed d = 103, U = 0.1 (panel c). The vertical dotted lines correspond to the values of

d, µ and mD such that −dU/r(0) = 500 (panels b and c) and U = Uc (panel b). The blue

crosses in panel (c) correspond to the establishment time tI0(mD), obtained by individual-

based simulations, in the presence of an intermediate habitat with phenotype optimum xI

such that ‖x∗−xI‖2/2 = ‖xI‖2/2 = mD/2. In all cases, the parameter values are rmax = 0.1,

λ = 1/300, n = 6.
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times), see Appendix I. We see in Fig. 6 that as mD gets close to this threshold, the443

dependence between t0 and mD shifts from linear to superlinear (convex). Based on444

previous results on evolutionary rescue in the FGM (Anciaux et al., 2018), we conjecture445

that this pattern is inherent to the phenotype fitness landscape model. In the FGM,446

increased stress (higher mD) is caused by a larger shift in optimum from source to sink.447

This has two effects, (i) a demographic effect (faster decay of new migrants, on average)448

and (ii) an evolutionary effect. This latter effect is simply due to the geometry of the449

landscape. Indeed, when the shift in optimum from source to sink is larger, there are450

fewer genotypes, in the migrant pool, that can grow in the sink and they tend to grow451

more slowly. This effect is highly non-linear with stress, showing a sharp transition in452

the proportion of resistant genotypes beyond some threshold stress (for more details453

see Anciaux et al., 2018).454

We argue that this type of dependence has important implications for the potential455

effect of an intermediate milder sink, with phenotype optimum xI in between x∗ (opti-456

mum in the source) and 0 (optimum in the sink), connected by a stepping-stone model457

of migration. A natural question is then whether the presence of this intermediate sink458

affects the waiting time to establish in the harsher sink. In that respect, assume that459

the overall harshness of stress (fitness distance between optima) is the same with and460

without the intermediate habitat I: schematically, mD = mD(x∗ → 0) = mD(x∗ →461

xI) +mD(xI → 0). When mD is low, t0 is roughly linear with mD so that it may take a462

similar time to establish in two step and in one (the sum of intermediate establishment463

times would be the same as that to establish in a single jump). However, for harsher464

stress levels where t0 is superlinear with mD, the intermediate habitat could provide a465

springboard to invade the final sink, if both intermediate jumps are much faster than466

the leap from source to final sink.467

To check this theory, we considered a new individual-based model with an interme-468

diate habitat with phenotype optimum xI such that ‖x∗ − xI‖2/2 = ‖xI‖2/2 = mD/2.469

The dynamics between the source and the sink are the same as those described in470

Section 2.5. In addition, we assume that (1) the source also sends migrants to the471

intermediate habitat at a rate d; (2) reproduction, selection and drift occur in the in-472

termediate habitat following the same rules as in the sink, until the population NI(t)473

in the intermediate habitat reaches the carrying capacity K = N∗ (same population474

size as in the source); (3) the intermediate habitat sends migrants to the ultimate sink,475

at rate dNI(t)/N
∗. Then, we computed the time tI0(mD) needed to establish in the476

final sink, in the presence of the intermediate habitat (value averaged over 100 replicate477

simulations).478
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The results presented in Fig. 6c (blue crosses) confirm that for small mD, the pres-479

ence of an intermediate habitat has almost no effect (tI0(mD) ≈ t0(mD)). However, when480

mD becomes larger and t0(mD) becomes superlinear, the establishment time in the sink481

is dramatically reduced by the presence of the intermediate sink (tI0(mD) � t0(mD);482

e.g., for mD = 0.5, 5 · 103 ≈ t0(mD)� tI0(mD) ≈ 364).483

Effect of mutation in the sink on the establishment time. We have seen in484

Fig 6b that mutation has a non-monotonous impact on establishment time. However,485

a higher mutation rate affects both the source equilibrium state and the sink dynamics.486

A natural question to ask is thus whether local mutation in the sink helps or hinders487

invasion. Indeed, mutation in the FGM (and other models with both deleterious and488

beneficial mutations) can have antagonistic effects: it generates fitness variance to fuel489

adaptation but lowers the mean fitness by creating a mutation load. This is of course490

also true for mutation in the source, but the interaction with migration in the sink491

makes the outcome less straightforward to grasp.492

To tell apart the influences of local mutation on invasion speed, we analyzed (Ap-493

pendix J) a scenario where mutation is absent in the sink, but still active in the source,494

so that the latter is unchanged. An expression equivalent to eq. (10) is obtained in this495

case for the mean fitness trajectory. We compared the corresponding time to establish-496

ment, noted t00, with the establishment time t0 to check whether local mutation (in the497

sink) speeds or slows invasion.498

The results in Fig. 7 show that local mutation can either slow down or accelerate499

invasion, depending on the mutational variance (µ) and stress level (mD). For a given500

level of stress (mD), local mutation tends to speed invasion as long as mutational501

variance (µ) is limited (left part of the graph) but hinders it when it becomes larger502

(right part of the graph). The transition from helping to hindering invasion happens503

at larger µ values when the stress is harsher (higher mD). It thus appears that the504

beneficial effect of local mutation in producing variance dominates when mutation is505

limited while its negative effect in load buildup takes over as µ is increased. The506

transition occurs at higher µ under harsher stress because the former effect is more507

critical then, while the latter is roughly independent of stress. This pattern illustrates508

quite strikingly the complex implications, for adaptation dynamics, of the ambivalent509

nature of mutation in the FGM.510

3.3 Range of validity of the model511

22

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 8, 2019. ; https://doi.org/10.1101/433235doi: bioRxiv preprint 

https://doi.org/10.1101/433235


Figure 7: Comparison between the establishment times t0 (with mutation in the

sink) and t00 (without mutation in the sink). The heat map corresponds to sign(t0 −
t00) log10(1+|t0−t00|): negative values indicate that t00 > t0 (faster establishment with mutation

in the sink) and positive values indicate that t0 > t00 (faster establishment without mutation

in the sink).

We explored the range of validity of the analytical model by comparing theory and512

simulations over a wide range of parameter values. The raw results are given in Ap-513

pendix I. Overall, the model is more accurate as U and d increase and mD (equivalently,514

rD = mD − rmax), n and λ decrease. More precisely, theoretical and numerical analysis515

yield two (a priori conservative) conditions that should lead to the model being accu-516

rate: (i) U ≥ Uc = n2λ/4, for the WSSM to apply; (ii) dU/rD � 1, for the large d517

approximation to apply.518

Below we detail each criterion, their robustness and possible empirical insight on their519

realism.520

Criterion (i): it is formally derived in Appendix E of (Martin and Roques, 2016)521

and guarantees that the mutation term associated with the FGM linearizes to produce522

an analytically tractable PDE. While the model is indeed accurate whenever U > Uc, it523

remains reasonably so even at fairly lower mutation rates. Even for mutation rates U =524

Uc/30 (but keeping a large d), r(t) and N(t) from eq. (10) still accurately capture the525

average trajectories (Fig. 8), although the length of Phase 2 in the numerical simulations526

becomes more variable, around this average, as U is decreased. Consistently, Fig. 6b527

shows that the invasion time in eq. (12) accurately captures the average of simulations528

far below U = Uc, with larger variability around this mean as U decreases.529

As an example, empirical estimates in E. coli, based on a recent mutation accumu-530

lation experiment (Trindade et al., 2010) suggest U ∈ [0.004, 0.006] and E[s] = nλ/2 ∈531
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[0.02, 0.04] (mean effect of mutations on fitness), which yields U/Uc ∈ [0.2, 0.6] for n = 1532

and U/Uc ∈ [0.033, 0.1] for n = 6. This suggests that E. coli may lie somewhere below533

the critical mutation rate, at a similar order. Note however that estimates of these534

quantities are fairly scarce (even in this well studied biological model) and seem to535

vary substantially across experiments (medium, strain, growth conditions). We suspect536

that viruses (especially RNA viruses) may lie well within U ≥ Uc, while bacteria may537

vary widely around U = Uc. Obviously any proper statement on this issue would re-538

quire a full review of empirical estimates (appropriately scaled in consistent time units),539

wherever available.540

Criterion (ii): this criterion, which is confirmed by the simulations in Appendix I541

and Fig. 6 panels (a) and (c), stems from the following argument: the early population542

size in the sink is of order N(t) ≈ d/|r(0)| (no evolution), with |r(0)| = |rD+µn/2| ≈ rD543

(when µ � rD). Thus whenever d � rD/U , the mutant input N(t)U in the sink544

population quickly reaches a large value N(t) U ≈ d U/rD � 1 and only increases later545

on. Adaptive evolution can then take place within the sink, in a way that is accurately546

captured by a deterministic approximation (see the dotted lines in Fig. 6). Conversely,547

when d is smaller and/or rD is larger, the early population size in the sink is small, so548

that the deterministic approximation does not apply anymore. In this case, we see that549

the time t0 is much more variable, and increases on average with smaller d and larger550

rD (or equivalently mD), see Fig. 6.551

Empirically evaluating the criterion (ii) requires estimates of d, U, rD on the same552

timescale (hours, days, generations) in a well defined sink. Such estimates should be553

possible from dedicated experiments controlling the immigration rate, in strains with554

known mutational parameters, and environmental stresses with well characterized de-555

mographic effect. They would greatly help our understanding of source-sink dynamics.556

However, to the best of our knowledge, they are not available to date.557

4 Discussion558

We derived an analytically tractable PDE-ODE framework describing evolutionary and559

demographic dynamics of asexuals in a source-sink system. Comparison with individual-560

based stochastic simulations shows that the approach is accurate in the WSSM regime561

(large mutation rates compared to mutation effects) and with a large migration rate,562

and seems robust to mild deviations from this regime. This approach reveals the typical563

shape of the trajectories of mean fitness and population sizes in a sink: (1) in the case564

of establishment failure, after a brief increase, the mean fitness remains stable at some565
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negative level which depends on the harshness of stress; (2) in the case of successful566

establishment, this “plateau” is followed by a sudden increase in mean fitness up to567

the point where it becomes positive and the sink becomes a source. Note that here, we568

ignored density dependent effects in the sink, so that mean fitness ultimately converges569

towards an equilibrium that is independent of any migration effect, the latter being570

diluted into an exploding population.571

The three first phases predicted by the model, for the case of successful estab-572

lishment, are qualitatively observed in (Dennehy et al., 2010), an experimental study573

of invasion of a black-hole sink (an asexual bacteriophage shifting to a new bacterial574

host). The “host shift” scenario in their Fig. 3 corresponds roughly to our scenario575

with a population evolved on the native host sending migrants to a new host. The576

conditions may differ however as the population may not be initially at equilibrium in577

the native host at the onset of migration. Yet, the dynamics are qualitatively simi-578

lar to those in our Fig. 2, although the time resolution in the data is too limited to579

claim or test any quantitative agreement. An extension of the present work could be580

to allow for non-equilibrium source populations, which can readily be handled by the581

PDE (9) (reformulating φ(z) = φ(z, t)). However, our analytical result on t0 does rely582

on an equilibrium source population. Note also that the four phases identified here583

are observed, in simulations, even in the low d or low U regimes where our analytical584

derivations can break down quantitatively. Therefore, while the model may provide585

qualitatively robust insight, quantitative analyses are necessary to really test its pre-586

dictions. This would ideally include associated measures of decay rates rD, mutation587

rate U and ideally maximal possible growth rate rmax, with a known immigration rate588

d.589

Quite unexpectedly, the evolutionary dynamics (especially the waiting time t0 to590

establishment) do not depend on the immigration rate. This emerges mathemati-591

cally from the fact that the evolutionary dynamics only depend on the population592

size through the ratio N(t)/d between the current population size and the immigra-593

tion rate, this ratio itself remaining independent of d. This is confirmed by stochastic594

individual-based simulations (Fig. 6a): establishment time roughly decreases as 1/d595

when d is small but indeed stabilizes as d becomes larger. More precisely, the result596

on the independence of t0 with respect to d should always hold with an initially empty597

sink and when dU/rD � 1 (see section 3.3). In this case, the mutant input in the sink598

population is always large enough to enable our deterministic framework to accurately599

capture the evolution in the sink. This result a priori extends to any model where600

evolution and demography are density-independent. However density dependent effects601
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on demography or evolution (including sexual reproduction) might alter this outcome.602

Yet, we argue that purely demographic effects due to a finite carrying capacity in the603

sink environment should have limited impact on the conclusions of our model, up until604

establishment time (as long as K is large enough).605

In a black-hole sink experiment Perron et al. (2007) studied the evolution of re-606

sistance to two lethal doses of antibiotics and their combinations in the bacterium607

Pseudomonas aeruginosa (also asexual). Their experiment differs from our scenario in608

that the sink populations were initially filled with many “naive” individuals (N0 � 1,609

amounting to an initial large single immigration event). The authors did notice that610

immigration rate d affected population densities, but this is not directly a test of our611

model: our deterministic model also predicts that N(t) should depend on d, only the612

mean fitness and time to establishment do not.613

The independence between t0 and d is counter-intuitive if we consider sink invasion614

as a repeated evolutionary rescue ’experiment’. Indeed, the immigration process in the615

sink could also be seen as a Poisson process of incoming new lineages (from the source),616

each having a given probability pR to yield a rescue in the future (in the absence of617

new immigration), hence to ultimately turn the sink into a source. This probability618

pR can be computed from evolutionary rescue theory, with various flavours: see (Orr619

and Unckless, 2014) for a context-independent single allele rescue model or, in the case620

of the FGM, using results in (Anciaux et al., 2018). By basic properties of Poisson621

processes, the waiting time t1 to the first arrival, in the sink, of such a future rescue622

lineage should be exponential with mean 1/(d pR), thus decreasing as 1/d.623

However, this waiting time is different from the one computed here. Our t0 denotes624

the time at which the mean fitness of the sink population becomes positive in the625

absence of immigration, hence the time at which the sink has truly become a source. The626

evolutionary rescue approach above computes the time t1 at which a lineage ultimately627

destined to produce a resistant genotype, enters the sink. This lineage may be very628

rare by t = t1, it may even not be resistant itself but only destined to produce a mutant629

offspring that will be. The time at which the sink will de facto be a positively growing630

source can thus be far later. A study and comparison of both waiting times is interesting631

and feasible, but beyond the scope of the present paper. This remark, however, has632

one key implication: migration may be stopped long before t0 and the sink may still633

ultimately become a source, with some probability (even if this will be ’visible’ much634

later).635

Some insight into the possible effects of management strategies, e.g. quarantine (d),636

lethal mutagenesis (U), prophylaxis (mD and rmax), can be developed from the results637
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presented here.638

Migration (propagule pressure) is considered an important determinant of the suc-639

cess of biological invasions in ecology (Von Holle and Simberloff, 2005; Lockwood et al.,640

2005). Consistently, it has been shown that the factors increasing potential contacts641

between human populations and an established animal pathogen or its host tend to642

increase the risk of emergence of infectious diseases (Morse, 2001). Under the ’repeated643

rescue approach’ above, it is indeed expected that emergence risk should increase as644

1/contact rate. However, the present work shows that the time at which this emergence645

will be de facto effective (visible) may be unaffected by this contact rate. This means646

that care must be taken in the criteria chosen to evaluate strategies, and between the647

minimization of emergence risk vs. emergence time.648

The use of a chemical mutagen to avoid the adaptation of a microbial pathogen649

and the breakdown of drugs is grounded in lethal mutagenesis theory (Bull et al.,650

2007; Bull and Wilke, 2008). Our approach successfully captures the occurrence of651

this phenomenon: the establishment fails when the mutation rate U exceeds a certain652

threshold, which depends on rmax, on the mutational variance λ and on the dimension653

of the phenotypic space. Additionally, once this threshold is reached, the equilibrium654

mean fitness ceases to depend linearly on the mutational parameter (µ =
√
U λ), but655

rapidly decays (see Fig. 5). The existence of this negative “jump” in the equilibrium656

mean fitness, whose magnitude depends on the harshness of stress, leaves no room657

for evolutionary rescue. Conversely, our approach also reveals that below the lethal658

mutagenesis threshold, increasing the mutation rate decreases the establishment time659

as 1/
√
U . Hence, the use of a mutagen may be a double-edged sword since it can both660

hamper or increase the potential for adaptation in the sink.661

As expected, the establishment time t0 increases with the harshness of stress mD;662

the population simply needs more time to adapt to more stressful environmental condi-663

tions. Increasing mD or decreasing rmax, whenever possible, are probably the safest ways664

to reduce the risks of biological invasions through adaptive processes or cross-species665

transmissions of pathogens (in both low and high d regimes). The precise dependence666

of t0 with respect to mD brings us further valuable information. As long as our ap-667

proach is valid (not too large stresses, leading to finite establishment times), a linear668

dependence emerges. It suggests that, in a more complex environment with a source669

and several neighbouring sinks connected by a stepping stone model of migrations, the670

exact pathway before establishment occurs in a given sink does not really matter. Only671

the sum of the stresses due to habitat shifts has an effect on the overall time needed672

to establish in the whole system. Conversely, for larger stress values our analytical673
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approach is not valid, and the numerical simulations indicate a convex (surlinear) de-674

pendence of t0 with respect to mD. In such case, for a fixed value of the cumulated675

stress, the establishment time in the sink could be drastically reduced by the presence676

of intermediate sink habitats.677

This result, which needs to be confirmed by more realistic modelling approaches678

and empirical testing, might have applications in understanding the role of so-called679

“preadaptation” in biological invasions. Recent adaptation to one or more facets of680

the environment within the native range has been proposed as a factor facilitating681

invasions to similar environments (e.g. Hufbauer et al., 2012, anthropogenically induced682

adaptation to invade). Our results suggest that preadaptation might only reduces the683

overall time to invasion (i.e., taking the preadapation period into account) only when684

invading highly stressful habitats.685

The effect of a given environmental challenge, and thus their joint effects when686

combined (Rex Consortium, 2013), might be modelled in various ways in a fitness687

landscape framework (see also discussions in Harmand et al., 2017; Anciaux et al.,688

2018). The first natural option is to consider that multiple stresses tend to pull the689

optimum further away, and possibly lower the fitness peak rmax. In the simplified690

isotropic model studied here, a larger shift in optimum amounts to increasing mD.691

However, a possibly more realistic anisotropic version, with some directions favored692

by mutation or selection, might lead to directional effects (where two optima at the693

same distance are not equally easy to reach) and be particularly relevant to multiple694

stress scenarios. Such a more complex model could be handled by focusing on a single695

dominant direction (discussed in Anciaux et al., 2018), or by following multiple fitness696

components (one per direction, Hamel et al. in prep).697

Clearly, many developments are possible and could prove useful to understand how698

qualitative and quantitative aspects of environmental stresses may affect rescue and699

invasion. The present isotropic approach provides a simple, tractable null model for700

the latter, where all environmental effects are summarized by their measurable effects701

on mD, U λ and rmax. We hope it will foster the empirical study of source-sinks with702

associated measurements of these key parameters.703
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Hufbauer, R. A., R. Facon, V. Ravigné, J. Turgeon, J. Foucaud, C. E. Lee, O. Rey, and771

A. Estoup (2012). Anthropogenically induced adaptation to invade (AIAI): contem-772

porary adaptation to human-altered habitats within the native range can promote773

invasions. Evolutionary Applications 5 (1), 89–101.774

Jansen, M., A. Coors, R. Stoks, and L. De Meester (2011). Evolutionary ecotoxicology775

of pesticide resistance: a case study in Daphnia. Ecotoxicology 20 (3), 543–551.776

Kimura, M. (1965). A stochastic model concerning the maintenance of genetic variabil-777

ity in quantitative characters. Proceedings of the National Academy of Sciences 54 (3),778

731–736.779

Kirkpatrick, M. and N. H. Barton (1997). Evolution of a species’range. The American780

Naturalist 150, 1–23.781

Lande, R. (1980). The genetic covariance between characters maintained by pleiotropic782

mutations. Genetics 94 (1), 203–215.783

Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends in Ecology784

& Evolution 17 (4), 183–189.785

Lockwood, J. L., P. Cassey, and T. Blackburn (2005). The role of propagule pressure786

in explaining species invasions. Trends in Ecology & Evolution 20 (5), 223–228.787

Loreau, M., A. Daufresne, Tand Gonzalez, D. Gravel, F. Guichard, S. J. Leroux,788

N. Loeuille, F. Massol, and N. Mouquet (2013). Unifying sources and sinks in ecology789

and earth sciences. Biological Reviews 88 (2), 365–379.790

MacLean, R. C., A. R. Hall, G. G. Perron, and A. Buckling (2010). The population791

genetics of antibiotic resistance: integrating molecular mechanisms and treatment792

contexts. Nature Reviews Genetics 11 (6), 405.793

31

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 8, 2019. ; https://doi.org/10.1101/433235doi: bioRxiv preprint 

https://doi.org/10.1101/433235


Martin, G. (2014). Fisher’s geometrical model emerges as a property of complex inte-794

grated phenotypic networks. Genetics 197 (1), 237–255.795

Martin, G., S. F. Elena, and T. Lenormand (2007). Distributions of epistasis in microbes796

fit predictions from a fitness landscape model. Nature Genetics 39 (4), 555.797

Martin, G. and T. Lenormand (2015). The fitness effect of mutations across environ-798

ments: Fisher’s geometrical model with multiple optima. Evolution 69 (6), 1433–1447.799

Martin, G. and L. Roques (2016). The non-stationary dynamics of fitness distributions:800

Asexual model with epistasis and standing variation. Genetics 204 (4), 1541–1558.801

Morse, S. S. (2001). Factors in the emergence of infectious diseases. In Plagues and802

politics, pp. 8–26. Springer.803

Orr, H. A. and R. L. Unckless (2014). The population genetics of evolutionary rescue.804

PLoS Genetics 10 (8), e1004551.805

Perron, G. G., A. Gonzalez, and A. Buckling (2007). Source-sink dynamics shape the806

evolution of antibiotic resistance and its pleiotropic fitness cost. Proceedings of the807

Royal Society of London B: Biological Sciences 274 (1623), 2351–2356.808

Pulliam, H. R. (1988). Sources, sinks, and population regulation. The American Nat-809

uralist 132 (5), 652–661.810

Rex Consortium (2013). Heterogeneity of selection and the evolution of resistance.811

Trends in Ecology & Evolution 28 (2), 110–118.812

Sokurenko, E. V., R. Gomulkiewicz, and D. E. Dykhuizen (2006). Source-sink dynamics813

of virulence evolution. Nature Reviews Microbiology 4 (7), 548.814

Tenaillon, O. (2014). The utility of Fisher’s geometric model in evolutionary genetics.815

Annual Review of Ecology, Evolution, and Systematics 45, 179–201.816

Trindade, S., L. Perfeito, and I. Gordo (2010). Rate and effects of spontaneous muta-817

tions that affect fitness in mutator Escherichia coli. Philosophical Transactions of the818

Royal Society B: Biological Sciences 365 (1544), 1177–1186.819

Trindade, S., A. Sousa, and I. Gordo (2012). Antibiotic resistance and stress in the light820

of Fisher’s model. Evolution: International Journal of Organic Evolution 66 (12),821

3815–3824.822

32

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 8, 2019. ; https://doi.org/10.1101/433235doi: bioRxiv preprint 

https://doi.org/10.1101/433235


Von Holle, B. and D. Simberloff (2005). Ecological resistance to biological invasion823

overwhelmed by propagule pressure. Ecology 86 (12), 3212–3218.824

33

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 8, 2019. ; https://doi.org/10.1101/433235doi: bioRxiv preprint 

https://doi.org/10.1101/433235


A Fitness distribution of the migrants: derivation825

of formulae (5) and (6)826

Consider an individual with phenotype x. Its fitness in the source ismsource = −‖x− x?‖2/2,
where x? is the optimal phenotype in the source, whereas its fitness in the sink is

mmigr = −‖x‖2/2. We observe that

mmigr = − ‖x− x? + x?‖2

2

= − ‖x− x?‖2 + ‖x?‖2 + 2(x− x?) · x?

2

= msource −
‖x?‖2

2
− ‖x− x?‖ ‖x?‖u

= msource −mD − 2
√
mD|msource|u, (13)

with mD = ‖x?‖2/2 and a constant u ∈ [−1, 1]. As the source is assumed to be at

the mutation-selection equilibrium, the distribution of fitness in the source satisfies

msource ∼ −Γ(n/2, µ) (Martin and Roques, 2016, equation (10)) and the corresponding

moment generating function is Mmsource(z) = (1 + µz)−n/2. The results in (Martin and

Lenormand, 2015) show that u is a random variable with moment generating function:

Mu(z) := E[euz] = 0F1(n/2, z
2/4),

with 0F1 the hypergeometric function, defined by 0F1(θ, z) =
∑∞

k=0
1

θ(θ+1)···(θ+k−1)
zk

k!
.

Let us first compute the moment generating function Mmigr(z) := E[emmigrz]. We have

Mmigr(z) = E[E[emmigrz|msource]],

and using (13),

Mmigr(z) = E
[
emsourcezMu

(
−2
√
mD|msource|z

)]
e−mDz

= E
[
emsourcez 0F1

(
n/2, −mDmsourcez

2
)]
e−mDz.

Thanks to the definition of the hypergeometric function 0F1(n/2, z), we get:

Mmigr(z) =
∞∑
k=0

(−mD)k

n/2(n/2 + 1) · · · (n/2 + k − 1)

z2k

k!
E[emsourcezmk

source]e
−mDz

=
∞∑
k=0

(−mD)k

n/2(n/2 + 1) · · · (n/2 + k − 1)

z2k

k!
M (k)

msource(z)e−mDz,
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with M
(k)
msource(z) the kth derivative of Mmsource(z) with respect to z. Thus,

Mmigr(z) =
∞∑
k=0

1

k!

(
mDµz

2

1 + µz

)k
(1 + µz)−n/2e−mDz

=
1

(1 + µz)n/2
· exp

[
−mDz +

mDµz
2

1 + µz

]
.

Setting φ(z) = ln (Mmigr(z)) , we obtain formula (5).827

Let us now show that the distribution of the migrants in the sink satisfies (6). Let

pmigr be defined by (6). We just have to check that the moment generating function of

pmigr is Mmigr:∫ 0

−∞
ezxpmigr(x)dx =

∫ 0

−∞
ezx

1

µ

(
|x|
mD

)n/2−1
2

e
x−mD
µ In

2
−1

[
2
√
mD|x|
µ

]
dx

= e−mD/µ
∫ 0

−∞

∞∑
p=0

e(z+1/µ)x mp
D

µ2p+n/2
· 1

p!
· |x|

p+n/2−1

Γ(p+ n/2)
dx

= e−mD/µ
∞∑
p=0

mp
D

µ2p+n/2
· 1

p!
· 1

Γ(p+ n/2)

∫ 0

−∞
e(z+1/µ)x|x|p+n/2−1dx,

where Iν is the modified Bessel function of the first kind and Γ the gamma function.828

Now, for all positive numbers a and b, we have:829 ∫ 0

−∞
eax|x|b−1dx =

1

ab

∫ ∞
0

e−x|x|b−1dx =
Γ(b)

ab
.

Therefore, we get, for z > −1/µ:∫ 0

−∞
ezxpmigr(x)dx = e−mD/µ

∞∑
p=0

mp
D

µ2p+n/2
· 1

p!
· 1

Γ(p+ n/2)

Γ(p+ n/2)

(z + 1/µ)p+n/2

=
e−mD/µ

(1 + µz)n/2

∞∑
p=0

(
mD/µ

1 + µz

)p
· 1

p!

=
e−mD/µ

(1 + µz)n/2
exp

(
mD/µ

1 + µz

)
=

1

(1 + µz)n/2
exp

(
− mDz

1 + µz

)
.

This is consistent with formula (5), which proves that the expression (6) is correct.830
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B PDE satisfied by the CGF of the fitness distri-831

bution832

In the WSSM regime, and in the absence of immigration, Martin and Roques (2016)

(see Appendix E, equation (E5)) have shown that the CGF of the fitness distribution

satisfies the following equation:

∂tCt(z) = ∂zCt(z)− ∂zCt(0)− µ2
(
z2 ∂zCt(z) +

n

2
z
)
, z ≥ 0.

We derive here the additional term in (9), which describes the effect of immigration on833

the CGF.834

In that respect, we consider a discrete population of size N(t) ∈ N at time t, and

the corresponding fitnesses (m1(t), . . . ,mN(t)(t)). We define the “empirical” moment

generating function

Mt(z) :=
1

N(t)

N(t)∑
i=1

emi(t) z.

Assuming a Poisson number of immigration events, with rate d per unit time (see

Section 2.5), for ∆t small enough, the probability that a single immigration events

occurs during (t, t+∆t) is approximately d∆t. The probability that several immigration

events occur during this time interval is close to 0. Therefore, the expected change in

the moment generating function during ∆t, conditionally on the fitness mmigr of the

unique migrant, is:

∆Mt(z|mmigr) = d ∆t

 1

N(t) + 1

N(t)∑
i=1

emi(t) z + emmigr z

− 1

N(t)

N(t)∑
i=1

emi(t) z


= d ∆t

[
emmigr z

N(t) + 1
− Mt(z)

N(t) + 1

]
.

Taking expectation over the distribution of mmigr (see Appendix A for more details on

the distribution of mmigr), we get

∆Mt(z) =
d ∆t

N(t) + 1

(
eφ(z) −Mt(z)

)
,

with φ(z) = ln (E [emmigr z]) . The corresponding change in the CGF Ct(z) = lnMt(z)835

is ∆Ct(z) ≈ ∆Mt(z)/Mt(z). Thus,836

∆Ct(z) ≈ d ∆t

N(t)

(
eφ(z)−Ct(z) − 1

)
.
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Finally, dividing the above expression by ∆t and passing to the limit ∆t→ 0, we obtain837

the last term in (9), which describes the effect of immigration on the CGF:838

d

N(t)

(
eφ(z)−Ct(z) − 1

)
. (14)
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C Solution of the system (1) & (9)839

This section is devoted to the mathematical study of the system (1) & (9). We rewrite840

it in the following form:841 
∂tCt(z) = α(z)∂zCt(z)−m(t) + β(z) + d

N(t)

(
eφ(z)−Ct(z) − 1

)
,

N ′(t) = N(t) (rmax +m(t)) + d,

Ct(0) = 0,

N(0) = 0,

(15)

with t > 0 and z ≥ 0, and where m(t) = ∂zCt(0), d ≥ 0, α(z) := 1 − µ2 z2, β(z) :=842

−µn z/2.843

We can easily check that the sink is not empty at each time t > 0:844

Lemma 1. Assume that m is continuous over [0,∞). Then, at all time t > 0, we have845

N(t) > 0.846

Proof. For ε > 0 small enough, as N ′(0) = d > 0, we have N(t) > 0 for all t ∈ (0, ε].847

Additionally, for all t ≥ ε,848

N(t) = e
∫ t
ε (rmax+m(s)) ds

(
N(ε) + d

∫ t

ε

e−
∫ v
ε (rmax+m(s)) ds dv

)
> 0. (16)

849

Let N(t), Ct(z) be a solution of (15), such that m is continuous over [0,∞). Set850

Dt(z) = Ct(y(z)), with y(z) = tanh(µz)/µ which satisfies:851 {
y′(z) = α(y(z)),

y(0) = 0,

so that852

∂tDt(z) = ∂tCt(y(z)) and ∂zDt(z) = α(y(z))∂zCt(y(z)).

Thus, Dt(z) satisfies the simpler equation853

∂tDt(z) = ∂zDt(z)−m(t) + β(y(z)) +
d

N(t)

(
eφ(y(z))−Dt(z) − 1

)
,

with m(t) = ∂zDt(0).854

Using the method of characteristics, we derive an analytic expression for Dt(z). Fix855

z ≥ 0 and denote for all z ≥ t > 0:856

v(t) = exp(Dt(z − t)).
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The function v ∈ C1((0, z]) satisfies for all t ∈ (0, z):

v′(t) = (∂tDt(z − t)− ∂zDt(z − t)) v(t),

=

[
β(y(z − t))−m(t)− d

N(t)

]
v(t) +

d

N(t)
eφ(y(z−t)),

=

[
β(y(z − t))− N ′(t)

N(t)
+ rmax

]
v(t) +

d

N(t)
eφ(y(z−t)),

thanks to N ′(t) = (rmax +m(t))N(t) + d. Let us fix times 0 < ε < t. By Lemma 1, we

know that N(s) > 0, for all s ∈ [ε, t] and so v(t) is given by:

v(t) = exp

[∫ t

ε

(
β(y(z − τ))− N ′(τ)

N(τ)
+ rmax

)
dτ

]
[
eC(ε,y(z)) +

∫ t

ε

d eφ(y(z−τ))

N(τ)
exp

(
−
∫ τ

ε

(
β(y(z − s))− N ′(s)

N(s)
+ rmax

)
ds

)
dτ

]
.

As
∫ t
ε
N ′(s)
N(s)

ds = lnN(t)− lnN(ε), we can simplify the last expression to:

v(t) = exp

[
− lnN(t) +

∫ t

ε

(β(y(z − τ)) + rmax) dτ

]
[
N(ε) ln eC(ε,y(z)) +

∫ t

ε

d eφ(y(z−τ)) exp

(
−
∫ τ

ε

(β(y(z − s)) + rmax) ds

)
dτ

]
.

Taking the limit as ε tends to 0 and using the fact that the initial population in the

sink is N(0) = 0, the above expression can be simplified to:

v(t) = d

∫ t

0

eφ(y(z−τ))−
∫ τ
0 (β(y(z−s))+rmax)dsdτ · exp

[
− lnN(t) +

∫ t

0

(β(y(z − τ)) + rmax) dτ

]
.

Hence, by reversing the characteristics, we get:

Dt(z) =

∫ t

0

β(y(z + τ))dτ − ln (N(t)) + rmaxt

+ ln

[
d

∫ t

0

eφ(y(z+τ))−rmax(t−τ)−
∫ t
τ β(y(z+s))dsdτ

]
.

This leads to an explicit but complex formula for Ct(z) thanks to the relation857

Ct(z) = Dt

(
1

µ
atanh(µz)

)
. (17)

Additionally, we have:

∂zDt(z) = β(y(z + t))− β(y(z)) +

∫ t
0
∂z g(t, z, τ) dτ∫ t
0
g(t, z, τ) dτ

,
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with g(t, z, τ) = exp
[
φ(y(z + τ)) + rmax(τ − t)−

∫ t
τ
β(y(z + s))ds

]
. Using the fact that

m(t) = ∂zDt(0), y(0) = 0 and β(0) = 0, we get:

m(t) =β(y(t)) +

∫ t
0
g(t, 0, τ) [y′(τ)φ′(y(τ)) + β(y(τ))− β(y(t))] dτ∫ t

0
g(t, 0, τ) dτ

,

=

∫ t
0
g(t, 0, τ) [y′(τ)φ′(y(τ)) + β(y(τ))] dτ∫ t

0
g(t, 0, τ) dτ

,

=

∫ t
0
g(t, 0, τ) [y′(τ)φ′(y(τ)) + β(y(τ)) + rmax] dτ∫ t

0
g(t, 0, τ) dτ

− rmax,

=

∫ t
0
g(t, 0, τ) ∂τg(t, 0, τ) dτ∫ t

0
g(t, 0, τ) dτ

− rmax,

=
g(t, 0, t)− g(t, 0, 0)∫ t

0
g(t, 0, τ) dτ

− rmax.

Using the expression g(t, 0, τ) = exp
[
φ(y(τ)) + rmax(τ − t)−

∫ t
τ
β(y(s))ds

]
, the for-858

mula (5) for φ and y(z) = tanh(µz)/µ, we finally get:859

m(t) =
exp

[
(rmax − µ n

2
)t+ mD

2µ
(e−2µt − 1)

]
− 1∫ t

0
exp

[
(rmax − n

2
µ)τ + mD

2µ
(e−2µτ − 1)

]
dτ
− rmax. (18)

As we have an explicit formula for m(t), we can also solve the ODE N ′(t) = N(t) (rmax+860

m(t)) + d (formula (16), with ε = 0 and N(ε) = 0). Finally, we can check that861

N(t), Ct(z) (defined by (17)) is a solution of (15) such that m (given by (18)) is862

continuous over [0,∞). Using the expression (18) with r(t) = rmax + m(t), we obtain863

the formula (10) in the main text.864
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D Trajectories of mean fitness: U < Uc865

(a) U = 10−2 = Uc/3 (b) U = 10−2 = Uc/3

(c) U = 10−3 = Uc/30 (d) U = 10−3 = Uc/30

(e) U = 10−4 = Uc/300 (f) U = 10−4 = Uc/300

Figure 8: Trajectories of mean fitnesses and population sizes, low mutation rates.

Same legend as in Fig. 2. Other parameter values are mD = 0.2, rmax = 0.1, λ = 1/300,

n = 6 and d = 104, leading to Uc = 0.03.
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E Phenotype distribution in the sink: dynamics of866

r(t) and N(t)867

The dynamics of mean fitness and population size corresponding to Fig. 3 are plotted868

in Fig. 9, to illustrate the occurrence of the four phases in this particular simulation.869

(a) (b)

Figure 9: Trajectory of mean fitness and population size in the sink corresponding

to the phenotype distribution in Fig. 3. Same legend as in Fig. 2.
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F Independence of the evolutionary dynamics with870

respect to the immigration rate871

The value of r(t) in formula (10) does not depend on d. Thus, only the population

size dynamics are influenced by the immigration rate, but not the dynamics of adap-

tation. Actually, this phenomenon appears for a more general deterministic black-hole

sink model, with a stable source and a constant immigration rate d ≥ 0. In the sink,

we have just to assume that the environment is initially empty (N(0) = 0), that both

demography and evolution are density-independent (so that density dependence only

arises in the migration effect). Apart from that, the proposed generalization may ac-

commodate arbitrary forms of mutation and selection effects (possibly with changes in

stress over time). The model then takes the following general form:
∂tCt(z) = Selection(t, z, Ct(z)) + Mutation(t, z, Ct(z)) + d

N(t)

(
eφ(z)−Ct(z) − 1

)
,

N ′(t) = N(t) r(t) + d,

Ct(0) = 0,

N(0) = 0,

with r(t) = ∂zCt(0) the coefficient of the exponential growth. Setting P (t) = N(t)/d,

we observe that the above system can be written in the form:
∂tCt(z) = Adaptation(t, z, Ct(z)) + Mutation(t, z, Ct(z)) + 1

P (t)

(
eφ(z)−Ct(z) − 1

)
,

P ′(t) = P (t) r(t) + 1,

Ct(0) = 0,

P (0) = 0,

with r(t) = ∂zCt(0). As this system does not depend on d, this implies that the872

dynamics of P (t), of mean fitness r(t), and even of the full fitness distribution (Ct(z))873

are all independent of d.874
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G Large time behavior of r(t)875

We recall that, according to formula (10),

r(t) =
f(t)− 1∫ t
0
f(τ) dτ

,

with f(t) = exp

[(
rmax − µ

n

2

)
t+

mD

2µ
(e−2µ t − 1)

]
.876

877

We first show that r(t) is an increasing function of t. First, we can check that878

f ′(t) = f(t)
(
rmax −

µn

2
−mDe

−2µt
)
.

Second, we have

r′(t) =
f ′(t)∫ t

0
f(τ)dτ

− f(t)− 1(∫ t
0
f(τ)dτ

)2 f(t)

=
f(t)(∫ t

0
f(τ)dτ

)2 [(rmax −
µn

2
−mDe

−2µt
)∫ t

0

f(τ)dτ − (f(t)− 1)

]
.

Let h(t) =
(
rmax − µn

2
−mDe

−2µt) ∫ t
0
f(τ)dτ − (f(t)− 1). Thus we see that879

h′(t) = 2µmD e
−2µt

∫ t

0

f(τ)dτ ≥ 0.

Therefore for all t > 0, h(t) > h(0) = 0, which shows that r is increasing.880

Since r(0) = rmax − µn/2−mD, this implies that r(t) > rmax − µn/2−mD for all881

t > 0. In particular, r(∞) ≥ rmax − µn/2 − mD which implies that δ(mD) < mD in882

(11).883

884

Next, we compute the limit of r(t) as t→∞.885

Case (i): we assume that rmax − µn/2 > 0. Then, f(t) ∼ e−
mD
2µ e(rmax−µn/2)t and∫ t

0

f(τ) dτ ∼ e−
mD
2µ

e(rmax−µn/2)t

rmax − µn/2
, as t→∞.

Thus,

r(t)→ rmax − µn/2 as t→∞.

886
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Case (ii): we assume that rmax − µn/2 = 0. Then f(t) = exp
[
mD
2µ

(e−2µt − 1)
]

and887 ∫ t
0
f(τ) dτ ∼ t e−mD/(2µ) as t→∞. Thus,888

r(t) ∼ e−mD/(2µ) − 1

e−mD/(2µ)t
→ 0 as t→∞.

889

Case (iii): we assume that rmax − µn/2 < 0. Consider an arbitrary constant α ∈ (0, 2).

We can check that, for all t < Tα := 1
2µ

ln 2
α

, we have:

e−2µt < 1− αµt.

In the sequel, we denote X := rmax − µn/2. We get:∫ ∞
0

f(t)dt =

∫ Tα

0

f(t)dt+

∫ ∞
Tα

f(t)dt

≤
∫ Tα

0

exp ((X −mDα/2)t) dt

+

∫ ∞
Tα

exp

[
Xt+

mD

2µ

(
e−2µTα − 1

)]
dt.

Using the assumption X = rmax − µn/2 < 0, we obtain:∫ ∞
0

f(t)dt ≤ e(X−mDα/2)Tα − 1

X −mD α/2
− exp

[
mD

2µ

(
e−2µTα − 1

)] eXTα

X
,

and using the definition of Tα = 1
2µ

ln 2
α

, we obtain∫ ∞
0

f(t)dt ≤ −
(α

2

)−X
2µ

[
γ

X − αmD/2
+

ρ

X

]
,

with γ :=
(
α
2

) X
2µ −

(
α
2

)αmD/(4µ) and ρ = exp
[
mD
2µ

(
α
2
− 1
)]

. This leads to the following

inequality:

r(∞) = − 1∫∞
0
f(t)dt

≤
(α

2

) X
2µ X − αmD/2

γ + ρ
(
1− αmD

2X

) ,
which can be rewritten:

r(∞) ≤ X − αmD/2

1 + ε
,

with

ε :=
(

1− αmD

2X

)
ρ
(α

2

)− X
2µ −

(α
2

)αmD
4µ
− X

2µ
.
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Next, to show that r(∞) < X−αmD/2, we only need to check that ε < 0. This is true

for certain values of α. As ρ = exp
[
mD
2µ

(
α
2
− 1
)]

, we observe that ε has the same sign

as:

ε′ =
(

1− αmD

2X

)
exp

[
mD

4µ
(α− 2)

]
− exp

[
mD

4µ
α ln(α/2)

]
.

Since X = rmax − µn/2, we get:

ε′ =
mD

4µ
[−α ln(α/2) + α (1 + 4/n)− 2] + o

(
1

µ

)
,

as µ→∞. Thus, ε < 0 for µ large enough, if and only if:890

n >
4

ln(α/2)− 1 + 2/α
. (19)

For α small enough, this inequality is true for any n ≥ 1. However, higher values of α891

lead to sharper estimates of δ(mD) in (11). With α = 1/4 for instance, the inequality892

(19) is always satisfied (as n ≥ 1). We obtain that r(∞) ≤ X − mD
8

and δ(mD) ≥ mD
8

893

for µ large enough. If α is increased, e.g., α = 1/2, the inequality (19) is true for all894

n ≥ 3, and consequently, r(∞) ≤ X− mD
4

for µ large enough (δ(mD) ≥ mD
4

, for µ large895

enough). In our numerical computations (n = 6), we can use α = 3/4, which leads to896

r(∞) ≤ X − 3mD
8

and δ(mD) ≥ 3mD
8

for large µ.897
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H Establishment time t0: formula (12)898

We recall that t0 is defined as the first zero of r(t). We note that, since r(t) is increasing,899

it admits at most one zero.900

First, if rmax − µn/2 ≤ 0, as r(t) is increasing and r(∞) < rmax − µn/2 (see (11)901

and Appendix G), we have r(t) < 0 for all t ≥ 0. This implies that t0 =∞.902

Second we assume that rmax − µn/2 > 0. In this case, r(∞) = rmax − µn/2 > 0903

and the time t0 is finite (and positive). Therefore, we can solve the equation r(t) = 0,904

which is equivalent to:905

(rmax − µn/2)t+
mD

2µ

(
e−2µt − 1

)
= 0. (20)

Let us set c := mD/(rmax − µn/2). Since r(0) = rmax − µn/2 −mD < 0, we observe906

that c > 1. The equation (20) is equivalent to:907

2µ t− c = −c e−2µ t.

Multiplying this expression by e2µ t−c, we get:908

(2µ t− c)e2µ t−c = −c e−c.

Setting X := 2µ t− c, we obtain:909

X eX = −c e−c. (21)

As c > 1, −ce−c ∈ (−e−1, 0), thus the equation (21) admits two solutions, X0 =910

W0(−c e−c) and X−1 = W−1(−c e−c) < X0, with W0 and W−1 respectively the principal911

branch and the lower branch of the Lambert-W function. Thus, the equation (20)912

admits two solutions, (c + X0)/(2µ) and (c + X−1)/(2µ) = 0, but only the first one is913

positive. Finally, we obtain that914

t0 =
1

2µ

(
c+W0(−ce−c)

)
. (22)

As t0 is an increasing function of c, we obtain that t0 decreases as rmax is increased,

and t0 increases as mD and n are increased. The dependence with respect to µ is more

subtle. Differentiating the expression (22) with respect to µ, we observe that t′0(µ) has

the same sign as:(
µn

2 rmax − µn
− 1−W0(−ce−c)

)(
c+W0(−ce−c)

)
.
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As the second factor in the above expression is always positive (since c > 1), we get

that t′0(µ) has the same sign as the function:

g(µ) :=
µn

2 rmax − µn
− 1−W0(−ce−c).

Differentiating g with respect to µ, we observe that g′(µ) has the same sign as rmax +915

(µn/2 + mD)W0(−ce−c) = rmax − µn/2 + µn (1 − W0(−ce−c))/2 + mDW0(−ce−c).916

Thus g′(µ) has the same sign as mD (1/c + W0(−ce−c)) + µn(1 −W0(−ce−c))/2 > 0,917

as 1/c+W0(−ce−c) > 0 (since c > 1) and 1−W0(−ce−c) > 0. Finally, g is increasing,918

with:919

g(0) = −1−W0

(
−mD

rmax

e−
mD
rmax

)
≤ 0,

(and the sign is strict unless mD = rmax). Additionally, we have g(2rmax/n) = +∞920

(corresponding to µlethal). This means that, unless mD = rmax, t0(µ) first decreases921

until µ reaches an optimal value, and then increases as µ is increased.922
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I Establishment time t0: dependence with the harsh-923

ness of stress mD and the immigration rate d924

Using the stochastic individual-based model of Section 2.5, we analysed the dependence925

of the establishment time t0 with respect to mD and d for a wide range of parameter926

values. Namely, taking U = 0.1, rmax = 0.1, λ = 1/300 and n = 6 as in Fig. 6, mD927

was varied between 0.1 and 0.5. The results are presented in Fig. 10a. It shows that,928

for each value of mD, there is a threshold value of the immigration rate above which929

the establishment time t0 becomes almost independent of d. This threshold tends to930

increase as the harshness of stress mD takes higher values. Additionally, we measured931

the relative error between the theoretical value of t0 given by formula (12) and the value932

given by individual-based simulations; see Fig. 10b. As soon as the parameters are far933

from the black region in Fig. 10, (a,b), the approximation is accurate (relative error934

< 0.1). This black region corresponds to values of t0 > 5000, for which individual-based935

simulations were stopped before establishment, and where we can expect that the final936

outcome is establishment failure. This means that there is only a narrow region where937

formula (12) is not accurate; it is located close to the region where establishment fails,938

and describes a rapid increase in t0 which is not captured by our analytical approach.939

Fig. 10 (c,d) depicts comparable simulations, with U = Uc/3 = 0.01, i.e., outside of940

the WSSM regime. The conclusions are similar to the case U = 0.1, but with a larger941

region corresponding to establishment failure, and a lower accuracy (panel d).942
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(d) U = 0.01, relative error

Figure 10: Establishment time t0, dependence with the harshness of stress mD and

the immigration rate d. (a,c): Average value of t0 over 100 individual-based simulations.

The color legend corresponds to log10(1+t0). (b,d): relative error between the theoretical value

of t0 given by formula (12) and the average value obtained by individual-based simulations.

The black regions correspond to parameter values for which at least one simulation led to

t0 > 5000; in that case, the average value of t0 was not computed numerically. In all cases,

the parameter values are rmax = 0.1, λ = 1/300, n = 6.
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J Dynamics in the absence of mutation in the sink943

To get a better understanding of the four phases described in Section 3.1, we considered944

the case where the mutation rate U = 0 in the sink (while it remains positive in the945

source).946

First, using the same arguments as in Appendix C, we can derive a formula for r(t)

in that case. The formula can be expressed in the same form as (10), with:

f(t) = exp [φ(t) + rmax t] ,

with φ given by (5).947

An example of trajectory of fitness is given in Fig. 11, where we observe that the948

four phases are still present. The corresponding phenotype distribution is presented in949

Fig. 12. A video file of the phenotype distribution is also available as Supplementary950

File 3.951

Figure 11: Dynamics of r(t) in the absence of mutation in the sink. The blue curve

corresponds to the trajectory of r(t) given by a single individual-based simulation, in the

absence of mutation in the sink. The parameter values are mD = 0.4, U = 0.1, rmax = 0.1,

λ = 1/300, n = 6 and d = 104.
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(a) Phase 1: t = 10 (b) Phase 2: t = 50

(c) Phase 3: t = 115 (d) Phase 4: t = 190

Figure 12: Phenotype distribution in the sink, along the direction x1, in the ab-

sence of mutation. The vertical dotted lines correspond to the sink (x1 = 0) and source

(x1 =
√

2mD) optima. The black dotted curve corresponds to the theoretical distribution of

migrant’s phenotypes in the sink (Gaussian distribution, centered at x1 =
√

2mD, and with

variance µ =
√
U λ). The parameter values are mD = 0.4, U = 0.1, rmax = 0.1, λ = 1/300,

n = 6 and d = 104.
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