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ABSTRACT 
  
Perceptual decisions are not only determined by current sensory information but are also             
influenced by expectations based on recent experiences. Can the impact of these            
expectations be flexibly modulated based on the outcome of previous decisions? We trained             
rats in several two-alternative forced choice auditory tasks, where the probability to repeat             
the previous stimulus category was varied in blocks of trials. All rats capitalized on the serial                
correlations of the stimulus sequence by consistently exploiting a ​transition bias: ​a tendency             
to repeat or alternate their previous response using an internal trial-by-trial estimate of the              
sequence repeating probability​. Surprisingly, this bias was null in trials immediately following            
an error. The internal estimate however was not reset and it became effective again causing               
a bias after the next correct response. This ability to rapidly activate and inactivate the bias                
was captured by a non-linear generative model of rat behavior, whereby a reward-driven             
modulatory signal gated the use of the latent estimate of the environment statistics on the               
current decision. These results demonstrate that, based on the outcome of previous choices,             
rats flexibly modulate how expectations influence their current  decisions. 
 
 
INTRODUCTION  
 
Imagine Rafa Nadal returning Roger Federer’s serve in the decisive game of a Grand Slam               
final. Serving at 185 km per hour, Nadal has a few hundred milliseconds to visually estimate                
the ball trajectory, prepare the motor plan including where he aims to return the ball and                
execute it. In such speeded decisions based on partial or ambiguous sensory information,             
the anticipation provided by an informed prior expectation can be decisive because subjects             
can respond faster. Based on past games bringing the two players together, and on the               
pattern of the last serves executed by Federer, Nadal inevitably forms an expectation about              
where the next ball will arrive. Combined with the visual motion of the ball, this expectation                
may allow him to gain some decisive tens of milliseconds in the return of the serve ​(Vernon                 
et al., 2018)​. However, if his prediction fails and he concedes an ace, does he need to                 
choose between trashing his prior model on Federer’s serve or sticking to it in the               
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subsequent point? Or can Nadal transiently downplay the weight of his prediction on the next               
serve without modifying his prior?  
 
Normative theories describe how prior expectations and ambiguous stimulus evidence          
should be combined in order to maximize categorization performance ​(Ernst and Banks,            
2002; Stocker and Simoncelli, 2006)​. In dynamical environments, in which the statistics of             
the sensory information varies with time, subjects must be constantly updating their internal             
model by accumulating past stimuli, actions and outcomes ​(Yu and Cohen, 2008)​. The             
updating of the prior based on the actions occurring in each trial typically introduces              
sequential effects, which are systematic history-dependent choice biases reflecting the          
impact of the trial-to-trial variations in expectation ​(Abrahamyan et al., 2016; Akaishi et al.,              
2014; Akrami et al., 2018; Ashourian and Loewenstein, 2011; Braun et al., 2018; Busse et               
al., 2011; Cho et al., 2002; Fischer and Whitney, 2014; Fründ et al., 2014; Hwang et al.,                 
2017; Meyniel et al., 2016; Nogueira et al., 2017)​. However, there are circumstances where              
subjects seem able to quickly and flexibly modulate the impact of prior expectations in              
driving their choices. One of such examples is the switch between (1) exploiting choices              
which, according to their current statistical model of the environment, are more likely to yield               
reward and (2) exploring alternative choices that are not aimed to maximize reward given              
that internal model, but to reduce environmental uncertainty and eventually refine the current             
model ​(Daw et al., 2006; Ebitz et al., 2018; Karlsson et al., 2012)​. ​In particular, when the                 
task design potentiates stochastic exploration, rats are able to operate in an expectation-free             
mode in which choices did not depend on previous history ​(Tervo et al., 2014)​. In other                
tasks, the updating of the internal prior is not done in a continuous manner as new                
information is presented, but subjects update their internal estimates abruptly and           
intermittently when they feel there has been a change-point in the environment ​(Gallistel et              
al., 2004)​. Recent studies have shown that, in the absence of feedback, the magnitude of               
the expectation bias on current choice is smaller after a low confidence response ​(Braun et               
al., 2018; Samaha et al., 2018; Urai et al., 2017)​. Despite these findings, we lack a                
conceptual framework that could explain both how expectations are formed and which are             
the factors that regulate their use on a moment to moment basis.  
 
Here we investigate whether the combination of expectation and sensory evidence can be             
dynamically modulated. Moreover, we aim to develop a unified model that jointly describes             
the dynamics of expectation build-up and its modulatory variables on a trial by trial basis. We                
trained rats to perform perceptual discrimination tasks using stimulus sequences with serial            
correlations. Behavioral analysis allowed us to tease apart the different types of history             
biases. In particular, rats accumulated evidence over previous choice transitions, defined as            
repetitions or alternations of two consecutive choices, in order to predict the next rewarded              
response. Crucially, this expectation-based bias disappeared after an error, reflecting a fast            
switch into an expectation-free categorization mode. This switch did not imply however the             
reset of the accumulated expectation which resumed its influence on behavior as soon as              
the animal obtained a new reward. This ubiquitous behavior across animals was readily             
captured by a non-linear dynamical model in which previous outcomes acted as a gate for               
the impact of past transitions on future choices.  
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RESULTS  
 
A reaction time auditory discrimination task promoting serial biases 
 
To study how the recent history of stimuli, responses and outcomes influence perceptual             
choices, we trained rats in a two-alternative forced choice (2AFC) auditory discrimination            
task in which serial correlations were introduced in stimulus trial sequences (Fig.1a-c) ​(Braun             
et al., 2018; Goldfarb et al., 2012; Jones et al., 2013; Kim et al., 2017)​. This design mimicked                  
the temporal regularities of ecological environments and allowed us to probe the trial-by-trial             
expectations that animals formed about upcoming stimuli based on the changing statistics of             
the stimulus sequence. The serial correlations between trials were created using a two-state             
Markov chain (Fig. 1b) parameterized by the probability to repeat the previous stimulus             
category P​rep (the unconditioned probabilities for each of the two categories were equal). We              
varied P​rep between Repeating blocks, in which P​rep​= 0.7, and Alternating blocks in which              
P​rep​= 0.2 (Fig. 1c; block length 200 trials). By poking into the center port, rats triggered the                 
presentation of the stimulus, which lasted until they freely withdrew from the port. Each              
acoustic stimulus was a superposition of a high-frequency and a low-frequency           
amplitude-modulated tones and animals were rewarded for correctly discriminating the tone           
with the higher average amplitude. The discrimination difficulty of each stimulus, termed            
stimulus strength ​s​, was randomly and independently determined in each trial, and set the              
relative amplitude of each tone (Fig.1b,d). When stimulus strength ​s was null, i.e. contained              
no net evidence in favor of either alternative, the rewarded side was still determined by the                
outcome of the random Markov chain generating the stimulus category sequence (Fig. 1b). 
 
Across-trial dynamics of history-dependent choice biases 
 
Animals in Group 1 (n=10 animals) completed an average of 508 trials per session (range               
284 - 772 average trials), gathering an average of 56,242 trials in total per animal (range                
15,911 - 81,654 trials). Psychometric curves showing the proportion of Rightward responses            
as a function of the stimulus evidence did not depend on block type (Fig. 2a left). To                 
estimate the impact of stimulus serial correlations, we also analyzed the repeating            
psychometric curves, showing the proportion of trials where the animals repeated the            
previous choice as a function of the sensory evidence in favor of the repeating choice. This                
analysis showed that all animals developed a block-dependent repeating bias ​b ​(Fig. 2a             
right, b left): after correct trials, ​b was positive in the Repetitive Block, and negative in the                 
Alternating Block (i.e. tendency to repeat or alternate, respectively). Interestingly, the fixed            
side bias ​B​, measuring ​the history-independent preference to choose one side ​, was similar             
across blocks for each animal (Fig. 2c left), showing that animals side preference was              
independent of the changes in repeating bias caused by block switching. Surprisingly, in             
trials following an error, ​b almost vanished in both block types (Fig. 2b-c right). Thus, after                
errors rats did not use previous history to guide their decision (e.g. in the Repetitive block,                
after an incorrect Rightward response, the Leftward response is more likely to be rewarded).              
In contrast, the fixed side bias ​B ​was analogous after correct and error trials (Supplementary               
Fig. 1b). 
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Figure 1. Auditory discrimination task and stimulus sequence statistics. a, ​Sketch of one trial of               
the ​task: cued by center port LED, rats poke in the center port to trigger the presentation of a mixture                    
of two AM tones, each of which is associated with reward in the Left (L) or Right (R) port. Correct                    
responses are rewarded with water and incorrect responses are punished with a light plus a 5 s                 
time-out. ​b-c, Serial correlations in the sequence of stimuli were introduced by setting the probability of                
repeating the previous stimulus category ​P​rep (top in b) in blocks of 200 trials named Repetitive Block                 
and Alternating Block (c). The stimulus strength ​s​k was randomly drawn in each trial (bottom in b) to                  
yield the stimulus evidence ​e​k​, that ​determined the distance to the categorization boundary, i.e. the               
discrimination difficulty of the stimulus (right in b). ​d, The stimulus evidence ​e​k ​determined the               
distribution (top) from which the instantaneous evidence was drawn in each frame of the sound               
envelope (see color match with b). An instantaneous evidence trace (middle) and the AM modulated               
tones that result (bottom) are shown for an example stimulus with ​e ​= -0.48 (asterisks in b and d). 
 
 
Rats used history information by tracking several trials over short windows into the past: the               
magnitude of the repeating bias ​b built up with the number of consecutive correct past               
repetitions or alternations ​n ​until it plateaued after ​n = ​5-10 trials (Fig. 2e blue and red line).                  
This plateau was greater after repetitive patterns rather than alternating patterns. Importantly            
however, irrespective of ​n​, the repeating bias ​b reset almost completely with a single              
incorrect response for all rats (Fig. 2e). The reset occurred independently of the strength of               
the incorrectly categorized stimulus (Supplementary Fig. 1c). To control that the reset was             
not caused by forgetting due to the 5s time-out imposed after errors, we trained a subset of                 
rats using random time-out durations (range 1-5 s) and found that the bias reset was               
maintained independently of time-out duration (Supplementary Fig. 1d). The reset was only            
observed after errors and not after correct but unexpected responses, e.g. one alternation             
after several repetitions (Supplementary Fig. 2a). Accordingly, performance was higher for           
trials following a correct trial than for trials following an error, and it increased with ​n                
(Supplementary Fig. 3a-b). Moreover, the repeating bias increased performance when it was            
consistent with the block tendency but it decreased performance when it was inconsistent             
with it (Supplementary Fig.3c-d). The impact on performance was largest for low stimulus             
strength, when the sensory evidence was weak and animals relied more strongly in their ​a               
priori belief, and it vanished to zero as the stimulus strength increased and the classification               
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became easier. Together, these observations suggest that rats update their beliefs about the             
environment in a trial-by-trial basis and that this update crucially relies on the outcome of the                
preceding trials: longer sequences of rewarded repetitions/alternations lead to stronger          
response prior, but one error was sufficient to make the animals abandon this prior. 

 

 

Figure 2. Build-up and reset dynamics of       
the repeating bias. a, ​Psychometric curves      
for an example animal showing the proportion       
of Rightward responses vs. stimulus evidence      
(left) or of Repeated responses vs. Repeating       
stimulus evidence (right) computed in the      
Repetitive (blue dots) or Alternating blocks      
(red dots; color code applies for all panels)​.        
This animal shows a block independent      
Rightward fixed side bias ​B​>0 (left), and a        
block-dependent repeating bias ​b ​matching     
the tendency of each block (right). Curves       
show fits using a probit function. ​b, ​Proportion        
of Repeated responses (median across ​n = 10        
animals) computed in trials following a correct       
(left) or an incorrect response (right). c,       
Repeating bias ​b ​versus fixed side bias ​B in         
the two blocks after a correct (left) or an         
incorrect response (right). Each pair of      
connected dots represents one animal. ​d, ​Left:       
Fits of the ​proportion of Repeated responses       
following trial sequences made of a different       
number of correct repetitions (blue gradient) or       
alternations (red gradient; see insets for color       
code). X​+ and Y​+ represent either Rightward or        
Leftward correct responses. E represents an      
error. Time in the sequences progresses from       
left to right. ​Right: same curves obtained when        
the sequence of correct repetitions is      
terminated by an error. ​e, Repeating bias       
versus the sequence length of correct      
repetitions (left, blue) or alternations (right,      
red). Sequences terminated by an error are       
shown in black. Dark traces show median       
across animals while light traces show      
individual animals. Error bars show Std. Dev.       
(a) or first and third quartiles (b, e).  
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Figure 3. Dissecting two different history choice biases ​. Cartoon of an example series of four               
choices, ​R⁺R⁺R⁺L⁺​, illustrating the build-up of the lateral and transition biases. ​a, ​The lateral bias,               
capturing the tendency to reinforce Rightward or Leftward rewarded responses, increases towards the             
Right in the first three ​R⁺ trials and compensates this build-up with the last ​L⁺ response. Its net impact                   
on the final trial is a Rightward bias. ​b, Schematic of the sequence of rewarded rat responses showing                  
the transitions, defined as the relation between two consecutive responses, being Repetitions (Rep,             
blue arrows) or Alternations (Alt, red arrow). For each choice, the animal combines its expectation               
based on previous trials with current stimulus sensory information (see last trial). ​c, ​Transition              
evidence ​z​T accumulates the series of transitions ​Rep⁺⁺Rep⁺⁺Alt⁺⁺ predicting a Repetition in the final              
trial. ​d, ​The ​transition bias ​𝛾​T ​is obtained by projecting the Transition evidence ​z​T (c) onto the                 
Right-Left choice space ​(see gray arrows). ​e, ​The evidence provided by the current stimulus is               
summed to the addition of the biases ​𝛾​L​t + ​𝛾​T ​t and passed through a sigmoid function, yielding the                  
probability of selecting a Rightward response (Supplementary Fig. 4).  
 
A GLM analysis of integration of sensory evidence and recent history information 
 
Having identified that rats used previous responses and outcomes to guide decisions, we             
aimed to identify the specific factors in trial history generating this repeating choice bias. In               
particular, these factors could be (1) a ​lateral bias that creates an attraction or repulsion               
towards the Left or Right side depending on previous responses (Fig. 3a) and (2) a ​transition                
bias that creates an attraction towards repeating or alternating depending on the history of              
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previous repetitions and alternations (Fig. 3c). To understand the difference between these            
first-order (lateral) and second-order (transition) biases, we first considered correct          
responses only, and described the effect of errors below. If subjects were using e.g. the last                
four choices to estimate the probability of the next stimulus category, given the example              
choice sequence ​R⁺R⁺R⁺L⁺​, where ​R⁺ and ​L⁺ represent a Rightward or Leftward correct             
choice (​L⁺ represents the last trial, Fig. 3b), they would estimate that R is more likely and                 
develop a lateral Rightward bias ​𝛾​L in the next trial (Fig. 3a). The same four-choice sequence                
can however be represented as the series of transitions ​Rep⁺⁺Rep⁺⁺Alt⁺⁺​, where ​Rep⁺⁺ and             
Alt⁺⁺ represent repetitions and alternations between two correct responses. These          
transitions sequence is first accumulated into the ​transition evidence ​z​T​, an internal estimate             
of the probability of the next transition, which in this example points the subject to predict a                 
Repetition in the last trial (Fig. 3c). Importantly, the transition evidence ​z​T needs to be               
converted into an effective decision bias by projecting it into the Right-Left choice space (Fig.               
3c-d). This is achieved by multiplying ​z​T with the last response ​r​t-1​, yielding the ​transition bias                
𝛾​T = z​T × r​t-1 ​(see gray arrows in Fig. 3b-d). Lateral and transition biases have an opposite                   
influence in the final choice: while 𝛾​L has a Rightward influence, 𝛾​T has a Leftward influence                
because the transition evidence ​z​T predicts a repetition and the last choice was Leftward              
(compare Fig. 3a and d). Thus, the two biases extract different information from the              
sequence of past trials. Although only the transition bias is adaptive in the task, since it                
allows to capitalize the sequence correlations in both types of blocks, the two biases could in                
principle contribute to the repeating bias ​b ​described above.  
 
To quantify the impact onto current decisions of the lateral and the transitions biases, and to                
investigate their dependence on error responses, we used a generalized linear model (GLM)             
(Abrahamyan et al., 2016; Braun et al., 2018; Busse et al., 2011; Fründ et al., 2014;                
Nogueira et al., 2017; Urai et al., 2017)​. The GLM separately measured the impact onto the                
current decision of each response ​r ​(​r = R, L​) and transition ​T ​(​T = Rep, Alt​) in the last ten                     
trials (Supplementary Fig. 4; see Methods for details). Because correct and error choices             
presumably had a different impact (Fig. 2b-d right), we separated the contribution to the              
lateral bias ​γ​L ​of rewarded responses ​r⁺​, sometimes called ​reinforcers ​(Corrado et al., 2005;              
Lau and Glimcher, 2005)​, from error responses ​r⁻ (Supplementary Fig. 4). Following the             
same rationale, we separated the contributions to the transition bias 𝛾​T ​of two consecutive              
correct responses (​T⁺⁺​) from transitions where either the first (​T⁻⁺​), the second (​T⁺⁻​) or both               
responses (​T⁻⁻​) were incorrect. After fitting the regression weights of the GLM individually             
for each rat, a consistent pattern across animals emerged (Fig. 4 orange curves and              
Supplementary Fig. 5a-d). The contribution of each response to 𝛾​L ​depended on its outcome              
following a win-stay-lose-switch pattern: while rats displayed a tendency to opt again for the              
side of previously rewarded responses (positive ​r⁺ weights), they tended to opt away from              
previously non-rewarded responses (negative ​r⁻ ​weights; ​Fig. 4a orange curves). Similarly,            
previous transitions between two correct responses ​T⁺⁺ were positively weighted (Fig. 4b-c            
orange curves), meaning that recent ++ repetitions increased the tendency to repeat            
(positive impact on 𝛾​T​), while recent ++ alternations increased the tendency to alternate             
(negative impact on 𝛾​T​). However, the transitions ​T⁺⁻ , ​T⁻⁺ ​and ​T⁻⁻ ​with at least one error                 
barely influenced subsequent choices (Fig. 4b). This means that, in the example choice             
sequence ​R⁺R⁺R⁺R⁻​, equivalent to the transition sequence ​Rep⁺⁺Rep⁺⁺Rep⁺⁻​, only the          
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first two repetitions impacted on 𝛾​T . Thus, the only effective transitions driving the transition               
bias were ++ transitions. 
 
 

 
Figure 4. Fitted weights quantifying the impact of the lateral and transition biases onto animals               
decisions. ​Coefficients obtained in the GLM when separately fitting the choices in trials after a correct                
(orange) and error response (black). a, Influence of the response side (Left vs Right) from previously                
rewarded (​r⁺​, left panel) and unrewarded (​r⁻​, right panel) trials. ​b, ​Influence of previous transitions               
(repetition vs. alternation) computed separately for ​T⁺⁺ ​(a rewarded trial followed by a rewarded trial),               
T⁻⁺ (error-rewarded), ​T⁺⁻ ​(rewarded-error) and ​T⁻⁻ ​(error-error). Points in a-b show median            
coefficients across animals (​n ​= 10) and error bars indicate first and third quartiles. ​c, ​Transition                
kernels for individual animals show the ubiquity across subjects of the reset of the kernel after errors.  
 
Error responses had yet a more dramatic effect on the transitions bias. They not only made                
the ​T⁺⁻ , ​T⁻⁺ ​and ​T⁻⁻ ​transitions ineffective but they also suppressed the impact of all                
previously accumulated ​T⁺⁺ ​transitions: the weights of previous ​T⁺⁺ transitions were           
completely vanished when we fitted the GLM only using choices following an error trial (Fig.               
4b-c, black curves). Thus, after an error choice, the transition bias was reset to zero, 𝛾​T = 0,                  
meaning that rats behavior was completely blind to the history of previous repetitions and              
alternations, and was driven only by sensory information and lateral bias. The reset of 𝛾​T ​was                
not an idiosyncratic strategy followed by some of our animals but it was found in every                
animal we trained (Fig. 4c and Supplementary Fig. 6). In fact the magnitude of transition               
kernel was much more homogenous across animals than the lateral kernel (Supplementary            
Fig. 6). The reset effect was however not observed in the lateral bias, which was moderately                
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affected by errors (Fig. 4a, black curves). Thus, the bias reset following errors was specific               
to the transition term and extremely reliable across subjects. 
 
Despite the strong impact of the transition bias, animal choices mostly relied on the current               
stimulus, which had an impact an order of magnitude larger than the transition bias, which               
was itself an order of magnitude larger than lateral bias (Supplementary Fig. 5e). The              
weakest (yet very consistent) sequential component was a stimulus repulsive bias           
reminiscent of an after-effect caused by sensory adaptation with a very slow recovery             
(Supplementary Fig. 5b). A modified analysis separating the effects of repetitions and            
alternations showed that they had largely symmetrical effects, suggesting that animals           
summarized both types of transition into a single rule that could take positive or negative               
values (Supplementary Fig. 7c). Importantly, the weights were identical when computed           
separately in repetition and alternation blocks (Supplementary Fig. 8). This suggests that            
rats adopted a single strategy across all blocks, and the different repeating choice bias found               
in each block (Fig. 2b-e) simply reflected the difference in the statistics of the stimulus               
sequence (Fig. 1c). Because the impact of transitions decayed in around 5 trials (Fig. 4b               
left), the strategy allowed animals to switch the sign of their repeating bias relatively fast               
when switching between blocks (Supplementary Fig. 1a) at the cost of suffering relatively             
large fluctuations in the repeating bias within each block. Model comparisons further            
confirmed that the full model fitted separately for trials following correct trials and errors              
provided a better fit to rats decisions than the full model fitted to all trials, or alternative                 
models where the lateral and/or transition module were removed (Supplementary Fig. 7a).            
Importantly, the GLM with only lateral biases yielded an non-monotonic kernel for the Lateral              
responses, a result that could lead to spurious interpretations when the effect of previous              
transitions was not considered (Supplementary Fig. 7b).  
 
To test the extent to which these findings depended on the task design, we trained a new                 
group of rats (Group 2, ​n ​= 6) in a different level discrimination 2AFC task in which noise                  
stimuli had to be classified according to the intensity difference between the two lateral              
speakers ​(Pardo-Vazquez et al., 2018)​. The stimulus sequence followed the same pattern as             
before with repeating and alternating blocks (Fig. 1b-c). Performing the same GLM analysis             
in this task yielded qualitatively the same results, including the reset of the transition bias               
after errors (Supplementary Fig. 9). Finally, we found that the presence of a transition bias               
and its reset after errors was not contingent on the presence of serial correlations in the                
stimulus sequence. A third group of rats (Group 3, ​n = 9) exposed to only an uncorrelated                 
stimulus sequence, exhibited the same qualitative pattern for the impact of previous            
transitions, although of smaller magnitude (Supplementary Fig. 10c). Once the sessions           
started featuring stimulus serial correlations (Fig. 1b-c), the magnitude of the transition            
weights increased (Supplementary Fig. 10c) suggesting that the transition bias is an intrinsic             
behavior of the animals, but its magnitude can be adapted to the statistics of the               
environment. In total, these analyses show that the dependence on previous outcome of             
history-dependent biases is a general result across animals and across different tasks.  
 
Transition evidence is blocked but not reset after an error 
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We then asked whether the reset of the transition bias after errors reflected (i) a reset of the                  
transition accumulated evidence ​z​T​, meaning the entire system monitoring transitions          
underwent a ​complete ​reset (Fig. 5a); or whether, in contrast, (ii) information about previous              
transitions was maintained in ​z​T but was gated off from causing a transition bias (Fig. 5b).                
Whereas in the latter ​scenario (​gating hypothesis)​, the information maintained in ​z​T could be              
used to compute 𝛾​T following new correct responses, in the complete reset scenario the              
build-up of both ​z​T and 𝛾​T started back from zero following errors. To test these two                
hypotheses, we quantified how the value of the bias 𝛾​T in trial ​t ​could predict the bias at trial                   
t​+1, ​t+2 ​and further, depending on the outcome of each of these trials. When trial ​t ​was                 
correct, the bias was passed on to ​t+1 with a discounting decay that mirrored the shape of                 
the transition kernel in the GLM analysis (Fig. 5c dark orange dots). The same discounting               
occured going from ​t​+1 to ​t​+2 when trial ​t​+1 was correct. By contrast, if ​t was incorrect,                 
because of the bias reset after errors, the value of 𝛾​T was not predictive of the decision at                  
trial ​t+1 ​, nor at trial ​t+2 if ​t+1 was also incorrect (Fig. 5c black dots). Crucially though, the                  
bias 𝛾​T ​in trial ​t strongly influenced choices at trial ​t+2 if trial ​t ​was incorrect but trial ​t+1 was                    
correct (Fig. 5c light orange dots). Its impact was significantly larger than zero for all rats                
(Wald test ​p ​< 0.003 for each of the ​n ​= 10; Supplementary Fig. 5g) and close in magnitude                   
to the impact when both trials ​t and ​t+1 were correct. This rebound in choice predictability                
was even observed at ​t+ ​3 ​after two incorrect responses followed by a correct one ​(Wald test                
p ​< 0.05 for nine out of the ​n ​= 10). These results are consistent with the gating hypothesis                   
(Fig. 5b) in which errors do not cause a reset of the accumulated transition evidence ​z​T but                 
do cause a transient cut off in the influence of ​z​T ​on choice, visible as a reset in 𝛾​T​. This                    
influence became effective again once the animal made a new correct response giving rise              
to the measured correlation between the values of the bias before and after the reset (Fig.                
5b gray vertical arrows; Supplementary Fig. 5h). An equivalent analysis on the lateral bias 𝛾​L               
showed that the bias transferred to the subsequent trials with a rapid decay, which was               
moderately affected by the outcome of the trials and showed no evidence of             
reset-and-rebound dynamics (Supplementary Fig. 5f).  
 

 
Figure 5. Transition bias is reset after errors but accumulated transition evidence is             
maintained. a-b, ​Schematics showing three example traces of the transition accumulated evidence            
z​T ​t ​(top) and transition bias on current response 𝛾​T​t ​(bottom) in two hypothetical scenarios. ​a, ​Complete                
reset hypothesis: after an error at ​t​, both variables reset ​z​T ​t+1 ≃ 𝛾​T​t+1 ​≃ 0. Evidence ​z​T​t+2 is then built up                     
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de novo, implying that biases before (𝛾​T​t​) and after (𝛾​T ​t+2 ​) the reset are uncorrelated (𝛾​T​t ​traces do not                  
maintain the sorting). ​b, ​Gating hypothesis: ​after an error, evidence ​z​T ​t+1 ​is maintained but it does not                 
convert into a bias, leading to the reset 𝛾​T ​t+1 ​≃ 0. After a correct response at ​t​+1 ​the conversion is                    
recovered and the value 𝛾​T ​t+2 correlates with 𝛾​T​t (𝛾​T​t traces maintain the sorting). ​c, ​Transfer               
coefficient 𝛾​T​t → 𝛾​T​t+k ​versus trial lag ​k quantifies the degree to which the transition bias at trial ​t                   
correlates with the bias on subsequent trials (blue dashed boxes in b). It is calculated separately                
depending on the outcome of each trial (colored lines show rewarded choices and black lines error                
choices; see Supplementary Methods for details). While the transfer coefficient vanishes after errors             
(i.e. reset of the bias; black dots), a correct response following an error (light orange) brings it close to                   
the value obtained when there are no errors (dark orange dots). This implies that the information                
about the value of the bias 𝛾​T ​t ​is maintained when the bias is reset (i.e. gating hypothesis).  
 
 
A dynamical model of history-dependent outcome-gated biases 
 
Having found that the transition bias underwent reset-and-rebound dynamics, we built a            
generative model that could implement the gating hypothesis. One latent variable in the             
model was the accumulated transition evidence ​z​T​, which was updated in each trial             
depending on whether the last choice was a repetition or an alternation and therefore              
maintained a running estimate of the transition statistics ​(Braun et al., 2018; Busse et al.,               
2011; Cho et al., 2002; Fründ et al., 2014) (Fig. 6a). The dependence of the leak of ​z​T on the                    
previous outcome could in principle implement the ​Complete reset ​hypothesis ​(Fig. 5a) if the              
leak following errors was complete (λ​T ≃ 1). A second modulatory variable c​T modulated the               
influence of the transition evidence onto the current decision by setting the transition bias              
equal to 𝛾​T ​= ​c​T ​× ​z​T ​× ​r​t-1 . Importantly ​c​T was updated after each trial based on the trial                     
outcome. In addition to the transition bias, the model also featured accumulated lateral             
evidence ​z​L​ that directly resulted in a lateral bias (i.e.  𝛾​L​ ​= ​z ​L​). 
 
We fitted the model parameters to the series of choices made by each rat (Fig. 6b-g and                 
Supplementary Fig. 11) and obtained results in agreement with the gating hypothesis: first,             
correct transitions (++) led to strong changes in the transition evidence ​z​T​, while the other               
transitions (+−,−+,−−) did not lead to any consistent pattern (Fig. 6d). Second, the update              
parameters for ​c​T corresponded to a vanishing of this variable after errors for at least 7 rats                 
out of 10, and a very strong recovery after any correct trial (Fig. 6f). This effectively                
converted the variable ​c​T into a gating variable that was able to completely block the use of                 
the accumulated transition evidence ​z​T ​after a single error (Fig. 6g). By contrast, the leak of                
z​T was not significantly different after correct trials and after errors (p > 0.6, paired ​t- ​test,                
two-tailed), providing further evidence that the reset of the transition bias did not correspond              
to a loss of the accumulated evidence, as predicted by the Complete reset hypothesis (Fig.               
5a top). Third, correct Rightward (Leftward) responses increased the lateral bias in favor of              
the Rightward (Leftward) response (Fig. 6c). Fourth, model comparison showed that this            
dynamical model gave a better account than versions where either ​c​T or the lateral bias ​z​L                
were omitted, as well as of the GLM described in the previous section (Supplementary Fig.               
12). Finally, adding a modulatory variable ​c​L to the lateral module only had a marginal impact                
on model performance (Supplementary Fig. 13). 
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Figure 6. Dynamic generative model of history-dependent perceptual decisions. ​a, ​Architecture            
of the model. ​Decisions integrate the evidence from the sensory, lateral and transition modules. The               
sensory module accumulates the instantaneous evidence of each stimulus frame of the current trial.              
The lateral module maintains a representation of the lateral evidence ​z​L which is updated depending               
on the side and outcome of each trial response (updates 𝚫​L ​), and on the outcome-dependent leak 𝜆​L ​.                 
The transition module maintains the accumulated transition evidence ​z​T​, is updated depending on the              
last transition (i.e. ++,−+,+−,−−; updates 𝚫​T​) and on the outcome-dependent leak 𝜆​T​. Evidence ​z​T ​is               
multiplied at each trial by the modulatory signal ​c​T​, updated based on the outcome of each response                 
(updates 𝚫​C ​), to yield the transition bias 𝛾​T​= ​z​T ​× c​T × r​t-1​. The sum of sensory evidence and the lateral                     
and transition biases determined the probability to choose either response at the current trial.              
Parameters were fitted to the choices of each rat separately. ​b-e ​, ​Best-fitting values of the update                
parameters in the generative model ​. ​Bars show median across seven rats (black and blue points).               
Three rats were excluded from the statistics because the fitted model yielded a solution without gating                
dynamics (gray points). b, ​lateral evidence update ​∆​L ​depending on trial outcome. ​c,             
outcome-dependent leak of the lateral bias ​λ​L ​. ​d, ​transition evidence update ​∆​T ​depending on outcome               
of the last two trials (++,−+,+−,−−). ​e, outcome-dependent leak of the transition bias ​λ​T​. ​f,               
outcome-dependent update of the transition gating signal 𝚫​C ​. ​A value of -1 correspond to an extinction                
of the gating signal on the subsequent trial (i.e. a full blockade of the corresponding bias), while +1                  
correspond to full recovery of the bias (i.e. gating equal to its maximum value of 1). ​g, ​Example of the                    
model dynamics across 25 trials switching from a repetition to an alternation block (model parameters               
were fitted to an example animal, blue points in b-e). Traces from top to bottom depict the stimulus                  
evidence ​S​, z​L​, z​T​, ​c​T and overall probability to choose a Rightward response. The inputs to the                  
variables ​z​L ​, ​z​T and ​c​T are shown as a sequence of symbols on the corresponding trial axis: Left                  
(green) vs. Right (purple) responses, repeating (blue) vs. alternating (red) transitions and rewarded             
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(orange) vs. error (black) outcomes. Symbols shape represent different outcome combinations (see            
inset). Notice the reset of ​c​T​ after errors and the maintenance of ​z​T ​ afterwards (asterisks).  
 
Generative model simulation versus experimental data 
 
Finally we assessed the capacity of the compact dynamical model to account for the              
dynamics of the previously reported repeating bias ​b (Fig. 2d-e) by comparing model             
simulations to actual rat data. The model very closely reproduced the build-up dynamics of ​b               
in series of correct repetitions and alternations (Fig. 7a). Moreover, the model allowed to              
partition the value of ​b ​into the contributions of the lateral and transition biases. While the                
transition bias was perfectly symmetric in series of repetitions and alternations (blue curves             
in Fig. 7a), the lateral bias behaved very differently: it only built up during series of                
repetitions, in which all the responses were on the same side, while it oscillated around zero                
in series of alternations, in which the contribution of each response was partially cancelled              
by the next one (green curves in Fig. 7a). Thus the dissection of the repeating bias into the                  
lateral and transition biases explained the overall asymmetry found between the two blocks.             
Furthermore, the block asymmetry in the accumulation of the lateral bias also explained             
asymmetries in ​b found after correct unexpected responses (Supplementary Fig. 2b). Model            
simulations also reproduced the reset of repeating bias when a series of correct             
repetitions/alternations was interrupted by an error (Fig. 7b), and the subsequent rebound            
when the rat performed correctly again (Fig. 7c). Impressively, the model replicated the             
asymmetry in the magnitude of this rebound between the Repeating and Alternating blocks             
by summing (Fig. 7c top) or subtracting (Fig. 7c bottom), respectively, contributions of             
transition and lateral biases. Furthermore, the model provided a very good fit (Pearson’s             
r=0.96) to ​b for all possible sequences of 2-6 correct trials (Fig. 7d). In sum, by factorising                 
the transition bias into accumulated transition evidence ​z​T ​and the modulatory signal ​c​T​, the              
model captured the non-linear across-trial dynamics of history-dependent biases pointing          
towards possible modulatory circuit mechanisms that could implement this computation (see           
Discussion).  
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Figure 7. Generative model simulation compared to experimental data. ​Comparison between           
experimental data (dots) and model simulation (black curves) showing the Repeating bias ​b ​for              
different trial sequences. In the model, ​b ​was decomposed into the transition bias contribution (blue               
curves) and lateral bias contribution (green curves). ​a, Repeating bias ​b ​versus number ​n of correct                
repetitions (top) or alternations (bottom). Similar to color curves in Fig 2e. ​b, Repeating bias versus ​n                 
after a repetitive (top) or alternating sequence (bottom) terminated by an error (as black curves in Fig.                 
2e). Notice the different range in the ​b ​axes compared with a. ​c, Repeating bias for sequences with an                   
error E flanked by correct repetitions (top) or alternations (bottom). The bias ​b ​is given as a function                  
the trial distance to the error response (distance zero represents ​b ​after the error). ​d, Repeating bias                 
for all sequences made of ​n ≤ 8 repetitions (R) and alternations (A). Top panel shows correct                 
sequences while bottom panel shows correct sequences terminated by an error. In all panels, data               
and model show median across ​n​=10 rats. Error bars and shaded areas show first and third quartiles. 
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DISCUSSION 
 
We employed a standard acoustic 2AFC task to characterize how rats’ perceptual            
categorizations are affected by expectations derived from the history of past stimuli, choices             
and outcomes and how these expectations can be captured by a simple dynamical model. A               
thorough analysis of the behavior isolated two main sequential effects. First, we identified a              
sequential lateral effect that biased choices towards or away from the recently rewarded or              
unrewarded targets, respectively (Fig. 4a). This win-stay-lose-switch strategy has been          
extensively characterized both in humans ​(Abrahamyan et al., 2016; Braun et al., 2018;             
Fründ et al., 2014) and rodents ​(Akrami et al., 2018; Hwang et al., 2017)​. Second, we                
identified the sequential transition bias, a form of rule bias that had been previously shown to                
impact human reaction times ​(Cho et al., 2002; Kirby, 1976; Soetens et al., 1985)​, choices               
(Maloney et al., 2005) and neural responses ​(Jones et al., 2013; Sommer et al., 1999)​. Our                
results however go beyond from previous reports in several important aspects regarding            
error responses: first, repetitions or alternations did not influence subsequent choices           
whenever one of the two trials of the transition was unrewarded, meaning that the running               
estimate of the transition probabilities only accumulated evidence from repetitions and           
alternations of two rewarded trials. Second, the transition bias was reset after an error trial,               
i.e. animal responses temporarily ignored the recent history of rewarded repetitions and            
alternations. However, this reset did not imply the reset of the accumulated transition             
evidence, i.e. the tallie keeping track of the number of recent repetition vs. alternations,              
whose influence over behavior was restored as soon as the animal obtained a reward (Fig.               
5c). 
 
The probability of a subject to repeat the previous response (Fig. 7a) is a common measure                
to characterize history effects ​(Abrahamyan et al., 2016; Urai et al., 2018)​. By dissecting the               
distinct contribution of both first- and second-order serial biases ​(Gokaydin et al., 2011;             
Jones et al., 2013; Meyniel et al., 2016; Wilder et al., 2009)​, i.e. the lateral and the transition                  
biases, respectively, to the repeating bias we were able to understand the asymmetry in its               
magnitude between the Repeating and Alternating blocks (Fig. 2c-e): in series of correct             
repetitions, both transition and lateral bias add up and yield a strong tendency of the animals                
to repeat the last rewarded response (Fig. 7a top). In contrast, in alternating environments,              
the lateral bias does not build up and the negative repeating bias (tendency to switch) is                
solely given by the transition bias (Fig. 7a bottom). In sum, the first-order lateral bias favors                
repetition over alternation; the second-order transition bias has a symmetric effect. In fact,             
our analysis provides indirect evidence that animals recapitulated previous repetitions and           
alternations into a single and symmetric transition bias and not into separate variables             
(Supplementary Fig. 7c). A recent modeling study has proposed that estimating first and             
second-order rates is part of the same core computation that the brain performs when              
analyzing binary sequences. This computation comes down to estimate the two independent            
transition probabilities P(L ​t​|R​t​-1​) and P(R​t​|L ​t​-1​) between consecutive trials ​t ​-1 and ​t ​(Meyniel et              
al., 2016)​. Our findings seem at odds with this hypothesis because the dependence of each               
type of bias on the response outcome was very different: whereas incorrect responses ​r⁻              
tended to cause a negative switch effect (Fig. 4a), incorrect transitions (​T⁺⁻​,​T⁻⁺ and ​T⁻⁻​)              
had no effect (Fig. 4b). Furthermore, only the transition bias showed a reset-and-rebound             
dynamics caused by error responses (Fig. 5c and Supplementary Fig. 5g,h). An alternative             
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hypothesis, based on analysis of response evoked potentials (ERP), proposes that the            
lateral bias is generated by the ​processing of the response whereas the transition bias from               
the ​stimulus processin​g ​(Jones et al., 2013; Wilder et al., 2009)​. Preliminary data obtained              
in the same task in the absence of any stimuli seems to indicate that the transition bias is still                   
present and thus does not seem to be contingent on the processing of sensory inputs.  
 
Several of our findings, together with previous literature ​(Cho et al., 2002; Jones et al., 2013;                
Kirby, 1976; Soetens et al., 1985; Sommer et al., 1999)​, suggest that the transition bias is a                 
fundamental aspect of sequence processing preserved across subjects, species and          
conditions and which does not seem particularly adaptive to the details of the experiment.              
First, the transition bias was the same in both Repeating and Alternating blocks             
(Supplementary Fig. 8) reflecting the use of a single fixed strategy that could switch from               
generating a net positive repeating bias in a Repeating block to generating a negative bias in                
the alternating block (Fig. 2e). Interestingly, this invariance of the transition bias across the              
Repetitive and Alternating blocks has also been found in humans performing a 2AFC task              
(Jones et al., 2013)​. Second, the transition bias was also present when sequences are              
uncorrelated and the bias can only hinder performance (Supplementary Fig. 10c; ​(Cho et al.,              
2002; Jones et al., 2013; Kirby, 1976; Soetens et al., 1985; Sommer et al., 1999)​. Third, the                 
trial integration window over which animals estimated the repetition rate (~3-5 trials; Fig. 4b)              
does not seem adapted to the block length (200 trials). This short-span estimate allowed to               
reverse the repetition bias rapidly after a block switch (Supplementary Fig. 1a) at the cost of                
a noisier estimate of the repetition rate ​(Gallistel et al., 2004; Nassar et al., 2010; Sutton and                 
Barto, 2018)​. Quantification of this integration window in human subjects performing different            
2AFC tasks yields numbers in the range of 2-10 trials, despite the use of very long                
trial-blocks with constant sequence correlations (Jones et al 2013). Thus, rather than an             
overestimation of the environment’s volatility ​(Behrens et al., 2007; Nassar et al., 2010)​, the              
short fixed windows might reflect structural adaptation to the statistics of natural            
environments ​(Seriès and Seitz, 2013) or a capacity limitation of the system. Fourth, the              
sophisticated outcome-dependent across-trial dynamics of the transition bias were found          
systematically in every animal we tested (Fig. 4c) showing that they do not reflect              
idiosyncratic strategies but the action of an unknown basic cognitive process. Finally, there             
was one aspect of the mechanism that seemed adaptive: the magnitude of the transition              
kernel gradually increased when animals, initially trained using uncorrelated sequences,          
were presented with correlated sequences (Supplementary Fig. 10). Rats in fact had been             
previously shown to suppress sequential biases when those can be turned up against them              
(Tervo et al., 2014)​. Thus, the transition bias can be adapted to the temporal structure of the                 
environment, if not in nature, at least in magnitude ​(Abrahamyan et al., 2016)             
(Supplementary Fig. 10).  
 
Why does the transition bias reset after errors? Previous studies have shown that an uncued               
change in stimulus-outcome contingencies leading to an unexpected number of unrewarded           
choices can trigger an abrupt behavioral change in rats, switching from the exploitation of a               
statistical model of the environment to an exploration mode in which they sample the              
environment in an unbiased way in order to build new beliefs ​(Karlsson et al., 2012)​. This                
suggests that the reset-and-rebound dynamics of the transition bias could be interpreted as             
a fast switching between the exploitation of their internal model, represented by their             
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estimate of the transition probability, to a mode that relies almost exclusively on sensory              
information. This expectation-free mode, however, is different from the standard exploration           
mode in which animals guide their choices aiming to reduce the uncertainty of the              
environment. In contrast, our animals, perhaps unable to use their prior after not obtaining              
the reward (i.e. not knowing ​what they must repeat/alternate after an error), guide their              
choices based on the sensory evidence alone. To capture the reset-and-rebound dynamics,            
we built a generative-sufficient novel model that could jointly describe the latent trial-to-trial             
dynamics of (1) the expectation formation following standard reinforcement learning updating           
rules ​(Behrens et al., 2007) (Fig. 6a-e) and (2) a modulatory signal ​c​T that had a                
multiplicative effect on the impact of the transition evidence in biasing choices. The fitting of               
the model parameters revealed that ​c​T reset to zero after errors and then increased              
progressively with a series of correct trials (Fig. 6f). This modulatory variable may reflect              
subjects’ confidence in their internal model of the environment statistics or, alternatively, the             
probability that the subject operated in the exploitation mode versus the expectation-free            
mode. Furthermore, in this expectation-free mode in which the prior is not used, it also               
cannot be updated with new transition information, as can be concluded from the finding that               
only ++ transitions impacted subsequent choices (Fig. 4b).  
  
Recent studies found that, in the absence of feedback, the impact of a choice on the                
subsequent trial was weaker if the subject was unsure of her choice ​(Braun et al., 2018;                
Samaha et al., 2018; Urai et al., 2017)​. The explanation provided in two of these studies was                 
that, according to a normative theory describing how to accumulate noisy evidence in the              
face of uncued changes ​(Glaze et al., 2015)​, low confidence choices should have a weaker               
contribution on the belief about what will be the next stimulus category ​(Braun et al., 2018)​.                
In our latent variable model, this is is indeed true because unrewarded transitions, ​T⁺⁻ ​and               
T⁻⁻​, supposedly generating the lowest confidence about what the true transition was, have a              
weaker contribution to the accumulated evidence ​z​T (see fitted values of ​Δ​T in Fig. 6d).               
However, a bias reset after incorrect or low confidence trials was not reported in these               
studies, i.e. errors without feedback did not seem to modulate retroactively the impact of              
previous trials onto the next choice, unlike what was observed in our rats. Also, in ​(Braun et                 
al., 2018) subjects were informed about the existence of “more repeating”, “more alternating”             
and “uncorrelated” sessions. In contrast, our animals were constantly estimating the           
transition probability which varied in blocks during each session. A fair assessment on the              
existence of the expectation bias reset in humans would necessitate of an experiment in              
which subjects are blind about the sequence correlations but receive feedback in every trial.  
 
The activation of noradrenergic inputs onto the anterior cingulate cortex has been shown to              
control the switching into a behavioral mode in which beliefs based on previous experience              
do not guide choices ​(Tervo et al., 2014)​. Because in the quoted study the experimental               
condition was a free choice task, removing the impact of history-effects resulted in stochastic              
exploration ​(Tervo et al., 2014)​. This prompts the question of whether the activation of the               
very same modulatory pathway underlies the after-error switch into the expectation-free           
sensory-based mode observed in our task. Future pharmacological an electrophysiological          
experiments will shed light into the brain regions encoding the expectation signals, their             
modulatory variables as well the circuit mechanisms underlying their combination with the            
incoming sensory information. 
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METHODS 
 
All experimental procedures were approved by the local ethics committee (Comité           
d’Experimentació Animal, Universitat de Barcelona, Spain, Ref 390/14). 
 
Animal Subjects 
 
Animals were male Long-Evans rats (n=25, 350-650g; Charles River), pair-housed during           
behavioral training and kept on stable conditions of temperature (23 ​o​C) and humidity (60%)             
with a constant light-dark cycle (12h:12h, experiments were conducted during the light            
phase). Rats had free access to food, but water was restricted to behavioral sessions. Free               
water during a limited period was provided on days with no experimental sessions. 
 
Task description 
 
The two tasks performed were auditory reaction-time two-alternative forced choice          
procedures: an LED on the center port indicated that the rat could start the trial by poking in                  
(Fig. 1a). After a fixation period of 300 ms, an acoustic stimulus consisting in a superposition                
of two amplitude-modulated sounds (see details below) was presented. The rats had to             
discriminate the dominant sound and seek reward in the associated port. Animals could             
respond any time after stimulus onset. Withdrawal from the center port during the stimulus              
immediately stopped the stimulus. Correct responses were rewarded with a 24 µl drop of              
water and incorrect responses were punished with a bright light and a 5 s time-out. Trials in                 
which the rat did not make a side poke response within 4 seconds after leaving the center                 
port were considered invalid trials and were excluded from the analysis (on average, only              
0.4% of the trials were invalid). Behavioral setup (Island Motion, NY) was controlled by a               
custom software developed in Matlab (Mathworks, Natick, MA), based on the open-source            
BControl framework (http://brodylab.princeton.edu/bcontrol). Rats performed an average of        
694 trials per session (range: 335 - 1188), one session per day lasting 60-90 min, 6 days per                  
week, during 9 months. Rats were trained using an automated training protocol that had              
several stages and lasted between 2 and 3 months (depending of the animal). The data               
presented in this study was taken from the period after training yielding an average of 56,506                
valid trials per rat. A first group of ten rats were trained in the frequency discrimination                
version of the task (see below) in which the correlated sequence of trials was present from                
the training. A subset of three rats from this group were also trained in a random time-out                 
version of the task where the duration of the after-error time-out was randomly chosen              
between 1, 3 or 5 s. A second group of n=9 rats were trained in the same frequency                  
discrimination version of the task but starting with uncorrelated stimulus sequences and only             
after several weeks, introducing the correlated sequences used in the first group of animals.              
A third group of n=6 rats were trained in a level discrimination version of the task using the                  
same correlated sequence than the first group. 
 
Acoustic stimulus 
 
In the two acoustic tasks used, the stimulus ​S​(​t​) in each trial was created by simultaneously                
playing two amplitude modulated (AM) sounds ​s​R​(t) and ​s​L​(t) : 
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(t) 1 in(f t )][a (t) s (t) (t) s (t) ]S = [ + s AM + φ L L + aR R  (1)  

 
The AM frequency was ​f​AM​=20 Hz and the phase delay made the envelope zero at          π/2φ = 3       
t​=0. In the frequency discrimination task, ​s​L​(t) and ​s​R​(t) were pure tones with frequencies 6.5               
kHz and 31 kHz, respectively, played simultaneously in the two speakers. In the level              
discrimination task (Supplementary Fig. 9) they were broadband noise played either from the             
Left or the Right speaker, respectively. The amplitudes of the sounds ​s​L​(​t​) and ​s​R​(​t​) were               
separately calibrated at 70 dB. Sounds were delivered through generic electromagnetic           
dynamic speakers (STAX, SRS-2170) located on each side of the chamber, and calibrated             
using a free-field microphone (Med Associates Inc, ANL-940-1).  
 
Stimulus Sequence  
 
The Markov chain generated the sequence of stimulus category ​c​k​= {-1,1}, that determined             
whether the reward in the ​k​-th trial was available in the Left or the Right port respectively                 
(Fig. 1b top). The stimulus category set which of the two sounds ​s​L​(t) and ​s​R​(t) composing                
each stimulus was dominant, which ultimately determined the statistics of the sound            
amplitudes ​a​1​(t) and ​a​2​(t) (Eq. 1) as described below. In each trial, independently of ​c​k​, the                
stimulus strength ​s​k was also randomly generated (Fig. 1b bottom). Stimulus strength            
defined the relative weights of the dominant and non-dominant sounds: for example, when ​s​k              
=1 only the dominant sound was played (i.e. easiest trials) whereas when ​s​k ​=0 the two                
sounds had on average the same amplitude (i.e. hardest trials). We used four possible              
values for ​s ​= 0, 0.23, 0.48 and 1. The stimulus evidence was defined in each trial as the                   
combination ​e​k = c​k​*s​k ​. ​The value of ​e​k determined the p.d.f. from which the instantaneous                
evidence ​x​(​t​) was drawn in each frame ​t (i.e. in each 50 ms AM-envelope cycle; Fig. 1d top):                  
when ​e​k​:=±1 the p.d.f. was (i.e. a Dirac delta p.d.f.) whereas when ​e​k ​∈ (-1,1), it     (x) (x∓1)f = δ             
was a stretched Beta distribution with support [-1,1], mean equal to ​e​k and variance equal to                
0.06 (Fig. 1d top). Finally, the amplitudes ​a​L​(​t​) and ​a​R​(​t​) of the two AM envelopes (Eq. 1)                 
were obtained using ​a​L​(​t​)=[1+​x​(t)]/2 and ​a​R​(​t​)=[1-​x​(​t​)])/2 (see example in Fig. 1d). With this             
choice the sum of the two envelopes was constant in all frames ​a​L​(​t​)+​a​R​(​t​)=1.  
 
Psychometric curve analysis 
 
We computed two types of psychometric curves for each animal, by pooling together trials              
across all sessions for each type of block and for each of the 7 different stimulus evidences                 
(​e​= 0, ±0.23, ±0.48, ±1). We calculated (1) the proportion of Rightward responses vs.              
stimulus evidence ​e ​(Fig. 1a left) and (2) the Proportion of Repeated responses as function               
of Repeating Stimulus Evidence (Fig. 1b), where positive or negative Repeating Stimulus            
Evidence denote trials in which the animals had evidence to repeat their previous choice              
(e.g. a Rightward stimulus with evidence ​e = ​+0.23 after a Left response implied a repeating                
stimulus evidence equal to - 0.23). Both psychometric curves were separately fitted to a              
2-parameter probit function (using Matlab function ​nlinfit​): 
 

(x)  f = 2
1 1 rf ( )( + e √2

βx+α )                          (2) 
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The sensitivity ​β quantified the stimulus discrimination ability, while the bias ​α ​in the              
Proportion of Rightward responses captures the animal fixed side preference for the Left or              
Right port, and the bias ​α ​in the Proportion of Repeated responses arose from the               
expectation generated by the history of recent choices, i.e. it showed the animal’s tendency              
to repeat or alternate their previous choice. We termed these two biases the fixed side bias                
B ​and the repeating bias ​b​, respectively. Within-subject error bars were estimated by one              
standard deviation of a non-parametric bootstrap (n=1000). Across-subject error bars,          
corresponded to the 1 ​st​  and 3 ​rd​ quartiles. 
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