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Predicting epitopes recognized by cytotoxic T cells has been a long standing challenge within 
the field of immuno- and bioinformatics. While reliable predictions of peptide binding are 
available for most Major Histocompatibility Complex  class I (MHCI) alleles, prediction models of 
T cell receptor (TCR) interactions with MHC class I-peptide complexes remain poor due to the 
limited amount of available training data. Recent next generation sequencing projects have 
however generated a considerable amount of data relating TCR sequences with their cognate 
HLA-peptide complex target. Here, we utilize such data to train a sequence-based predictor of 
the interaction between TCRs and peptides presented by the most common human MHCI allele, 
HLA-A*02:01. Our model is based on convolutional neural networks, which are especially 
designed to meet the challenges posed by the large length variations of TCRs. We show that 
such a sequence-based model allows for the identification of TCRs binding a given cognate 
peptide-MHC target out of a large pool of non-binding TCRs.  

Introduction 
Cytotoxic T cells (CTLs) scan MHC class I-peptide complexes presented on the cell surface of 
nucleated cells. CTLs are able to recognize and kill infected or malfunctioning cells, e.g. cancer 
cells (1). Given the central role of the CTLs in the immune system, it is of paramount importance 
to understand the interaction between the T cell receptor (TCR) of the CTLs and their cognate 
peptide-MHCI targets. A peptide recognised in this context is referred to as a T-cell epitope. 
 
The vast majority of all peptides that can be generated from a protein will not be presented by 
MHC molecules (2–4). Therefore, prediction of peptide-MHC binding is very useful to limit the 
number of peptide candidates when looking for potential T cell epitopes. Computational models 
have been trained successfully to predict peptide-MHCI binding, current state of the art methods 
include NetMHCpan (3, 4), NetMHCcons (5), NetMHC (6), the IEDB consensus method (7) and 
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MHCflurry (8). Binding of peptides can be predicted with very high accuracy and precision for 
most human MHCI molecules (3). 
 
However, not all MHC presented peptides are immunogenic. In order to predict which MHC 
restricted peptides do become T cell epitopes, the interaction between a TCR and its cognate 
target needs to be better understood. The TCR must be able to make contacts with the peptide 
as well as the MHC molecule to trigger an immune response. TCR and MHC interactions were 
reviewed by Gruta et al. (9). The focus of the here presented work is on the interactions 
between TCR and peptide. 
 
Ample data are available linking peptides to the MHC molecules they bind, especially with the 
data obtained from mass spectrometry experiments (10–12). In contrast,  there is much less 
data available linking specific TCRs to their cognate target. Recently developed high throughput 
sequencing methods are likely to change this situation and are already contributing increasing 
amounts of data (13, 14). Among those methods are the MIRA assay published by Klinger et al. 
(15) and the TCR barcoding technique published by Bentzen et al. (16). Additionally, two recent 
publications by Glanville et al.(17) and Dash et al. (18) have made more high throughput data 
available. Furthermore, these works describe clustering algorithms able to group TCRs by their 
epitope specificity. In particular, the work by Glanville et al. suggests that relatively simple 
sequence-based models can be used to classify and define specificity groups shared by TCRs 
and individuals. This is in line with earlier work by Roomp and Domingues (19). Several 
structure-based approaches for modelling the structure and interactions of the TCR:p:MHC 
system have likewise been proposed including  structural modeling (20, 21) and structure based 
prediction of TCR:p:MHC interactions (22).  
 
The  IEDB (23) as well as the VDJdb (24) collect sequenced TCRs with known specificity 
published in peer reviewed articles, thereby providing a useful data resource to the community.  
 
Here we seek, based on such data, to go beyond the work by Glanville et al. and present 
NetTCR, a method to predict the interaction between TCRs and peptides presented by 
HLA-A*02:01. NetTCR is based on convolutional neural networks (CNNs) and depends only on 
the amino acid sequences of the peptide and CDR3 region of the TCR beta chain as input. 
CNNs scan their input with convolutional filters that cover only short continuous parts of the 
input. These filters detect patterns and the network is then able to integrate the information from 
the patterns discovered by different filters throughout the input sequence. This type of model 
has been very useful in image classification (25), and recently also for handling sequence data 
of variable length for prediction of for instance protein secondary structure (26, 27), kinase 
phosphorylation (28) and subcellular location (29). CNNs are also ideally suited to deal with 
unaligned peptide and TCR sequences differing in length. The here presented model is 
available as web-server under http://www.cbs.dtu.dk/services/NetTCR/ and the underlying code 
can be downloaded here: https://github.com/mnielLab/netTCR. 
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Methods 

Data set 
A dataset of TCR beta chain CDR3 sequences and corresponding cognate peptide targets was 
downloaded from the IEDB (23) in April 2018. Only peptides presented by HLA-A*02:01 were 
selected. The training data consisted of 9015 unique data points, spanning 91 peptides and 
8920 TCR sequences. Further, an additional dataset generated using the MIRA assay was 
kindly provided by Klinger et al. (15). This dataset consisted of 379 unique data points, spanning 
16 peptides and 379 TCR sequences derived from 5 donors. 
 
Since these data sets contain only positive interactions, negative data examples were 
generated by creating internal wrong combinations of TCRs and peptides, i.e. combining TCR 
sequences with peptides different from their cognate target. These combinations were made by 
extracting the list of peptide targets from the positive data set (keeping duplicates if a peptide 
was found to interact with multiple TCRs), and next pairing each TCR with a peptide different 
from the cognate target randomly drawn from this list of peptide targets. In this way, a data set 
with 50% positive and 50% negative data points was obtained. 
 
To supplement the data sets with additional negative examples, eluted peptide ligands were 
retrieved from the IEDB, selecting only peptides derived from self (i.e human) proteins. Further, 
a set of 200,000 TCR CDR3 sequences from 20 healthy donors (30) was downloaded. Next, 
additional data was created by first replacing each TCR in the combined positive and negative 
mis-paired data sets three times with a random TCR drawn from the healthy donor TCR data set 
(proportions of additional negatives ranging from 2-5 were tested with limited variations in 
validation predictive performance, data not shown). Finally, the 3000 eluted ligands were paired 
with TCRs drawn randomly from the complete set of IEDB positives, IEDB mis-paired negatives, 
and additional negatives constructed from the TCRs of healthy donors. All the additional TCR 
peptide combinations were added as negatives to the data set, obtaining a final training data set 
consisting of 9012 (12%) positive and 66,102 (88%) negative TCR-peptide combinations.  
 
To avoid model overfitting and overestimation of model performance, the entire data set was 
partitioned into 5 sets prior to model training. Prior to partitioning, TCR beta chain (TCRb) CDR3 
sequences were compared to each other using blastp and TCRs sharing more than 90% 
sequence identity, determined by blastp, were kept in the same data partition. Otherwise data 
points were assigned to partitions randomly. 

Model 
A CNN model was implemented to predict whether or not a given TCR is able to recognize a 
specific peptide. The input to the network was the amino acid sequence of the peptide and the 
CDR3 region of the beta chain of the TCR. Both sequences were encoded using the 
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BLOSUM50 matrix as described earlier (31). Additionally N- and C-terminus start and stop 
signals were added to the TCR sequence and encoded using a vector containing only +/-0.1 for 
start and stop respectively. Peptide and TCR sequences were each processed by 100 
convolutional filters of sizes 1, 3, 5, 7 and 9 amino acids (500 filters in total). The peptide and 
TCR convolutional layers were concatenated and processed by a second convolutional layer of 
100 filters with size 1. Subsequently, global max pooling was performed to remove the 
sequence length dimension of peptide and TCRb CDR3 region. Global max pooling results were 
connected to a dense layer of 10 hidden neurons connected to the output neuron. Throughout 
the network, the sigmoid activation function was applied to all neurons. The network was trained 
using 5 fold cross validation with early stopping for 300 epochs. The weights were updated 
using the adam optimizer with a learning rate of 0.001. When additional negative examples 
were added to the training process, a subset of the negative examples was randomly selected 
in each training epoch to keep the frequency of positive data points at 50%. The validation error 
(to determine the early stopping epoch) however, was calculated on the full unbalanced data 
set. 
 
All models were implemented in the Python programming language using the tensorflow library. 
The models were exclusively trained on the IEDB data, the MIRA data was used solely for 
performance evaluation purposes. Model performance was measured in AUC (area under the 
ROC curve, 0.5 corresponding to random predictions, 1.0 equals perfect predictions) or 
AUC10%, the partial AUC integrated upto a false positive rate of 10%. 

Model evaluation 

Performance on a large set of TCRs 
To investigate whether the model was able to identify the TCRs interacting with a given peptide 
out of a large set of TCRs, we identified 3 peptides (GILGFVFTL, GLCTLVAML and 
NLVPMVATV), all frequently occurring in both the IEDB and MIRA data sets. Each TCR in the 
MIRA data was paired with each of the three selected peptides and the pair was annotated 
depending on whether this interaction is positive (i.e. observed in the MIRA experiments) or 
negative. With this setup, the TCRs can be partitioned into two groups: 1) TCRs with a target 
among the three analyzed peptides and 2) TCRs without a target among the analyzed peptides. 
The data were predicted using the models described above (trained on the IEDB data, with and 
without additional negative data). Maximum prediction values of TCRs not targeting any of the 3 
peptides were compared to the prediction values obtained for positive peptide-TCR pairs. 
Further, the predictions of a given TCR to all 3 peptides were ranked and the rank of the true 
binding peptide was extracted. 

Performance on a set of randomly assigned TCRs 
To provide a random baseline performance, a data set was generated by randomly assigning 
the TCR sequences of the original data to the peptides in the data set. Subsequently a model 
was trained on this random data set as described above. 
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V+J gene bias 
To investigate how much of the models performance could be explained by a potential bias in V 
and J gene usage, models were trained on the center and N- and C-terminal regions of the 
TCRb CDR3 sequences. To train models on only the central part of the CDR3 sequence, the 
first and last two amino acids were replaced with X, corresponding to unknown amino acid. The 
influence of the N- and C-terminal regions of the CDR3 sequence was investigated using two 
approaches: 1) the TCRb CDR3 sequence represented only by the first and last two amino 
acids and 2) all amino acids of the TCRb CDR3 sequence except the first and last two are 
replaced by X, thus conserving information about the length of the original CDR3 sequence. 
Separate models were trained on these three representations of the TCR sequences and 
compared to a model trained on the complete CDR3 sequence.  

Experimental validation 
Ethical approval. All healthy donor material was collected under approval by the Scientific 
Ethics Committee of the Capital Region of Denmark, and written informed consent was obtained 
according to the Declaration of Helsinki.  
 
Peptides and MHC monomer production. Peptides were purchased from Pepscan (Pepscan 
Presto) and dissolved to 10 mM in DMSO. UV-sensitive ligands were synthesized as previously 
described (32–34). Recombinant HLA-A*02:01 heavy chain and human β2 microglobulin light 
chain were produced in Escherichia coli. HLA heavy and light chain were refolded with 
UV-sensitive ligands and purified as described in (35). Specific peptide-MHC complexes were 
generated by UV-mediated peptide MHC exchange (33). 
 
Generation of fluorescently labeled pMHC tetramers. MHC tetramers were assembled as 
described previously (36, 37) onto one of two fluorescently-labeled streptavidin (SA) conjugates: 
SA-phycoerythrin (PE) or SA-allophycocyanin (APC) (BioLegend, Nordic Biosite, Denmark). 
Tetramers binding one of the four peptides NLVPMVATV, GLCTLVAML, YVLDHLIVV and 
GILGFVFTL were  labeled with PE while the remaining tetramers were labeled with APC (see 
Table S2 for full list of included peptides). Tetramers were stored at -20 °C in 5% glycerol 
(vol/vol) and 0.5% BSA (wt/vol). 
Frequencies of antigen-specific T cells (Table S2) were determined using combinatorial 
encoding of pMHC tetramers (36, 37) or DNA barcode-labeled MHC multimers (16). 
 
Peptide-MHC tetramer staining. Cryopreserved PBMCs from four healthy donors were thawed 
and washed in RPMI + 10% FCS. Cells were washed in a cytometry buffer (PBS + 2% FCS). 
5×10 6 cells were incubated, 15 min, 37 °C, with pooled PE and APC tetramers in a total volume 
of 100 μL (final concentration of each distinct pMHC, 23 nM). Next a 5× antibody mix composed 
of CD8-BV480 (BD 566121, clone RPA-T8) (final dilution 1/50), dump channel antibodies: 
CD4-FITC (BD 345768) (final dilution 1/80), CD14-FITC (BD 345784) (final dilution 1/32), 
CD19-FITC (BD 345776) (final dilution 1/16), CD40-FITC (Serotech MCA1590F) (final dilution 
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1/40), CD16-FITC (BD 335035) (final dilution 1/64) and a dead cell marker (LIVE/DEAD Fixable 
Near-IR; Invitrogen L10119) (final dilution 1/1000) was added and incubated 30 min, 4 °C. Cells 
were washed twice in cytometry buffer, resuspended in 100 μL cytometry buffer and sorted 
immediately. 
 
Flow cytometry and cell sorting. Tetramer-stained cells were sorted on a FACSAriaFusion 
(Becton Dickinson) into tubes containing 100 μL PBS supplemented with BSA (0.5%), herring 
DNA (100 μg/mL) and EDTA (2 mM) (tubes were saturated with PBS + 2% BSA in advance). 
Using FACSDiva software, we gated on single, live CD8 positive and ‘dump’ (CD4, 14, 16, 19, 
and 40) negative lymphocytes and within this population sorted either all PE positive cells or all 
APC positive cells into separate tubes. The sorted cells were centrifuged 10 min, 5,000g, and 
the buffer was removed. The cell pellet was stored at −20 °C in a minimal amount of residual 
buffer (<20 μL). DNA was isolated using QIAamp DNA Micro Kit according to manufacturer’s 
instructions (Qiagen) and the TCRb chains were sequenced and processed at Adaptive 
Biotechnologies (Seattle, WA) using the ImmunoSEQ platform. 
 
In silico interaction predictions  Binding to all four peptides was predicted for the PE (now 
referred to as positive) and the APC (negative) sorted populations (Table S3) using the TCRb 
CDR3 sequences and the model trained on a combination of IEDB and MIRA data sets with 
additional negative data. For a given TCR sequence the maximum scoring prediction was 
recorded and it was investigated whether a difference in these maximum prediction scores 
could be observed between the positive and negative TCRs. 

Results 
We here present a machine learning model to predict TCR-peptide interactions based on only 
the peptide and TCRb CDR3 amino acid sequences. Training data was obtained from the IEDB, 
the model was evaluated on data generated with the MIRA assay (for details see materials and 
methods). Both datasets cover several peptides presented by HLA-A*02:01 but are dominated 
by the same 3 peptides (Figure 1A). Prior to training the model, the data were partitioned 
keeping similar TCRs in the same partition to limit redundancy between data partitions. Figure 
1B shows all TCRs in the IEDB data color coded according to their peptide target (TCRs 
recognizing a peptide different from the above mentioned 3 abundant peptides are colored 
gray), lines connect TCRs sharing more than 90% sequence identity as determined by BlastP. 
This threshold resulted in clusters largely specific for one given peptide, indicating it is 
appropriate to reduce data redundancy. 
 
A convolutional neural network architecture used to predict interaction between TCRs and their 
cognate target is shown in Figure 1C. The two convolutional layers combined with global max 
pooling enable training the model on peptides and TCR sequences of different lengths. Models 
were trained using 5 fold cross-validation as described in materials and methods. 
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Figure 1: A) Frequency of peptides in IEDB and MIRA data sets. Only peptides that occur more 
than 10 times are shown, less frequent peptides are summarized in “other”. B) TCRb CDR3 
clustering in the IEDB data set. The coloring corresponds to the TCRs peptide target, TCRs that 
share more than 90% BlastP sequence identity are connected C) Setup of the convolutional 
neural network. 

Model performance 
One important application of our model would be to identify binding TCRs specific to one or 
more of the peptides from a large data set of irrelevant TCRs obtained, for instance, by 
repertoire sequencing. We simulated this task by selecting the three most common peptides in 
the IEDB (GILGFVFTL, GLCTLVAML and NLVPMVATV) which are also part of the MIRA data. 
Subsequently, we predicted binding of all TCRs in the MIRA data to each of those three 
peptides, using two different models: one trained on the IEDB data with internal negative data 
and another trained with additional negative data (derived from TCR sequencing projects and 
eluted peptide ligands, for details see methods). Subsequently we evaluated how the models 
could separate positive TCRs binding one of the three peptides from the negative TCRs.  
 
Figures 2A-C give the results of this analysis, comparing the performance of the two models in 
terms of ROC, sensitivity and specificity curves. The AUC value of the model trained with 
additional negative data was slightly increased (0.697 to 0.727) compared to the model trained 
with only internal negative examples. As shown in Figure 2A, the AUC10% increased 
substantially to 0.48 from 0.27 with additional negative data. Figure 2B reveals that additional 
negative training data increased the specificity of the model while decreasing the sensitivity 
(Figure 2C). 
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Figure 2: A) ROC curves, B) specificity and C) sensitivity for models trained on the IEDB data 
with internal negative data and additional negative data. Predictions were made on three 
common peptides shared between IEDB and MIRA data, combined with all MIRA TCRs.  
 
Next, we investigated to what degree our model was able to identify the correct cognate peptide 
target for a given TCR. For each TCR binding to one of the three peptides included in the 
evaluation data set we predicted binding to all three peptides, and calculated the rank of the true 
cognate target. This rank is 1 if the cognate peptide target achieved the strongest predicted 
binding value among the three peptides. Figure 3A shows the histogram of these rank values for 
the two models. The model trained with additional negative data predicted the target peptide as 
rank 1 for 112 (59.3%) TCRs out of 189 compared to 90 (47.6%) for the model trained only on 
IEDB data. These results thus confirm the predictive power of the method in identifying the 
correct cognate target for a given TCR. 
 
Apart from producing high predictions for the interaction between TCR and cognate target 
peptide, in order to be useful, a model is also required to make low predictions for negative 
TCRs with no cognate target among the peptides covered by the model. We tested to which 
degree this was the case for the models trained with or without additional negative data. For this 
we compared the highest prediction values obtained for TCRs without a target among the three 
selected peptides, to the predictions made for TCRs paired with their correct target. The result 
of this comparison is shown in Figure 3B and revealed that the model trained only on the IEDB 
data often assigned negative TCRs higher prediction values compared to observed 
peptide-TCR pairs. In contrast, for the model trained with additional negative examples, we 
found that the true cognate targets received higher median prediction values than the maximal 
predictions made for TCRs without cognate targets among the selected peptides. Similar 
observations were made when considering the predictions made for a specific peptide (Figure 
S1). Also in this case, the model with additional negative training data predicted noticeably 
lower values for negative compared to positive TCRs. 
 
In conclusion, these results demonstrate that the model trained on additional negative data 
outperformed the model trained only on IEDB data in terms of assigning the highest rank to true 
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target peptides. Further, this model was able to accomplish the task of finding few interacting 
TCRs out of a pool of many non-interacting TCRs, due to increased specificity.  
 

 
Figure 3: A) For the TCRs binding one of the 3 peptides in the evaluation set the rank of this 
peptide is shown (rank 1 = highest prediction, rank 3=lowest prediction). B) For TCRs binding to 
one of the three peptides in the evaluation set the prediction value to this peptide is shown. For 
TCRs not binding to one of the peptides in the evaluation set all prediction values are shown. 
Subsequently only the maximum prediction to an evaluation peptide is shown. The intention is 
to visualize if one can separate TCRs that have a cognate target among the peptides the model 
is trained on, from those that do not recognize any of the peptides in the model, based the 
model’s prediction values. The red line at 0.25 indicates such a classification threshold. 
 

Performance on unknown peptides and randomly assigned TCRs 
The IEDB data set is dominated by only 2 peptides, as shown above in Figure 1A. Still, we 
aimed to investigate if our model is able to learn general interaction rules that allow for accurate 
predictions for peptides not included in training. To get an estimate of the model’s performance 
on unknown peptides, we predicted the MIRA data and calculated the performance per peptide. 
The result of this analysis is shown in table S1 and demonstrated clearly that the performance 
on the peptides unique to the MIRA data was considerably lower than the performance on 
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peptides shared with the training data. This indicates that the model has limited potential for 
extrapolating predictions to unknown peptides, most likely due to the limited amount of peptides 
in the training data. 
 
To obtain a baseline performance and ensure that this would be random, we trained a model 
where all TCRs in the data set were randomly re-assigned to a peptide. As expected this model 
achieved a random performance of AUC=0.538 on the test set and AUC=0.4 on the external 
MIRA data.  

Influence of V and J genes on model performance 
The current data sets linking TCRs to peptide epitopes are small and further limited by being 
derived from a small number of donors. This could possibly lead to a bias in the V and J gene 
usage of the donors to which a model predicting peptide and TCR interaction might overfit. As 
the N- and C-terminal parts of the CDR3 sequence are defined mostly by the V and J genes, we 
tested the potential V and J gene bias in the data by comparing the performance of a model 
trained on the full TCRb CDR3 sequence to models trained only on the central part of the CDR3 
sequence or the N- and C-terminal parts, (see figure 4A). For evaluating the amount of 
information captured in the terminal parts, we represented the TCRs as only the first two N and 
C terminal residues or with the central part of the sequence masked as X for unknown amino 
acid, thereby conserving information about the loop length of the original CDR3 sequence (for 
details see materials and methods).  
 
Figure 4B shows the test set performance of the different models. Training only on the two N- 
and C-terminal amino acids of the CDR3 sequence resulted in a marked drop in test set 
performance (from AUC=0.676 to AUC=0.605), indicating there is not enough information 
contained in the terminal residues only to train a prediction model. When informing the model of 
the N and C terminal amino acids along with the loop length of the CDR3 region, a model can 
be trained with a test performance comparable to when using the complete CDR3 sequence 
(AUC=0.655). This is also the case when training only on the central part of the CDR3 
sequence, masking the N- and C-terminal residue  (AUC=0.664). However, when turning to the 
external MIRA evaluation set (see figure 4C), only models trained on the the complete or central 
part of the CDR3 sequence generalize well. This result suggests that models trained only on the 
N- and C-terminal regions of the CDR3 sequences likely overfits to the V and J gene distribution 
in the IEDB and therefore do not achieve good performance on the MIRA data set. 
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Figure 4: A) To investigate V+J gene bias, models with different representations of the TCRb 
CDR3 sequence were trained. B+C) Performance of the different models on the test and MIRA 
datasets given in AUC, the red line denotes random performance. 

Experimental validation of the model 
Next, we set out to validate our model in a real-life biological setting. T cells from four donors 
were sorted into a positive subset, containing TCRs responsive to the four HLA-A*02:01 
restricted peptides (GILGFVFTL, GLCTLVAML, NLVPMVATV, YVLDHLIVV) and a negative 
subset, containing TCRs responsive to 92 other HLA-A*02:01-restricted peptides (table S3). 
The CDR3 sequences were obtained from the TCR beta chains of each of these subsets. In 
parallel, we trained a model on the combined IEDB and MIRA data. This combined data set has 
a large amount of TCR data for the four positive peptides (GILGFVFTL, GLCTLVAML, 
NLVPMVATV and YVLDHLIVV), and we would hence expect to be able to predict the 
interactions to one or more of the peptides for the TCRs in the positive subset and lack of 
interaction for the TCRs in the negative subset. To validate that this was indeed the case, we 
predicted the interaction between each TCR and the four positive peptides and identified the 
maximum prediction value for each TCR among those four peptides. Figure 5 compares these 
maximum prediction values for the positive and negative samples, showing higher prediction 
values for the TCRs that are able to recognize one of the four peptides (p-value < 0.01, student 
T-test). In line with what we observed in Figure 3B, the positive TCRs achieve a median 
prediction value close to 0.25, while the vast majority of negative TCRs result in predictions 
below 0.25. 67 of the 314 unique positive TCRs are identical with TCRs in the IEDB and MIRA 
data sets, likely representing public TCR sequences. No identical TCRs can be found between 
the negative fraction and IEDB or MIRA data. 
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Figure 5: Prediction values for TCRs recognizing one of four tested peptides (positive) and 
TCRs not recognizing any of the tested TCRs (negative).  

Discussion 
 
We present a model capable of predicting the cognate target of a given TCR based on the 
amino acid sequences of the peptide and CDR3 region of the TCR beta chain. The underlying 
model is a convolutional neural network (CNN). The performance of the model was evaluated in 
several benchmarks demonstrating a high ability both to separate T cell receptors specific for 
the set of peptides included in the training data from T cells specific to irrelevant peptides, and 
to identify the correct cognate target for a given TCR. 
 
It has been suggested previously that learning the rules of TCR antigen recognition is extremely 
difficult since TCRs can rearrange themselves upon contact with the peptide-MHC complex (38) 
and thereby gain immense cross-reactivity (39, 40). While the necessity and role of TCR 
cross-reactivity in the immune systems function remains to be elucidated (41), growing evidence 
suggests that T cell receptors specific to a common target share common properties (17, 18). 
Increasing amounts of data are now available linking TCR sequences to their cognate targets. 
The predictive power of the model proposed here is in line with these observations.  
 
Given the fact that most TCR sequencing projects focus on characterizing the CDR3 region of 
the T cell receptor beta chain sequence, we chose to train a model based on this part of the 
TCR only. It is clear that this potentially has limited the predictive power of our model, and that 
future extension of the model would benefit from being trained on paired T cell sequence data 
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covering both the alpha and beta chain and possibly including information describing the V and 
J genes of the rearrangement.  
 
The training data used here was obtained from the IEDB. Alternatively this data could have 
been obtained from the VDJdb, another database curating and providing TCR sequences and 
their cognate targets published in literature. Both databases are an extremely valuable resource 
to the community. 
 
When aiming to train a model to predict TCR specificity, negative data is needed but not readily 
available in resources such as the IEDB and VDJdb. This is because the underlying 
experiments identify interacting TCRs and do not specifically report non-interacting TCRs.  
Our approach to resolve this, was to make mismatching combinations between peptides and 
TCR sequences, keeping the frequency of peptides in positive and negative data equal. The 
advantage of this approach is that the model is prevented from simply learning interacting 
peptides or TCRs by heart, due to the equal amount of positive and negative examples.  
 
We envision that our model would likely be used to filter out TCRs from repertoire sequencing 
that are able to interact with a given peptide. This task of identifying very few sequences out of a 
pool of many requires a model of great specificity. To increase the specificity of our model it was 
necessary to add more TCR sequences and peptides as negative examples to the training. The 
negative TCR sequences were obtained by repertoire sequencing of healthy individuals and 
paired with the peptides in the IEDB and further self peptides identified by ligand elution assays 
to be presented by HLA-A*02:01. Combining TCR sequences of healthy individuals with human 
self peptides should result in true negative examples in the vast majority of cases, but when 
combining those TCRs with the peptides present in the IEDB data, which are to a large extent 
well studied influenza and herpes virus epitopes (42), they might result in some false negatives. 
However, as the chances of combining the right TCR with the right peptide in this setting are 
slim, in the vast majority of cases we expect to obtain true negatives with this approach. In the 
case of the MIRA data, the experimental setup requires TCRs to be specific to only one of the 
16 assayed peptides, hence eliminating the possibility of discovering cross-reactive TCRs (15). 
 
We chose to set up our model as a CNN. This type of model is highly flexible and has earlier 
been demonstrated to be highly suited to discover motifs in unaligned input sequences of 
varying length (28, 29). Additionally convolutional networks are often faster and easier to train 
than recurrent long short-term memory networks (LSTMs). Future work will tell if improved 
predictive power can be obtained combining different network architectures (43). 
 
Currently available datasets of TCR-peptide interactions contain many more TCR sequences 
than peptides and the peptides share very limited similarity in general. It is therefore expected 
that a model trained on these data will have limited power  to extrapolate predictions to 
unknown peptides. This is also what we observed when evaluating the performance of the 
model on peptides not present in the IEDB training data. Given these observations, we 
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recommend that the model should presently only be used to make predictions for the four 
peptides covered by abundant TCR data in the combined IEDB and MIRA data.  
 
Due to the limited amount of TCR donors in the current data set, it is a concern that models 
might overfit to a bias in V and J gene usage in the donors. To investigate the extent of this in 
our data set, we trained different models masking the N- and C-terminal regions or the center of 
the TCR beta CDR3 regions. We found that we could indeed train models that performed well 
on the test set when supplying information about the N- and C-terminal regions and the length 
of the CDR3 loop. When partitioning the data sets, we did not account for reducing redundancy 
between partitions based on the V and J genes, we only compared the entire CDR3 sequences 
in our approach to redundancy reduction. Therefore the same bias in V and J gene usage is 
likely present throughout all partitions, explaining the high performance on the test set. When 
evaluating models on the independent MIRA data set, obtained from a different set of donors, 
we find that only models trained on the central part of the CDR3 sequence generalize well. This 
indicates that there is indeed a bias in V and J gene usage to which a model can overfit, but 
there is also a signal in the central part of the CDR3 region, defining the specificity of the TCR 
which is consistent across several data sets and donors. 
 
Substantial efforts have recently been dedicated to elucidate what properties of a TCR dictate 
its specificity, and publications suggest TCRs sharing a common target are characterized by 
sharing, to some degree, a common motif (17, 18). This is also the underlying assumption of the 
model presented here. To further validate our approach, we performed a TCR sequencing 
experiment where we obtained two sets of TCRs: one specific to the four peptides covered by 
our model, and one non-specific to any of these peptides. As expected, the model achieved 
higher interaction predictions for TCRs recognizing one of the four known cognate target 
peptides. More detailed results could have been achieved by determining the exact specificity of 
each TCR. This was however not possible due to limited funds.  
 
In conclusion, we have successfully trained a model to predict interactions between TCRs and 
their cognate, HLA-A*02:01 restricted peptide target. Our results indicate that accurate 
prediction based only on the TCR beta chains CDR3 region and amino acid sequence of the 
peptide is feasible. Due to the small amount of training peptides, the model can however at 
present only be applied to the limited set of peptides included in the training data. However as 
more data becomes available, we expect the predictive power of the model to increase, and 
allow for accurate predictions also for uncharacterized peptides as has been observed earlier 
for the pan-specific prediction models of peptide-MHC interactions (44). Finally, the presented 
model framework is highly flexible and allows for the straight forward integration of the MHC 
molecule or TCR alpha chain in the future when data becomes available, to train a truly global 
prediction method. 
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Supplementary 

 
 
Figure S1: Prediction values for each TCR-peptide combination among the 3 peptides in the 
evaluation data and all MIRA TCRs. A) IEDB internal negative data model B) IEDB model 
trained with additional negative data. 
 
Table S1: AUC per peptide of the MIRA data predicted with a model trained on IEDB with 
additional negative data.  
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Table S2: Previously detected responses (% of CD8 T cells). 

 Donor ID 

Peptide sequence BC-D83 BC-D104 BC-D108 BC-D112 

GILGFVFTL 0.017 0.18 0.06 0 

GLCTLVAML 0 0.19* 0.05 1.44 

NLVPMVATV 0 0 0.22 3.41 

YVLDHLIVV  0.36 0.084 0.04 0.36 

CLGGLLTMV 0 0.034 0.05 0.09* 

FLYALALLL 0.06 0.07* 0.02 0.05* 

VLEETSVML 0 0 0 0 

ILKEPVHGV 0 0 0 0 

Donor HLA-type     

HLA-A 0101, 0201 0201 0101, 0201 0201 

HLA-B 4402, 5701 5001, 5101 0702, 1815 0702, 4402 

HLA-C 0501, 0602 0602, 1502 0702, 1203 0501, 0702 

*estimated frequencies from a DNA barcode-based MHC multimer analysis (Bentzen et al. PMID: 27571370) 
 
Table S3: List of peptides used to isolate TCR sequences. All peptides are HLA-A*02:01 
restricted. 

Peptide Antigen origin Source protein 

NLVPMVATV CMV  pp65 

GLCTLVAML EBV  BMF1 

YVLDHLIVV EBV  BRLF1 

GILGFVFTL FLU  MP 58-66 

VLEETSVML CMV  IE1 

CLGGLLTMV EBV  LMP2 

FLYALALLL EBV  LMP2 

ILKEPVHGV HIV  Pol (C20) 
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RVAALARDAP melanoma 707-AP 

RLDFNLIRV melanoma ATIC (AICRT) 

MVYDLYKTL melanoma ATIC (AICRT) 

NLFETPVEA melanoma BA46 (MFGE8) 

GLQHWVPEL melanoma BA46 (MFGE8) 

PLFDFSWLSL melanoma Bcl-2 

WLSLKTLLSL melanoma Bcl-2 

YLNDHLEPWI melanoma Bcl-xL 

CQWGRLWQL melanoma BING-4 

LATEKSRWSG melanoma B-RAF 

VLEGMEVV melanoma cyclophilin B (Cyp-B) 

FILPVLGAV melanoma Cadherin 3/P-cadherin 

LLGATCMFV melanoma cyclin D1 

LATEKSRWS melanoma B-RAF 

KLKHYGPGWV melanoma cyclophilin B (Cyp-B) 

FLWGPRAYA melanoma DAM-6, -10 (MAGE-B1, -B2) 

IMNDMPIYM melanoma EphA2 

VLAGVGFFI melanoma EphA2 

VLLLVLAGV melanoma EphA2 

TLADFDPRV melanoma EphA2 

FINDEIFVEL melanoma EZH2 

FMVEDETVL melanoma EZH2 

VLPDVFIRCV melanoma GnTV 

YLEPGPVTA melanoma gp100 / Pmel17 

RLASFYDWLP melanoma Livin (ML-IAP) 

SLGSPVLGL melanoma Livin (ML-IAP) 

QLCPICRAPV melanoma Livin (ML-IAP) 

RIDITLSSV melanoma M2BP 

KVLEYVIKV melanoma MAGE-A1 

VLPDVFIRC melanoma GnTV 
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IMDQVPFSV melanoma gp100 / Pmel17 

MLGTHTMEV melanoma gp100 / Pmel17 

LLDVAPLSL melanoma hsp70 

GLYDGMEHL melanoma MAGE-A10 

LVHFLLLKY melanoma MAGE-A2 

KVLEFLAKL melanoma MAGE-C2 

KVAELVHFL melanoma MAGE-A3 

TILLGIFFL melanoma MC1R 

ELAGIGILTV melanoma Melan-A / MART-1 

ILTVILGVL melanoma Melan-A / MART-1 

TLNDECWPA melanoma Meloe-1 

CMHLLLEAV melanoma MG50 

VLSVNVPDV melanoma MG50 

QLSLLMWIT melanoma NY-ESO-1 / LAGE-2 

SLLMWITQCFL melanoma NY-ESO-1 / LAGE-2 

IMLCLIAAV melanoma P Polypeptide 

SAWISKPPGV melanoma SOX10 

SLYSFPEPEA melanoma PRAME 

VLDGLDVLL melanoma PRAME 

LLLDDLLVSI melanoma PRDX5 

SLLMWITQC melanoma NY-ESO-1 / LAGE-2 

VLHWDPETV melanoma RAB38 / NY-MEL-1 

LKLSGVVRL melanoma RAGE-1 

PLPPARNGGL melanoma RAGE-1 

YLMDTSGKV melanoma Replication protein A 

LLQAEAPRL melanoma SART-3 

RLAEYQAYI melanoma SART-3 

VYDFFVWLHY melanoma TRP-2 

SLLMWITQA melanoma NY-ESO-1 / LAGE-2 

RLVDDFLLV melanoma Telomerase 
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ILAKFLHWL melanoma Telomerase 

FLYDDNQRV melanoma Topoisomerase II 

ILLRDAGLV melanoma TRAG-3 

FVWLHYYSV melanoma TRP-2 

SLDDYNHLV melanoma TRP-2 

TLDSQVMSL melanoma TRP-2 

SVYDFFVWL melanoma TRP-2 

ATTNILEHY melanoma TRP2-6b 

FIASNGVKLV melanoma alpha-actinin-4 

KLDVGNAEV melanoma BAP31 

RLPPKPPLA melanoma Meloe-2 

LMAGCIQEA melanoma CDKN1A 

GLGLPKLYL melanoma CDKN1A 

FAWERVRGL melanoma CDKN1A 

NLVRDDGSAV melanoma CLP (coactosin-like protein) 

RLFAFVRFT melanoma CLP (coactosin-like protein) 

VVQNFAKEFV melanoma CLP (coactosin-like protein) 

YVDPVITSI melanoma c-MET 

WLQYFPNPV melanoma CYP1B1 

FLTPKKLQCV melanoma PSA+PAP 

VISNDVCAQV melanoma PSA+PAP 

FLTPKLQCV melanoma PSA+PAP 

KLQCVDLHV melanoma PSA+PAP 

ALDVYNGLL melanoma PSA+PAP 

FLFLLFFWL melanoma PSA+PAP 

ILLWQPIPV melanoma PSA+PAP 

TLMSAMTNL melanoma PSA+PAP 

YLPFRNCRP melanoma PSA+PAP 
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