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Abstract

In this work we analyse a one-dimensional, cell-based model of an epithelial sheet. In

this model, cells interact with their nearest neighbouring cells and move deterministically.

Cells also proliferate stochastically, with the rate of proliferation specified as a function

of the cell length. This mechanical model of cell dynamics gives rise to a free boundary

problem. We construct a corresponding continuum-limit description where the variables in

the continuum limit description are expanded in powers of the small parameter 1/N , where

N is the number of cells in the population. By carefully constructing the continuum limit

description we obtain a free boundary partial differential equation description governing

the density of the cells within the evolving domain, as well as a free boundary condition

that governs the evolution of the domain. We show that care must be taken to arrive

at a free boundary condition that conserves mass. By comparing averaged realisations of

the cell-based model with the numerical solution of the free boundary partial differential

equation, we show that the new mass-conserving boundary condition enables the coarse-

grained partial differential equation model to provide very accurate predictions of the

behaviour of the cell-based model, including both evolution of the cell density, and the

position of the free boundary, across a range of interaction potentials and proliferation

functions in the cell based model.

Keywords: Cell-based model; individual-based model; mechanical model; cell

migration; cell proliferation; free boundary problem; moving boundary problem.
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1. Introduction

Cell biology experiments typically produce complex, quantitative experimental data

that can include both cellular-level and tissue-level information [8, 11, 12, 23]. How-

ever, it can often difficult to integrate these multi-scale data to give new insights. This

challenge provides a clear motivation for the use of mathematical models where individ-

ual, cell-based mechanisms can be implemented and explored in a computational frame-

work [1, 17, 21, 24]. This approach can allow us to qualitatively explore the relationship

between individual-level properties and population-level outcomes using repeated com-

putational simulations as well as comparing predictions of different models that act at

different scales [14, 18]. Furthermore, it is possible to provide a quantitative, more rigor-

ous mathematical connection between the individual-level properties and population-level

outcomes by using coarse-graining techniques to derive an approximate continuum-limit

description of the individual-level description [13, 15, 16].

Depending on the biological context, there are many different kinds of individual-based

models that can be used to simulate cell biology processes including random walk frame-

works involving point particles [2, 3] or random walk frameworks based on an exclusion

process that explicitly account for excluded volume effects as well as the shape and size of

the individuals in the system [9, 19]. While discrete models based on point particles and

exclusion processes have been successfully applied to study many cell biology phenomena,

these models do not include any mechanical effects that are known to be important in a

host of applications. For example, tissue stiffness is known to play a key role in epithelial

cancer progression, with different rates of invasion associated with different tissue stiffness

conditions [20]. Cancer detection is another clinical application where tissue mechanics

and tissue stiffness, in terms of mammographic density, is thought to be associated with

breast cancer risk [7]. Therefore, for certain applications, it is relevant to use a mechanical

framework to study the motion and interaction of individual cells rather than focusing on

a random walk framework.

In this work we re-examine a mechanical model of epithelial tissue mechanics first

presented by Murray [13, 15]. The model describes a one-dimensional population of

cells, where nearest neighbour cells interact through a force potential and the motion of

each individual is governed by an overdamped, deterministic equation of motion. Like

Murray [13, 15], we consider the case where the left-most boundary of the population
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of cells is fixed at x = 0, and the right-most boundary is a free boundary, x = L(τ),

where τ is time. In the first part of our work we consider a non-proliferative population

where individual cells undergo movement only. In this context the cell-based model is

deterministic and the evolution of the free boundary is the net result of the deterministic

interactions between the N individuals. In the second part of our work we consider a

population of cells that is both proliferative and motile, and in this context the individual

cell based model is stochastic. Here the evolution of the cell density and the position of the

free boundary is the net result of a combination of the deterministic motility mechanism

and stochastic proliferation events, where the rate of proliferation is taken to be a function

of the length of each cell in the stochastic simulations. In all cases considered we study

expanding populations where L(τ) is an increasing function of time.

The key focus of this work is the derivation of a continuum-limit partial differential

equations (PDE) description of the individual-based model that provides an accurate de-

scription of both the macroscopic density of cells within the domain, as well the movement

of the free boundary, L(τ). We make progress by defining continuous functions by ex-

panding in powers of the small parameter, 1/N , so that, formally, our continuum limit

description is accurate in the limit, N →∞ [5]. By carefully neglecting terms of O(1/N2),

we derive a free boundary problem that describes the spatial and temporal evolution of

the cell density within the domain, 0 < x < L(τ), as well as the temporal evolution of

the free boundary, L(τ). We show that our new free boundary condition conserves mass.

Comparing averaged data from cell-based simulations with the numerical solution of the

continuum limit PDE description of the free boundary problem confirms that the new

mass-conserving boundary condition provides an accurate description of the dynamics of

the cell-based model across a range of different individual-based mechanisms conditions.

2. A discrete model of cell dynamics in one dimension

In this work, we consider one of the simplest cell-based, off-lattice models of a one-

dimensional epithelial cell population that captures cell-cell adhesion interactions and

bulk cellular elasticity. Cells occupy volume and can undergo deformation, neighbouring

cells come into contact with each other at node points (Figure 1), and they interact with

each other and the local microenvironment [13]. We formulate a mathematical description

of the dynamics of the cell population using xi to denote the position of node i (Figure 1).
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From Newton’s second law of motion

mi
d2xi
dt2

=
∑
j 6=i

F int
i,j + F visc

i , i = 0, 1, . . . , N, (1)

where F int
i,j , the force node j exerts on node i, represents the combined effects of cellular

bulk elasticity and cell-cell adhesion1, F visc
i is the viscous force acting on the ith node, and

mi is the mass associated with the ith node.

x0(t) = 0 x1(t) x2(t) xN−1(t) xN(t)

cell 1 cell 2 cell N

Figure 1: Schematic of the cell-based model where the cells are here represented by springs and nodes the
points where two cells touch. There are N cells, and node positions are denoted by xi, for i = 0, 1, . . . , N ,
with the left boundary of the first cell (i.e. node 0) fixed at the origin so that x0(t) ≡ 0.

We now make a number of further assumptions to simplify equation (1). Firstly,

we assume that cells interact with only their nearest neighbours, so that F int
i,j = 0 for

j 6= i± 1, that cells cannot exchange neighbours, and that node zero is pinned at the

origin. This entails 0 = x0(t) < x1(t) < . . . < xN−1(t) < xN(t). Secondly, we assume

that the viscous force, F visc
i , which is generated by cell-cell and cell-matrix interactions,

can be modelled as proportional to velocity, dxi/dt, with viscosity coefficient η. Thirdly,

cells move in dissipative environments, so we assume mid2xi/dt2 ≈ 0. Finally, we assume

the cell population is homogeneous, so that mi = m for i = 0, 1, . . . , N , and cells respond

and generate forces according to the same physical law. As a result, the dynamics of the

population can be modelled using the following system of ODEs:

x0(t) = 0; (2)

η
dxi
dt

= Fi,i−1 + Fi,i+1, i = 1, . . . , N − 1; (3)

η
dxN
dt

= FN,N−1. (4)

Note that we have suppressed the superscript in F int
i,j for clarity from this point onwards.

The system is closed by specifying appropriate initial conditions, xi(0) = x0i for i =

1, . . . , N . To provide a simple exposition, in the initial stages of this work we will assume

1Throughout this work, we will assume F int
i,j = −F int

j,i .
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that cells can be modelled as linear springs; extension to more general cases is provided

in Section 4.

3. Linear force law model

We first assume that the interaction force between cells i and i ± 1 can be modelled

using a linear force law with constant k > 0 and equilibrium length a > 0, as in [13], so

that

Fi,i±1 = k (a− |xi − xi±1|)
xi − xi±1
|xi − xi±1|

. (5)

Letting α = k/η we have

x0(t) = 0, (6)

dxi
dt

= α [xi−1 − 2xi + xi+1] , i = 1, . . . , N − 1, (7)

dxN
dt

= α [xN−1 − xN + a] , (8)

with initial conditions, xi(0) = x0i for i = 1, . . . , N .

System (6)-(8) can be solved analytically. However, since in this work our aim is to

extend to more general (analytically intractable) cases where nonlinear force terms are

used to model cellular dynamics, we solve for the position of each node, xi, numerically

using a simple forward Euler method with time-step ∆t = 0.001. Exemplar results for

the model are shown in Figure 2, where we demonstrate how the leading edge and cell

density of an initially compressed population of cells evolves over time.

3.1. Continuum approximation

To make progress in deriving an equivalent continuum, coarse-grained model, with

a slight abuse of notation we will extend node position, xi(t), which is only defined for

discrete i ∈ {0, . . . , N}, to a smooth function, x(i, t), which is defined for i ∈ [0, N ]2. The

function x(i, t) will approximate xi when i is an integer:

xi(t)≈x(i, t), i = 0, 1, . . . , N. (9)

2Note that x(i, t) is a continuous variable representing position, has dimensions of length, and ranges
between 0 and N × a when cells are at equilibrium.
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To facilitate coarse graining, we first non-dimensionalise the model specified in equa-

tions (6)-(8) using the scalings

ĩ =
i

N
, x̃ =

x

aN
, t̃ =

αt

N2
=

kt

ηN2
, (10)

so that ĩ ∈ {0, 1/N, 2/N, . . . , 1} and x̃ ∼ O(1). The model equations are then

x̃(0, t̃) = 0, (11)

∂x̃(̃i, t̃)

∂t̃
= N2

[
x̃(̃i− 1/N, t̃)− 2x̃(̃i, t̃) + x̃(̃i+ 1/N, t̃)

]
, (12)

∂x̃(1, t̃)

∂t
= N2

[
x̃(1− 1/N, t̃)− x̃(1, t̃) + 1/N

]
, (13)

where equation (12) holds for ĩ = 1/N, . . . , 1 − 1/N , and we have corresponding initial

conditions of the form x̃(̃i, 0) = x̃0i for i = 1/N, . . . , 1.

Performing a Taylor expansion about ĩ within equation (7) gives, on neglecting terms

that are O (1/N2),
∂x̃

∂t̃
=
∂2x̃

∂ĩ2
, ĩ ∈ (0, 1). (14)

The left-hand boundary condition is simply x̃(0, t̃) = 0. To derive the right-hand boundary

condition, we again Taylor expand and neglect terms that are O (1/N2) to give, at ĩ = 1,

1

N

∂x̃

∂t̃
= N

[
x̃− 1

N

∂x̃

∂ĩ
+

1

2N2

∂2x̃

∂ĩ2
+ . . .− x̃+

1

N

]
= 1− ∂x̃

∂ĩ
+

1

2N

∂2x̃

∂ĩ2
. (15)

In terms of the dimensional variables, the coarse-grained model is therefore

∂x

∂t
= α

∂2x

∂i2
, i ∈ (0, N), (16)

with boundary conditions

x(0, t) = 0 and
∂x

∂t

∣∣∣∣
i=N

= α

[
a− ∂x

∂i
+

1

2

∂2x

∂i2

]∣∣∣∣
i=N

. (17)

Initial conditions can be specified by extending the discrete initial conditions, xi(0) = x0i

for i = 1, . . . , N , to a continuous function x(i, 0) such that x(i, 0) = x0i for i = 1, . . . , N .
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Throughout this work, for simplicity we extend the discrete initial condition to a piecewise

linear continuous function.

3.2. Derivation of the corresponding cell density model

Cell density can be defined implicitly using the relation

i(x, t) =

∫ x

0

q(y, t) dy, (18)

where i is the cell index. Equation (18) is equivalent to q(x, t) = ∂i(x, t)/∂x, and it

ensures i = 0 at the left-hand boundary, x = 0. To reformulate equations (16) and (17) in

terms of variation in cell density with position, x, and time, t, we follow [13] and perform

a change of variables from (i, t) to (x, τ) where i and x are related through equation (18)

and t = τ .

Noting that


∂x

∂i

∣∣∣∣
t

∂x

∂t

∣∣∣∣
i

∂τ

∂i

∣∣∣∣
t

∂τ

∂t

∣∣∣∣
i

 =


∂i

∂x

∣∣∣∣
τ

∂i

∂τ

∣∣∣∣
x

∂t

∂x

∣∣∣∣
τ

∂t

∂τ

∣∣∣∣
x


−1

=
1

∂i

∂x

∣∣∣∣
τ

∂t

∂τ

∣∣∣∣
x

− ∂i

∂τ

∣∣∣∣
x

∂t

∂x

∣∣∣∣
τ


∂t

∂τ

∣∣∣∣
x

− ∂i
∂τ

∣∣∣∣
x

− ∂t
∂x

∣∣∣∣
τ

∂i

∂x

∣∣∣∣
τ

 ,

we have

∂x

∂i
=

(
∂i

∂x

)−1
=

1

q
, (19)

∂x

∂t
= −

(
∂i

∂x

)−1
∂i

∂τ
= −1

q

∂i

∂τ
. (20)

Substituting equations (19)-(20) into the right-hand side of equation (16) gives

∂x

∂τ
= − α

q3
∂q

∂x
, x ∈ [0, L(τ)]. (21)

Equation (21) is the characteristic equation and it represents how the domain evolves over

time through tracking constant node index, i. After a simple rearrangement (multiplying

by q and differentiating with respect to x) we have

∂q

∂τ
=

∂

∂x

(
α

q2
∂q

∂x

)
, x ∈ (0, L(τ)). (22)
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The same change of variables applied to the boundary conditions in equation (17) yields

∂q

∂x

∣∣∣∣
x=0

= 0 and
(

1

2q2
∂q

∂x
+ aq − 1

)∣∣∣∣
x=L(τ)

= 0. (23)

As a check on the validity of the derived boundary conditions, we note that the system

must conserve total cell density, i.e.

d
dτ

∫ L(τ)

0

q(x, τ) dx = 0. (24)

Evaluating the above expression gives (again, using the characteristic equation (21))

d
dτ

∫ L(τ)

0

q(x, τ) dx =
dL(τ)

dτ
q(L(τ), τ) +

∫ L(τ)

0

∂q

∂τ
(x, τ) dx

=
dL(τ)

dτ
q(L(τ), τ) +

∫ L(τ)

0

∂

∂x

[
α

q2
∂q

∂x

]
dx

=

[
− α
q3
∂q

∂x
q +

α

q2
∂q

∂x

]∣∣∣∣
x=L(τ)

− α

q2
∂q

∂x

∣∣∣∣∣
x=0

= 0. (25)

Therefore total density is conserved using the derived boundary conditions. Note that the

boundary condition applied at the free, right-hand boundary, L(τ), is slightly different to

that derived in [13], where the boundary condition was derived by neglecting terms that

are O(1/N) and is of the form q = 1/a for x = L(τ).

To establish initial conditions, we use equation (18) together with a finite difference

approximation to write

2 = (i+1)−(i−1) =

∫ x0i+1

x0i−1

q(x, 0)dx ≈
(
x0i+1 − x0i−1

)
q0
(
x0i
)
, i = 1, . . . , N−1, (26)

which can be rearranged to give

q0
(
x0i
)

=
2

x0i+1 − x0i−1
, i = 1, . . . , N − 1. (27)

A similar finite difference approximation applied at the left- and right-hand boundaries

gives

q0(0) =
1

x01
and q0(x

0
N) =

1

x0N − x0N−1
. (28)
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We treat q0(x) as piecewise linear between node positions.

3.2.1. Numerical solution

In summary, the coarse-grained model consists of a PDE for the evolution of cell

density
∂q

∂τ
=

∂

∂x

(
α

q2
∂q

∂x

)
, x ∈ (0, L(τ)), (29)

together with boundary conditions

∂q

∂x

∣∣∣∣
x=0

= 0 and
(

1

2q2
∂q

∂x
+ aq − 1

)∣∣∣∣
x=L(τ)

= 0, (30)

and initial condition

q(x, 0) = q0(x), x ∈ (0, L(0)). (31)

The characteristic equation is

∂x

∂τ
= − α

q3
∂q

∂x
, x ∈ [0, L(τ)], (32)

and we can use it to specify the evolution of the domain with time. In particular, we have

dL(τ)

dτ
=

(
− α
q3
∂q

∂x

)∣∣∣∣
L(τ)

. (33)

In order to solve equations (29)–(33) numerically we employ a Lagrangian transfor-

mation to map the free boundary problem to a fixed domain. We let τ = T and

x = Γ(X,T ) with X = Γ(X, 0), 0 = Γ(0, T ), L(T ) = Γ(L(0), T ), (34)

so that
∂

∂x
=

1

ΓX

∂

∂X
and

∂

∂τ
=

∂

∂T
− 1

ΓX

∂Γ

∂T

∂

∂T
, (35)

where we have adopted the notation ∂Γ/∂X = ΓX . Substitution into equations equa-

tions (29) and (33) yields equations for evolution of the domain and the density therein:

∂Γ

∂T
= − α

q3
1

ΓX

∂q

∂X
, X ∈ (0, L(0)); (36)

∂q

∂T
− 1

ΓX

∂Γ

∂T

∂q

∂X
=

1

ΓX

∂

∂X

(
α

q2
1

ΓX

∂q

∂X

)
, X ∈ (0, L(0)). (37)
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The initial and boundary conditions for Γ(X,T ) are specified in equation (34), and for

q(X,T ) we have

∂q

∂X

∣∣∣∣
X=0

= 0 and
(

1

2q2
1

ΓX

∂q

∂X
+ aq − 1

)∣∣∣∣
X=L(0)

= 0, (38)

together with

q(X, 0) = q0(X) X ∈ (0, L(0)). (39)

We solve the model numerically using an implicit finite difference method with Picard

iteration. Full details are given in Appendix A.

3.3. Results

The coarse-grained PDE model is very accurate in its prediction of both evolution

of the cell density, q(x, τ), and the free boundary at x = L(τ) (see Figure 2), even for

relatively low cell numbers (here we show results for cell numbers as low as N = 15).

The accuracy of the PDE model increases as the cell number, N , increases; this is in

line with expectations since the error of the coarse-grained PDE model is O(1/N2). To

ensure sensible comparisons, the results in Figure 2 were generated by initialising N cells

with equal lengths in the interval x ∈ (0, 30) and varying the model parameters such that

α = 15(N/45)2 and a = 45/N . This choice ensures that the scalings for x and τ do not

change with increasing N . In each case, cells are initially compressed but will eventually

expand to fill the domain x ∈ (0, 45).

We also compare the results of our model against those derived in [13], where the

boundary condition at the free boundary was derived by neglecting terms O(1/N) and

is of the form q = 1/a for x = L(τ). As expected, the boundary condition derived here

leads to a more accurate prediction of the dynamics of the cell-based model because we

neglect only terms that are O(1/N2) rather than O(1/N).
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Figure 2: Comparison of the leading edge position, L(τ), and cell density, q(x, τ), predicted by the
cell-based model, equations (6)–(8), and the coarse-grained PDE model, equations (29)–(33), as the cell
number, N , is varied. In each case, aN = 45 and α/N2 = 135 are kept constant. On the left-hand side,
the leading edge position, L(τ), predicted by the cell-based model with N = 15 is plotted using purple
asterisks, whilst the prediction of the PDE model using the boundary conditions derived in Section 3.1
and stated in equation (23) is plotted as a dashed blue line. For comparison, the leading edge position
predicted using the boundary conditions of [13] is plotted as a solid blue line. On the right-hand side, the
error in the predictions of the coarse-grained model are shown for both the boundary conditions stated in
equation (23) (dashed lines), and those derived by [13] (solid lines), for a range of values of cell number,
N .
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Figure 3: The force laws, F (x), and the corresponding diffusion coefficient,D(q), considered in Section 4.1.

4. General force law model

In this section we generalise the 1D cell-based model to account for a more general

force law, Fi,i±1, between neighbouring nodes, i and i ± 1, in equations (2)-(4). For

concreteness, in our examples we will work with a force law of the form [15]

Fi,i±1 = F (|xi − xi±1|)
xi − xi±1
|xi − xi±1|

= k(a− |xi − xi±1|)n
xi − xi±1
|xi − xi±1|

, (40)

for some real valued exponent, n, where n = 1 gives a linear force law, as considered

in Section 3, n = 3 gives a cubic force law, and n = 3/2 gives the Hertz force law (see

Figure 3). These force laws are chosen to cover a wide range of potential cell interactions.

The nodes evolve over time according to

x0(t) = 0, (41)

η
dxi
dt

= F (xi − xi−1)− F (xi+1 − xi), i = 1, . . . , N − 1, (42)

η
dxN
dt

= F (xN − xN−1), (43)

where F (x) = k(a − x)n. The initial conditions are xi(0) = x0i for i = 1, . . . , N . As for

the linear force law case, we solve for the position of each node, xi, numerically using a

simple forward Euler method with time-step ∆t = 0.001. Exemplar results for the model

are shown in Figure 4, where we show how the leading edge and cell density of an initially

compressed population of cells evolves over time for the three different force laws.
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4.1. Continuum approximation

To derive a coarse-grained model we again, with a slight abuse of notation, extend

node positions, xi(t), to a smooth function x(i, t), for i ∈ [0, N ], and non-dimensionalise

equations (41)–(43) using similar scalings to the simple linear case,

ĩ =
i

N
, x̃ =

x

aN
, t̃ =

αan−1t

N2
=
kan−1t

ηN2
,

so that ĩ ∼ O(1) and x̃ ∼ O(1). We also define the non-dimensional force function to be

F̃ (·) = (1− ·)n. (44)

To derive an equivalent coarse-grained continuum model we proceed as in Section 3.1,

performing a Taylor expansion about ĩ within the non-dimensionalised system to give, on

neglecting terms which are O(1/N2),

∂x̃

∂t̃
= −F̃ ′

(
∂x̃

∂ĩ

)
∂2x̃

∂ĩ2
, ĩ ∈ (0, 1). (45)

The left-hand boundary condition remains as x̃(0, t̃) = 0 and, as before, to derive the

right-hand boundary condition we Taylor expand and neglect terms which are O(1/N2)

to give, at ĩ = 1,
1

N

∂x̃

∂t̃
= F̃

(
∂x̃

∂ĩ

)
− 1

2N
F̃ ′
(
∂x̃

∂ĩ

)
∂2x̃

∂ĩ2
. (46)

Rewriting in terms of dimensional variables we have the following PDE for x(i, t):

η
∂x

∂t
= −F ′

(
∂x

∂i

)
∂2x

∂i2
, i ∈ (0, N). (47)

The boundary conditions are

x(0, t) = 0 and η
∂x

∂t

∣∣∣∣
i=N

=

[
F

(
∂x

∂i

)
− 1

2

∂2x

∂i2
F ′
(
∂x

∂i

)]∣∣∣∣
i=N

. (48)

As before, the initial conditions can be specified by extending the discrete initial condi-

tions, xi(0) = x0i for i = 1, . . . , N , to a continuous function x(i, 0) such that x(i, 0) = x0i

for i = 1, . . . , N . As a consistency check, we note that when n = 1, as for the linear force

law, equations (47) and (48) reduce to equations (16) and (17).
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4.2. Derivation of the corresponding cell density model

We can establish a PDE describing the evolution of cell density with position, x, and

time, t, by making the same change of variables as in Section 3.2. Following a simple

substitution of terms from equations (19) and (20) into equation (47) we obtain the PDE

η
∂x

∂τ
=

1

q3
F ′
(

1

q

)
∂q

∂x
, x ∈ [0, L(τ)], (49)

which represents how the domain, x, evolves along characteristics with constant index.

Substitution of equations (19) and (20), and a simple rearrangement (multiplying by q

and differentiating with respect to x, identical to earlier arguments), results in a PDE for

the cell density of the form

∂q

∂τ
=

∂

∂x

(
D(q)

∂q

∂x

)
, x ∈ (0, L(τ)), (50)

where the diffusion coefficient, D(q), is defined as

D(q) = − 1

ηq2
F ′
(

1

q

)
. (51)

The characteristic equation (49) can then be rewritten as

∂x

∂τ
= −1

q
D(q)

∂q

∂x
, x ∈ [0, L(τ)]. (52)

Under the same change of variables, boundary conditions become

∂q

∂x

∣∣∣∣
x=0

= 0 and
(

1

η
F

(
1

q

)
+

1

2q
D(q)

∂q

∂x

)∣∣∣∣
x=L(τ)

= 0. (53)

As in Section 3.2, we note that the system conserves total cell density:

d
dτ

∫ L(τ)

0

q(x, τ) dx =
dL(τ)

dτ
q(L(τ), τ) +

∫ L(τ)

0

∂q

∂τ
(x, τ) dx

=
dL(τ)

dτ
q(L(τ), τ) +

∫ L(τ)

0

∂

∂x

[
D(q)

∂q

∂x

]
dx

=

[
−1

q
D(q)

∂q

∂x
q +D(q)

∂q

∂x

]∣∣∣∣
x=L(τ)

−D(q)
∂q

∂x

∣∣∣∣∣
x=0

= 0, (54)
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where the final result is established using equation (52).

4.2.1. Numerical solution

In summary, the coarse-grained model consists of a PDE for the evolution of cell

density,
∂q

∂τ
=

∂

∂x

[
D(q)

∂q

∂x

]
, x ∈ (0, L(τ)), (55)

together with the boundary conditions

∂q

∂x

∣∣∣∣
x=0

= 0 and
[

1

η
F

(
1

q

)
+
D(q)

2q

∂q

∂x

]∣∣∣∣
x=L(τ)

= 0, (56)

and initial condition

q(x, 0) = q0(x), x ∈ (0, L(0)). (57)

The characteristic equation is

∂x

∂τ
= −1

q
D(q)

∂q

∂x
. x ∈ [0, L(τ)], (58)

and we can use it to specify the evolution of the domain with time. In particular, we have

dL(τ)

dτ
=

(
−1

q
D(q)

∂q

∂x

)∣∣∣∣
L(τ)

. (59)

As in Section 3.2.1, in order to solve the coarse-grained model numerically, we employ

a Lagrangian transformation to map the free boundary problem to a fixed domain: we

let τ = T and

x = Γ(X,T ) with X = Γ(X, 0), 0 = Γ(0, T ), L(T ) = Γ(L(0), T ), (60)

to give

∂Γ

∂T
= −D(q)

qΓX

∂q

∂X
, X ∈ (0, L(0)), (61)

∂q

∂T
− 1

ΓX

∂Γ

∂T

∂q

∂X
=

1

ΓX

∂

∂X

(
D(q)

ΓX

∂q

∂X

)
, X ∈ (0, L(0)). (62)
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The initial and boundary conditions for Γ(X,T ) are specified in equation (34), and

for q(X,T ) we have

∂q

∂X

∣∣∣∣
X=0

= 0 and
[

1

η
F

(
1

q

)
+
D(q)

2qΓX

∂q

∂X

]∣∣∣∣
X=L(0)

= 0, (63)

together with

q(X, 0) = q0(X) X ∈ (0, L(0)). (64)

We solve the model numerically using an implicit finite difference method with Picard

iteration. Full details are given in Appendix A.

4.3. Results

Across all force laws tested, the coarse-grained PDE model is very accurate in its

prediction of both evolution of the cell density, q(x, τ), and the free boundary at x = L(τ)

(see Figure 4). The only minor deviation in the predictions of the models is found at the

leading edge, where the gradient in the cell density is largest. Note that in this region the

approximation of the density in the cell-based model is lower order in N , so this deviation

could perhaps be reasonably expected.
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Figure 4: Comparison of the leading edge position, L(τ), and cell density, q(x, τ), predicted by the
cell-based model, equations (41)–(43) with the force law as defined in (40) (purple asterisks), and the
coarse-grained PDE model, equation (55)–(59) (blue dashed line), as the force law is varied (see Figure 3).
In each case, N = 45 cells are initialised uniformly in x ∈ (0, 30), and aN = 45 and α/a1−nN2 = 135 are
fixed.
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5. Introducing proliferation into the model

In this section, we extend the model to include proliferation. The mechanism that

we incorporate is stochastic, with each cell dividing with a defined rate per unit time.

We derive a coarse-grained PDE model to describe the evolution of the domain, and cell

density therein, over time, and demonstrate the validity of the coarse-grained model by

comparing its solution to averaged results from the cell-based model.

5.1. Proliferation mechanism

To extend the model to include proliferation, we assume that each cell proliferates

stochastically at a rate per unit time that is a function of its length. That is, the proba-

bility that cell i divides in the time interval [t, t+ dt) is Gidt where Gi = G(|xi − xi−1|).

When a cell proliferates, a new node is introduced at its centre to establish the daughter

cells, and we relabel the node indices to ensure their order, that is, xi(t) < xi+1(t) for

i = 0, . . . , N(t) and t ≥ 0. Subsequently, when a new node (and cell) is introduced due to

the proliferation of the ith cell, we relabel the nodes with indices j = i + 1, . . . , N using

j 7→ j + 1, as shown in Figure 5. In this work, we explore the dynamics introduced by

three different types of proliferation mechanism: (i) cells proliferate at constant rate; (ii)

cells proliferate at rate proportional to their length; and (iii) cells proliferate once they

have reached a target length3. Specific functional forms for the growth rates we consider

in this work are provided in Figure 6.

x0 = 0 x1 xi−1 xi xi+1 xN−1 xN

x0 = 0 x1 xi−1 xi xi+1 xi+2 xN xN+1

cell 1 cell i cell i+ 1 cell N

cell 1 cell i cell i+ 1 cell i+ 2 cell N + 1

Figure 5: Proliferation of cell i entails the introduction of a new node at the cell centre, and relevant
nodes and cells are then relabelled to ensure xj < xj+1 for j ∈ {0, 1, . . . , N}.

3Note that to avoid discontinuities, in this case we use a smoothed version of the Heaviside function,
as given in Figure 6.
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Figure 6: The proliferation laws considered in Section 5.

To generate individual realisations of this discrete stochastic model we use a constant

time-step algorithm, with time-step ∆t = 0.001. At each step, we first update the posi-

tion of each node, xi, i = 1, . . . , N , by using a simple forward Euler method to integrate

equations (41)-(43) numerically, then we check to see whether a cell proliferation event

occurs (and, if so, which cell proliferates). A cell proliferation event occurs with prob-

ability
∑N

j=0Gj∆t and, given a cell proliferation event occurs, the probability that cell

i proliferates is Gi/
∑N

j=0Gj, i = 1, . . . , N . In each case, we use rejection sampling to

implement the decision, and if a cell proliferation occurs, we update the node indices as

indicated in Figure 5. Note that this algorithm enforces the condition that at most one

cell can proliferate per time-step; this is a reasonable approximation for the parameters

used in this work.
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5.2. Derivation of cell density model with proliferation

As the proliferation mechanism we have introduced is stochastic, we now consider

evolution of the expected positions of the nodes over time. We make progress by consid-

ering the system over an infinitesimally small time interval [t, t+dt) and condition on cell

proliferation taking place during that time interval to write, for i = 1, . . . , N − 1,

xNi (t+ dt) =

(
xNi (t) + dt

FN
i,i−1 − FN

i,i+1

η

)
×1 {no proliferation in [t, t+ dt)}(

xN−1i (t) + dt
FN−1
i,i−1 − FN−1

i,i+1

η

)
×1 {proliferation to the right of cell i in [t, t+ dt)}

+
1

2

[(
xN−1i (t) + dt

FN−1
i,i−1 − FN−1

i,i+1

η

)
+

(
xN−1i−1 (t) + dt

FN−1
i−1,i−2 − FN−1

i−1,i

η

)]
×1 {proliferation of cell i in [t, t+ dt)}

+

(
xN−1i−1 (t) + dt

FN−1
i−1,i−2 − FN−1

i−1,i

η

)
×1 {proliferation to the left of cell i in [t, t+ dt)}

+ (position of cell i if more than one proliferation event in [t, t+ dt))

×1 {more than one cell proliferation event in [t, t+ dt)} , (65)

and

xNN(t+ dt) =

(
xNN(t) + dt

FN
N,N−1

η

)
×1 {no proliferation in [t, t+ dt)}(

xN−1N (t) + dt
FN−1
N,N−1

η

)
×1 {proliferation to the right of cell N in [t, t+ dt)}

+
1

2

[(
xN−1N (t) + dt

FN−1
N,N−1

η

)
+

(
xN−1N−1(t) + dt

FN−1
N−1,N−2 − F

N−1
N−1,N

η

)]
×1 {proliferation of cell N in [t, t+ dt)}

+

(
xN−1N−1(t) + dt

FN−1
N−1,N−2 − F

N−1
N−1,N

η

)
×1 {proliferation to the left of cell N in [t, t+ dt)}

+ (position of cell N if more than one proliferation event in [t, t+ dt))

×1 {more than one cell proliferation event in [t, t+ dt)} . (66)
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In equations (65) and (66) and 1 is the indicator function and XN
i (t) is the position of cell

i at time t when there are N cells. The superscript N on the force terms, Fi,j, indicate

that they are evaluated using the positions of cells i and j when there are N cells.

The required probabilities to specify the indicator functions are

P (no proliferation in [t, t+ dt)) = 1− dt
N∑
j=1

G (xj − xj−1) , (67)

P (proliferation to the right of cell i in [t, t+ dt)) =


dt

N∑
j=i+1

G (xj − xj−1) j 6= N,

0 j = N,

(68)

P (proliferation of cell i in [t, t+ dt)) = dtG (xi − xi−1) , (69)

P (proliferation to the left of cell i in [t, t+ dt)) =


dt

i−1∑
j=1

G (xj − xj−1) j 6= 1,

0 j = 1,

(70)

and

P (more than one cell proliferation event in [t, t+ dt)) = O
(
dt2
)
. (71)

We now take expectations on both sides of equations (65) and (66), denoting by
〈
xNi (t)

〉
the expected position of node i at time t when there are N nodes. We then make two

simplifying assumptions: (i) that
〈
xNi (t)

〉
is a continuous function of time; and (ii) that〈

F
(
xNi (t)

)〉
= F

(〈
xNi (t)

〉 )
and

〈
G
(
xNi (t)

)〉
= G

(〈
xNi (t)

〉 )
. The former allows us to
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rearrange and take the limit as dt→ 0 and, together with the latter, we have

〈
xN0 (t)

〉
= 0, (72)

η
d
dt
〈
xNi (t)

〉
= F

(〈
xNi (t)

〉
−
〈
xNi−1(t)

〉 )
− F

(〈
xNi+1(t)

〉
−
〈
xNi (t)

〉 )
−η
〈
xN−1i (t)

〉 i∑
j=1

G
(〈
xN−1j (t)

〉
−
〈
xN−1j−1 (t)

〉 )
+
η

2

(〈
xN−1i (t)

〉
+
〈
xN−1i−1 (t)

〉 )
G
(〈
xN−1i (t)

〉
−
〈
xN−1i−1 (t)

〉 )
(73)

+η
〈
xN−1i−1 (t)

〉 i−1∑
j=1

G
(〈
xN−1j (t)

〉
−
〈
xN−1j−1 (t)

〉 )
, i = 1, . . . , N − 1,

η
d
dt
〈
xNN(t)

〉
= F

(〈
xNN(t)

〉
−
〈
xNN−1(t)

〉 )
−η
〈
xN−1N (t)

〉 N∑
j=1

G
(〈
xN−1j (t)

〉
−
〈
xN−1j−1 (t)

〉 )
+
η

2

(〈
xN−1N (t)

〉
+
〈
xN−1N−1(t)

〉 )
G
(〈
xN−1N (t)

〉
−
〈
xN−1N−1(t)

〉 )
+η
〈
xN−1N−1(t)

〉 N−1∑
j=1

G
(〈
xN−1j (t)

〉
−
〈
xN−1j−1 (t)

〉 )
. (74)

5.3. Continuum approximation

To enable a continuum approximation to be formulated we make the further approxi-

mation
〈
xNi (t)

〉
=
〈
xN−1i (t)

〉
, and to simplify exposition going forward, we will drop use

of the angle brackets. After algebraic simplification, we have

x0(t) = 0, (75)

η
dxi
dt

= F (xi − xi−1)− F (xi+1 − xi) (76)

−η (xi − xi−1)

[
i−1∑
j=1

G (xj − xj−1) +
1

2
G (xi − xi−1)

]
, i = 1, . . . , N − 1,

η
dxN
dt

= F (xN − xN−1)

−η (xN − xN−1)

[
N−1∑
j=1

G (xj − xj−1) +
1

2
G (xN − xN−1)

]
. (77)
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To make progress in deriving an equivalent continuum, coarse-grained model, we proceed

as before: we extend node position, xi(t), to a smooth function x(i, t) for i ∈ [0, N(t)],

and non-dimensionalise using the scalings

ĩ =
i

N0

, x̃ =
x

aN0

, Ñ =
N

N0

, t̃ =
tkan−1

ηN2
0

,

where N0 = N(0), the number of nodes at t = 0. We also define the non-dimensional

proliferation function such that

G̃(·) =
ηN0

kan−1
G(a ·), (78)

and the non-dimensional force function is as specified in equation (44).

We then work in the same manner as before, using Taylor expansion together with

approximations of the form

i−1∑
j=1

G (xj − xj−1) +
1

2
G (xi − xi−1) ≈

∫ i

j=0

G (xj − xj−1) dj, (79)

to give, upon neglecting terms that are O(1/N2
0 ),

∂x̃

∂t̃
+
∂x̃

∂ĩ

∫ ĩ

0

G̃

(
∂x̃

∂j̃

)
dj̃ = −F̃ ′

(
∂x̃

∂ĩ

)
∂2x̃

∂ĩ2
+

1

2N0

∂2x̃

∂ĩ2

∫ ĩ

0

G̃

(
∂x̃

∂j̃

)
dj̃, ĩ ∈ [0, Ñ(t̃)].

(80)

The left-hand boundary condition remains as x̃(0, t̃) = 0 and, once again, we derive

the right-hand boundary condition by Taylor expanding and neglecting terms that are

O(1/N2) to give, at ĩ = Ñ(t̃),

1

N0

∂x̃

∂t̃
= F̃

(
∂x̃

∂ĩ

)
− 1

2N0

F̃ ′
(
∂x̃

∂ĩ

)
∂2x̃

∂ĩ2
− 1

N0

∂x̃

∂ĩ

∫ Ñ

0

G̃

(
∂x̃

∂j̃

)
dj̃. (81)

Rewriting equation (80) in terms of the dimensional variables we have the following PDE

for x(i, t):

η
∂x

∂t
+ η

∂x

∂i

∫ i

0

G

(
∂x

∂j

)
dj = −F ′

(
∂x

∂i

)
∂2x

∂i2
+
η

2

∂2x

∂i2

∫ i

0

G

(
∂x

∂i

)
dj i ∈ (0, N(t)).

(82)
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The boundary conditions are

x(0, t) = 0 and η
∂x

∂t

∣∣∣∣
i=N(t)

=

[
F

(
∂x

∂i

)
− 1

2

∂2x

∂i2
F ′
(
∂x

∂i

)
− η∂x

∂i

∫ i

0

G

(
∂x

∂j

)
dj
]∣∣∣∣
i=N(t)

.

(83)

As before, the initial conditions can be specified by extending the discrete initial condi-

tions, xi(0) = x0i for i = 1, . . . , N(0), to a continuous function x(i, 0) such that x(i, 0) = x0i

for i = 1, . . . , N(0).

5.4. Derivation of the corresponding cell density model

We now establish a PDE describing the evolution of cell density with position, x,

and time, t, for a proliferative cell population with general force and proliferation laws.

Changing variables from (i, t) to (x, τ), as before, with a simple substitution of terms from

equations (19) and (20) into equation (82) we obtain the PDE

η
∂x

∂τ
+
η

q

∫ x

0

q G

(
1

q

)
dy =

1

q3
F ′
(

1

q

)
∂q

∂x
− η

2q3
∂q

∂x

∫ x

0

q G

(
1

q

)
dy, x ∈ [0, L(τ)],

(84)

which represents how the domain evolves along the characteristics. Note that, due to

proliferation, this is no longer equivalent to following constant cell index, i.

After further rearrangement, as before, we have

∂q

∂τ
=

∂

∂x

([
D(q) + E(q)

] ∂q
∂x

)
+ q G

(
1

q

)
, x ∈ (0, L(τ)), (85)

where

D(q) = − 1

ηq2
F ′
(

1

q

)
and E(q) =

1

2q2

∫ x

0

q G

(
1

q

)
dy. (86)

Under the same change of variables, the boundary conditions become

∂q

∂x

∣∣∣∣
x=0

= 0 and
[

1

η
F

(
1

q

)
+

(
D(q)

2q
+
E(q)

q

)
∂q

∂x

]∣∣∣∣
x=L(τ)

= 0, (87)

and the initial conditions, computed as in Section 3.1, are

q(x, 0) = q0(x), x ∈ (0, L(0)). (88)
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Using equation (86), characteristic equation (84) can be re-written as

Dx
Dτ

=
∂x

∂τ
+

1

q

∫ x

0

q G

(
1

q

)
dy = −1

q

[
D(q) + E(q)

] ∂q
∂x
, x ∈ [0, L(τ)], (89)

That the left-hand side of equation (89) constitutes a material derivative can be seen

by following a small “tissue element” as the cell population grows and divides. We have

x = x(i(t), t) with

Dx
Dτ

=
∂x

∂τ
+
∂x

∂i

∂i

∂τ
=
∂x

∂τ
+

1

q

∫ x

0

q G

(
1

q

)
dy, (90)

where we have used the fact that the rate of change of cell index is equal to the rate of

cell proliferation in the region to the left of the cell i.e.

∂i

∂τ
=

∫ x

0

q G

(
1

q

)
dy. (91)

Finally, using equation (89) we can specify the rate of growth of the domain over time as

dL(τ)

dτ
=

(
−1

q

[
D(q) + E(q)

] ∂q
∂x

)∣∣∣∣
L(τ)

. (92)

5.5. Evolution of cell number

Note that, since cell proliferation is now present in the model, the cell number changes

over time and the system does not conserve mass. The cell number at time τ is specified

by equation (18) as

N(τ) =

∫ L(τ)

0

q(x, τ) dx. (93)

Differentiating with respect to τ and using the left-hand boundary condition (97) gives

dN
dτ

=
dL
dτ
q(L(τ), τ) +

∫ L(τ)

0

∂q

∂τ
(x, τ) dx,

=
dL
dτ
q(L(τ), τ) +

∫ L(τ)

0

{
∂

∂x

([
D(q) + E(q)

] ∂q
∂x

)
+ q G

(
1

q

)}
dx,

=

[
dL
dτ
q +

[
D(q) + E(q)

] ∂q
∂x

]∣∣∣∣
x=L(τ)

+

∫ L(τ)

0

q G

(
1

q

)
dx, (94)
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Substituting equation (92) into equation (94) gives the rate of change of cell number over

time as
dN
dτ

=

∫ L(τ)

0

q G

(
1

q

)
dy. (95)

This equation states simply and intuitively that the rate of change of cell number is simply

equal to the sum of the proliferation rates of each cell.

5.6. Numerical solution

In summary, the coarse-grained model consists of a PDE for the evolution of cell

density
∂q

∂τ
=

∂

∂x

([
D(q) + E(q)

] ∂q
∂x

)
+ q G

(
1

q

)
, x ∈ (0, L(τ)), (96)

together with boundary conditions

∂q

∂x

∣∣∣∣
x=0

= 0 and
[

1

η
F

(
1

q

)
+

(
D(q)

2q
+
E(q)

q

)
∂q

∂x

]∣∣∣∣
x=L(τ)

= 0, (97)

and initial condition

q(x, 0) = q0(x), x ∈ (0, L(0)). (98)

The characteristic equation is

Dx
Dτ

=
∂x

∂τ
+

1

q

∫ x

0

q G

(
1

q

)
dy = −1

q

[
D(q) + E(q)

] ∂q
∂x
, x ∈ [0, L(τ)], (99)

and we have
dL(τ)

dτ
=

(
−1

q

[
D(q) + E(q)

] ∂q
∂x

)∣∣∣∣
L(τ)

. (100)

As in Section 3.2.1 and Section 4.2.1, in order to solve the coarse-grained model nu-

merically, we employ a Lagrangian transformation to map the free boundary problem to

a fixed domain: we let τ = T and

x = Γ(X,T ) with X = Γ(X, 0), 0 = Γ(0, T ), L(T ) = Γ(L(0), T ), (101)
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to give

∂Γ

∂T
= −D(q) + E(q)

qΓX

∂q

∂X
, X ∈ (0, L(0)), (102)

∂q

∂T
− 1

ΓX

∂Γ

∂T

∂q

∂X
=

1

ΓX

∂

∂X

(
D(q) + E(q)

ΓX

∂q

∂X

)
+ q G

(
1

q

)
, X ∈ (0, L(0)).(103)

The initial and boundary conditions for Γ(X,T ) are specified in equation (101), and for

q(X,T ) we have

∂q

∂X

∣∣∣∣
X=0

= 0 and
[

1

η
F

(
1

q

)
+

1

qΓX

(
D(q)

2
+ E(q)

)
∂q

∂X

]∣∣∣∣
X=L(0)

= 0, (104)

together with

q(X, 0) = q0(X) X ∈ (0, L(0)). (105)

We solve the model numerically using an implicit finite difference method with Picard

iteration. Full details are given in Appendix A.

5.7. Results

To demonstrate the validity of the coarse-grained model, we compare the solution of

the PDE system, equations (96)–(100), with 100 averaged realisations of the discrete,

stochastic model. Across all force laws and proliferation functions tested, the coarse-

grained PDE model is very accurate in its prediction of both evolution of the mean cell

number, N(τ), and the mean position of the free boundary at x = L(τ) (see Figure 7

and Figure 8, respectively)4. The different force laws and proliferation functions result

in quite different behaviours, in particular how quickly the leading edge expands or how

rapidly the number of cells grows.

6. Discussion and outlook

In this work we study a one-dimensional cell-based model of an epithelial sheet of

cells where individual cells move deterministically and proliferate stochastically. This

cell-based mechanical model gives rise to a moving boundary problem on the domain

0 < x < L(τ), where τ is time. We construct a continuum-limit description of the cell-

4For example, the agreement of the models for varying α/β (doubled and halved) is also excellent
(results not shown).
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Figure 7: Comparison of the number of cells, N(τ), predicted by the cell-based model described in Sec-
tion 5.1 (purple asterisks, and accompanying error bars), and the coarse-grained model, equations (96)–
(100) (blue dashed line), for varying force laws and proliferation functions. Each row represents a different
force law, whereas each column represents a different proliferation function. Each force law is defined
and visualised in Figure 3, and each proliferation function is defined and visualised in Figure 6. In each
case, we display averaged results from 100 realisations of the stochastic model, N = 30 cells are initialised
uniformly in x ∈ (0, 30) and a = 1, α = 15, and β = 0.001.
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Figure 8: Comparison of the leading edge position, L(τ), predicted by the cell-based model described
in Section 5.1 (purple asterisks, and accompanying error bars), and the coarse-grained model, equa-
tions (96)–(100) (blue dashed line), for varying force laws and proliferation functions. Each row represents
a different force law, whereas each column represents a different proliferation function. Each force law is
defined and visualised in Figure 3, and each proliferation function is defined and visualised in Figure 6.
In each case, we display averaged results from 100 realisations of the stochastic model, N = 30 cells are
initialised uniformly in x ∈ (0, 30) and a = 1, α = 15, and β = 0.001.

29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 13, 2018. ; https://doi.org/10.1101/433813doi: bioRxiv preprint 

https://doi.org/10.1101/433813


based model, leading to a novel moving boundary PDE description governing the density

of the cells within the evolving domain, 0 < x < L(τ), as well as a moving boundary

condition governing the evolution of L(τ). Our results show that care must be taken to

arrive at a moving boundary condition that conserves mass appropriately.

There are many ways that our modelling approach can be extended, both from a theo-

retical point of view and a biological point of view. In all cases considered, we always study

problems leading to an expanding population of cells where L(τ) is an increasing function

of time. While these sets of problems are biologically relevant since they correspond to

growing tissues, an interesting extension of our work would be to consider incorporating

cell death and cell extrusion so that the model can be used to study both tissue growth

and tissue shrinkage [25]. Other avenues for interesting extensions would be to consider

the incorporation of internal boundaries within a mixed heterogeneous population so that

the model could be used to study the interactions between an invasive population, such as

a population of tumour cells, that invades into a surrounding population of non-invasive

cells [6]. Furthermore, an obvious extension of the current work would be to two or three

dimensions [22, 26]. In terms of biological applications, mechanical models describing cell

migration and cell proliferation are important in wound healing [4], development [10], and

cancer progression [20] and detection [7]. In all of these various applications we expect

that experimental and clinical data will encompass both individual cell-based information

as well as population-level, tissue-scale information. Therefore, the general framework

of developing and applying cell-based models to study a particular phenomena while si-

multaneously working with a coarse-grained approximation to provide population-level

information will be important to ensure that we get the most out of taking a combined

modelling and experimental approach to studying particular biological phenomena.
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Appendix A. Numerical solution of the full system

We solve equations (101)–(105) numerically using a finite difference scheme with Picard

iteration. Algorithm 1 provides the scheme used for Picard iteration. The tolerance for

the Picard iteration step is ε = 10−4, where the distance between solutions, d(qk, qk+1), is

computed using the sum of squared differences over all space points, and the space step

and time step are dX = 0.01 and dτ = 0.001, respectively.

Algorithm 1 Picard iteration for the PDE system, equations (101)–(105), derived in
Section 5.6.
τ = 0, k = 1
while τ < T do

for j = 1 to j = J do
if k = 1 then

qkj = q
(prev)
j , Γkj = Γ

(prev)
j

end if
Solve for Γk+1

j using qkj−1, qkj , qkj+1 and Γkj−1, Γkj , Γkj+1

Solve for qk+1
j using qkj−1, qkj , qkj+1 and Γk+1

j , Γk+1
j−1 , Γk+1

j+1

end for
if d(qk, qk+1) < ε then

q(prev) = qk+1, Γ(prev) = Γk+1

k = 1
τ = τ + dτ

else
k = k + 1

end if
end while

Within the Picard algorithm, equation (102) is discretised as

Γk+1
j = Γ

(prev)
j − δτ

D
(
qkj
)

+ E
(
qkj
)

qkj

qkj+1 − qkj−1
Γkj+1 − Γkj−1

, (A.1)

and equation (103) as

qk+1
j = q

(prev)
j + δτ

{
qkjG

(
qkj
)

+
Γk+1
j − Γ

(prev)
j

δt

qk+1
j+1 − qk+1

j−1(
Γk+1
j+1 − Γk+1

j−1
)2

+
2δX

Γk+1
j+1 − Γk+1

j−1

1

δX

[
D
(
qkj+1

)
+D

(
qkj
)

2
+
E
(
qkj+1

)
+ E

(
qkj
)

2

]
qk+1
j+1 − qk+1

j

Γk+1
j+1 − Γk+1

j

− 2δX

Γk+1
j+1 − Γk+1

j−1

1

δX

[
D
(
qkj
)

+D
(
qkj−1

)
2

+
E
(
qkj
)

+ E
(
qkj−1

)
2

]
qk+1
j − qk+1

j−1

Γk+1
j − Γk+1

j−1

}
,

(A.2)
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where the subscript, j, indexes the space step, the superscript, k, the Picard iteration

step. Equation (A.2) can be rearranged to give

qk+1
j = qkj + δτ qkj G(qkj )

+ δτ

[
−

Γk+1
j − Γ

(prev)
j

δt
(
Γk+1
j+1 − Γk+1

j−1
)2 +

D(qkj ) +D(qkj−1) + E(qkj ) + E(qkj−1)(
Γk+1
j − Γk+1

j−1
) (

Γk+1
j+1 − Γk+1

j−1
) ]

qk+1
j−1

+ δτ

[
−
D(qkj+1) +D(qkj ) + E(qkj+1) + E(qkj )(

Γk+1
j+1 − Γk+1

j

) (
Γk+1
j+1 − Γk+1

j−1
)

−
D(qkj ) +D(qkj−1) + E(qkj ) + E(qkj−1)(

Γk+1
j − Γk+1

j−1
) (

Γk+1
j+1 − Γk+1

j−1
) ]

qk+1
j

+ δτ

[
Γk+1
j − Γ

(prev)
j

δt(Γk+1
j+1 − Γk+1

j−1)2
+
D(qkj+1) +D(qkj ) + E(qkj+1) + E(qkj )(

Γk+1
j+1 − Γk+1

j

) (
Γk+1
j+1 − Γk+1

j−1
) ]

qk+1
j+1 , (A.3)

and then solved using the tridiagonal matrix algorithm.
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