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Abstract   

Despite the increasing significance of sense of agency (SoA) research, the literature lacks a 
formal model: what computational principles underlie SoA, the registration that oneself 
initiated an action that caused something to happen? We theorize SoA in the framework of 
optimal Bayesian cue integration with mutually involved principles, namely, reliability of 
action and outcome sensory signals, their consistency with the causation of the outcome by the 
action, and the prior belief in causation. We used our Bayesian model to explain the intentional 
binding effect, hailed as reliable indicator of SoA. Our model explains temporal binding in 
both self-intended and unintentional actions suggesting that intentionality is not strictly 
necessary given high confidence in the action causing the outcome. Our Bayesian model also 
explains that if the sensory cues are reliable, SoA can emerge even for unintended actions. Our 
formal model therefore posits a precision-dependent causal agency. 
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The number of scientific contributions being added to the theoretical literature of sense of 
agency (SoA) has significantly increased at least in the past two decades1,2. The concept has 
garnered considerable attention in psychology, philosophy, neuroscience and 
psychopathology3. SoA is the registration4 that the self initiates an action in order to interact 
with and influence its external environment5. It has been posited that SoA is fundamental to 
the experience of volition6-9 and to self-consciousness because of its self-other distinction10-12, 
and the degradation of this experience characterizes certain psychiatric and neurological 
disorders13-15. Furthermore, SoA has recently been suggested to underpin neuroethics and law 
due to the role it plays in the social concept of responsibility for one’s own actions5,9,16,17.  

Despite its increasing significance, the literature still lacks the computational principles 
that underlie SoA. We theorize SoA as the confidence in one’s perception of the action-
outcome effect and that it is consistent (e.g., spatially or temporally) with the hypothesis that 
the action caused the outcome. We adapted the model of Sato, Toyoizumi and Aihara18 that 
was originally used to explain the ventriloquism effect as a Bayesian estimate of a common 
cause behind the consistency of the audiovisual stimuli. Formalizing SoA by this Bayesian 
psychophysics principle distinguishes our theory from existing works. 

We compared the predictions of our model to the results of two pertinent intentional 
binding studies. Intentional binding, which is the perceived compression of the time interval 
between voluntary action and its outcome, has been reported as reliable implicit measure of 
SoA and has been used in a large number of studies providing valuable analyses on the 
temporal perception of action-outcome effects and the nature of SoA19. The seminal 
experiment of Haggard, Clark & Kalogeras6 investigated the perceived action-outcome timing 
effects in three conditions: voluntary wherein the subject intentionally presses a button, 
involuntary wherein muscle twitches of the subject’s hand are induced by a transcranial 
magnetic stimulation (TMS) applied to the motor cortex, and sham TMS wherein the TMS on 
the parietal cortex produces audible clicks but no movement (hereafter, voluntary, involuntary, 
and sham conditions, respectively). Haggard and colleagues computed the time interval 
between the perceived action timings (with the timings of either voluntary actions, muscle 
twitches, or audible TMS clicks as control experiment) and the perceived timings of subsequent 
tone stimuli. They showed that voluntary actions produced intentional binding, involuntary 
muscle twitches produced repulsion, i.e., prolonged opposite perception of the action-outcome 
intervals, and audible TMS clicks produced neither binding nor repulsion. Hence, they posit 
intentionality is necessary to achieve action-outcome binding.  

The second pertains to the study of Wolpe, Haggard, Siebner & Rowe20 that investigated 
the contribution of cue integration to intentional binding by manipulating the reliability of the 
consequent tone relative to a background white noise. Such manipulation resulted in three 
levels of tone uncertainty conditions, namely, low, intermediate and high uncertainty. Their 
analyses showed that when tone reliability was reduced, the perceptual shift in tone timing 
towards the action was increased.  

Our Bayesian model reproduces the above empirical results based on a computational 
principle. Further, it goes beyond timing estimations by exposing the underlying Bayesian 
mechanisms that possibly drove the temporal binding. Our Bayesian model explains the 
perceived compressed time interval between the action-outcome effect is more consistent with 
the prior belief of the causal role of one’s action in producing the immediate outcome, and thus 
increases the confidence in the Bayesian estimate assuming the causal case, modeled as SoA. 
Moreover, our model explains intentional binding as a specific class of the more general notion 
of causal binding. Our Bayesian model predicts that intentional binding generally happens on 
a per-trial basis, yielding a bimodal distribution of the perceived action-outcome interval. 
Lastly, the model also predicts that if the sensory input signals are perceived as reliable 
(precise), SoA may arise even for unintended actions, which serves as a testable theory for 
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future SoA experiments. Our theory therefore provides a formal model that coherently accounts 
for the relationship between time perception, perception of causality, and reliability of action 
and outcome cues. 
 
Results 
 
We considered the experimental setup of intentional binding where a subject presses a button 
(i.e., the action) and a tone (i.e., the outcome) sounds 250 ms after the button press. The true 
action and outcome timings are thus described by 𝑡"∗ = 0 ms and 𝑡&∗ = 250 ms, respectively, 
but they are unknown to the subject. The task for the subject is to accurately report her 
perceived timings of the button press and tone. We assume the arrival of relevant sensory input 
informing the timing of each of these physical events involves sensory delay 𝑑 and jitter of 
variance 𝜎+ due to sensory noise. Thus, the arrival time 𝜏" of sensory input that signals the 
action timing is assumed to be generated from a Gaussian distribution, 𝒩 𝑡"∗ + 𝑑", 𝜎"+ , with 
mean 𝑡"∗ + 𝑑" and variance 𝜎"+. Similarly, the arrival time 𝜏& of sensory input that signals the 
outcome timing is generated from 𝒩 𝑡&∗ + 𝑑&, 𝜎&+ .  

The brain often resolves such ambiguity in sensory inputs by integrating multiple sensory 
cues akin to the Bayesian “ideal observer”21. Hence, we model a Bayesian observer who 
estimates action timing 𝑡" and outcome timing 𝑡& based on the corresponding noisy sensory 
inputs arriving at time 𝜏" for the action and 𝜏& for the outcome. The conditional probability 
distributions of 𝜏"  and 𝜏&  that the Bayesian observer uses are modeled as Gaussian 
distributions  
       𝑃 𝜏"|𝑡" ∝ exp − 789:8 ;

+<8;
  

 
       𝑃 𝜏& 𝑡& ∝ exp − 7=9:= ;

+<=;
, (1) 

with mean  𝑡" and  𝑡& and variance 𝜎"+ and 𝜎&+ for action and outcome, respectively. Note that 
sensory delays 𝑑" and 𝑑& are not included in equation (1) for the reason we describe in the 
next paragraph. 

Before studying the binding effect, let us consider simple baseline conditions. In one 
baseline condition, the action timing is reported by the subject without the presentation of an 
outcome tone. If no prior knowledge is available, the Bayesian observer reports the action 
timing that maximizes the conditional probability distribution in equation (1). Hence, the 
estimated action timing 𝑡" = 𝜏" is solely determined by the noisy sensory input informing the 
action timing. In this case, the model predicts that the distribution of 𝑡" is 𝒩 𝑡"∗ + 𝑑", 𝜎"+ . The 
mean and standard deviation of 𝑡" in the baseline condition were experimentally reported, e.g.,  
Haggard’s results in the voluntary condition suggest 𝑑" = 6 ms and 𝜎" = 66 ms (refer to 
Table 1 in Methods for all condition-based 𝑑" and 𝜎" values). Importantly, we assume that the 
observer does not take into account sensory delay 𝑑" in equation (1). If the Bayesian observer 
included its effect, it could compensate for this delay and report unbiased timing, which was 
not the case in the experiment. Therefore, we assume that the observer was unable to take into 
account the sensory delay in equation (1). In the other baseline condition, the subject passively 
listens to a tone and reports its timing. This case goes parallel to the above case, and the model 
predicts that the estimated tone timing is  𝑡& = 𝜏& , which is distributed according to 
𝒩 𝑡&∗ + 𝑑&, 𝜎&+ . The comparison of this model prediction to Haggard’s experiment, for 
example, would be 𝑑& = 15 ms and 𝜎& = 72 ms (refer to Table 1). 

Next, we study the effect of binding when the subject makes an action and then listens to 
the outcome tone, commonly referred to as the operant condition. In this case, the Bayesian 
observer makes an inference not only based on the conditional probability distribution in 
equation (1) but also based on the prior distribution of 𝑡" and 𝑡&. Adapting the Bayesian model 
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of the ventriloquism effect18, we assume the prior distribution depends on the observer’s belief 
if the action caused the outcome, i.e., the causal case: 𝜉 = 1, or the action and the outcome are 
unrelated, i.e., the acausal case: 𝜉 = 0: 

       𝑃 𝑡", 𝑡&	|	𝜉 ∝ 	 exp − :=9:89C8= ;

+<8=;
,			(𝜉 = 1)

1.																																									(𝜉	 = 0)
 (2) 

The action causes the outcome in the causal case (𝜉	 = 1) so that the outcome timing involves 
a typical delay 𝜇"&  with respect to the action timing and a Gaussian-distributed jitter of 
standard deviation 𝜎"& . The outcome is caused by something other than the action in the 
acausal case (𝜉 = 0) so that 𝑡" and 𝑡& are independent. Lastly, we define 𝑃 𝜉  as the prior for 
each belief: 𝑃 𝜉 = 1  for the causal case and 𝑃 𝜉 = 0 = 1 − 𝑃 𝜉 = 1  for the acausal case. 
We hypothesize the estimation of 𝜉 to be essential for the perception of causality and SoA 
(explained below).  

The prior probability of equation (2) cannot be normalized unless a finite range of (𝑡", 𝑡&) 
is defined. Therefore, we only consider it in the range 𝑅 = {𝑡", 𝑡&|𝑡" ∈ 𝑡"∗ − 𝑇/2, 	𝑡"∗ +
𝑇/2 , 𝑡& ∈ 𝑡&∗ − 𝑇/2, 𝑡&∗ + 𝑇/2 } and assume that it is zero outside 𝑅, where again 𝑡"∗ = 0 ms 
and 𝑡&∗ = 250 ms are the true action and outcome timings, unknown to the observer, and 𝑇 =
250 ms is a large enough but finite constant that specify the interval lengths in consideration. 
Hence, the prior probability distribution 𝑃 𝑡", 𝑡&	|	𝜉 	  in equation (2) must be normalized 
within 𝑅. Our results are robust to a shift in the center of 𝑅.   

Given a pair of sensory inputs at 𝜏"  and 𝜏& , the Bayesian observer estimates the most 
probable timing for the action and the outcome and whether these observations are consistent 
with the causal case. According to the Bayesian estimation theorem, the maximum-a-posteriori 
(MAP) estimate (𝑡", 𝑡&, 𝜉) of the corresponding pair of physical sensory timing (𝑡", 𝑡&) and the 
causal variable 𝜉 is given by 
       𝑡", 𝑡&, 𝜉 = arg max

:8,:=,R
	𝑃 𝑡", 𝑡&, 𝜉	|	𝜏", 𝜏& , (3) 

where 𝑃 𝑡", 𝑡&, 𝜉	|	𝜏", 𝜏&  is the posterior probability distribution of ( 𝑡", 𝑡&, 𝜉 ) given the 
sensory inputs (𝜏", 𝜏&). Hence, whether the Bayesian observer estimates the action-outcome 
effect to be causal or not depends on the posterior-ratio comparing the causal case (𝜉 = 1) and 
the acausal case (𝜉 = 0), namely,  
                  𝑟 ≡ max

:8,:=
𝑃 𝑡", 𝑡&, 𝜉 = 1	|	𝜏", 𝜏& max

:8,:=
𝑃 𝑡", 𝑡&, 𝜉 = 0	|	𝜏", 𝜏&  (4) 

Causality is detected if the confidence in the causal estimate is greater than that in the acausal 
case, that is, 𝑟 > 1. The MAP estimate of equation (3) is then given by (see Methods for the 
derivation) 

𝑡", 𝑡&, 𝜉 = 𝜏" +
<8
;

<VWV; 𝜏& − 𝜏" − 𝜇"& , 𝜏& −
<=
;

<VWV; 𝜏& − 𝜏" − 𝜇"& , 1 ,							(𝑟 > 1)

𝜏", 𝜏&, 0 ,																																																																																(𝑟 < 1)
        (5) 

with 𝜎:Y:+ ≡ 𝜎"+ + 𝜎&+ + 𝜎"&+ . This indicates, on one hand, that perceptual shift does not happen 
if the causality is not detected (𝜉 = 0) – the time estimates for action and outcome simply 
reflect the corresponding sensory signals in this case. On the other hand, perceptual shift 
happens if the causality is detected (𝜉 = 1) – the action and outcome timing attract each other 
in the form of binding if 𝜏& − 𝜏" > 𝜇"& and repel each other in the form of repulsion if 𝜏& −
𝜏" < 𝜇"&. The magnitude of perceptual shift for the action and outcome timing is given by 
𝜎"+/𝜎:Y:+  and 𝜎&+/𝜎:Y:+ , respectively, implying that perceptual shift is greater for a more 
unreliable stimulus. This model predicts that the occurrence of binding, repulsion, or no 
perceptual shift is trial-dependent, influenced by the noisy sensory signal 𝜏& − 𝜏" informing 
the action-outcome interval. We denote the probability of detecting causality (i.e., 𝜉 = 1) by 
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𝑃Z  (see Method for its analytical expression). 𝑃Z  increases with larger 𝑃(𝜉 = 1) and smaller 
𝜎"& if 𝜎"& ≪ 𝜎", 𝜎&.  
       Lastly, separately from the judgement of causality described above, we also directly 
quantify the confidence in the causal MAP estimate 

𝐶𝐶𝐸 = max
:8,:=

𝑃(𝑡", 𝑡&, 𝜉 = 1|𝜏", 𝜏&) (6) 

and we postulate this quantity to be a possible indication of the pre-reflective feeling of agency 
(see Discussion). The analytical expression of 𝐶𝐶𝐸  in the appendix yields the following 
requirements to have high 𝐶𝐶𝐸: (A) The timing of sensory signals must be consistent with the 
causation of the outcome by the action, namely,  𝜏& − 𝜏" ≈ 𝜇"& ; (B) The causal prior 
probability 𝑃(𝜉 = 1) must be high; (C) The sensory inputs must be precise, i.e., the amplitudes 
𝜎" and 𝜎& of sensory jitter must be small enough. We therefore posit SoA as encapsulation and 
manifestation of several pertinent aspects, which include temporal consistency in the action-
outcome effect, the prior belief of an action causing the outcome, and the reliability of the 
perceived sensory signals. 

Here, we briefly describe how we obtained the parameter values used in our simulation 
(but see Methods for more details about the simulation and model fitting). Fitting of 𝑑",𝑑&, 𝜎" 
and 𝜎&  is straightforward, they are suggested by the means and standard deviations of the 
reported subjects’ baseline estimation errors (Table 1-Sets A and B). After fixing these 
parameters, the model is left with three free parameters, 𝜇"&, 𝜎"&, and 𝑃(𝜉 = 1). As described 
in equation (5), 𝜇"& has an important role in determining if binding or repulsion happens in 
each experimental condition. A fixed value of 𝜇"& = 230 ms successfully accounts for this 
qualitative behavior in all the 6 experimental conditions (3 from Haggard et al. and 3 from 
Wolpe et al.) that we study. The analytical expressions in Methods suggest that 𝜎"& and 𝑃(𝜉 =
1) have a largely overlapping role in detecting causality. Causality is more likely detected if  
𝜎"& is small or 𝑃(𝜉 = 1) is large, although the exact mechanisms are slightly different. At least 
one of these two parameters needs to be adjusted according to the conditions to account for the 
experimental observations. For simplicity, we fix 𝜎"& = 10 ms to be a small enough constant 
to permit noticeable perceptual shift and adjust 𝑃(𝜉 = 1) (see Table 1 for the parameter values 
in 6 experimental conditions) to account for two observations in each condition, namely, the 
perceptual shifts in the action timing and the outcome timing. 

Our results show that our simple Bayesian model qualitatively reproduces the perceptual 
shifts that were reported in Haggard et al.’s study (Fig. 1). Consistent to their findings, our 
Bayesian observer inferred the action and outcome perceptual shifts to bind in the voluntary 
condition resulting to compressed temporal intervals between the action and outcome 
perceptual shifts. However, repulsion, i.e., reversed and prolonged perceptual shifts, was 
observed for the involuntary condition. The model also reproduced no appreciable perceptual 
shifts in the sham condition. 

Our Bayesian model predicts binding and repulsion to increase with stronger causal prior 
(Fig. 2). From equation (5), the perceptual binding in the action-outcome interval is given by 
𝜏& − 𝜏" − 𝜇"& (𝜎"+ + 𝜎&+)/𝜎:Y:+  in the causal case (𝜉 = 1)  and none otherwise (𝜉 = 0) . 

Because the sensory signals are distributed according to 𝜏"~𝒩 𝑡"∗ + 𝑑", 𝜎"+  and 𝜏&~𝒩 𝑡&∗ +
𝑑&, 𝜎&+ , the average of 𝜏& − 𝜏" − 𝜇"&  factor is 𝑚 = 𝑡&∗ − 𝑡"∗ + 𝑑& − 𝑑" − 𝜇"& . Hence, the 
sign of 𝑚 determines if binding or repulsion is predicted on average. With the current set of 
parameters, 𝑚 is positive in the voluntary condition, yielding binding, and negative in the 
involuntary condition, yielding repulsion (schematically drawn in Fig. 3a). Perceptual shift is 
almost zero regardless of the causal prior 𝑃 𝜉 = 1  in the sham condition because 𝑚 ≈ 0. We 
chose 𝑃 𝜉 = 1 = 0.1  for this under-constrained sham condition, assuming that causality 
would not be frequently detected.  
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Our Bayesian model provide interesting insights on what possibly drives the perceived 
action-outcome temporal binding and repulsion effects. We empirically observed sensory delay 
𝑑 to increase with larger standard deviation 𝜎 of the Gaussian-distributed jitter (observed in 
both Haggard and Wolpe; see Table 1). This may imply that, as action or outcome ambiguity 
is increased due to noise (greater 𝜎) for increased sensory uncertainty, more time would be 
needed (greater 𝑑) for a sensory input to reach the subject’s perceptual threshold for temporal 
awareness in the baseline condition. Thus, because of the 𝑚’s dependency on 𝑑& − 𝑑", binding 
more likely happens when the outcome is unreliable (i.e., with large 𝑑&) and repulsion more 
likely happens when the action is unreliable (i.e., with large 𝑑"). 

To further illustrate the model prediction from our simulations, we plotted separately the 
action and outcome perceptual shifts for the voluntary, involuntary and sham conditions as 
functions of the temporal disparity 𝜏& − 𝜏" (c.f. equation (5)). Indeed, our data shows that for 
instances in which 𝜏& − 𝜏" > 	𝜇"&, action awareness is delayed (positive action shift, Fig. 3b) 
and outcome tone is anticipated (negative outcome shift, Fig. 3c), thereby demonstrating 
binding. The opposite happens when 𝜏& − 𝜏" < 	𝜇"& thereby demonstrating repulsion in both 
action and outcome awareness (Figs. 3b and 3c, respectively). We then plotted how the model’s 
MAP estimates on the action-outcome interval are affected by the sensory time difference 𝜏& −
𝜏" in the baseline (here 𝜉 = 0 is forced; Fig. 3d) and operant (Fig. 3e) conditions. We observe 
from the baseline condition that the MAP estimates follow sensory inputs, 𝑡& − 𝑡" = 𝜏& − 𝜏", 
whereas the perception of action and outcome timings shifted towards the prior mean, 𝑡& −
𝑡" ≈ 𝜇"&, in the voluntary and involuntary conditions but not so much in the sham condition 
with weak causal prior. Therefore, our model is agnostic as to whether the action is self-
intended or unintended. Binding towards 𝑡& − 𝑡" ≈ 𝜇"&  will happen, be it in the opposite 
direction, as long as the action is believed to have caused the outcome. This suggests that 
causality is the phenomenon that underlies temporal binding, and likely SoA, with self-
intended causality being a specific case. The temporal window of 𝜏& − 𝜏"  for detecting 
causality is wider in the voluntary and involuntary conditions than the sham condition. 

We then examined how the prior belief in causation affects our proposed measure for SoA 
in Haggard’s experimental setup. Our model predicts 𝐶𝐶𝐸  to strengthen together with the 
causal prior but its strength differs depending on the conditions even at the same strength of 
the prior (Fig. 4a). Interestingly, 𝑑" and 𝜎" are the only parameters of our Bayesian model that 
differentiate the three conditions in this figure. As we described above, these two parameters 
are empirically correlated such that the delay 𝑑" increases with larger 𝜎". Hence, the difference 
in 𝐶𝐶𝐸 in the three conditions can be attributed to the inequalities in the standard deviations of 
the subjects’ action timing estimation errors in the three conditions: 𝜎"aYb < 𝜎"cdef < 𝜎"ghiYb 
as per Haggard et al.’s data. Haggard et al. speculated that the unexpected and surprising quality 
of the TMS-induced movement could account for the repulsion effect in the involuntary 
condition. We suggest that this surprise might have introduced uncertainty in the perception of 
action input signals. Hence, while subjects were certain of the nature of their voluntary actions, 
they could be less certain of the proprioception signals induced by TMS, which could explain 
the inequalities in 𝜎". As a result, the model gives 𝐶𝐶𝐸aYb > 𝐶𝐶𝐸cdef > 𝐶𝐶𝐸ghiYb according 
to the requirement (C), i.e., reliable sensory inputs, for having high 𝐶𝐶𝐸 when compared at the 
same strength of the causal prior. 

The relation between 𝐶𝐶𝐸 and SoA becomes clear when we analyze them with the fitted 
values of the causal prior (𝑃 𝜉 = 1 = 0.9 for the voluntary and involuntary conditions and 
𝑃 𝜉 = 1 = 0.1 for the sham condition as indicated in Table 1). Figure 4b plots 𝐶𝐶𝐸 on a per 
trial basis as functions of the temporal disparity 𝜏& − 𝜏" (c.f. the analytical expression for 𝐶𝐶𝐸 
in Methods). 𝐶𝐶𝐸 in the voluntary condition has a higher peak than the involuntary condition 
as we described above (due to small 𝜎" in the voluntary condition for the requirement (C)). In 
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both voluntary and involuntary conditions, 𝐶𝐶𝐸  diminishes as 𝜏& − 𝜏"  moves farther from 
𝜇"& because of the requirement (A) of small |𝜏& − 𝜏" − 𝜇"&| for having high 𝐶𝐶𝐸. Finally, 
𝐶𝐶𝐸  for the sham condition takes much lower values than the voluntary or involuntary 
conditions because of the requirement (B) of large 𝑃(𝜉 = 1) for having high 𝐶𝐶𝐸. Hence, our 
Bayesian model coherently explains not just SoA that arises from the causation of the outcome 
by the action, but also the one that is influenced by the reliability of the different agency cues 
– a precision-dependent causal agency. 

In a similar fashion, we then examined the underlying psychophysical mechanisms that 
could account for the temporal binding observed by Wolpe and colleagues, in which three 
uncertainty levels (high, intermediate, and low uncertainty) of the outcome stimulus were 
tested. We use the Bayesian model that was used to reproduce the Haggard’s experiments with 
the same values of 𝜇"& and 𝜎"& but adjusted the strength of the causal prior 	𝑃(𝜉 = 1) to fit 
the reported action timing and outcome timing in each condition. We used 𝑃 𝜉 = 1  = 0.9, 0.6 
and 0.5 for low, intermediate and high tone uncertainty conditions, respectively (see Table 1 
and Methods). This means that the prior belief in causation decreases with the tone uncertainty, 
which is plausible.  

Our model reproduces the experiments of Wolpe et al. (Fig. 5a), qualitatively explaining the 
temporal binding they observed in terms of a single, coherent cue integration formulation. The 
Bayesian estimate of the action-outcome intervals shift towards 𝑡& − 𝑡" ≈ 𝜇"& , as per the 
causal temporal prior in equation (2) when causality is detected. On the one hand, the 
magnitude of the shift is greater when the outcome uncertainty is high (c.f. equation (5)). But, 
on the other hand, causality is less frequently detected when the outcome uncertainty is high 
with the reduced causal prior. These two opposing effects are summarized in Fig. 5b. The 
model can qualitatively reproduce the experiments if the former effect is more dominant. 
Quantitatively, however, the latter effect is necessary to mitigate the former effect. 

Next, we plot how the Bayesian estimate of the action-outcome interval, 𝑡& − 𝑡", depends 
on the sensory inputs, 𝜏& − 𝜏". The perceived intervals faithfully follow the sensory inputs in 
the baseline condition (Fig. 5c), where all trials are acausal (𝜉 = 0) by definition. In the operant 
condition (Fig. 5d), the Bayesian estimate shifts toward the prior assumption 𝑡& − 𝑡" ≈ 𝜇"& 
when the sensory inputs are highly consistent with the prior 𝜏& − 𝜏" ≈ 𝜇"& and, thus, when 
the causality is detected (𝜉 = 1). Otherwise, the estimate of action-outcome intervals follows 
sensory inputs. The temporal window of 𝜏& − 𝜏"  for detecting causality is wider when the 
outcome uncertainty is lower. 

Next, we quantify again 𝐶𝐶𝐸 as a possible measure of SoA. 𝐶𝐶𝐸 diminishes with outcome 
uncertainty even when compared at the same level of causal prior (Fig. 6a). Hence, 𝐶𝐶𝐸 
explicitly depends on the outcome uncertainty. When plotted as functions of temporal disparity, 
with the specific causal priors obtained for each outcome uncertainty condition, the peak values 
of 𝐶𝐶𝐸 noticeably differ across the uncertainty conditions (Fig. 6b). This is because of the 
different values of the outcome uncertainty 𝜎& but also partly because of the different values 
of the causal prior. In all conditions, 𝐶𝐶𝐸 falls off with the disparity of sensory inputs from the 
prior mean, |𝜏& − 𝜏" − 𝜇"&|. This fall off is milder when the uncertainty is lower. These results 
clearly manifest again three basic requirements of 𝐶𝐶𝐸: (A) the consistency of sensory inputs 
with the causal prior; (B) strong prior belief in causality; and (C) reliable sensory inputs. 	
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Discussion 
 
We formalize SoA by drawing parallels from a Bayesian inference of the ventriloquism effect 
that estimates a common cause behind its multisensory integration. Our Bayesian model 
integrates the action-outcome signals, compares them with the prior expectation, and infers the 
causality between them as well as the timing of these sensory signals. Our model could 
concisely reproduce the intentional binding experiments by Haggard et al.’s and Wolpe et al. 
The temporal binding or repulsion phenomena are explained by the compromise between the 
noisy sensory observations and the prior belief of the action-outcome timing. Importantly, our 
Bayesian model predicts that the perceptual binding is generally trial-dependent, and it must 
be correlated with the estimated causality 𝜉 between the action and outcome. This prediction 
can be tested, when the probability 𝑃Z for detecting causality is not close to 0 or 1, by examining 
if the distribution of action-outcome intervals is bimodal and if the intervals correlate with the 
reported causality between the action and outcome. In this work, we focus on the timing to 
investigate the intentional binding effects but the mathematical elucidations of our model can 
permit other modalities (e.g., visual or haptic) and structural properties (e.g., inter alia, location, 
size, shape and texture).  

In addition, we theorize SoA as the confidence in causal estimate: 𝐶𝐶𝐸.  𝐶𝐶𝐸 is high when 
the action-outcome timing is consistent with the causal prior, the causal prior is strong, and the 
action and outcome signals are reliable. This notion is consistent to what have been propounded 
as demonstrations of SoA: SoA arises from the causal relation between performed actions and 
their consequences4,19,22,23 and from the integration of different agency cues whose individual 
influences are determined by their reliability14,15,24-27. Hence, we posit 𝐶𝐶𝐸 to be a plausible 
measure of SoA. 

Specifically, we postulate 𝐶𝐶𝐸 fits the notion of a pre-reflective, implicit feeling of agency 
(FoA). Synofzik and colleagues4,25 provide a compelling account of such feeling: FoA is best 
accounted for by multimodal weighting and integration of different agency cues, and consists 
of an automatic registration of whether an action or sensory event is caused by the self or not. 
They posit FoA is nothing other than first-person in that the self is implied, hence, no external 
attribution (e.g., to TMS that caused the action) is possible. In the event that there is a feeling 
of exogenous causation, this will be overwritten by an explicit, interpretative judgment of 
agency (JoA) based on contextual beliefs or rationalizations. Similarly, the analytical 
expression of 𝐶𝐶𝐸 shows that it is a multimodal weighting and integration process that lies at 
the center of obtaining a Bayesian causality inference. Furthermore, 𝐶𝐶𝐸  itself does not 
attribute causality to any external agent, such as in the case of strong causal prior for TMS-
induced movements. The judgement of the causality, 𝜉, is then made based on the posterior 
ratio 𝑟 that compares 𝐶𝐶𝐸 with the confidence in the acausal estimate. Perceptual timing in our 
model simply reflects the sensory signals if the causality is not detected (𝜉 = 0), whereas they 
are overwritten by the influence of the prior if the causality is detected (𝜉 = 1). For example, 
in the involuntary condition of Haggard et al., the estimated action and outcome timing by the 
model repulse reflecting the judgment of the causality. A compelling speculation in Haggard 
et al.’s paper6 suggests this notion: the repulsion in the involuntary condition “reflects a mental 
operation to segregate, and thus to discriminate, pairs of events that cannot plausibly be linked 
by our own causal agency” (p. 384). We suggest such mental operation fits the notion of JoA, 
as quantified by the time shifts in equation (5) with the detected causality, and the peculiar 
feeling of causation by the involuntary movement to be FoA, quantified by 𝐶𝐶𝐸. 

Following the above explanation, our theory therefore has a different take of Haggard et 
al.’s binding effect that requires intentionality.  𝐶𝐶𝐸 argues that the judgment of the causality 
is central to the perceived temporal binding, consistent with current evidence that competes 
with the intentional account: the temporal binding is actually causal, not intentional22. For 
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example, our model judges the causation of the tone even by the TMS-induced action in the 
involuntary condition. Hence, our Bayesian model predicts this unintended causality. 
Furthermore, our Bayesian model predicts that the action-outcome timing shifts toward the 
prior belief, 𝑡& − 𝑡" ≈ 𝜇"&, when the causality is perceived irrespective of the nature of the 
action, whether self-generated (i.e., the voluntary condition) or unintended (i.e., the involuntary 
condition). We suggest that the repulsion happened in the involuntary condition because of the 
proprioceptive noise (large 𝜎") that characterizes the TMS. The large proprioceptive noise may 
be caused by the internal prediction error resulting from unintended proprioceptive signal28,12 
or the large clicking sound of TMS. In this sense, intentionality is just one factor that influences 
𝐶𝐶𝐸 and perceptional shift in our model. We predict that an experimental manipulations that 
reduces 𝜎" would increase perceived SoA even for unintended artificial actions. The prediction 
is therefore distinct from what was previously considered and can therefore serve as testable 
prediction for future experiments on causal agency.  

Our theory also has a different take of Wolpe et al.’s binding effect. Wolpe and colleagues 
showed intentional binding as cue integration with uncertainty in outcome signals. They 
speculated that action and outcome bindings are driven by two distinct mechanisms: action 
binding is predicted by cue integration, but outcome binding supports the predictive pre-
activation hypothesis29, i.e., the neural representation of the sensory outcome is activated prior 
to it. Hence, the outcome signals are perceived faster with less jitter than when it is not 
predicted to occur after the action. This could explain why the subjects’ timing estimations are 
largely erroneous in the baseline condition and why the outcome binding is greater than the 
action binding. Our theory, although qualitative, explains both action and outcome bindings by 
a single Bayesian cue integration mechanism. Our model explains that the magnitudes of the 
action and outcome perceptual shifts, 𝜏& − 𝜏" − 𝜇"& , are influenced primarily by the 
ambiguity of the outcome sensory signals, (𝜎"+ + 𝜎&+)/𝜎:Y:+ , and also in part by the strength of 
the causal prior that diminishes with outcome uncertainty. 

The intentional binding paradigm has also been used to study pathological sense of 
agency30-32. Patients with schizophrenia tend to have much stronger temporal binding than 
healthy volunteers. Moreover, unlike healthy volunteers, their temporal binding of action 
timing does not depend on the probability of the outcome tone presentation32. These results are 
explained by our Bayesian model by assuming that schizophrenia patients cannot easily adapt 
their abnormally strong belief in causality (i.e., too large 𝑃 𝜉 = 1 ) and the uncertainty in the 
outcome (i.e., 𝜎&). Another important point is that, unlike healthy volunteers, patients with 
schizophrenia exhibit temporal binding of action timing that depends on the presence or 
absence of the outcome. It will be an interesting future study to model this result by explicitly 
incorporating the probabilistic occurrence of the outcome in our Bayesian model. 

In summary, we posit that since the Bayesian cue integration is primarily precision-
dependent so is our theory of SoA. Our model predicts that if the uncertainty of the sensory 
input signals could be maintained small, even unintended causal action may give rise to high 
𝐶𝐶𝐸  (hence, strong SoA) – hence, our notion of precision-dependent casual agency. We 
posited the precise estimation that gives rise to SoA encapsulates consistency in the perceived 
action-outcome effect, the prior belief of the causation of the outcome by the action, and the 
reliability of the perceived sensory signals. This theory may shed light on the mechanism of 
reduced SoA in psychosis, the understanding of the difference between FoA and JoA, and the 
design of prosthetic devises that heighten SoA.  
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Methods 
 
Analytical Expressions for the Bayesian Estimates 
The MAP estimate (equation (3)) of the Bayesian observer has a simple analytical expression. 
The MAP estimation is computed based on the posterior probability 𝑃 𝑡", 𝑡&, 𝜉 𝜏", 𝜏& =
𝑃(𝜏", 𝜏&, 𝑡", 𝑡&, 𝜉)/𝑃(𝜏", 𝜏&), where the peak location only depends on the joint distribution 
𝑃(𝜏", 𝜏&, 𝑡", 𝑡&, 𝜉)  in the numerator. The joint distribution is decomposed as 
𝑃 𝜏", 𝜏&, 𝑡", 𝑡&, 𝜉 = 𝑃 𝜏" 𝑡" 𝑃 𝜏& 𝑡& 𝑃 𝑡", 𝑡& 𝜉 𝑃(𝜉) , where the conditional distributions 
for action and outcome are 𝑃 𝜏" 𝑡" = exp − 𝑡" − 𝜏" +/(2𝜎"+) / 2𝜋𝜎"+	  and 𝑃 𝜏& 𝑡& =
exp − 𝑡& − 𝜏& +/(2𝜎&+) / 2𝜋𝜎&+	, respectively, and the prior distribution is 

𝑃 𝑡", 𝑡& 𝜉 = exp −
𝑡& − 𝑡" − 𝜇"& +

2𝜎"&+
/𝑍m														(𝜉 = 1)

1/𝑍n																																																													(𝜉 = 0)
 

with normalization constants 𝑍m ≡ exp − :=9:89C8= ;

+<8=
; 𝑑𝑡"𝑑𝑡&o ≈ 2𝜋𝜎"&𝑇  and 𝑍n ≡

𝑑𝑡"𝑑𝑡&o = 𝑇+.  
We separately compute the peak location (𝑡", 𝑡&) for the causal case 𝜉 = 0 and the acausal case 
𝜉 = 0 and, then, compare these two peaks. In the acausal case, because 𝑃 𝜏" 𝑡"  and 𝑃 𝜏& 𝑡&  
take the maximum values at 𝑡" = 𝜏" and 𝑡& = 𝜏&, respectively, the location of the acausal peak 
is 𝑡", 𝑡& Rpn = (𝜏", 𝜏&) and the peak value is max

:8,:=
𝑃 𝜏", 𝜏&, 𝑡", 𝑡&, 𝜉 = 0 = q(Rpn)

+r<8<=st
. In the 

causal case, the peak of the joint distribution is found by minimizing a quadratic function. The 

peak location is given by 𝑡", 𝑡& Rpm = 𝜏" +
<8
;

<VWV; 𝜏& − 𝜏" − 𝜇"& , 𝜏& −
<=
;

<VWV; 𝜏& − 𝜏" −

𝜇"& , where 𝜎:Y:+ ≡ 𝜎"+ + 𝜎&+ + 𝜎"&+  is the total variance, and the peak value is computed as 

max
:8,:=

𝑃 𝜏", 𝜏&, 𝑡", 𝑡&, 𝜉 = 1 = q(Rpm)
+r<8<=su

exp − 7=9789C8= ;

+<VWV; . We define the log-ratio of the 

posterior peaks for 𝜉 = 1 and 𝜉 = 0 by  

𝑟 ≡
max
:8,:=

𝑃 𝑡", 𝑡&, 𝜉 = 1|𝜏", 𝜏&
max
:8,:=

𝑃 𝑡", 𝑡&, 𝜉 = 0|𝜏", 𝜏&
= exp 𝜃 −

𝜏& − 𝜏" − 𝜇"& +

2𝜎:Y:+
		 

with 𝜃 ≡ log q Rpm st
q Rpn su

. If 𝑟 > 1, the MAP estimate is given by 𝑡", 𝑡& Rpm and 𝜉 = 1, which 

predicts perceptual shifts. If 𝑟 < 1, the MAP estimate is given by 𝑡", 𝑡& Rpn  and 𝜉 = 0, 
which predicts no perceptual shifts. The probability for detecting causality (i.e., 𝜉 = 1) is also 
easily computable because 𝜏& − 𝜏" − 𝜇"& is distributed according to the Gaussian distribution 
𝒩(𝑚, 𝜎"+ + 𝜎&+) with 𝑚 ≡ 𝑡&∗ − 𝑡"∗ + 𝑑& − 𝑑" − 𝜇"&. Hence, the causality is detected if |𝜏& −
𝜏" − 𝜇"&| 		< 2𝜃𝜎:Y:, and this happens with probability 

𝑃Z =
1
2 erf

2𝜃𝜎:Y: − 𝑚
2 𝜎"+ + 𝜎&+

+ erf
2𝜃𝜎:Y: + 𝑚
2 𝜎"+ + 𝜎&+

 

 
Next, we evaluate the confidence in the causal MAP estimation 𝐶𝐶𝐸 ≡ max

:8,:=
𝑃 𝑡", 𝑡&, 𝜉 =

1|𝜏", 𝜏& , which comprises the numerator of the ratio 𝑟. To quantify this confidence, we need 
to first evaluate 𝑃 𝜏", 𝜏& = 𝑃 𝜏", 𝜏&, 𝜉 = 1 + 𝑃(𝜏", 𝜏&, 𝜉 = 0) with 
𝑃 𝜏", 𝜏&, 𝜉 = 1 = 𝑃 𝑡", 𝑡&, 𝜉 = 1, 𝜏", 𝜏& 𝑑𝑡"𝑑𝑡&o = q Rpm <8=

su<VWV
exp − 7=9789C8= ;

+<VWV;   
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and 
𝑃 𝜏", 𝜏&, 𝜉 = 0 = 𝑃 𝑡", 𝑡&, 𝜉 = 0, 𝜏", 𝜏& 𝑑𝑡"𝑑𝑡&o = q Rpn

st
  

Combining these expressions together, we obtain 
𝐶𝐶𝐸 = max

:8,:=
𝑃 𝜏", 𝜏&, 𝑡", 𝑡&, 𝜉 = 1 𝑃 𝜏", 𝜏& 																																																		

= 	
𝜎:Y:

2𝜋𝜎"𝜎&𝜎"&
Sigmoid 𝜃 −

𝜏& − 𝜏" − 𝜇"& +

2𝜎:Y:+
+ log

𝜎"&
𝜎:Y:

 

where Sigmoid 𝑥 = 1/(1 + 𝑒9�) is the sigmoid function.  
 
Validation of Bayesian Estimates 
The principal measure of intentional binding is the mean perceptual shift of temporal awareness 
of action and sensory outcome. A perceptual shift is the change in the subjective estimation of 
action or outcome timing from the baseline (Bsln) to the operant (Oprnt) condition, which is 
computed as  
       𝛿" = 𝐸 𝑡"

&��h: − 𝐸 𝑡"��bh   
       𝛿& = 𝐸 𝑡&

&��h: − 𝐸 𝑡&��bh .  
A positive shift informs the perception of timing shifted later in time, and a negative shift 
informs the perception of timing shifted earlier in time. 

With the mean action and outcome perceptual shifts, 𝛿" and 𝛿&, we can obtain the model 
estimation error, i.e., the difference of our model’s (Model) prediction of the action or outcome 
perceptual shift to the corresponding perceptual shift reported in the experiments (Exp). We 
obtain this as  
       𝐸𝑟𝑟" = 𝛿"�Y��b − 𝛿"

���   
       𝐸𝑟𝑟& = 𝛿&�Y��b − 𝛿&

��� .  
 
Simulation Details 
Table 1 lists all the parameters of our Bayesian model. We performed different simulations to 
reproduce the action and outcome perceptual shifts that were reported in the experiments, and 
explain their underlying psychophysical mechanisms in Bayesian terms. We generated 35,000 
instances of 𝜏" and 𝜏& pairs for each experimental condition. To determine the optimal model 
parameter values, we performed model fitting: (i) a set of possible model parameter values are 
used to simulate and obtain a prediction dataset, (ii) the model estimation error (explained 
above) is computed to determine the difference of our model’s predictions to the reported 
empirical results, and (iii) the model parameters that best minimized this error are selected.  

Simulations 1| The objective was to determine the values of the operant parameters 𝜇"& 
and 𝜎"& that best estimate the results reported by Haggard, Clark & Kalogeras6. We tested 
using the baseline parameters in Table 1-Set A and different combinations of 𝜇"& and 𝜎"&. We 
assumed initially that the action always causes the outcome, i.e., 𝑃 𝜉 = 1 = 1. We later 
dropped this assumption to test the effect of different causal priors.  

For each 𝜇"& and 𝜎"& pair, we obtained the model estimation errors for the reported action 
and outcome perceptual shifts listed in Table 2-Set A. We took the average of the model 
estimation errors for the voluntary, involuntary and sham conditions to obtain a single model 
estimation error. We looked at the model estimation errors for the (a) action perceptual shifts 
only, (b) outcome perceptual shifts only, and (c) action-outcome perceptual shifts. After testing 
different 𝜇"& and 𝜎"& pairs, our results showed the best estimates of the model to be at 𝜇"& =
230 and 𝜎"& = 10. Furthermore, we observed the perceptual shift in action timing alone was 
sufficient to indicate the best estimates of the model. 
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Simulations 2| The objective was to obtain the causal prior probability that yield the best 
estimates of Haggard et al.’s results. With 𝜇"& = 230 and 𝜎"& = 10, we tested for 𝑃 𝜉 = 1  
in the range 0 to 1 with increments of 0.1. We used the same pairs of 𝜏"  and 𝜏&  from 
simulations (1), together with the Table 1-Set A baseline parameters, when we carried out our 
simulations. We computed once again the model estimation errors for the empirical results 
listed in Table 2–Set A. We selected the 𝑃 𝜉 = 1  that best minimized the estimation errors 
for the voluntary, involuntary and sham conditions. Table 1-Set C includes the parameters that 
yielded the best model estimates. Fig. 1 shows the action and outcome perceptual shifts, as well 
as the intervals between perceptual shifts, which were obtained by our Bayesian model using 
these parameters. 

Simulations 3| The objective was to reproduce the perceptual shifts reported by Wolpe, 
Haggard, Siebner & Rowe20, listed in Table 2-Set B. We generated another set of 35,000 𝜏" 
and 𝜏& pairs using, this time, the baseline parameters listed in Table 1–set B. We performed 
simulations and tested using 𝜇"& = 230, 𝜎"& = 10, and 𝑃 𝜉 = 1  in the range 0 to 1 with 
increments of 0.1. We did not perform additional simulations to redetermine 𝜇"& and 𝜎"& since 
our aim is to reproduce qualitatively all the experiments with the same 𝜇"& and 𝜎"& as possible 
in order to have simple yet consistent explanations by our Bayesian model. Although we did 
not modify here 𝜇"&  and 𝜎"& , our analyses and results can show that their effects can be 
predicted and explained by our model. The model estimation errors once again indicate the 
estimates of action perceptual shifts led to the best estimates of the model. We list under Table 
1-Set D the 𝑃 𝜉 = 1  that yielded the best estimates of the model for the low, intermediate and 
high uncertainty tone conditions. We show in Fig. 5a the action and outcome perceptual shifts, 
and intervals between shifts, predicted by our Bayesian model for this experimental setup. 

Simulations 4| The objective was to determine the influence of the causal prior and the 
temporal difference 𝜏& − 𝜏"  (that varies in every trial) on the various predictions of our 
Bayesian model for Haggard et al.’s experimental setup. We used the model parameters and 𝜏" 
and 𝜏& pairs from simulations (1) and (2). We obtained our Bayesian model’s predictions of 
the intervals between action and outcome perceptual shifts, binding and repulsion effects, 
action-outcome timing interval, 𝑡& − 𝑡", in the baseline and operant conditions, and 𝐶𝐶𝐸. The 
results are shown in Figs. 2, 3 and 4. 

Simulations 5|  The objective and target results were the same as simulations (4), but using 
this time the model parameters and 𝜏" and 𝜏& pairs from simulations (3) to account for Wolpe 
et al.’s experimental setup. The resulting plots are shown in Figs. 5 and 6. 
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Table 1. List of Bayesian model parameters and their values 
 

Baseline condition parameters 𝑑" 𝜎" 𝑑& 𝜎& 
 (unit is ms) 
• Set A: Reported by Haggard, Clark & Kalogeras6     

Voluntary action 6 66   
Involuntary action (TMS-induced muscle twitch) 83 83   
Sham TMS (audible click only)  32 78   
Auditory tone   15 72 

• Set B: Reported by Wolpe, Haggard, Siebner & Rowe20     
Voluntary action -8 75   
Low tone uncertainty    35 61 
Intermediate tone uncertainty    46 66 
High tone uncertainty   95 90 

 
Operant condition parameters 𝜇"& = 230 𝜎"& = 10 𝑃 𝜉 = 1  
 (unit is ms)  
• Set C: Obtained by our Bayesian model	    

Voluntary condition   0.9 
Involuntary condition   0.9 
Sham condition    0.1 

• Set D: Obtained by our Bayesian model	    
Low uncertainty tone condition   0.9 
Intermediate uncertainty tone condition   0.6 
High uncertainty tone condition   0.5 

 
 
Table 2. Reported perceptual shifts in action and outcome temporal awareness 

 
Judged event (operant condition) Mean estimation 

error (ms) 
Mean perceptual 

shift (ms) 
• Set A: Reported by Haggard, Clark & Kalogeras6	   

Voluntary action, then 21 15 
tone -31 -46 

Involuntary action, then 56 -27 
tone 46 31 

Sham TMS, then  25 -7 
tone 7 -8 

• Set B: Reported by Wolpe, Haggard, Siebner & 	
Rowe20	

  

Action, then 31 39 
low uncertainty tone -16 -51 

Action, then 23 31 
intermediate uncertainty tone -19 -65 

Action, then 24 32 
high uncertainty tone -10 -105 
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Figure 1| The qualitative replication of the empirical results reported by Haggard, Clark & 
Kalogeras6 (left panel) by our Bayesian model (right panel). The subjects’ mean judgment error 
for the single-event baseline condition is subtracted from the mean judgment error for the 
corresponding operant event, which results to the magnitude and direction of the perceptual 
shifts. A positive perceptual shift informs delayed awareness, and a negative shift informs 
anticipated awareness. The action and outcome timings are perceived to shift towards each 
other in the voluntary condition. In contrast, they are perceived to repulse in the involuntary 
condition. There is no discernible perceptual shift in the sham condition. 
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Figure 2| The Bayesian model predictions of the influence of causal prior strength on action-
outcome perceptual shifts. The best estimates of the Bayesian model (in Fig. 1) were obtained 
from different causal priors, specifically, 𝑃 𝜉 = 1  is 0.9, 0.9 and 0.1 (marked by the colored 
dots) for the voluntary, involuntary, and sham conditions, respectively. The intervals between 
the action and outcome perceptual shifts shrink in the voluntary, but widen in the involuntary, 
condition with a strong causal prior. Minimal changes in perceptual shifts are predicted for the 
sham condition even with a strong causal prior.  
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Figure 3| The Bayesian model predictions of trial-to-trial action-outcome temporal binding 
and repulsion effects, in (b) and (c), and action-outcome timing interval, 𝑡& − 𝑡" , in the 
baseline and operant conditions, in (d) and (e), as functions of the perceived temporal disparity, 
𝜏& − 𝜏". The causal prior 𝑃 𝜉 = 1  is 0.9, 0.9 and 0.1 for the voluntary, involuntary, and sham 
conditions, respectively (as in Fig. 2). The per trial results are grouped accordingly into bins of 
width 200 (randomly chosen), and the mean and standard deviation for each bin are plotted. 
This format is followed each time a quantity of interest is plotted as a function of 𝜏& − 𝜏". a| 
Our Bayesian model predicts that (shown schematically) if 𝜏& − 𝜏" > 	𝜇"& action and outcome 
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binding will happen. Otherwise, i.e., 𝜏& − 𝜏" < 	𝜇"&, action-outcome repulsion will occur. In 
both cases, the perceived timings in the baseline move (compress or stretch) towards the 
temporal consistency 𝑡& − 𝑡" ≈ 𝜇"&  in the operant condition. b, c| When 𝜏& − 𝜏" > 	𝜇"& , 
there is positive perceptual shift in action awareness (𝑡" − 𝜏" > 0) and negative perceptual 
shift in outcome awareness (𝑡& − 𝜏& < 0). The opposite happens when 𝜏& − 𝜏" < 	𝜇"&. Both 
binding and repulsion occur in both voluntary and involuntary conditions, but very little effect 
in the sham condition. d| The Bayesian estimates follow the sensory inputs in the baseline 
condition, i.e., 𝜏& − 𝜏" ≈ 	 𝑡& − 𝑡", where all trials are acausal (𝜉 = 0) by definition. e| The 
Bayesian estimate shifts toward the prior assumption, 𝑡& − 𝑡" ≈ 𝜇"&, when the sensory inputs 
are highly consistent with the prior, 𝜏& − 𝜏" ≈ 𝜇"&, and therefore when causality is detected 
(𝜉 = 1). Otherwise, the estimate of action and outcome timings follow the sensory inputs. 
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Figure 4| The Bayesian model predictions of 𝐶𝐶𝐸, i.e., the confidence in causal estimate, 
which is our proposed measure for SoA. a| Our Bayesian model predicts 𝐶𝐶𝐸 to increase with 
a stronger causal prior. Furthermore, 𝐶𝐶𝐸  differs for each condition even with equal prior 
strengths. This can be attributed to the difference in the amplitude of the jitter in the self-
generated versus TMS-induced (muscle twitches and audible clicks) movement. b| When 
plotted as functions of the trial-to-trial temporal disparity 𝜏& − 𝜏", with the specific causal 
priors obtained for each condition, marked in (a),  𝐶𝐶𝐸 has a higher peak in the voluntary 
condition, but much lower values in the sham condition. Furthermore, 𝐶𝐶𝐸 diminishes as the 
temporal disparity in sensory inputs moves further away from the prior mean, 𝜏& − 𝜏" −	𝜇"& . 
This falling of the 𝐶𝐶𝐸 is faster when the causal prior is weaker and the uncertainty in the 
action input signal is higher.  
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Figure 5| The Bayesian model qualitative replications of, as well as predictions related to, the 
results reported by Wolpe, Haggard, Siebner & Rowe20. a| Qualitative replication of the 
experimental results (left panel) by our Bayesian model (right panel). b| The action-outcome 
binding increases under heightened uncertainty. However, causality is less detected when the 
causal prior is lower, which decreases the action-outcome binding effect. The best estimates of 
the Bayesian model in (a) were obtained from different causal prior strengths, specifically, 
𝑃 𝜉 = 1  is 0.9, 0.6 and 0.5 (marked by the colored dots) for the low, intermediate and high 
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tone uncertainty conditions, respectively. c, d| The causal prior strengths that correspond to 
each condition were used for the Bayesian estimate of the action-outcome timing interval 𝑡& −
𝑡" in the baseline and operant conditions. The Bayesian estimate follows the sensory inputs in 
the baseline condition where all trials are acausal, but shifts toward the prior assumption, 𝜏& −
𝜏" ≈ 𝜇"&, when causality is detected. The temporal window of 𝜏& − 𝜏" for detecting causality 
is wider when the outcome uncertainty is lower, which means more instances demonstrate 
binding.  
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Figure 6| The Bayesian model prediction of 𝐶𝐶𝐸 as a function of (a) the causal prior and (b) 
the temporal disparity 𝜏& − 𝜏". a| The different effects of the causal prior on 𝐶𝐶𝐸 across the 
three conditions is evident even with equal causal priors, which means that 𝐶𝐶𝐸 depends on 
outcome uncertainty. b| When plotted as functions of the temporal disparity 𝜏& − 𝜏", given the 
condition-dependent causal priors (marked by the colored dots in (a)), 𝐶𝐶𝐸 falls off with the 
disparity of sensory inputs from the prior mean, 𝜏& − 𝜏" −	𝜇"& , faster when the outcome 
uncertainty is higher.  
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