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Abstract 
Understanding molecular recognition of proteins by small molecules is key for drug design. Despite the number of experi-
mental structures of ligand-protein complexes keeps growing, the number of available targets remains limited compared to the 
druggable genome, and structural diversity is generally low, which affects the chemical variance of putative lead compounds. 
From a computational perspective, molecular docking is widely used to mimic ligand-protein association in silico. Ensemble-
docking approaches include flexibility through a set of different conformations of the protein obtained either experimentally or 
from computer simulations, e.g. molecular dynamics. However, structures prone to host (the correct) ligands are generally 
poorly sampled by standard molecular dynamics simulations of the apo protein. In order to address this limitation, we intro-
duce a computational approach based on metadynamics simulations (EDES – Ensemble-Docking with Enhanced-sampling of 
pocket Shape) to generate druggable conformations of proteins only exploiting their apo structures. This is achieved by defin-
ing a set of collective variables that effectively sample different shapes of the binding site, ultimately mimicking the steric effect 
due to ligands to generate holo-like binding site geometries. We assessed the method on two challenging proteins undergoing 
different extents of conformational changes upon ligand binding. In both cases our protocol generated a significant fraction of 
structures featuring a low RMSD from the experimental holo conformation. Moreover, ensemble docking calculations using 
those conformations yielded native-like poses among the top ranked ones for both targets. This proof of concept study paves 
the route towards an automated workflow to generate druggable conformations of proteins, which should become a precious 
tool for structure-based drug design. 
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Introduction 
Proteins are involved in virtually all cellular tasks and medi-
ate physiological and pathological processes through the 
establishment of specific interactions with other biomole-
cules and small compounds. This feature is exploited in 
drug design whereby small molecules are developed to 
interfere with pathogenic pathways. Modern drug design 
relies on the detailed understanding of the molecular recog-
nition process by which biological partners such as a protein 
and a drug interact and bind to each other1–32. From a struc-
tural perspective, the rapid increase in the number of exper-
imentally-determined protein structures and the huge ad-
vances in computational resources have fueled the devel-
opment of computer-aided strategies for drug design4–7. In 
particular, protein-ligand docking8–10 has become a well-
established computational tool, often reducing the costs and 
improving the efficiency of high-throughput screenings. 
Docking algorithms provide a complementary alternative to 
experimental techniques such as X-ray crystallography, 
nuclear magnetic resonance, cryo-electron microscopy, and 
related methods for characterizing protein-ligand complex-
es3. However, as any computational or experimental tech-
nique, molecular docking also has its limitations and pitfalls, 
the treatment of partners’ flexibility being one of the most 
critical ones1,3,11–17. Indeed, molecular recognition is ac-

companied by various levels of structural changes occurring 
in both the ligand and the receptor. In proteins these 
changes go from relatively small side-chain rearrangements 
to local distortions involving loops and/or confined second-
ary structure variations, to even large-scale motions among 
different (sub)domains (e.g. hinge-bending or shearing mo-
tions)2,18,19. In particular, several classes of proteins includ-
ing pharmaceutically relevant targets such as kinases20, 
transferases21, synthases22 and dehydrogenases23 undergo 
structural rearrangements leading to a compaction of the 
protein when bound to their substrates24,25. 
In order to improve in silico structure-based drug design it is 
crucial to account for structural rearrangements (particularly 
those occurring at the binding site) when predicting drug 
binding and related thermodynamic and kinetic proper-
ties3,8,9,26. Unfortunately, most docking algorithms only con-
sider limited receptor flexibility, often sampling a predeter-
mined set of sidechains orientations and barely dealing with 
backbone rearrangements1,9,12,17,27,28. Such recipes often 
fail in predicting protein/ligand complexes in the presence of 
medium to large conformational changes of the receptor 
upon ligand binding. To cope with this issue, several meth-
ods have been developed over the last decades3,5,28, 
among which the so-called ensemble-docking has been 
shown to effectively enhance the performances of docking 
and virtual screening4,5,11,12,29. In a typical ensemble-
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docking calculation, different conformations of a protein 
target, either interacting with substrates other than those 
under study or free of any ligand, are used to improve the 
prediction of the correct structure of the complex of interest. 
The method is founded on the conformational selection / 
population shift theory of molecular recognition, stating that 
proteins are able to assume drug-bound (hereafter holo) like 
conformations even in the absence of interacting lig-
ands1,3,12,30. The ligand thus recognizes its target by “select-
ing” the most complementary conformation from an ensem-
ble of metastable states, causing a population shift toward 
holo-like states (structures). 
The success of ensemble-docking is strongly dependent on 
the ability to include, in the pool of receptor structures, 
some conformation similar to the one found in the true com-
plex1,12,27,31–33. In particular, it has been shown that the in-
clusion of experimental structures of proteins bound to lig-
ands similar to the one of interest significantly increased the 
accuracy of the method5,8,12,31,34. However, with reference to 
the druggable genome35, the number of targets whose 
three-dimensional structure has been experimentally solved 
remains still limited4. Furthermore, the exploration of differ-
ent conformations in experimental structures is generally 
limited and biased toward (often just a few) known ligand-
receptor complexes, thus impacting on the chemical diversi-
ty of putative lead compounds in virtual screening cam-
paigns. Computational methods including Monte Carlo and 
Molecular Dynamics (MD) offer a relatively cheap and com-
plementary way to sample receptor confor-
mations4,5,11,12,17,36–40. While the augmented conformational 
diversity sampled during MD simulations could in principle 
increase the percentage of false positives in virtual screen-
ing efforts (although this issue is also closely related to the 
limitations of current scoring functions3,8,9,13,41,42), the signifi-
cance of including MD-derived structures for discovering 
new actives has been largely demonstrated43,44 e.g. by the 
discovery of new (sub)pockets not yet identified by experi-
ments45–49. In fact, it has been proposed that MD-derived 
structures could capture key interacting spots on the sur-
face of receptors that are less biased toward one specific 
chemotype44, potentially leading to the discovery of previ-
ously unknown activities and/or mechanisms of action (bind-
ing modes) of existing drugs50. 
In the ensemble-docking framework, Lin et al.51 have intro-
duced the concept of the Relaxed Complex Scheme (RCS) 
in which a series of independent docking runs are per-
formed from receptor conformations of the unbound (hereaf-
ter apo) protein generated by MD simulations. A cluster 
analysis is generally performed to capture the structural 
diversity of the target (thus accounting for different function-
al (sub)states) while keeping the number of conformers to a 
computationally tractable number. Clearly, due to time scale 
restrictions, standard MD simulations are often unable to 
sample conformational states relevant to molecular recogni-
tion38,52. Therefore, several techniques have been proposed 
to enhance the sampling of rare conformations, including 
accelerated MD53, replica-exchange in temperature and 
energy spaces54,55, and metadynamics56, which generalizes 
methods such as conformational flooding57 and local eleva-
tion58. Several groups have demonstrated the power of 
these methods (sometimes coupled with the use of co-
solvents) in improving the performance of docking and vir-
tual screening59–66. Despite recent improvements however, 

no method has been developed yet that, without exploiting 
specific experimental information on the targets of interest, 
outperforms consistently standard ensemble docking when 
applied to targets undergoing different levels of conforma-
tional changes (from sidechain rearrangements to hinge-
bending motions). 
In order to address this issue, here we propose a new ap-
proach, EDES (Ensemble Docking with Enhanced sampling 
of pocket Shape), which exploits relatively short metady-
namics simulations of the apo protein of interest to generate 
a set of druggable (holo-like) conformations to be employed 
in ensemble-docking56,67,68. The key ingredients of our 
method are the use of a novel set of collective variables to 
sample in a controlled manner maximally different shapes of 
the binding site, and a multi-step clustering strategy allow-
ing to retain a large fraction of holo-like structures within the 
pool of cluster representatives. Notably, EDES does not 
exploit specific information on the holo structure of the pro-
tein. We assess the method on two study cases representa-
tive of targets undergoing large and minor conformational 
rearrangements upon ligand binding (Figure 1 and Figure 
S1). 
The first target is the T4 phage beta-glucosyltransferase 
(hereafter BGT)69, which displays a hinge-bending motion 
leading to a more closed form in its complex with uridine 
diphosphate (UDP) as compared to the ligand-free structure 
(Figure 1a,c). This protein was included in the set of 10 tar-
gets selected by Seeliger and de Groot65 to assess their 
workflow based on enhanced-sampling using tCON-
COORD70,71 with the radius of gyration of the holo structure 
as a bias. 
 

 

Figure 1. Comparison of the structural changes undergone by BGT 
(a-c) and RIC (b-d) upon binding of their ligands UDP and NEO, 
respectively. a-b) Rearrangements in the whole protein structure. 
The apo and holo proteins (PDB IDs 1JEJ, 1JG6 and 1RTC, 1BR5 
for BGT, BGT-UDP and RIC, RIC-NEO systems respectively) are 
shown respectively in green and yellow ribbons, with the ligands in 
sticks colored by atom type; c-d) Zoom on local rearrangements at 
the binding site (BS). The conformations of residues lining the BS in 
the apo and holo forms of the proteins are shown in thin yellow and 
thick green sticks respectively, while the ligands are shown with 
thin black sticks and the protein in transparent grey ribbons. The 
most significant reorientations upon ligand binding are indicated by 
magenta arrows. 
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Figure 2. Overview of the EDES approach. a) Workflow of the EDES protocol; b) Representation of the “inertia planes” (transparent blue, red 
and green) calculated at the BS. Alpha carbons of residues lining this site are shown as yellow van der Waals spheres, while the protein is 
shown in white ribbons; c) Schematic view showing the definition of the two groups of atoms (orange and green sticks with alpha carbons as 
van der Waals spheres) considered for the calculation of the number of contacts across one inertia plane; the ligand is also shown in black 
sticks; d) Scheme of the “window approach” implemented to enhance in a controlled manner the sampling of conformations associated to 
different RoGBS values (the plot refers to simulations of the BGT system). For each of the (up to) four windows considered, the plot of RoGBS 
is shown with different colors. The values corresponding to the initial conformation for each window are shown by a square (w1), diamond 
(w2), upper triangle (w3) and circle (w4). The values of RoGBS calculated for the apo and holo experimental structures are also indicated by 
horizontal lines. 

 

Figure 3. Distributions of RoGBS values. a-b) Distributions within 
each window of EDES for BGT (a) and RIC (b). The colored bars 
below each distribution indicate the position of the lower and upper 
walls set for RoGBS in that window, the color gradient indicating a 
higher force constant for the upper than the lower wall (the centers 
of the windows are indicated by a darker line within each bar and 
are connected by a virtual line – black dashed). c-d) Comparison of 
RoGBS normalized distributions (area under each curve equal to 1, 
bin size set to 0.1 Å) obtained from the different simulations per-
formed in this work. 

While close-to-native ligand binding poses were obtained 
for 8 out of 10 cases within the 100 top-ranked complex 
models, this was not the case for BGT, which makes this 
protein a well-suited test case for our method. 
The second target is the recombinant ricin (hereafter RIC)72, 
representative of proteins undergoing minor but subtle con-
formational changes upon ligand (namely neopterin – 
NEO)73 binding (Figure 1 b,d). RIC belongs to the Astex 
Diverse Dataset74, recently used to validate the Auto-
DockFR docking software, which models receptor flexibility 
by explicitly specifying a set of side-chains for which rotata-
ble bonds are active75. In cross-docking experiments using 
the apo conformations of the receptors, AutoDockFR out-
performed AutoDock VINA76 in terms of number of correct 
poses and their ranking. However, none of the aforemen-

tioned software was able to find any solution within 2.5 Å 
(RMSD of the ligand) from the experimental structure of the 
complex. 
In the following we demonstrate that for both these chal-
lenging targets EDES was able to generate native-like 
structures of the complexes. Moreover, using two wide-
spread docking programs differing in search and scoring 
algorithms, namely HADDOCK and AutoDock477,78, we 
identified native-like docking poses among the top ranked 
ones. While being a proof of concept, this work opens the 
way to the automatic generation of druggable conformations 
for a broad range of protein targets, and, as such, contrib-
utes to improving in silico structure-based drug design. 
 
Results and Discussion 
In this section we first describe briefly the main workflow of 
EDES. Next, we demonstrate the effectiveness of the meth-
od in generating holo-like protein conformations. Finally, we 
compare our method with standard ensemble docking and 
with previous work.  
 
Method workflow 
Our protocol workflow is sketched in Figure 2a. After identi-
fication of the putative binding site (hereafter BS – see Fig-
ure S1e for the list of residues defining those of BGT and 
RIC) on the target protein, we calculate the “inertia planes” 
at that site. These are defined as the planes orthogonal to 
the corresponding inertia axes and passing through the 
center of mass of the BS (Figure 2b). Then, we perform 
relatively short bias-exchange well-tempered metadynamics 
simulations56,67,68 of the apo protein (see Methods for de-
tails) using a set of four collective variables (hereafter CVs): 
three “(pseudo)contacts-across-inertia-planes” (hereafter 
CIPs) variables, each defined as the number of contacts 
between residues of the BS laying on opposite sides of the 
corresponding inertia plane (Figure 2c), and the gyration 
radius of the BS (RoGBS). We also use the latter CV to im-
plement a “windows approach” (Figure 2d) aimed to sample 
more effectively and in a controlled manner different shapes 
of the BS (possibly mimicking conformational changes in-
duced by ligand binding). Namely, in addition to the 
metadynamics bias applied on the 4 CVs, we apply soft 
restraints at values of the RoGBS that are respectively 7.5% 
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higher and lower compared to the value measured in the 
apo X-ray structure (RoGX-ray

apo , corresponding to the center 
of window 1). Next, from the trajectory corresponding to this 
first window, we randomly select a conformation of the pro-
tein whose RoGBS is 5% lower than RoGX-ray

apo  and perform 
another simulation (corresponding to window 2) with walls 
centered at ±7.5% RoGX-ray

apo  from this new center. We re-
peat this procedure up to four windows including the first 
one, which leads to an overall reduction of RoGBS by 15% 
relatively to the center of the first window RoGX-ray

apo  (see 
Figures 2, 3 and Table S1). Despite our choice is arbitrary, 
the performance of our protocol turns out to be not very 
sensitive to the number of windows chosen (thus, to the 
exact extent of collapse induced at the BS, vide infra). In 
particular, we obtained comparable results using either 3 or 
4 windows. Moreover, the generality of our protocol was 
validated against RIC, which does not feature large confor-
mational changes upon substrate binding. 
 

 
Figure 4. Normalized distributions (area under each curve equal to 
1, bin size set to 0.1 Å) of RMSDBS with respect to the holo struc-
ture. a,c) Distributions for BGT obtained considering all snapshots 
extracted from MD simulations (a) and only from cluster representa-
tives (c). Dotted tiny lines correspond to the distributions in a); b,d) 
same as in a,c) but for RIC. 

Sampling of holo-like structures 
Here we discuss the performance of our method in generat-
ing druggable holo-like structures of both targets. We start 
with BGT as it is a paradigm flexible protein undergoing 
hinge-bending motions upon binding of UDP69. The ligand 
induces large rearrangements at the BS particularly in the 
orientation of three arginines (R191, R195 and R269) neu-
tralizing the negative charge of the diphosphate group (Fig-
ure 1a-c). We first compared the performance of standard 
MD simulations of the apo (MDapo) and holo (MDholo) sys-
tems to that of EDES (simulation details are reported in 
Methods and Table S1) using as metric the RMSD of the 
BS (RMSDBS) from the geometry assumed in the holo ex-
perimental structure. Figure 4 shows a very poor overlap 
between the MDapo and MDholo distributions, considering the 
data corresponding either to snapshots extracted from the 
MD simulations or the cluster structures. The EDES distri-
butions are centered somewhat in between the ones ob-
tained from unbiased MD simulations. In addition, most con-
formations feature an RMSDBS lower than 2.8 Å (the value 
between the apo and holo experimental structures, see Fig-
ure S1e) from the experimental structure of the complex. 

Moreover, a prominent shoulder raises the percentage of 
conformations with RMSDBS < 2 Å as compared to MDapo, a 
feature that persists also when inspecting the distributions 
obtained from the clusters sets (Figure 4 and Table 1). In-
terestingly, despite enhancing the sampling of the BS only, 
EDES is able to drag the whole protein structure towards 
conformations close to that found in the protein-ligand com-
plex (Figure S3). 
Table 1 reports the percentage of structures with low 
RMSDBS from the holo experimental structure. As expected, 
the percentage of such conformations is high for MDholo. 
Moreover, while a very low number of such conformations 
was sampled in MDapo, a consistent fraction was recorded 
by EDES using either 3 or 4 windows. In particular, by mim-
icking in part the hindrance of a ligand through the bias ap-
plied on the collective variables CIPs, our protocol was able 
to generate overall collapsed (particularly with respect to 
MDapo, see Figure S4) but “free-inside” conformations of the 
BS (Figure 5). Such behavior is particularly evident for 
R269, which is displaced towards one side of the BS (as it 
happens in the holo structure where this residue interacts 
with the negatively charged phosphate group of the ligand) 
only in EDES but not in MDapo. Moreover, our multi-step 
cluster analysis was able to effectively increase the per-
centage of structures featuring a native-like geometry of the 
BS with respect to the fraction sampled during MD simula-
tions (Table 1). The enhanced sampling of holo-like confor-
mations by EDES is evident also using the CIPs metric, as 
seen by the improved overlap between the MDholo and 
EDES distributions as compared to MDapo (Figure 6). In 
particular, only EDES is able to sample conformations fea-
turing values of the CIPs variables virtually identical to those 
of the experimental holo structure (black sphere in Figure 
6). 
Despite our method was primarily devised for flexible tar-
gets, in order to investigate its general applicability, we de-
cided to validate it also on a protein undergoing minor con-
formational changes at the BS upon ligand binding in order 
to investigate how general could be its applicability. The 
recombinant ricin protein72 (RIC) is one of such targets, and 
was selected also because its subtle conformational chang-
es upon binding of NEO (Figure 1b,d) were hardly handled 
by algorithms exploiting flexibility of the BS only in terms of 
activation of sidechain torsionals75. In particular, RIC result-
ed a very difficult target either for rigid or flexible docking 
calculations performed on apo X-ray structures with Auto-
Dock VINA and the recently introduced AutoDockFR soft-
ware (see Table 1 in 75). Ensemble-docking approaches 
(despite being computationally demanding compared to 
flexible docking on single structures) were on the contrary 
able to reproduce the correct structure assumed by the BS 
in the holo structure (Table 1). 
 

 
Figure 5. Conformations of BGT extracted from MDapo (a), EDES4w 
(b) and EDES3w (c) and associated to the lowest RMSDBS with re-
spect to the holo experimental structure. The molecular surface of 
UDP is shown in gray transparent color, with atom centers con-
nected by solid lines. The proteins are shown as gray (experimental 
holo-form), red (MDapo), dark green (EDES4w) and blue (EDES3w) 
thin ribbons, with sidechains of residues lining the BS represented 
as sticks which are thicker for R269. 
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  RMSDBS < 1.5 Å [%] RMSDBS < 2 Å [%] 

  Trajectory Clusters Trajectory Clusters 

B
G

T 

MDapo - - 0.06 (1.69) - 

MDholo 23.9 (0.75) 26.6 (0.75) 85.3 (0.75) 84.8 (0.75) 

EDES4w 0.02 (1.31) 0.2 (1.31) 5.0 (1.31) 8.4 (1.31) 

EDES3w 0.02 (1.31) 0.4 (1.31) 3.8 (1.31) 9.2 (1.31) 

R
IC

 

MDapo 9.7 (1.00) 9.6 (1.10) 89.4 (1.00) 93.2 (1.10) 

MDholo 13.0 (0.91) 12.4 (0.95) 99.6 (0.91) 97.8 (0.95) 

EDES4w 13.0 (0.77) 19.0 (0.81) 81.4 (0.77) 82.4 (0.81) 

EDES3w 16.5 (0.77) 17.6 (0.81) 85.5 (0.77) 85.4 (0.81) 

Table 1. Performance of various MD simulations in reproducing 
native-like conformations of the BS, measured as the percentage of 
conformations featuring a value of RSMDBS lower than 1.5 or 2 Å. 
“Trajectory” and “Clusters” refer to snapshots extracted from the full 
trajectories and to the cluster analysis representatives, respectively. 
The lowest value of the RMSD (Å) with respect to the holo X-ray 
structures is reported in parentheses. 

In this case, the performances of standard and enhanced-
sampling MD simulations are overall similar (although 
EDES was able to find BS conformations closer to the holo 
experimental structure than those obtained from MDapo/holo, 
see Table 1 and Figure 4). 
As expected, in this case there is also no clear difference 
between EDES and standard MD in reproducing holo-like 
conformations of the protein (Figure S3), both approaches 
being able to sample a relatively large fraction of such struc-
tures. On the basis of these results, we are confident that 
our approach, although originally devised for proteins un-
dergoing extended conformational changes, is effective in 
generating holo-like structures also of targets undergoing 
minor conformational changes upon binding. This is particu-
larly important since in a real case one might not know the 
extent of the conformational change in advance. 
 
Docking performance 
In this subsection we describe the performance of each set 
of structural clusters in ensemble-docking calculations. Re-
garding BGT, both AutoDock4 and HADDOCK displayed an 
improved sampling performance (defined as the percentage 
of docking poses displaying a value of RMSDlig lower than 2 
Å from the ligand conformation in the holo experimental 
structure) when coupled to EDES rather than MDapo (Tables 
2, 3). Namely, our approach was able to generate a con-
sistent fraction (up to 2% and 14% with AutoDock4 and 
HADDOCK, respectively) of native-like ligand poses, per-
forming much better than when starting from the clusters 
derived from (the much longer) MDapo (no – AutoDock4 –, or 
2% – HADDOCK – of native-like poses). Importantly, both 
programs were able to rank a native-like pose among the 
top three according to their respective clustering, scoring, 
and pose selection schemes when coupled with EDES, 
independently on the number of windows used to generate 
conformational clusters (see Tables 2, 3 and Figure 7).  

Regarding RIC, as expected from the results discussed 
above, also the sampling performance of both AutoDock4 
and HADDOCK increased significantly with respect to BGT 
using the set of cluster structures obtained from MDapo or 
EDES (Tables 2, 3). Most importantly, also for RIC, EDES 
was able to rank native-like ligand poses among the top 
ones (Tables 2, 3 and Figure 7). This finding, therefore, 
extends the initial scope of our methodology to a different 
class of targets undergoing minor structural rearrangement 
upon ligand binding. 
 
Comparison with previous work 
It is instructive to compare the performance of our method 
to previous computational work on the same target proteins. 
In 65 the tCONCOORD70,71 method was used to enhance 
the sampling of holo-receptor conformations of a set of 10 
proteins including BGT, using the gyration radii of the holo 
proteins as bias. In 9 out of 10 cases the models generated 
by tCONCOORD featured an RMSD of the BS (defined 
there by the list of residues within 6 Å from the ligand in the 
experimental structure – hereafter BS6) smaller than 2 Å. In 
particular, the best model for BGT had an RMSDBS6 of 1.78 
Å65, significantly higher than the lowest values obtained with 
our protocol, namely 1.51 Å and 1.40 Å for the clusters and 
the MD-derived distributions in both EDES4w and EDES3w. 
In 65 ensemble-docking calculations with AutoDock VINA76 
were performed on 5000 protein structures generated by 
tCONCOORD, followed by a series of post-docking optimi-
zations, filtering of models against the experimental gyration 
radius, further docking calculations and rescoring with Ro-
settaLigand79. 
 

 
Figure 6. Sampling of the three-dimensional space defined by  
CIP1-3 during the MD simulations of BGT and BGT-UDP. Top row) 
Comparison of MDholo (dark gray) distributions with MDapo (red), 
EDES3w (blue) and EDES4w (green). Distributions are shown both 
as solid points and as transparent surfaces. The location of apo 
and holo structures are indicated by red and black spheres, respec-
tively; bottom row) Envelopes of the overlapping portion between 
the distribution of MDholo (shown in dark gray as reference) and 
those of MDapo (red), EDES3w (blue) and EDES4w (green). The vol-
umes of the overlapping distribution Vop are also reported (estimat-
ed with the Voss Volume Voxelator (3V) –http://3vee.molmovdb.org 
– using a probe radius of 3 Å). 
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Figure 7. Docking performance of various structural ensembles in reproducing the experimental poses of UDP (top row) and RIC (bottom 
row). A closed view of the binding within the experimental BS is shown in the first column, while the top-score pose within the first cluster with 
RMSDlig < 2 Å, or the pose with the lowest RMSDlig value when no native-like pose was found, are reported in the next columns, with corre-
sponding ranks in square brackets. The docking was performed both using AutoDock4 and HADDOCK for comparison. The molecular surface 
of the backbone and of the Ca atoms of the protein are colored by residue type as in Figure 1, and the ligand is shown as sticks colored by 
atom type. In columns 2 to 7 the experimental pose is shown in black thin sticks for easy comparison. 

 BGT RIC 

 MDapo MDholo EDES3w EDES4w MDapo MDholo EDES3w EDES4w 

Sampling performance [%] - 84.6 1.8 2.0 3.8 10.8 2.6 3.4 

Cluster rank - 1 (1) 1 (1) 2 (2) 1 (1) 1 (1) 4 (3) 1 (1) 

Cluster population - 48 4 4 15 20 13 13 

RMSDlig [Å] - 1.2 (0.7) 0.6 (0.9) 1.5 (1.2) 1.0 (0.9) 0.6 (0.6) 0.7 (0.7) 0.9 (0.8) 

Table 2. Performance of AutoDock4 in reproducing the experimental structures of the BGT-UDP and RIC-NEO complexes in ensemble-
docking calculations. Results refer to clusters of ligand poses (500 for each ensemble of clusters of receptor structures, corresponding to the 
top pose from each independent docking run for that ensemble) generated using a distance matrix metrics (dRMSD) with a cutoff of 1.5 Å. 
The sampling performance is calculated as the percentage of poses within 2 Å from the native structure out of the 500 top poses considered 
for each ensemble of receptor structures. The fourth row reports the ranking of the first native-like pose obtained using the highest score with-
in each cluster for ranking. In parentheses, the rank of the same cluster is reported when the average score over the top three poses is used 
instead. The fifth row reports the population of the corresponding cluster in the same column. The last row reports the average heavy-atoms 
RMSD of the ligand calculated for the top cluster, with standard deviation in parentheses. 

 BGT RIC 

 MDapo MDholo EDES3w EDES4w MDapo MDholo EDES3w EDES4w 

Sampl. Perf. 
[%] 1.8 17.5 14.0 8.0 23.0 45.5 15.8 20.5 

Pose rank 19 (126)a 1 (1) 2 (5) 1 (6) 1 (1) 1 (2) 1 (1) 1 (1) 

Clus. Pop. - 9 33 5 80 152 53 69 

Fnat 0.75 
(0.62)a 

0.81±0.07 
(0.83/1) 

0.80±0.02 
(0.79/3) 

0.72±0.04 
(0.71/3) 0.93 (0.93/1) 0.90±0.03 

(0.87/4) 
0.90±0.06 

(1.0/3) 
0.83±0.06 
(0.73/3) 

RMSDlig [Å] 1.8 (1.4)a 1.6±0.6 (0.86/1) 1.1±0.3 (0.7/3) 1.9±0.4 (1.5/3) 1.3±0.3 (0.95/1) 1.2±0.2 (0.8/4) 0.9±0.3 (0.4/3) 0.9±0.2 (0.5/3) 

a. Since no acceptable clusters were obtained in this case, the reported statistics correspond to single pose statistics for the first acceptable (< 2 Å) and best (between brackets) poses. 

Table 3. Performance of HADDOCK in reproducing the experimental structures of the BGT-UDP and RIC-NEO complexes in ensemble-
docking calculations with different sets of protein conformational clusters. Results correspond to the statistic of the top pose in clusters ob-
tained using a ligand interface RMSD metrics with a 1 Å cutoff and minimum number of 4 poses per cluster. The cluster rankings are based 
on the average score of the top 4 poses (the ranking based on the score of the top pose is reported between brackets). In the last two rows 
the first values reported refer to the average statistics of the top 4 poses of a cluster in the semi-flexible refinement (it1 step) of HADDOCK, 
while values in parentheses refer to the statistics/rank of the best (smallest RMSD to reference) pose in the top 4. The sampling performance 
is calculated as the percentage of poses within 2 Å from the experimental structure out of the 400 generated models (one docking run was 
performed from the ensemble of 500 MD conformation). Fnat indicates the fraction of native contacts recovered within a shell of 5 Å from the 
ligand in the experimental structures. See Table 2 for further details. 
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As a result, in 8 out of 10 cases native-like ligand poses 
(defined there as those for which RMSDlig < 3 Å with re-
spect to the experimental structure) were generated among 
the top 100 ones, demonstrating the general applicability of 
the method for blind predictions of protein-ligand complexes 
involving large conformational rearrangements. However, 
no native-like pose was found within the top 100 ones for 
BGT, and just one pose featured an RMSDlig < 2 Å. 
In order to understand more deeply the reasons behind the 
good performance of our method, we calculated the correla-
tion between RMSDlig and the RMSDs of various residues 
selections: BS6, BS, the arginine triad (R191, R195 and 
R269), and R269, which in the MDapo simulation often occu-
pies the center of the BS (Figure 5). The results indicated 
that, while the overall correlation between RMSDUDP and the 
RMSD of BS (and even more of BS6) is not necessarily 
high, reproducing the correct orientation of the arginine triad 
and in particular of R269 is crucial to obtain native-like pos-
es of UDP (Figure S5). Thus, by enhancing the fluctuations 
in the number of contacts among two relatively small groups 
of atoms across three orthogonal planes (see e.g. Figure 6 
and Figure S4), our method effectively induces the “acces-
sible space” within the BS to assume different volumes and 
shapes, increasing in this way the probability of sampling 
native-like conformations. This should be particularly effec-
tive when dealing with long sidechain charged residues 
lining the BS (such as R269) within an aqueous environ-
ment that favors an extended sidechain conformation due to 
enhanced hydration. This, in combination with the controlled 
bias applied on RoG, allows to obtain “open-in-the-middle” 
conformations of an otherwise relatively closed BS, as it 
happens in the experimental structure of the complex. Re-
garding RIC, as stated above in 75 neither AutoDock VINA 
nor the therein introduced AutoDockFR docking software 
were able to find native-like poses of NEO. In particular, 
RIC showed to be a very difficult target for both rigid and 
flexible docking calculations with 7 rotatable bonds for the 
ligand and 7 flexible sidechains in the protein (see Table 1 
in 75). In contrast, our protocol performed very well in repro-
ducing holo-like structures. Moreover, the performance of 
EDES was similar to that of ensemble docking using struc-
tures from MDapo. This is not trivial, as recently discussed in 
62 where the advantage of using an enhanced-sampling 
protocol (namely accelerated MD53) vs. conventional MD 
simulations was reported to depend on the target, in particu-
lar on the extent of conformational changes at the BS and 
on the binding specificity. Our findings for RIC are thus very 
encouraging considering the difference of only 0.1 Å be-
tween the RoGBS of the apo and holo experimental struc-
tures (see Figure 1) and the relatively large fluctuations 
induced at the BS by our protocol vs. those induced by 
standard MD simulations (Figure 3).  
 
Concluding Remarks 
We have presented a proof of concept study of a novel pro-
tocol for ensemble-docking. Our approach was able to gen-
erate a relevant fraction of holo-like conformations of the 
proteins and rank the native-like ligand poses among the 
top ones. Its robustness and general applicability were test-
ed using two different docking programs against two chal-
lenging protein targets undergoing different extents of con-
formational changes upon ligand binding. The two key 
points of our method are: i) the use of soft adaptive biases 
on a carefully designed new set of CVs, enabling the gen-
eration of maximally diverse conformations of the BS, in-
cluding a relevant fraction of holo-like ones. A crucial fea-

ture of this set is related to its ability to produce “coconut-
like” conformations of the BS, that is geometries that are 
ligand-accessible despite being relatively shrunk. As such, 
we infer that our protocol will generate druggable confor-
mations of proteins featuring a partial collapse of the BS 
upon binding; ii) a multi-step cluster analysis performed on 
the CVs able to generate a tractable number of confor-
mations while maintaining or even increasing (with respect 
to distributions extracted from MD simulations) the fraction 
of holo-like structures. 
In perspective, a straightforward way to further improve the 
sampling of different (and druggable) conformations of the 
BS could be coupling our algorithm to co-solvent simula-
tions66,80, as done e.g. in 63. Furthermore, our method could 
be combined with others enhancing the sampling of orthog-
onal degrees of freedom, such as global protein mo-
tions60,81, rotations around torsional angles61,62, secondary 
structure changes82,83, rescaled protein-ligand interac-
tions54,63, just to cite a few options. In addition, experimental 
information from many sources could be easily encoded in 
new CVs and/or restraints. We plan to extend the method 
so as to sample also expanded conformations of the BS (in 
order to deal with non-specific protein targets such as the 
acetylcholine binding protein displaying opening or closing 
of the site upon binding of different ligands62). Note however 
that already in the current implementation our protocol was 
able to generate a fraction of such structures for the test-
cases considered in this work (Figures 3, 6 and Figure S4). 
As a long-term goal, we aim to create a database of pro-
teins structures that should help in reducing the cost asso-
ciated to the generation of the structures for ensemble-
docking runs, allowing for a single target virtual screening of 
thousands of compounds in a reasonable amount of time. In 
this perspective, the ensemble of targets could be also used 
to repositioning existing drugs for new therapeutic uses as 
recently shown50. 
 
Materials and Methods 
Standard MD simulations. Standard all-atom MD simula-
tions were carried out using the pmemd module of the 
AMBER1684 molecular modeling software. Topology files 
were created for each system using the LEaP module of 
AmberTools17 and starting from the experimental structures 
available in the PDB databank (PDB IDs 1JEJ, 1RTC, 1JG6 
and 1BR5 for BGT, BGT-UDP, RIC and RIC-NEO systems 
respectively)69,72,73. The ff14SB85 and GAFF86 force fields 
were used for the proteins and the ligands, respectively. 
Missing parameters for the latter were generated using the 
antechamber module of AmberTools17. In particular, atomic 
restrained electrostatic potential charges were derived after 
a structural optimization performed with Gaussian0987. Each 
structure was solvated with explicit TIP3P water model, and 
its net charge was neutralized with the required number of 
randomly placed K+/Cl- ions. The total number of atoms was 
~86.000 for BGT and ~54.000 for RIC. Periodic boundary 
conditions were employed with long-range electrostatic as 
evaluated through the particle-mesh Ewald algorithm using 
a real-space cutoff of 12 Å and a grid spacing of 1 Å per 
grid point in each dimension. The van der Waals interac-
tions were treated by a Lennard–Jones potential, using a 
smooth cutoff (switching radius 10 Å, cutoff radius 12 Å). 
The initial distance between the protein and the edge of the 
box was set to be at least 16 Å in each direction. Multi-
step energy minimization with a combination of steepest 
descent and conjugate gradient methods was carried out to 
relax internal constrains of the systems by gradually releas-
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ing positional restraints. Following this, the systems were 
heated from 0 to 310 K in 10 ns of constant pressure heat-
ing (NPT) using the Langevin thermostat (collision frequen-
cy of 1 ps−1) and the Berendsen barostat. After equilibration, 
four production runs of 2.5 µs each were performed for the 
apo systems, while a single 1 µs-long simulation was per-
formed for each complex. A time step of 2 fs was used for 
pre-production runs, while equilibrium MD simulations were 
carried out with a time step of 4 fs in the NPT ensemble 
(using a Monte Carlo barostat) conditions after hydrogen 
mass repartitioning88. Coordinates from production trajecto-
ries were saved every 100 ps and 10 ps for MDapo and 
MDholo respectively. 
Metadynamics simulations. Bias-exchange well-tempered 
metadynamics simulations56,67,68 were performed on the two 
apo proteins using the GROMACS 2016.5 package89 and 
the PLUMED 2.3.5 plugin90. The starting structure for each 
simulation was the last conformation saved from the equili-
bration step from MDapo. AMBER parameters were ported to 
GROMACS using the acpype parser91. To enhance the 
sampling of different BS shapes, we employed the following 
four CVs defined by including all heavy atoms of the resi-
dues lining the BS itself (here defined by the residues lining 
within 3 Å from the ligand in the experimental structure of 
the complex, see Figure S1 for the full lists for BGT and 
RIC): the radius of gyration of the BS (RoGBS), calculated 
using the “gyration” built-in function of PLUMED; the num-
ber of (pseudo)contacts across the “inertia planes” (CIP1,2,3) 
of the BS, defined as the planes orthogonal to each princi-
pal inertia axes and passing through the center of mass of 
the BS. These CVs were calculated by an in-house tcl script 
based on VMD orient function. Namely, residues lining the 
BS were split into two lists A and B according to the position 
of the geometrical center of their backbone on each of the 
two sides of the inertia plane, and the overall number of 
pseudo-contacts Nc between the two groups was calculated 
through the “coordination” keyword of PLUMED, which im-
plements a switching function such as the following: 
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with r0 = 8 Å, n = 6, m = 12. Each replica was simulated for 
100 ns (note that our aim is primarily to enhance sampling 
of different shapes of the BS and not to obtain converged 
free energy profiles), so that each window cumulated 400 
ns of simulation time. The height w was set to 0.6 kcal/mol 
for both systems, while the widths si of the Gaussian 
hills were set according to established prescriptions92 to 
0.15 Å and 0.05 Å (RoGBS), 5.4 and 4.8 (CIP1), 5.1 and 3.2 
(CIP2), 5.3 and 3.1 (CIP3)  for BGT and RIC respectively. 
Hills were added every 2 ps, while the bias-exchange fre-
quency was set to 20 ps. The bias factor for well-tempered 
metadynamics was set to 10. The “windows approach” 
briefly described in Results and Discussion was implement-
ed using RoGBS as control parameter. Namely, we applied 
restraints (force constants set to 50 and 10 kcal mol-1 Å-2 for 
upper and lower walls, respectively, as we seek for com-
pression rather than enlargement of the BS) at values of the 
RoGBS that are respectively 7.5% higher and lower com-
pared to the value measured in the apo X-ray structure 
(RoGX-ray

apo ). Then, from the trajectory corresponding to this 
first window, we select a random conformation of the protein 
whose RoGBS is 5% lower than RoGX-ray

apo  and perform an-
other simulation with walls centered at ±7.5% RoGX-ray

apo  from 

this new center, repeating this procedure so as to simulate 
a total of four windows (see Figure 3 and Table S1). Note 
that the walls were set to allow partial overlap between ad-
jacent windows, which indeed occurred in all cases (Figure 
3). 
Cluster analysis of MD trajectories. The cluster analysis was 
performed on the four CVs defined above using R scripts 
developed in house. We implemented a multi-step strategy 
aimed at increasing in an unbiased manner the percentage 
of conformations similar to the native structure of the holo 
protein. Namely, the distribution of RoGBS values sampled 
during the MD simulation was binned into 10 equally-wide 
slices, and a hierarchical agglomerative clustering (using 
the built-in function “hclust” and setting to “Euclidean” the 
method to compute the distance matrix) was performed on 
the four CVs within each slice, setting the number of gener-
ated clusters to xi = Ni Ntot ∙ Nc⁄  , where Ni, Ntot and Nc = 
500 are the number of structures within the ith slice, the total 
number of structures, and the total number of clusters re-
spectively. The resulting Nc clusters were used as starting 
point to perform a second cluster analysis with the K-means 
method and requiring a total of Nc clusters (maximum num-
ber of iterations set to 10000). Despite not making any use 
of specific knowledge of the structure of the complexes, our 
informed strategy was able to generate a larger fraction of 
cluster structures displaying an RMSDBS < 2 Å than that 
obtained from the standard application of K-means using 
randomly selected conformations as starting points (Figure 
S2). In fact, this latter initialization strategy is considered 
one of the most unreliable ones based on a comparison of 
several alternative algorithms on a range of diverse data 
sets93. 
Molecular docking. Molecular docking calculations were 
performed with AutoDock478 and the HADDOCK web server 
version2.277,94 This choice allowed to validate our method-
ology against two programs differing in search algorithms, 
scoring functions, and pose selection schemes. Both pro-
grams were first validated for redocking against experi-
mental structures (Table S2). Next, they were used to per-
form guided docking (see Figure S1 for the definition of the 
BS) with their default settings, apart from the following 
changes. In AutoDock4, the grid density (spacing parameter 
changed from 0.375 Å to 0.25 Å), and number of energy 
evaluations (ga_num_evals increased by a factor of 10 from 
the default value) were both increased, with the purpose to 
avoid repeating each calculation several times to obtain 
converged results. For each set of structures, 500 rigid 
docking independent calculations were performed using an 
adaptive grid enclosing all the residues belonging to the BS. 
Next, the top poses (in total 500, one for each docking run) 
were clustered using the cpptraj module of AmberTools17 
with a hierarchical agglomerative algorithm and a cutoff of 
1.5 Å for the RMSD distance matrix. For HADDOCK, a sin-
gle docking run was performed per case, starting from the 
various ensembles of 500 conformations, with increased 
sampling (10000/400/400 models for rigid body docking, 
semi-flexible refinement and final refinement in explicit sol-
vent). The weight of the intermolecular van der Waals ener-
gy for the initial rigid-body docking stage was increased to 
1.0 (from the default 0.01), RMSD-based clustering was 
selected with a cutoff of 1 Å and the docking was guided by 
ambiguous distance restraints defined for the residues of 
the BS (Figure S1e) and the ligand as described in 95. In the 
rigid-body stage the protein BS residues were defined as 
“active”, effectively drawing the ligand into the BS without 
restraining its orientation. For the subsequent stage the 
restraints were such that only the ligand was active, allow-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434092doi: bioRxiv preprint 

https://doi.org/10.1101/434092
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

ing it to explore better the BS while maintaining at least one 
contact with its residues. 
Figures and graphs. Figures were generated with Maes-
tro96, VMD 1.9.397 and InkScape 0.91. Graphs were created 
with xmgrace 5.1.25. 
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