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Abstract 16 

1. Cluster analysis plays vital role in pattern recognition in several fields of science. 17 

Silhouette width is a widely used measure for assessing the fit of individual objects in the 18 

classification, as well as the quality of clusters and the entire classification. This index uses 19 

two clustering criteria, compactness (average within-cluster distances) and separation 20 

(average between-cluster distances), which implies that spherical cluster shapes are preferred 21 
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over others – a property that can be seen as a disadvantage in the presence of clusters with 22 

high internal heterogeneity, which is common in real situations. 23 

2. We suggest a generalization of the silhouette width using the generalized mean. By 24 

changing the p parameter of the generalized mean between -∞ and +∞, several specific 25 

summary statistics, including the minimum, maximum, the arithmetic, harmonic, and 26 

geometric means, can be reproduced. Implementing the generalized mean in the calculation of 27 

silhouette width allows for changing the sensitivity of the index to compactness vs. 28 

connectedness. With higher sensitivity to connectedness instead of compactness the 29 

preference of silhouette width towards spherical clusters is expected to reduce. We test the 30 

performance of the generalized silhouette width on artificial data sets and on the Iris data set. 31 

We examine how classifications with different numbers of clusters prepared by single linkage, 32 

group average, and complete linkage algorithms are evaluated, if p is set to different values. 33 

3. When p was negative, well separated clusters achieved high silhouette widths despite their 34 

elongated or circular shapes. Positive values of p increased the importance of compactness, 35 

hence the preference towards spherical clusters became even more detectable. With low p, 36 

single linkage clustering was deemed the most efficient clustering method, while with higher 37 

parameter values the performance of group average and complete linkage seemed better. 38 

4. The generalized silhouette width is a promising tool for assessing clustering quality. It 39 

allows for adjusting the contribution of compactness and connectedness criteria to the index 40 

value, thus avoiding underestimation of clustering efficiency in the presence of clusters with 41 

high internal heterogeneity. 42 

 43 

Key words 44 
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Cluster validation, Clustering, Compactness, Connectedness, Generalized mean, Separation, 45 

Silhouette width 46 

 47 

Introduction 48 

Cluster analysis is the method of grouping similar objects in order to simplify the structure of 49 

a data set. It is concerned with discontinuous variation in the data set, that allows for 50 

separating and identifying ‘types’ of objects. Clustering is a common exploratory tool for 51 

pattern recognition in large samples in various fields of science, like geoinformatics (e.g. Lu 52 

et al. 2016), genomics (e.g. Ramoni et al. 2002), epidemiology (e.g. Kenyon et al. 2014), or 53 

psychology (e.g. Clatworthy et al. 2005). Moreover, classification is a prerequisite for naming 54 

abstract entities like biogeographical regions and habitat types, thus it is a basic statistical 55 

approach in bioregionalization (e.g. González-Orozco et al. 2013, Lechner et al. 2016), and 56 

vegetation typology on different scales (e.g. De Cáceres et al. 2015, Lengyel et al. 2016, 57 

Marcenò et al. 2018). Clustering methods are often divided into crisp and fuzzy methods 58 

(Podani 2000). Crisp clustering procedures provide unequivocal assignment of objects to 59 

groups, while fuzzy methods express memberships as weights. The advantage of fuzzy 60 

classification over crisp methods is that they allow for differentiation of typical, transitional, 61 

and outlier objects (De Cáceres et al. 2010). However, fuzzy algorithms are much more 62 

intensive computationally and they require more subjective decisions from the user for the 63 

parameterization; therefore, crisp methods are still the most widespread. Crisp classifications 64 

can be further divided into hierarchical and non-hierarchical methods on the condition 65 

whether they classify the objects into a groups which are nested subsets of each other or a 66 

simple partition without nested structure. 67 
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By its basically descriptive nature, clustering techniques, especially crisp algorithms, produce 68 

classifications even if there is no discontinuity in the data set, potentially leading to false 69 

conclusions about the within-sample variation. A plethora of methods is available for testing 70 

the quality (also called validity or efficiency) of classifications, each applying more or less 71 

differently formalized criteria (Milligan & Cooper 1985, Handl et al. 2005; Vendramin et al. 72 

2010). One of the most commonly applied methods is silhouette width (Rousseeuw 1987), 73 

which encompasses two clustering criteria: separation (i.e., average distance between objects 74 

of different clusters) and compactness (i.e., average within-cluster distance) (Handl et al. 75 

2005). Silhouette width is calculated for each object of the classification thus indicating how 76 

well they fit into their respective cluster. The cluster-wise or the global mean of objects can be 77 

used to assess the distinctness of specific clusters or the validity of the total classification, 78 

respectively. Due to the compactness criterion involved as average within-cluster distance, 79 

silhouette prefers spherical cluster shapes (Rousseeuw 1987); however, in practice clusters 80 

can possess different shapes according to their structure in the multidimensional space of the 81 

variables. Moreover, each clustering algorithm has its own tendency to produce clusters with 82 

certain characteristics, including cluster shape, and evaluating them by validity indices 83 

following different shape criteria can bring misleading results (Handl et al. 2005). Hence, in 84 

the presence of non-spherical clusters, silhouette width may falsely suggest low classification 85 

efficiency. Those indices are more suitable for elongated or irregular cluster shapes which 86 

quantify the degree to which objects are assigned to the same cluster as their nearest 87 

neighbours, i.e. those applying the connectedness criterion (Saha & Bandyopadhyay 2012).  88 

In this paper we propose a generalization of the silhouette width. Applying the generalized 89 

mean which gives adjustable mean ranging between the minimum and maximum, we propose 90 

a flexible formula which allows for scaling the sensitivity of the index between connectedness 91 

and compactness, thus allowing high values for non-spherical clusters. This enables users to 92 
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optimize classifications for different cluster shapes. The use of the new method is illustrated 93 

on artificial point patterns and a widely known real sample data set. 94 

 95 

Materials and Methods 96 

The original silhouette width 97 

The original definition of silhouette width according to Rousseeuw (1987) is as follows. Let i 98 

be a focal object belonging to cluster A. Denote by C a cluster not containing i. a(i) is defined 99 

as the average dissimilarity between i and all other objects in A, while c(i,C) is the average 100 

dissimilarity between i and all objects in C. 101 

���� � min
���

	��, �� 
The silhouette width, s(i), is defined as: 102 

���� � ����  ����max�����, ����� 

s(i) ranges between -1 and 1. Values near 1 indicate that object i is much closer to the other 103 

objects in the same cluster than to objects of the second closest cluster, implying a correct 104 

classification. If s(i) is near 0, the correct classification of the focal object is doubtful, thus 105 

suggesting intermediate position between two clusters. s(i) near -1 indicates obvious 106 

misclassification. Accordingly, averaging silhouette widths over a cluster gives an assessment 107 

of the ‘goodness’ of that cluster, or a sample-wise average can be used as an index of the 108 

validity of the entire classification. Instead of cluster-wise or sample-wise averages of s(i), the 109 

number or proportion of objects with positive silhouette width can also be used as validity 110 

measures. For a cluster containing a single object, s(i) takes the arbitrary value 0. 111 

Implementing the generalized mean 112 
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Applying the arithmetic mean to calculate average within- and between-cluster distances, as 113 

the index was introduced originally (Rousseeuw 1987), implies that the ideal cluster shape is 114 

spherical. However, this preference can be relaxed by choosing other types of means. 115 

Generalized mean (also called Hölder or power mean) offers a flexible solution to calculate 116 

sample means ranging between minimum and maximum (Cantrell & Weisstein, 117 

http://mathworld.wolfram.com/PowerMean.html). Let X be a sample of positive real numbers 118 

x1, x2, …, xn and p an element of affinely extended real numbers. The generalized mean of 119 

degree p is: 120 

����� , … ��� � �1�����
�

���

�
�

�

 

For p = 0 and p = |∞| the following exceptions are to be made: 121 

�	���, … ��� � lim
�
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������ , … ��� � lim
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�����, … ��� �min��� , … ��� 
�����, … ��� � lim
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�
����� , … ��� � max��� , … ��� 

The generalized mean takes the values of well-known summary statistics presented in Table 122 

1. The original version of silhouette width is the special case when within- and between-group 123 

average distances are calculated by p = 1.  By changing the p parameter it is possible to 124 

emphasize lower or higher distances in the calculation of means. The lower the p value is, the 125 

more importance is attributed to objects in close proximity, while the effect of farther 126 

neighbour objects (including outliers) is reduced. In this way, the criteria of compactness is 127 

gradually replaced by connectedness and clusters with irregular or elongated shape can also 128 

be considered ‘good’. At p = -∞ a classification is ideal if each object is assigned to the same 129 
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cluster as the most similar other object in the sample. This procedure follows the logic of 130 

single linkage clustering, while the original version making use of arithmetic averages 131 

followed the logic of average linkage. In contrast, when p > 1, the compactness criterion is 132 

attributed higher weight, thus the preference towards spherical clusters is further increased 133 

and the effect of outliers on the overall classification should become more significant. At p = 134 

+∞ the clustering criteria of complete linkage is applied. 135 

Data sets and tests 136 

We test the performance of the generalized mean with different parameterization on artificial 137 

point patterns and well-known public data sets. 138 

Artificial data sets containing 100 objects and two variables were generated. The data sets 139 

represented data structures some of which were also applied by Podani (2000) for the 140 

illustration of the behaviour of different clustering methods: 1) completely random point 141 

pattern without true clustered structure, points on the two sides of the plane are assigned to 142 

different clusters (both separation and compactness are low); 2) two clusters with few 143 

transitional elements between them (moderate separation and compactness); 3) four distinct 144 

point aggregations corresponding to four clusters (high separation, high compactness); 4) the 145 

same four clusters but only two clusters are defined, each comprising two aggregations (high 146 

true separation and compactness but too low number of clusters); 5) two well separated 147 

clusters of unequal size (20 vs. 80 points) and spread (high separation, high compactness, 148 

unequal size); 6) three clusters of elongated shape running parallel, well separated, but 149 

heterogeneous clusters (high separation, low compactness); 7) two concentric clusters (high 150 

separation, different compactness, special spatial arrangement). The analyses were run also 151 

with randomly permuted group memberships on all the above point patterns in order to test 152 

the performance of generalized silhouette width in the case of inefficient clustering but here 153 
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we show only the results with data set 3 (i.e., four distinct point aggregations and four 154 

clusters). 155 

The Iris data set was originally published by Fisher (1936). It contains morphological 156 

measurements of 150 individuals of Iris setosa, I. virginica, and I. versicolor, 50 individuals 157 

each. I. setosa is morphometrically distinctly separated from the other two, while I. virginica 158 

and I. versicolor differ rather gradually. The original data set contained four variables, from 159 

which we used only two, sepal length and petal length. Species assignment was used as a 160 

priori classification. Data was accessed from the vegan (Oksanen et al. 2018) package of the 161 

R software (R Core Team 2017), then variables were standardized to mean = 0 and standard 162 

deviation = 1. 163 

On these data sets generalized silhouette widths with different p parameter values were 164 

calculated using the a priori classifications. The patterns of misclassified objects on the point 165 

scatters were assessed visually. Overall classification quality was measured by 166 

misclassification rate (MR; the number of misclassified objects in the sample divided by the 167 

total number of objects) and mean silhouette width (MSW; the sample-wise mean of s(i)). 168 

We evaluated also the performance of different classification methods in the view of the 169 

generalized silhouette width. For this purpose, we used a two-dimensional random point 170 

pattern of 1000 points because we supposed that in the lack of true cluster structure the 171 

inherent characteristics of the methods will determine classification the most. We classified 172 

this data set using single linkage, group average and complete linkage methods. Silhouette 173 

width with different p values were calculated at each group number of the hierarchical 174 

classifications between 2 and 20, then mean silhouette widths were compared across group 175 

numbers, p values and classification methods. 176 
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Computations were carried out by the R software (R Core Team 2017) using the cluster 177 

package (Maechler et al. 2017). Programme codes for silhouette width using generalized 178 

mean and for generating artificial data set are available in the Supporting Information. 179 

 180 

Results 181 

In all cases we inspected, except those with randomized clustering, within the same 182 

classification mean silhouette width (MSW) decreased with increasing p. With artificial data, 183 

when the point pattern was random, there were only up to five misclassified objects, for p 184 

values up to zero there were two or three misclassified objects, while for higher p values there 185 

were five or six ones (Fig. 1). Despite the low misclassification rate, MR decreased from 0.73 186 

at p = -∞ to 0.181 at p = ∞. Misclassified plots were situated near the border between the two 187 

clusters. When the separation and compactness were moderate (Fig. 2), for p = -∞ and p = -2 188 

there were two and one misclassified objects, respectively, otherwise all plots were correctly 189 

clustered with higher p values. There were no misclassifications at all when points were 190 

clustered into four aggregations (Fig. 3); however, MSW decreased from 0.96 to 0.77 with 191 

increasing p. When the same points were split into two clusters instead of their true 192 

aggregations, misclassification rate (MR) did not change but MSW decreased more steeply, 193 

reaching 0.249 with p = ∞ (Fig. 4). When two, well separated and compact groups were of 194 

different sizes, MR and MSW decreased as p increased. With p = -∞, there were no 195 

misclassification, and MSW was 0.92 (Fig. 5). With increasing p misclassified objects 196 

appeared gradually in the larger cluster near the border of the two clusters but they were not 197 

abundant until p = 3. However, with p = ∞ as high as 33% of all objects were indicated 198 

misclassified, all belonging to the larger group, and MSW were 0.202.  In case of parallel 199 

groups, all objects were considered correctly classified with p < 0 (Fig. 6). From p = 0 the MR 200 

increased from 0.03 to as high as 0.6 at p = ∞. At p = -∞ MSW was 0.84, with p = 1 it was 201 
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0.124, while with higher p values MSW was near 0 indicating an unsatisfactory classification. 202 

Objects in marginal position in the point clouds tended to be identified as misclassified. With 203 

concentric groups, the inner, compact group was considered perfect regardless the p 204 

parameter (Fig. 7). However, the assessment of the outer group varied greatly. With p = -∞ all 205 

objects were deemed correctly classified. As p raised, the number of misclassified objects in 206 

the outer group increased, too. With p = 0 misclassified plots gave 23% of the total data set 207 

which means 46% of the outer group. From p = 1 and higher all objects in the outer group 208 

were considered misclassified, thus the data set consisted of a perfect and a totally bad cluster 209 

together giving 50% correct classification rate. Along the gradient in the parameter value, 210 

MSW decreased from 0.92 (p = -∞) to 0.153 (p = ∞). When clustering of objects was random, 211 

MR and MSW showed variable response along increasing p value. In case of four point 212 

aggregations but randomly permuted cluster labels MSW increased with increasing p 213 

parameter, while MR showed irregular response (Fig. 8). However, these silhouette width 214 

values still indicated poor clustering, since MSW ranged between -0.308 and -0.0211, while 215 

MR between 0.70 and 0.81. 216 

Similarly to the simulated data, with the Iris data set, misclassification rate increased with 217 

increasing p parameter (Fig. 9 & 10). The minimum was 0.087 with p < 0, the maximum was 218 

0.200 at p = ∞. MSW decreased from 0.71 to 0.237. I. setosa was perfectly separated from the 219 

other two groups, since none of its members obtained negative silhouette width with any 220 

value of p. At the area where I. versicolor and I. virginica overlap there were misclassified 221 

objects according to all values of p. However, with increasing p, I. versicolor individuals at 222 

the opposite end of the point cloud of the cluster, i.e. closer to points of I. setosa, also tended 223 

to seem misclassified. 224 

With all classification methods average silhouette width decreased with increasing the p 225 

parameter (Fig. 11). Using single linkage and p = -∞, MSW decreased monotonically with 226 
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increasing number of clusters, while with higher p it first decreased until a minimum between 227 

10 to 30 clusters then increased with the number of clusters. With group average and 228 

complete linkage lower (typically negative) p values resulted in MSW curves decreasing 229 

monotonically, while higher p values did not show clear trend. Nevertheless, the effect of 230 

changing the p value was significantly stronger on MSW when the data set was classified by 231 

the single linkage method than with the other two. When methods were compared, with p = -232 

∞, single linkage obtained the highest MSW, followed by group average, and finally complete 233 

linkage – although, the latter two performed very similarly (Fig. 12). With p = 1, group 234 

average was slightly better than complete linkage, while single linkage obtained by far the 235 

lowest silhouette widths. With p = ∞, group average and complete linkage possessed similarly 236 

high average widths, while single link seemed again much less efficient at all cluster levels. 237 

 238 

Discussion and Conclusions 239 

The results supported our expectation about the behaviour of the silhouette method using the 240 

generalized mean. Both artificial data and the Iris data set showed that cluster compactness 241 

plays less and less significant role in the assessment of classification validity with decreasing 242 

p parameter value. With p << 0 clusters are assessed mainly on the basis of connectedness and 243 

separation criterion, which in the extreme case (p = -∞) means the relativized difference 244 

between the minimal distances of objects belonging to the same cluster and to different 245 

clusters, while distances from other members of the same and the neighbour cluster are 246 

completely disregarded. As we increase the p parameter, more importance is attributed to 247 

more distant objects within and between clusters, i.e. to the compactness criterion. 248 

When classifications were intuitively efficient from some aspect, mean silhouette width 249 

decreased, and in several cases misclassification rate increased, with increasing p value. In 250 
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other words, these classifications tended to seem less and less efficient as the compactness 251 

criterion was attributed more and more importance. Nevertheless, with randomized 252 

assignment of objects to clusters the opposite tendency, that is, increasing mean silhouette 253 

width with increasing p value, was also detected in some cases (only one example shown, Fig. 254 

8). Notably, across all tests, MSW with p = -∞ ranged from -0.308 to 0.960, while with p = ∞ 255 

this interval was much narrower, between -0.021 and 0.770. Conclusively, the relationship 256 

between mean silhouette width and the p parameter value is highly dependent on the data set 257 

and on the classification but with lower p values MSW varies on broader range. Therefore, 258 

special caution is advised if MSWs obtained with different p values are compared. Probably 259 

such comparisons are valid only if, instead of the raw MSW, their standardized difference 260 

from the expected value given an appropriate null model is used (Handl et al. 2005).   261 

With different values of the p parameter silhouette width considers different clustering 262 

strategies effective. As it was expected, low p values prefer algorithms which disregard 263 

cluster compactness, e.g. single link, while with high p, procedures resulting in spherical 264 

clusters (e.g. group average, complete linkage) are deemed better. In the comparison of 265 

classification methods in the view of the generalized silhouette width, group average and 266 

complete linkage behaved similarly efficiently across different p values and cluster numbers. 267 

There are many other cluster validation indices that combine cluster separation and 268 

compactness (Handl et al. 2005; Vendramin et al. 2010), however silhouette width is the only 269 

one that evaluates individual objects. Generalized mean instead of arithmetic mean (or 270 

minimum or maximum) could be used in other indices combining the separation and the 271 

compactness criteria. Similar examples are already shown by Bezdek & Pal (1998) for the 272 

generalization of the Dunn index. 273 

Ideally, ‘good’ clusters should show a spherical shape given that the variables and their 274 

weight in the analysis are selected appropriately. However, in reality the selection of variables 275 
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is constrained by serious practical limitations, and usually there is no objective 276 

recommendation on the method for weighting. Therefore, natural objects frequently show 277 

non-spherical shapes in the multidimensional space of the analysis. In such cases, a cluster 278 

validity measure with a preference towards spherical shape can evaluate cluster quality too 279 

rigorously. When it is not reasonable to expect spherical clusters but only their connectedness 280 

and separation is relevant, setting p to negative values to assess the fit of objects into the 281 

classification can be a solution. We especially advise to calculate silhouette width with 282 

different values of p. In this way, a new dimension of methodological decisions referring to 283 

cluster compactness can be involved into the assessment of classifications (Lengyel et al. 284 

2018). However, we recall that raw silhouette widths with different parameterization may not 285 

be directly comparable, since with lower p values widths vary on broader range. Hence curves 286 

of average silhouette width with different p values along number of clusters should be viewed 287 

as different indices which are ordered by sensitivity to compactness, and no ‘optimal p value’ 288 

should be sought for empirically. 289 
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Table 1. Special cases of the generalized mean 372 

p descriptive statistic 

-∞ minimum 

-1 harmonic mean 

0 geometric mean 

1 arithmetic mean 

2 quadratic mean (root-mean-square)  

+∞ maximum 
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Figure 1. Silhouette width patterns of objects grouped into two clusters with low separation 375 

and low compactness. MR = misclassification rate; MSW = mean silhouette width; 376 

misclassified objects are circled 377 

 378 

Figure 2. Silhouette width patterns of objects grouped into four clusters with moderate 379 

separation and moderate compactness. MR = misclassification rate; MSW = mean silhouette 380 

width; misclassified objects are circled 381 
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 382 

 383 

Figure 3. Silhouette width patterns of objects grouped into four clusters with high separation 384 

and high compactness. MR = misclassification rate; MSW = mean silhouette width; 385 

misclassified objects are circled 386 

 387 

 388 
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Figure 4. Silhouette width patterns of objects in four aggregates grouped into two clusters 389 

with high separation and low compactness. MR = misclassification rate; MSW = mean 390 

silhouette width; misclassified objects are circled 391 

 392 

 393 

Figure 5. Silhouette width patterns of objects in four aggregates grouped into two clusters 394 

with high separation, high compactness and different size. MR = misclassification rate; MSW 395 

= mean silhouette width; misclassified objects are circled 396 
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 397 

 398 

Figure 6. Silhouette width patterns of objects grouped into three, parallely situated clusters 399 

with high separation and low compactness. MR = misclassification rate; MSW = mean 400 

silhouette width; misclassified objects are circled 401 

 402 

 403 
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Figure 7. Misclassification patterns of objects grouped into two concentric clusters with good 404 

separation – an outer one with low compactness and an inner one with high compactness. MR 405 

= misclassification rate; MSW = mean silhouette width; misclassified objects are circled 406 

 407 

 408 

Figure 8. Silhouette width patterns of objects in four aggregations but with cluster 409 

assignments permuted randomly. MR = misclassification rate; MSW = mean silhouette width; 410 

misclassified objects are circled 411 
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 412 

 413 

Figure 9. Silhouette width patterns of the Iris data set using sepal length and petal length 414 

variables after standardization to mean = 0 and standard deviation = 1 with p ranging from -∞ 415 

to 0. MR = misclassification rate; MSW = mean silhouette width; misclassified objects are 416 

circled 417 
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 418 

 419 

Figure 10. Silhouette width patterns of the Iris data set using sepal length and petal length 420 

variables after standardization to mean = 0 and standard deviation = 1 with p ranging from 1 421 

to +∞. MR = misclassification rate; MSW = mean silhouette width; misclassified objects are 422 

circled 423 

 424 
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 426 

 427 

Figure 11. Comparison of average silhouette widths calculated with different p values on 428 

classifications with different methods and cluster numbers – a comparison between p values 429 

separating the effect of classification methods 430 
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 433 

Figure 12. Comparison of average silhouette widths calculated with different p values on 434 

classifications with different methods and cluster numbers – a comparison between 435 

classification methods, separating the effect of p values 436 

 437 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434100doi: bioRxiv preprint 

https://doi.org/10.1101/434100

