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Fiber photometry is the process of recording bulk neural activity by measuring fluorescence 

changes in activity sensitive indicators (e.g. GCaMP) through an optical fiber.  We present a 

system of open source hardware and software for fiber photometry data acquisition 

consisting of a compact, low cost, data acquisition board built around the Micropython 

microcontroller, and a cross platform graphical user interface (GUI) for controlling acquisition 

and visualising signals.  The system can acquire two analog and two digital signals, and 

control two external LEDs via built in LED drivers.  Time-division multiplexed illumination 

allows independent readout of fluorescence evoked by different excitation wavelengths from 

a single photoreceiver signal.  Validation experiments indicate this approach offers better 

signal to noise for a given average excitation light intensity than sinusoidally-modulated 

illumination.  pyPhotometry is substantially cheaper than commercial hardware filling the 

same role, and we anticipate, as an open source and comparatively simple tool, it will be 

easily adaptable and therefore of broad interest to a wide range of users. 

 

Introduction: 

 

Fiber photometry has emerged as an important tool for behavioural neuroscience, which 

allows for the measurement of neuronal activity from genetically-defined neuronal 

populations or axonal projections in superficial or deep brain structures in behaving animals 

[1–10].   The rapid development of novel genetically encoded fluorescent indicators for 

calcium [11–15], neurotransmitter release [16–18], and membrane voltage [19–21] suggest 

that experimental applications for fiber photometry will continue to grow rapidly. 

 

In fiber photometry experiments, excitation light of one or more wavelengths is transmitted to 

the brain structure of interest through an optic fiber where it excites one or more fluorescent 

indicators.  Light emitted by the indicators is transmitted back through the optic fiber, 

separated from the illumination light and fluorescence from other indicators using optical 

filters, and converted to electrical signals by high sensitivity photoreceivers or cameras.  

These electrical signals are digitised and constitute the data generated by the experiment.  

Excitation light of different wavelengths may be differentially modulated to allow the 

fluorescence evoked by each to be demultiplexed from a single photodetector signal, for 

example to independently measure fluorescence evoked from GCaMP by 470nm and 

405nm excitation light.  As GCaMP is approximately isosbestic at 405nm (i.e. fluorescence is 

independent of calcium concentration) this gives a calcium sensitive signal and a calcium 

insensitive signal that can be used to control for movement artefacts [5]. 
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Turn-key commercial systems exist for fiber photometry data acquisition that are convenient 

but expensive.  Alternatively acquisition can be controlled using generic hardware such as 

that from National Instruments, but this requires a substantial investment of time to setup as 

well as proprietary hardware and software licences.  We sought to develop an open source 

acquisition system that offered the convenience of commercial hardware at low cost.  As well 

as democratising access to new experimental methods, open source hardware can help to 

improve reproducibility as the entire signal acquisition and processing pipeline is open, and 

facilitate new applications as researchers can modify tools themselves [22–25]. 

 

pyPhotometry is a system of hardware and software consisting of an acquisition board and 

graphical user interface (GUI).  The system implements the following functionality: 1) 

Digitisation of 2 analog voltage signals (at 15-bit resolution) and 2 digital signals. 2) Two 

constant current LED driver circuits with a 0-100 mA output.  3) Control of data acquisition 

and online visualisation of signals via the GUI.  4) Streaming of acquired data to disk in a 

compact binary format.  5) Time-division multiplexed illumination to prevent crosstalk 

between fluorescence signals and bleed-through of ambient light, with online demultiplexing 

and visualisation.  6) User documentation at https://pyphotometry.readthedocs.io. 

 

We report the system design and rationale, validation experiments characterising system 

performance, and data showing its application to recording calcium signals from VTA 

dopamine neurons. 

 

Results: 

 

Acquisition board 

 

The acquisition board is built around the Micropython Pyboard, an Arm Cortex 

microcontroller that is programmed in Python (Figure. 1).  Programming the firmware in a 

high level language allows it to be simple and compact (<200 lines of code), facilitating rapid 

development.  The acquisition board has 2 analog and 2 digital inputs, each a BNC 

connector.  The digital inputs connect directly to general purpose input-output (GPIO) pins 

on the microcontroller and in principle could be used as outputs, e.g. for triggering closed 

loop stimulation, though this is not currently supported by the firmware. 

 

Analog signals are acquired using the Pyboard’s analog to digital converters (ADCs).  These 

are 12-bit ADCs with a 0-3.3V range.  Oversampling is used to increase the resolution to 15-

bit, i.e. for each sample the ADC is read 64 times and the values averaged to give an extra 3 

bits of resolution [26,27].   This gives a resolution of ~ 10-4 volts per division of the digitised 

signal. 

 

The LED driver circuits are voltage controlled current sinks implemented using an op-amp 

and MOSFET, adapted from Figure 200 of [28].  Their outputs are M8 connectors 

compatibles with commonly-used connectorised LEDS from Doric Lenses or Thorlabs.  The 

LED driver circuit is linear over a 1-100mA current range and responds to control voltage 

transients in ~1uS (see electrical characterisation). 

 

The acquisition board draws power from the Pyboard’s USB connection which is also used 

to stream data to the computer.   Capacitors on the 5V rail improve transient response and 
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smooth the load presented to the power supply, with a current limiting IC to restrict the 

inrush current when the board is powered up. 

 

Assembly of the acquisition board requires only standard through-hole and surface-mount 

soldering techniques.  To make a complete photometry system the acquisition board must 

be paired with LEDs, photoreceivers, filter cubes and other optical components. A complete 

parts list for the setup we use for green/red two colour experiments (e.g. GCaMP/TdTomato) 

is provided in the hardware repository.  Assembled acquisition boards can be purchased 

from the Open Ephys Production Site (info@oeps.tech). 

 

Graphical user interface 

 

The GUI is used to control data acquisition, visualise signals and record data to disk (Figure. 

2).  It is written in Python and organised into separate modules for communication with the 

acquisition board, layout of the GUI window, and plotting.  The GUI is built using PyQt, a GUI 

programming toolkit which enables rich GUIs to be implemented compactly- the complete 

GUI is ~ 600 lines of code.  The GUI provides controls for connecting to acquisition boards, 

setting acquisition parameters, LED currents, the data directory and subject ID, and for 

starting and stopping data acquisition and recording. 

 

The GUI window has three plots for displaying data implemented using PyQtGraph - a 

plotting library designed for fast online interactive plotting in GUIs.  An Analog signal plot 

displays a scrolling view of the two analog input signals, and is the primary visualisation of 

the photometry data.  A Digital signal plot displays a scrolling view of the two digital input 

signals.  An Event triggered plot shows a recency weighted event triggered average of 

 
 

Figure 1. Acquisition board. 
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analog signal 1 triggered on rising edges of digital signal 1.  This allows the average 

response to an event of interest to be visualised online during data acquisition.   

 

Data format 

 

pyPhotometry generates binary data files with a .ppd file extension.  The file format is 

designed to be straightforward to import into analysis programs while generating files that 

are no larger than necessary.  The user guide provides detailed information on importing 

.ppd files and code for importing .ppd files into Python is provided in the tools folder of the 

code repository.  Files consist of header information and data. The header is a JSON object 

that contains the subject ID, start date and time, and acquisition parameters.  JSON is a 

lightweight data interchange format designed to be readable by humans, easy for machines 

to parse, and is supported by most programming languages [29].  The remainder of the data 

file contains the analog and digital signals encoded as binary data. Each 2 byte chunk 

encodes one 15-bit analog signal sample and one digital signal sample, resulting in very 

compact data files – e.g. a 1 hour recording at 130Hz sampling rate results in a ~1.9MB file. 

 

 

 
 

Figure 2. Graphical user interface. 
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Time-division illumination 

 

Photometry experiments often employ sinusoidal modulation of excitation light combined 

with lock-in amplification - i.e. multiplication of the photoreceiver signal by a sinusoidal 

reference signal synchronised with the excitation light, followed by low pass filtering [4,5].  

This has two advantages over continuous illumination: Firstly, the recovered signal is 

sensitive only to inputs at the modulation frequency, and thus insensitive to bleed through of 

ambient light and other noise sources well separated in frequency.  As many noise sources 

have more power at low frequencies, lock in amplification may achieve better signal-to-noise 

than simply low pass filtering (which also reduces noise bandwidth but does so about 0 Hz) 

[26].  Secondly, sinusoidal modulation at different frequencies can be applied to different 

wavelengths of excitation light, and the fluorescence evoked by each independently 

measured by lock in amplification at the appropriate frequency – a form of frequency-division 

multiplexing.  This is typically used to independently measure the fluorescence evoked in 

GCaMP by excitation light at 470nm and 405nm.   

 

pyPhotometry uses a different approach to achieve these ends, based on time-division 

rather than frequency-division principles.  Independent readout of fluorescence evoked by 

different excitation light wavelengths is achieved by alternately switching on LEDs 1 and 2, 

and acquiring samples of signal 1 when LED 1 is on and of signal 2 when LED 2 is on 

(Figure 3c).  Additionally, baseline subtraction is used to render measurements insensitive to 

ambient light levels and other low frequency noise sources; for each sample the ADC is read 

twice; once with both LEDs off to obtain a baseline measurement, and again with the 

respective LED on.  The baseline is subtracted from the sample such that only the difference 

in light intensity between the LED on and off conditions influences the signal.  The 

acquisition sequence is: 

 

1. Turn LEDs 1 and 2 off, read signal 1 baseline. 

2. Turn LED 1 on, read signal 1 sample, subtract baseline and send sample to GUI. 

3. Turn LEDs 1 and 2 off, read signal 2 baseline. 

4. Turn LED 2 on, read signal 2 sample, subtract baseline and send sample to GUI. 

 

This acquisition sequence is used for two acquisition modes, which differ with respect to the 

analog inputs read to generate signals 1 and 2.  The first mode, termed ‘1 colour time-

division’, uses the same analog input (i.e. a single photoreceiver) for signals 1 and 2.  This 

mode is designed for independently recording the fluorescence evoked at a single emission 

wavelength by two different excitation wavelengths, for example for measuring the 

fluorescence from GCaMP due to illumination at 470 and 405nm. 

 

The second mode termed ‘2 colour time-division’ reads signals 1 and 2 from analog inputs 1 

and 2 respectively, i.e. from two separate photoreceivers.  This acquisition mode is designed 

to be used with two fluorophores with different excitation and emission spectra (e.g. 

GCaMP/tdTomato), allowing separation of both the excitation and emission spectra to be 

exploited to minimise crosstalk. 
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Validation of time-division illumination 

 

To determine the timing of the acquisition sequence for time-division illumination we 

characterised the time course of photoreceiver voltage signals in response to excitation light 

transients (Figure 3a, b).  The photoreceiver response peaked 0.76ms after the onset of the 

excitation light and returned to baseline 2.5ms after the light was turned off.   

 

Based on these timings we implemented the acquisition sequence shown in figure 3c.  Light 

pulses from each LED were 0.75ms in duration and occurred at 130Hz, with the two LEDs in 

anti-phase.  Acquisition from the ADCs used 64x oversampling at a 256KHz oversampling 

rate such that reading a sample took 0.25ms.  The baseline for each signal was read 

immediately before the respective LED was turned on, and the signal sample was read 

immediately before the LED was turned off. 

 

We assessed the linearity of measurements using this time-division acquisition sequence by 

measuring the acquired signal as a function of LED current for in-phase illumination of the 

 

 
 

Figure 3 Time-division illumination.  a)  Optical setup for testing time-division illumination and comparison with  
sinusoidal illumination. b) Photoreceiver voltage response to 4ms illumination light pulse.  c) Timing of events and 

photoreceiver voltage waveforms for time-division acquisition sequence at 130Hz sampling rate.  Black lines show 
timing of LED illumination and ADC reads of baseline and sample for signals 1 and 2.  Blue and red lines show 
the photoreceiver voltage waveform due to fluorescence evoked by illumination of LEDs 1 and 2.  d)   Baseline 

subtracted signal as a function of LED current for in-phase illumination, anti-phase illumination and continuous 
illumination of fluorescent target.  e)  Numerical evaluation of the integration time required for orthogonality 

between sinusoidal modulations at 211 and 531Hz.  Orthogonality was quantified as the standard deviation of the 
overlap between the two sinusoids normalised by the average overlap of one sinusoid with itself - where overlap 
between two signals was defined as their product integrated over the time window.  f)  Comparison of noise on 

signals obtained using sinusoidal illumination with lock-in amplification (orange) and time-division illumination with 
baseline subtraction (blue).  Noise was quantified as the coefficient of variation (standard deviation divided by 
mean) of the signal, as a function of the average LED current. 
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fluorescent target - i.e. using signal 1 timings for acquisition and LED 1 timings for the light 

pulses (Figure 3c).  In-phase illumination produced a linear relationship between LED 

current and acquired signal (Figure 3d).  We assessed crosstalk between the two signals by 

measuring the acquired signal as a function LED current for anti-phase illumination – i.e. 

using signal 1 timings for acquisition but LED 2 timings for the light pulses.  The acquired 

signal was 0 independent of the intensity of out of phase illumination (Figure 3c) indicating 

no detectable crosstalk.  Finally we measured the acquired signal as a function of LED 

current for continuous illumination – i.e. using signal 1 timings for acquisition with the LED on 

continuously.  Again, the acquired signal was 0 independent of LED current, indicating that 

baseline subtraction successfully removed sensitivity to steady state light intensity. 

 

We assessed how the time-division illumination used by pyPhotometry compared with the 

more commonly used sinusoidal modulation in terms of (i) bandwidth (the frequency range of 

signals that can be measured) and (ii) signal to noise.   

 

The bandwidth achievable using sinusoidal illumination with lock-in amplification is 

determined by the integration time needed for the modulations of different signals to be 

orthogonal.  Over short integration times the modulations will not be orthogonal and readout 

will be contaminated by noise due to varying overlap between the target signal’s modulation 

and the modulation of the other signal.  We numerically evaluated the strength of this 

‘overlap’ noise as a function of window duration for two signals of equal amplitude 

modulated at 211 and 531Hz (as used in [5]).  Overlap noise decreased smoothly with 

integration time (Figure 3e) such that the required integration time depended on the noise 

level deemed acceptable.  To achieve an overlap noise standard deviation < 10-3 of the 

target signal size required a widow duration of ~10ms.   Using time division illumination we 

can acquire samples from two channels at 130Hz, corresponding to a time window of 7.7ms 

per sample.  The time division illumination used by pyPhotometry therefore achieves 

comparable signal bandwidth to that achieved by the frequency-division methods used in the 

literature.  Both approaches achieve a bandwidth substantially larger than that of GCaMP6f. 

 

Intrinsic noise due to e.g. thermal fluctuations in the photoreceivers, may differentially affect 

signals acquired using time-division illumination with baseline subtraction and sinusoidal 

illumination with lock-in amplification.  We assessed this experimentally by measuring the 

coefficient of variation of signal recorded using both approaches from a fluorescent target 

(DiI solution) as a function of average illumination intensity (Figure 3f).  For time-division 

illumination the pyPhotometry acquisition board was used to acquire signals and control the 

LED.  For sinusoidal illumination a National Instruments USB-6212 BNC board was used to 

acquire signals and generate the sinusoidal modulation signal, and a Doric Lenses LED 

driver was used to drive the LED.  The optical setup was otherwise identical for the two 

approaches (see methods).  Signals acquired using both methods were low pass filtered at 

20Hz to ensure their bandwidth was equivalent.   

 

Noise was substantially lower for signals acquired using time-division illumination, such that 

a given signal to noise level was achieved at approximately 50% of the average LED current 

required with sinusoidal illumination.  This likely reflects the fact that each LED is on for only 

10% of the time during time-division acquisition, such that the illumination light intensity 

when the signal is measured is 10x higher than the average illumination intensity.   
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Electrical characterisation: 

 

We performed electrical measurement to characterise the accuracy of the LED driver 

outputs and the analog inputs.  

 

Linearity of the LED driver was assessed by measuring the LED current as a function of the 

value written to the Pyboard DAC.  LED current was linear in the DAC value across the full 

range of values (Figure 4a).  The standard deviation of LED currents across the 4 driver 

circuits tested was <1% of the mean current over a range of 1-100mA mean current (Figure 

4b).  The transient response of the LED driver was assessed by measuring the current 

waveform in response to a 1ms control voltage pulse (Figure 4c).  Rise and fall times of the 

LED current were of order 1 µS. 

 
 

Figure 4. LED driver and analog input characterisation. a-c) LED driver a) LED current as a function of the value 

written to the Pyboard DAC in 12 bit mode, points show average measurement across 4 driver circuits tested, lines 
show linear fit.  Left panel – full range of DAC values, right panel – low range of DAC values.  The linear fit is the 
same on both panels.  b) Standard deviation of LED current across tested driver circuits.  c) Current waveform in 

response to 1ms command voltage pulse, top panel - full pulse, bottom panels –rising and falling edges.  Line shows 
average of 32 waveforms, shaded area shows standard deviation (shaded area is hard to see as standard deviation 
is very small). d-f) Analog inputs.  d)  Voltage measured by Pyboard analog inputs as a function of input voltage.  
Points show average of 8 inputs across 4 Pyboards, line shows linear fit.    e)  Error between measured voltage and 
input voltage.  Points show mean and error bars show standard deviation across inputs. f) Deviation from linearity of 

individual inputs, points show the average residuals from separate linear fits to each input,  error bars show the 
standard deviation of the residuals across inputs.  g) Standard deviation of noise in the measured voltage, point 

show the mean across inputs. 
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To assess the accuracy of voltage measurement using the Pyboard ADCs we used the GUI 

to read both ADCs at 1KHz while we presented constant voltage inputs.  We tested 2 ADCs 

on each of 4 Pyboards for a total of 8 analog inputs.  The measured voltage was very close 

to linear across the measured voltage range (Figure 4d), with variation in measured voltage 

across inputs <1% of the mean across the range tested (Figure 4e).  We also assessed the 

extent to which individual inputs deviated from linearity by fitting a least squares linear fit to 

the measurements from each input separately and plotting the mean and standard deviation 

of the residuals across inputs (Figure 4f).  Deviation from linearity was <1mV across the 

measured input voltage range and had a characteristic shape across inputs.  We measured 

the noise amplitude of the measured signal.  Noise amplitude increased with input voltage 

but was <0.06% of the measured voltage across the range of voltages tested (Figure 4g).   

 

These results confirm the acquisition board is able to control LED current with high accuracy 

and temporal precision, and acquire analog signals with good linearity and low noise. 

 

Dopamine neuron recordings 

 

Having characterised the performance of the hardware we tested its application to recording 

neuronal activity in vivo.  Calcium transients were recorded from GCaMP6f expressing VTA 

dopamine neurons in response to unpredictable reward delivery, which is known to activate 

a large proportion of these neurons.  A water restricted mouse nose-poked in a reward port 

where 6μL water rewards became available on a random interval 20s schedule.  Data was 

recorded using the ‘2 colour time-division’ acquisition mode to record a GCaMP signal and a 

movement control signal from co-expressed tdTomato. As can be seen in Figure 5, similar to 

previous studies [5–7], reward delivery consistently produced a marked, fast transient 

increase in GCaMP6f fluorescence, while the tdTomato signal was unaffected.  This 

demonstrates the potential utility of using this system for acquiring measures of bulk activity 

in deep-brain structures in behaving animals.   Though we used tdTomato as a movement 

control channel in these experiments, pyPhotometry can be used for experiments employing 

405nm isosbestic illumination of GCaMP as a movement control, using the ‘1 colour time 

division’ acquisition mode. 

 

 

 
 

Figure 5. VTA dopamine neuron recordings. a) Fluorescent signals acquired with pyPhotometry from GCaMP6f 

(green) and tdTomato (red) expressed in VTA dopamine neurons.  Black triangles indicate times of unpredictable 
reward delivery.  b) Response aligned on reward delivery,  line shows mean and shaded area shows standard error. 
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Discussion: 

 

We have developed an open source acquisition board and GUI for fiber photometry data 

acquisition.  The system is compact, convenient, and cheap, and we have characterised its 

performance in detail. 

 

The system can use time-division illumination to independently measure fluorescence 

evoked by different excitation wavelengths, combined with baseline subtraction to render 

measurements insensitive to ambient light.  We compared the bandwidth and signal to noise 

performance of this approach to the more commonly used sinusoidal modulation and lock-in 

amplification. We found that time-division illumination offered comparable bandwidth to 

sinusoidal modulation schemes used in the literature, but better signal to noise as a function 

of illumination light intensity, allowing approximately 50% lower light intensity for a given 

noise level.  Reducing illumination intensity is desirable as it reduces photo-bleaching of 

fluorophores. 

 

Components of the system lend themselves to adaptation for other applications.  The LED 

driver circuit may be useful in applications where a linear voltage controlled current source 

with fast transient response is required.  The circuit can be modified to handle higher 

currents by using a MOSFET with higher power dissipation and changing some resistor 

values.  For instance, we use a modified version of the circuit as an analog LED driver for 

optogenetics. 

 

The GUI code may by useful as a template for applications which require a Python based 

GUI for data acquisition and plotting.  Some pyPhotometry GUI code is shared by pyControl 

(https://pycontrol.readthedocs.io), a system of open source hardware and software for 

controlling behavioural neuroscience experiments, also built around the Micropython 

microcontroller. 

 

While writing this manuscript we became aware of another open source project for fiber 

photometry called PhotometryBox [30].  This supports generation of sinusoidally modulated 

control signals (sent to external LED drivers), online demodulation of signals for visualisation 

(though for analysis demodulation is performed offline), and recording of signals to disk.  

PhotometryBox uses a microcontroller for generating sinusoidal signals and online 

demodulation, and a National Instruments board for recording data.  The principal 

differences between the systems are: pyPhotometry has built in LED drivers and is USB bus 

powered; PhotometryBox must record at higher sampling rates (5KHz) as demodulation is 

performed offline, resulting in larger data files.  pyPhotometry is controlled via a dedicated 

GUI custom-written for photometry while PhotometryBox uses generic electrophysiology 

acquisition software (WinEDR) combined with physical controls.  Ultimately both systems 

provide open source photometry data acquisition at a fraction of the cost of commercial 

systems.  We expect this proliferation of open source tools for photometry to both reduce 

research costs and facilitate the development of novel applications for photometry. 
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Methods: 

 

Open source repositories: 

 

Design files for the system are at https://bitbucket.org/takam/pyphotometry and 

https://bitbucket.org/takam/pyphotometry_hardware.  User documentation is at 

https://pyphotometry.readthedocs.io.   

 

Electrical calibration experiments: 

 

A Picoscope 2204A USB oscilloscope was used for all electrical measurements and as a 

signal generator for testing the analog inputs. 

 

LED current was measured via the voltage across the 4.7 ohm current sense resistors that 

form part of the driver circuit, using the provided connection points on the board.  LED 

current was measured at 8 DAC values spaced from 500 to 4000 (the DAC takes values 

from 0 to 4095 in 12 bit mode), and a further 10 values spaced from 10 to 100 to cover the 

low current range.  A single linear fit was made to the full set of points.   

 

Time-division illumination: 

 

Experiments characterising the time-division illumination mode and comparing it with 

sinusoidally modulated illumination used a Doric Lenses CLED 560nM LED for illumination,  

a Doric Lenses FCM5 minicube to separate excitation and emission light (excitation filter 

555-570nM, emission filter 580-680nM), and a Newport 2151 photoreceiver in DC coupled 

mode to detect the emitted light.  The fluorescent target was a solution of DiI in ethanol, 

shielded from ambient light and coupled to the minicube via 200um core 0.48NA optical 

fiber.   

 

To evaluate signal to noise for time-division illumination (Figure 3f) we used the 

pyPhotometry acquisition board and GUI to both control the LED and acquire signal.  For 

sinusoidal illumination the LED was controlled using a Doric Lenses LEDD_2 driver in low 

power analog modulation mode.  The sinusoidal voltage signal used to modulate the LED 

was  generated by a National Instruments USB-6212-BNC board controlled by WinEDR 

software (John Dempster, University of Strathclyde).  The modulation amplitude was equal 

to the average value, i.e. the modulation depth was 100%.  The USB-6212 was used to 

record both the LED modulation signal and the photoreceiver signal at 10KHz.  Lock in 

amplification was performed offline using the following steps: 1) Bandpass filtering the 

recorded modulation and photoreceiver signals around the modulation frequency. 2) 

Applying a time lag to the modulation signal to phase align it with the photoreceiver signal.  

3) Multiplying the lagged modulation with the photoreceiver signal.  4) Low pass filtering the 

product at 20Hz.   

 

All filtering steps used 4th order zero phase filters, implemented by filtering in the forward and 

reverse directions using a 2nd order Butterworth filter.  The same 20Hz low pass filtering was 

applied to signals acquired using time-division illumination to ensure noise comparison was 

made on signals of equivalent bandwidth. 
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Figure 3e used numerical simulation to assess the bandwidth achievable with the 

sinusoidally modulated illumination and lock-in amplification used in [5].  Consider using 

lock-in amplification to measure the amplitude of sinusoidal signal a(t) in the presence of 

sinusoidal signal b(t) at a different frequency.  Lock-in amplification works by multiplying the 

input with a sinusoidal reference signal synchronised to the target signal, followed by low 

pass filtering.  The lock-in output at time T is: 

 

𝐷(𝑇) = ∫ 𝐹(𝑡 − 𝑇)𝑟(𝑡)(𝑎(𝑡) + 𝑏(𝑡))𝑑𝑡
∞

−∞

 

Where r(t) is the sinusoidal reference signal and 𝐹(𝑡 − 𝑇) is the impulse response of the low 

pass filter. 

 

The quantity we plot in figure 3e which we term normalised overlap noise is: 

 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 [∫ 𝐹(𝑡 − 𝑇)𝑟(𝑡)𝑏(𝑡)𝑑𝑡
∞

−∞
]

𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛[∫ 𝐹(𝑡 − 𝑇)𝑟(𝑡)𝑎(𝑡)𝑑𝑡
∞

−∞
]

 

 

Where the expectation and standard deviation are over measurement time-point T.  The 

numerator is the standard deviation of noise on the lock-in output due to overlap between 

the sinusoidal input b(t) and the reference signal r(t).  The denominator is the expected 

contribution of the target signal a(t) to the lock-in output. 

 

We evaluated this quantity numerically for sinusoids of equal amplitude at 211 and 531Hz.  

A Dolph-Chebyshev window with 100dB side lobe attenuation was used as the filter impulse 

response function 𝐹(𝑡 − 𝑇).  We report the overlap noise as a function of the width of this 

integration window.  This window function was chosen because it performed best out of all 

those tested. 

 

Dopamine recordings: 

 

GCaMP and tdTomato were expressed in VTA dopamine neurons using AAV1-Syn-Flex-

GCaMP6f-WPRE-SV40 (titer 6.2 x 1013) and AAV1-CAG-Flex-tdTomato-WPRE-bGH (titer 

3.1 x 1013) viruses (Penn Vector Core) in male B6.SJL-Slc6a3tm1.1(cre)Bkmn/J mice. The 

viruses were mixed and diluted in a ratio of 20% GCaMP6f, 10% TdTomato, 70% saline.   

Mice were anaesthetised with isoflurane (3% induction, 0.5-1% maintenance), treated with 

buprenorphine (0.1 mg/kg) and meloxicam (5mg/kg), and placed in a stereotactic frame.  

The skull was exposed and holes drilled to allow 500nL per hemisphere of the diluted virus 

to be injected at 1nL/second at AP: -3.3, ML: ±0.4, DV: -4.5mm relative to bregma.  

Recordings were made through a 200um 0.53NA fiber optic cannula implanted at AP: -3.3, 

ML: +0.4, DV: -4.3mm relative to bregma.  Mice were given additional doses of meloxicam 

each day for 3 days after surgery, and were monitored carefully for 7 days post-surgery.  

Prior to recording, mice were put on a water restriction schedule where on training days they 

received 0.5-1.5mL water from rewards received in the task and on non-training days 1 hour 

of unrestricted access in their home cage.  Mice maintained a typical body weight of >90% 

pre-restriction levels. Experiments were carried out in accordance with the Oxford University 

animal use guidelines and performed under UK Home Office Project Licence P6F11BC25. 
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Signals were acquired using the two colour time-division acquisition mode using 470 and 

560nm wavelength LEDs respectively for the GCaMP and tdTomato excitation light and 500-

540 and 600-680nm emission filters for the GCaMP and tdTomato signals.    Acquired 

signals were bandpass filtered between 0.01 and 20Hz using a fourth order zero phase filter.  

The full set of optical components used is listed in the hardware repository. 
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