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SUMMARY 20 

 Intestinal regeneration and crypt hyperplasia after radiation or pathogen injury relies on Wnt 21 

signaling to stimulate stem cell proliferation. Mesenchymal Wnts are essential for homeostasis 22 

and regeneration in mice, but the role of epithelial Wnts remains largely uncharacterized. Using 23 

the enterohemorrhagic E. coli secreted cytotoxin, EspP to induce injury to human colonoids, we 24 

evaluated a simplified, epithelial regeneration model that lacks mesenchymal Wnts. Here, we 25 

demonstrate that epithelial-produced WNT2B is upregulated following injury and essential for 26 

regeneration. Hedgehog signaling, specifically activation via the ligand Desert Hedgehog 27 

(DHH), but not Indian or Sonic Hedgehog, is another driver of regeneration and modulates 28 

WNT2B expression. These findings highlight the importance of epithelial WNT2B and DHH in 29 

regulating human colonic regeneration after injury.  30 

 31 

 32 
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INTRODUCTION 33 

The adult intestine has the amazing capacity to regenerate following stress, inflammation, or injury 34 

(Beumer and Clevers, 2016); however, the mechanisms that regulate regeneration are not well 35 

understood. Much of our knowledge in intestinal stem cell renewal and regeneration stems from 36 

studies in Drosophila (Jiang et al., 2016) and mice (Farin et al., 2016; Metcalfe et al., 2014; Ritsma et 37 

al., 2014). Studies in mouse models have led to characterization of the active and reserve intestinal 38 

stem cells in homeostasis and injury. Particularly relevant are Drosophila studies that revealed the 39 

importance of Wnt and Hedgehog signaling in development, maintenance, and regeneration of the 40 

midgut. However, the interplay of these two signaling pathways is not limited to intestinal 41 

maintenance. Hedgehog and Wnt signaling are essential pathways in development, homeostasis, 42 

and regeneration of many organs. The common features that influence regeneration after injury 43 

in classical regeneration models are: Wnt, Hedgehog, and Notch (Franco et al., 2013). Hedgehog 44 

signaling is essential in skin wound healing (Le et al., 2008), cardiac (Wang et al., 2016a), gastric 45 

(Konstantinou et al., 2016), lung (Sriperumbudur et al., 2016), hematopoietic (Trowbridge et al., 46 

2006), and liver regeneration (Langiewicz et al., 2016; Wang et al., 2016b), as well as epidermal 47 

stem cell homeostasis (Adolphe, 2004).  Additionally, intestinal regeneration in Drosophila is 48 

stimulated by active Hedgehog signaling (Tian et al., 2015). Sonic hedgehog (SHH) is the most 49 

widely expressed mammalian Hedgehog ligand (Varjosalo and Taipale, 2008), but Indian 50 

hedgehog (IHH) has been shown to be highly expressed in human colon (Van den Brink, 2007; 51 

van den Brink et al., 2004). The presence and role, if any, of Desert hedgehog (DHH) has not 52 

been characterized in the colon, although DHH has been linked to maintenance and regeneration 53 

of the corneal epithelium (Kucerova et al., 2012). 54 
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Thus far, only three studies have detailed the importance of epithelial Wnts in 55 

homeostasis or response to injury in the intestine (O’Connell et al., 2018; Suh et al., 2017; Zou et 56 

al., 2018), with most studies focused on the role of mesenchymal Wnts in homeostasis and 57 

disease (Gregorieff et al., 2005; Greicius et al., 2018; Koch, 2017; Shoshkes-Carmel et al., 2018; 58 

Valenta et al., 2016). The majority of data gained on mouse intestinal injury models suggests that 59 

the mesenchymal Wnts are necessary for epithelial regeneration, but did not characterize the role 60 

epithelial Wnts may be playing in these processes. 61 

Human colonoid cultures are a tractable, epithelial-only model that can indefinitely 62 

proliferate due to the presence of adult intestinal stem cells (Sato et al., 2011), making them an 63 

excellent model to study intestinal crypt injury and hyperplasia. Foodborne bacterial pathogens, 64 

such as enterohemorrhagic E. coli (EHEC) or Citrobacter rodentium, a mouse-adapted bacterium 65 

that affects the intestine similarly to EHEC, can cause severe damage to the intestinal epithelia, 66 

resulting in hyperproliferation and crypt hyperplasia post-infection (Khan et al., 2006; Vallance 67 

et al., 2003; Xicohtencatl-Cortes et al., 2007). We have previously characterized the EHEC-68 

secreted serine protease cytotoxin, EspP, as an important virulence factor in EHEC infection and 69 

colonic epithelial damage (In et al., 2013). Cytotoxins in the family of serine protease 70 

autotransporters of Enterobacteriaceae (SPATEs) are secreted by most pathogenic E. coli and 71 

have well characterized functions that aid in bacterial adherence and colonization of epithelial 72 

cells (Dautin, 2010). Two SPATEs, Pet and EspC, secreted by enteroaggregative E. coli and 73 

enteropathogenic E. coli, respectively, cause cytotoxicity to intestinal explants (Henderson et al., 74 

1999; Mellies et al., 2001). However, whether or not EspP has cytotoxic properties on intestinal 75 

cells has been controversial (Weiss and Brockmeyer, 2012). 76 
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In this study, we used the EHEC cytotoxin, EspP to induce epithelial injury and model 77 

the intestinal stem cell response that includes the initiation of regeneration using stem cell-78 

derived human colonoids. Using both molecular and proteomics-based approaches, we found 79 

that epithelial-produced WNT2B and Desert Hedgehog-activated Hedgehog signaling interact 80 

and are necessary for human colonoid regeneration.  81 

 82 

RESULTS 83 

EspP, a bacterial autotransporter, has a serine protease-dependent cytotoxic effect on 84 

human colonoids 85 

To determine if EspP induces cytotoxicity in a serine protease-dependent manner in human 86 

colonoids, we added recombinant EspP or its serine protease-deficient mutant, EspP 263A (Khan 87 

et al., 2011), to normal human colonoids. After an overnight treatment with EspP (50 µg/ml), all 88 

human colonoid lines used in this study (Supplementary Table 1) exhibited cell shedding and 89 

loss of colonoid structure, indicators of cell death (Figure 1). In contrast, overnight treatment 90 

with the protease-deficient mutant, EspP S263A (50 µg/ml), had no visible detrimental effect on 91 

the colonoids. Therefore, EspP has a cytotoxic effect on human colonoids and this activity is 92 

serine protease-dependent.  93 

 We hypothesized that EspP-induced injury would model the EHEC-induced denuded 94 

colonic epithelia and crypt hyperplasia, the latter mimicked by colonoid regeneration after EspP-95 

induced injury. To test this hypothesis, control and EspP-injured colonoids were harvested after 96 

overnight EspP treatment and replated to monitor for colonoid regeneration. The formation of 97 

colonoids in the EspP-treated cultures was observed at 24h and 48h post-replating (Figure 2A). 98 

At 24h, the colonoids were generally smaller in size compared to control and primarily 99 
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spheroids. In contrast, at 48h, the regenerating colonoids more resembled the control culture, 100 

with colonoids beginning to form multi-lobular structures (Figure 2B). Therefore, human 101 

colonoids can regenerate after injury by the bacterial cytotoxin EspP.  102 

Proteomics analysis shows WNT2B and Desert Hedgehog are upregulated during 103 

regeneration 104 

 To begin to identify key regeneration-associated pathways, we employed a proteomics 105 

approach. Control, EspP- and EspP S263A-treated colonoids were harvested, lysed, and the 106 

proteins were identified and quantified with tandem mass spectrometry and iTRAQ. Over 5000 107 

proteins in the EspP-treated culture were found up- or down-regulated compared to the control 108 

culture, with very little overlap of differentially expressed proteins between the EspP- and EspP 109 

S263A-treated cultures (Figure S1A). The majority of proteins identified in the proteomics assay 110 

were cytosolic or nuclear (Figure S1B). A key group of proteins that was upregulated in the EspP 111 

treated cultures were those associated with Wnt, Hedgehog, and putative stem cell-related 112 

proteins. An abbreviated list of these proteins is shown in Table 1. WNT2B isoform 3, WNT3A, 113 

Wntless and numerous downstream targets of GLI1 (active hedgehog signaling) were 114 

upregulated in the EspP-injured culture. Many of the proteins listed in Table 1 were either not 115 

changed or downregulated in the EspP S263A-treated (no cytotoxicity) culture suggesting that 116 

EspP specifically induced activation of Wnt and Hedgehog signaling as part of the colonic 117 

damage and regenerative response.  118 

To assess WNT2B expression in the colonoids post-EspP injury, we performed 119 

immunostaining. WNT2B expression was concentrated in specific, rare epithelial cells in normal 120 

human colon crypt (Figure S2A) and in colonoids (Figure S2B). Not every colonic crypt or every 121 

colonoid had WNT2B-positive cells. However, colonoids regenerating 24h after EspP-induced 122 
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injury contained more WNT2B+ cells and diffuse WNT2B staining throughout the colonoid 123 

(Figure S2C and C’).  124 

   We performed qRT-PCR to validate the key pathway molecules identified in the 125 

proteomics screen. The mRNA expression of select stem cell, Wnt, and Hedgehog genes was 126 

compared between EspP-injured regenerating (at the 24h timepoint) and control colonoids. 127 

Although the injured colonoids regenerate to re-form their 3D structure after EspP washout, the 128 

intestinal stem cell markers LGR4 and LGR5 were not upregulated. LGR4 was significantly 129 

downregulated, whereas LGR5 was unchanged (Figure 3). BMI1, which was significantly 130 

upregulated in the proteomics result, showed an upward trend in its mRNA expression, but 131 

without reaching statistical significance. The proteomics screen identified WNT2B isoform 3 as 132 

significantly upregulated in the EspP-injured regenerating colonoids. The EspP-injured 133 

regenerating colonoids had a slight downregulation of WNT2B2 (previously known as WNT13A), 134 

an upward trend of WNT2B1 (WNT13B), and a significant upregulation of WNT2B3 (WNT13C) 135 

(Figure 3). WNT2B3’s upregulation following EspP-induced injury confirmed the proteomics 136 

assay, but was still unexpected as it is not thought to be a classical epithelial-produced Wnt.    137 

 Since numerous downstream targets of Hedgehog signaling were upregulated in the 138 

regenerating colonoids, we evaluated whether the canonical Hedgehog effectors GLI1 and GLI2 139 

were changed in the regenerating colonoids. Both genes have been found upregulated in colon 140 

cancer cell lines (Mazumdar et al., 2011; Zhang et al., 2017) and implicated in cancer cell 141 

proliferation. GLI2 transcripts were not detected in either the control or regenerating colonoids. 142 

However, GLI1 was significantly upregulated in the regenerating colonoids (Figure 3). Only the 143 

hedgehog ligand DHH was significantly upregulated in the regenerating colonoids (Figure 3). 144 

Both hedgehog ligands SHH and IHH were significantly downregulated. Overall, the EspP-145 
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injured regenerating colonoids lead to upregulation of hedgehog signaling, specifically via the 146 

hedgehog ligand, DHH.  147 

Epithelial Wnt is indispensable for colonoid regeneration   148 

To determine whether epithelial produced Wnts are important for colonoid regeneration, 149 

control and EspP-injured colonoids were monitored in the absence (Figure 4A) or presence 150 

(Figure 4B) of IWP-2 (2.5 μM), a porcupine inhibitor that inhibits palmitoylation of all Wnts and 151 

results in inhibition of processing and secretion of Wnts (Farin et al., 2012). The colonoid media 152 

containing 50% v/v Wnt3A conditioned media was maintained in all experimental conditions. As 153 

previously shown, the EspP-injured colonoids were able to regenerate and re-form 3D colonoids 154 

after EspP is removed (Figure 4A). In the continued presence of IWP-2 (pre-treatment prior to 155 

EspP addition, during EspP treatment, and during the 24h regeneration period), EspP-injured 156 

colonoids were unable to re-form 3D colonoids. Interestingly, the control culture showed no 157 

morphologic difference in the presence of IWP-2 (Figure 4B). This suggests that the Wnt3A 158 

conditioned media is sufficient to maintain homeostatic growth and proliferation of colonoids, 159 

but is not sufficient for regeneration following EspP-induced injury. Inhibition of epithelial Wnt 160 

secretion (by IWP-2) prevents human colonoid regeneration. This indicates that epithelial Wnt(s) 161 

are necessary for regeneration. 162 

The proteomics screen identified upregulation of WNT2B3 in the EspP-injured colonoids. 163 

We evaluated if WNT2B alone could stimulate regeneration. Recombinant human WNT2B 164 

(rhWNT2B) was added to colonoids at the same time as IWP-2 and kept in the cultures during 165 

the course of the experiment. Although IWP-2 inhibited colonoid regeneration, rhWNT2B was 166 

sufficient to rescue and promote regeneration after EspP-induced injury (Figure 4C). To 167 

determine the direct effect of epithelial WNT2B on colonoid regeneration post EspP-injury, we 168 
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used a lentiviral shRNA approach to knockdown WNT2B in the colonoids. As a technical 169 

control, we used a lentiviral shRNA to knockdown DRA (SLC26A3) in human duodenal 170 

enteroids. At 17 days post-transduction (15 days after the start of puromycin selection), the 171 

enteroids with DRA shRNA were thriving in the presence of puromycin (Figure S3). In contrast, 172 

the colonoids with WNT2B shRNA sharply declined and were unable to propagate (Figure S3). 173 

This result is consistent with the report by O’Connell et al., 2018 in which the enteroids and 174 

colonoids derived from WNT2B-deficient individuals were not stable and could only form a 175 

short-term culture in the presence of recombinant murine WNT2B.  176 

Studies in chick retinal explants found that Wnt2b overexpression leads to increased cell 177 

proliferation and the growth of large, folded retinal tissue (Ohta et al., 2011). However, co-178 

overexpression of Wnt2b with the small, leucine-rich proteoglycan Tsukushi (Tsk) led to an 179 

inhibition of the Wnt2b-dependent hyperproliferation. Since we could not create a viable WNT2B 180 

KD human colonoid line, we examined whether TSK could inhibit WNT2B function in 181 

colonoids. Colonoids were treated with recombinant human TSK (rhTSK). Similar to the 182 

presence of IWP-2, control colonoids showed no morphologic difference in the presence of 183 

rhTSK (Figure 5). However, the EspP-injured colonoids were unable to regenerate in the 184 

presence of rhTSK.  Taken together, these data indicate that epithelial WNT2B is necessary for 185 

colonoid regeneration after EspP-induced injury. 186 

DHH activated hedgehog signaling modulates WNT2B  187 

The regenerating colonoids also had a significant upregulation of DHH and GLI1 (Figure 188 

3) suggesting an active role for hedgehog signaling following EspP-induced injury. To determine 189 

whether there was a link between Hedgehog signaling and WNT2B in regeneration, we treated 190 

colonoids with either the Smoothened agonist (SAG) or recombinant human DHH (rhDHH) 191 
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prior to EspP exposure. SAG binds to Smoothened and induces activation of the Hedgehog 192 

pathway (Chen et al., 2002). Its function is thought to be Hedgehog ligand-independent. DHH, as 193 

a Hedgehog ligand, also activates the Hedgehog pathway. Colonoids present 24h after 194 

regeneration were collected and analyzed for gene expression of stem cell markers, WNT, and 195 

Hedghog pathway molecules. mRNA expression in the presence of the agonists was compared to 196 

control (no agonists). The intestinal stem cell markers LGR4 and LGR5 were further 197 

downregulated in the presence of SAG compared to control. However, both genes were 198 

upregulated in the presence of rhDHH compared to control (Figure 6). BMI1 remained largely 199 

unchanged with SAG treatment, but was significantly upregulated in the EspP-injured, rhDHH 200 

treated colonoids, similar to the upregulation of LGR4 and LGR5.  This suggests that DHH 201 

activates a specific Hedgehog pathway that SAG does not. DHH-activated signaling has a direct 202 

effect on the intestinal stem cell markers. 203 

SAG treatment significantly downregulated WNT2B1 and WNT2B2 in EspP-injured 204 

colonoids. In contrast, WNT2B3 expression continued to trend upwards. rhDHH treatment had no 205 

effect on WNT2B1 and WNT2B2 expression in EspP-injured colonoids. However, WNT2B3 was 206 

significantly upregulated (Figure 6). This suggests that DHH positively modulates WNT2B3 207 

expression during colonoid regeneration. Similar to the stem cell markers that we evaluated, 208 

SAG and rhDHH caused different expression patterns of the three WNT2B isoforms.   209 

 SAG treatment either significantly downregulated or had no effect on expression of SHH 210 

and IHH in both control and EspP-injured colonoids, but significantly upregulated DHH and 211 

GLI1 expression in EspP-injured colonoids. EspP-injured colonoids showed significant 212 

upregulation of GLI1 and DHH in the presence of rhDHH, compared to control (Figure 6).  213 

These data show that both SAG (hedgehog activation) and rhDHH can modulate WNT2B 214 
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expression, but only WNT2B3 is upregulated in EspP-injured colonoids with these hedgehog 215 

agonists. DHH acts in a specific manner to activate hedgehog signaling following injury to the 216 

colonoids. Although SAG and rhDHH treatment similarly upregulated DHH and GLI1 in EspP-217 

injured colonoids, they had different effects on the expression levels of the other genes 218 

interrogated. This suggests that DHH activates Hedgehog signaling in a SAG-independent 219 

manner. Overall, these results show that human colonoids regenerate after bacterial cytotoxin-220 

induced injury via interaction of the DHH and WNT2B-dependent pathways.   221 

 222 

DISCUSSION 223 

Intestinal regeneration is dependent on Wnt signaling to stimulate stem cell proliferation. Most 224 

studies have focused on the identity of the intestinal stem cells that drive proliferation and crypt 225 

hyperplasia in mouse models under both normal and post-injury conditions, particularly post-226 

radiation (Hua et al., 2012; Hua et al., 2017; Kuruvilla et al., 2016; Metcalfe et al., 2014; Zhou et 227 

al., 2013). The regenerative pathways and key players in these pathways are not well understood. 228 

In this study, we focused on characterizing the molecules that drive a regenerative response 229 

following exposure to a virulence factor in a bacterial diarrheal disease: EspP, an EHEC-secreted 230 

bacterial cytotoxin that causes epithelial damage. Colonic regeneration is dependent on epithelial 231 

signals, namely WNT2B and DHH. These two molecules activate Wnt and Hedgehog signaling 232 

interaction during colonic regeneration. 233 

Using the human colonoid model, which contains no mesenchyme, we employed a 234 

proteomics screen to characterize the pathways that are active following EspP-induced injury. 235 

WNT2B and numerous proteins downstream of active Hedgehog signaling were upregulated, 236 

suggesting Wnt and Hedgehog signaling are important in colonoid regeneration. Both pathways 237 
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have been implicated in organ development and maintenance (Clevers, 2006; Petrova and 238 

Joyner, 2014), with Hedgehog signaling described as important in regeneration of most organs 239 

(Adolphe, 2004; Konstantinou et al., 2016; Langiewicz et al., 2016; Le et al., 2008; 240 

Sriperumbudur et al., 2016; Trowbridge et al., 2006; Wang et al., 2016a; Wang et al., 2016b). 241 

Although recent studies have focused on the crosstalk between Wnt and Hedgehog signaling in 242 

cancer progression (Jiang et al., 2014; Regan et al., 2017; Song et al., 2015), these two pathways 243 

also have been implicated in regeneration of bladder epithelia, bone, and adrenal glands (Day 244 

and Yang, 2008; Finco et al., 2018; Shin et al., 2011).  245 

Our results indicate that epithelia-produced WNT2B and DHH are important regulators 246 

of human colonoid regeneration, with DHH modulating WNT2B3 expression following EspP-247 

induced injury. Activation of this particular Hedgehog pathway is not redundant between the 248 

three mammalian Hedgehog ligands. Sonic and Indian Hedgehog transcripts were either 249 

downregulated or unchanged during regeneration. Most of our understanding of Hedgehog 250 

signaling focuses on Sonic Hedgehog, likely because it is the most widely expressed mammalian 251 

Hedgehog ligand (Varjosalo and Taipale, 2008). The implications of downregulated SHH in 252 

colonoid regeneration are not clear, however, previous studies have shown that IHH 253 

downregulation initiates intestinal wound healing and abrogates adenoma development (Büller et 254 

al., 2015; van Dop et al., 2010). Until now, DHH function has not been well understood. It is 255 

primarily described as an essential factor in gonad (O'Hara et al., 2011; Rothacker et al., 2018; 256 

Yao et al., 2002) or peripheral nerve development (Bajestan et al., 2006; Parmantier et al., 1999). 257 

However, one study demonstrated an essential role for DHH in corneal homeostasis and 258 

regeneration (Kucerova et al., 2012). Our results highlight a novel role for DHH-activated 259 

Hedgehog signaling in human colonic regeneration.  260 
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In human colonoids and colonic tissue, WNT2B is localized to a rare cell that is not 261 

present in every colonoid or crypt. The identity of this cell in human colonoids is currently 262 

unknown but under further investigation. Regeneration following cytotoxin-induced injury 263 

results in diffuse WNT2B staining with a higher number of WNT2B+ cells, similar to a study 264 

that showed upregulation of Wnt2b in mouse intestinal crypts post-irradiation (Suh et al., 2017). 265 

This correlates with the upregulation of WNT2B3 mRNA in the regenerating colonoids. 266 

Although WNT2B has been characterized as having two isoforms in cancer cells (Katoh, 2001), 267 

three WNT2B isoforms have been identified in multiple mammalian cells and been shown to 268 

function disparately from each other (Bunaciu et al., 2008). Since our proteomics screen 269 

identified the WNT2B isoform 3, we used the primers described by Bunaciu et al. to distinguish 270 

between the WNT2B isoforms. The three isoforms were regulated differently during 271 

regeneration and in the presence of Hedgehog agonists, SAG and rhDHH.  272 

Mesenchymal Wnts are clearly essential for regeneration (Gregorieff et al., 2005; 273 

Greicius et al., 2018; Koch, 2017; Shoshkes-Carmel et al., 2018; Valenta et al., 2016), but only a 274 

few studies have highlighted the importance of epithelial Wnts in intestinal development and 275 

injury response (O’Connell et al., 2018; Suh et al., 2017; Zou et al., 2018). Of note, recently 276 

WNT2B mutations were found to cause neonatal-onset chronic diarrhea, with inflammation seen 277 

in the stomach, duodenum, and colon (O’Connell et al., 2018). This study showed that enteroids 278 

from these WNT2B-deficient patients could not form stable cultures, although addition of 279 

recombinant murine Wnt2b stabilized the cultures for a short period. This study emphasizes the 280 

significant differences between the regeneration potential of mouse and human intestinal 281 

epithelium. Knockout or knockdown of Wnt2b in the whole mouse or mouse organoids, 282 

respectively, results in no detrimental phenotype. However, human intestinal epithelial WNT2B 283 
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is indispensable in intestinal development and regeneration following injury.  Taken together, 284 

our studies indicate that data gained on mouse models of intestinal development, homeostasis, 285 

and injury may not directly translate to human intestinal physiology and pathophysiology.  286 

In summary, using the bacterial cytotoxin EspP to model damage, we showed that human 287 

colonoids can be used to study the role of epithelial molecules in regeneration. Epithelial 288 

WNT2B and Desert Hedgehog are essential and interact during regeneration following injury. 289 

Importantly, the hedgehog ligands, Desert, Indian, and Sonic, are not redundant in colonic 290 

regeneration. Understanding the mechanisms that specifically drive WNT2B3 and DHH in 291 

colonic development and regeneration may provide the basis for useful therapeutics in controlled 292 

regeneration in patients with some colonic diseases.     293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 
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EXPERIMENTAL PROCEDURES 307 

Tissue collection and colonoid generation. Colonic biopsies from healthy individuals were 308 

obtained under Johns Hopkins University School of Medicine Institutional Review Board (IRB# 309 

NA_00038329) and are detailed in Supplementary Table 1. Colonic crypt isolation and colonoid 310 

generation were prepared as previously reported (In et al., 2016; Jung et al., 2011). Briefly, 311 

biopsy tissue was minced, washed several times in freshly prepared cold chelating solution 312 

(CCS; 5.6mM Na2HPO4, 8mM KH2PO4, 96.2mM NaCl, 1.6mM KCl, 43.4mM sucrose, 313 

54.9mM D-sorbitol, and 0.5mM DL-dithiothreitol) and incubated 1 hour at 4°C in 10 mM EDTA 314 

in CCS on an orbital shaker. Isolated crypts were resuspended in Matrigel (Corning, Tewksbury, 315 

MA) and 30 ul droplets were plated in a 24-well plate (Corning). After polymerization at 37°C, 316 

500 ul of expansion media (EM) was added for 2 days (Advanced Dulbecco’s modified Eagle 317 

medium/Ham’s F-12 (ThermoFisher, Waltham, MA), 100 U/mL penicillin/streptomycin (Quality 318 

Biological, Gaithersburg, MD), 10 mM HEPES (ThermoFisher), and 1X GlutaMAX 319 

(ThermoFisher), with 50% v/v WNT3A conditioned medium (ATCC CRL-2647), 15% v/v R-320 

spondin1 conditioned medium (cell line kindly provided by Calvin Kuo, Stanford University), 321 

10% v/v Noggin conditioned medium (cell line kindly provided by Gijs van den Brink, Tytgat 322 

Institute for Liver and Intestinal Research), 1X B27 supplement (ThermoFisher), 1mM N-323 

acetylcysteine (MilliporeSigma), 50 ng/mL human epidermal growth factor (ThermoFisher), 10 324 

nM [Leu-15] gastrin (AnaSpec, Fremont, CA), 500 nM A83-01 (Tocris, Bristol, United 325 

Kingdom), 10 μM SB202190 (MilliporeSigma), 100 mg/mL primocin (InvivoGen, San Diego, 326 

CA), 10 μM CHIR99021 (Tocris), and 10 μM Y-27632 (Tocris)). After 2 days, the EM (without 327 

CHIR99021 and Y-27632) was replaced every other day. Colonoids were passaged every 7 days 328 

by harvesting in Cultrex Organoid Harvesting Solution (Trevigen, Gaithersburg, MD) at 4°C 329 
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with shaking for 30.’ Colonoids were fragmented by trituration with a P200 pipet 30-50 times, 330 

collected and diluted in Advanced DMEM/F12, centrifuged at 300 xg for 10’ at 4°C. The pellet 331 

was resuspended in Matrigel and plated as described for crypt isolation. All colonoid cultures 332 

were maintained at 37°C and 5% CO2. Unless noted, colonoid lines have been passaged >20 333 

times. 334 

 335 

Recombinant EspP generation and collection. AD202 cells transformed with the plasmid 336 

encoding wild-type EspP (pRLS5) and serine protease-deficient mutant EspP S263A was kindly 337 

provided by H. Bernstein, NIH (Szabady et al., 2004). The cells were grown at 37°C in Luria-338 

Bertani (LB) broth (ThermoFisher), overnight. They were then pelleted, washed, and grown at 339 

37°C in fresh LB broth for approximately 15’. IPTG (100 μM) was added to induce espP or espP 340 

S263A expression. The culture was grown until reaching an OD550 2.0. Bacterial cells were 341 

removed by centrifugation (9000 rpm, 30’, 4°C, Sorvall RC6, SLA-3000 rotor). EspP and EspP 342 

S263A was collected from the cell-free supernatant by ammonium sulfate precipitation (60%, 343 

o/n, 4°C), followed by centrifugation (9000 rpm, 30’, 4°C, Sorvall RC6, SLA-3000 rotor). The 344 

pellet was resuspended in PBS, syringe filtered (0.2 μm), then diluted with 15% glycerol to allow 345 

for freezing. Each batch of recombinant EspP and EspP S263A was separated on SDS-PAGE 346 

and stained with Coomassie Blue to check purity. Protein concentrations were determined by 347 

Bradford assay (Bio-Rad, Hercules, CA). Serine protease activity was determined by pepsin A-348 

cleavage assay (Brockmeyer et al., 2007). 349 

 350 

EspP treatment and colonoid regeneration. Colonoids were plated in Matrigel in 24 well 351 

plates and separated into experimental conditions (control, EspP treatment, EspP plus inhibitors 352 
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or agonists). Since the mechanics of passaging colonoids includes fragmenting their 3D structure 353 

and therefore causing injury, we attempted to minimize this by not triturating the colonoids, but 354 

instead, harvesting them without fragmentation and replating into new Matrigel. Colonoids were 355 

pre-treated with inhibitors or agonists at least 8h prior to overnight EspP treatment.  After 356 

overnight treatment, colonoids were harvested in Cultrex Organoid Harvesting Solution, washed 357 

twice in Advanced DMEM/F12, and pelleted at 300 xg for 10’ at 4°C, and replated in Matrigel 358 

for 24h regeneration. After replating, colonoids were kept in the presence of any inhibitors or 359 

agonists using during the experiment.  After the 24h regeneration period, colonoids were imaged 360 

or processed for further studies. All experimental reagents used are detailed in Supplementary 361 

Table 2. 362 

 363 

Brightfield imaging. Colonoids plated in Matrigel in 24 well plates were imaged during the 364 

course of experiments on a Zeiss Axio Observer A1 inverted microscope (Zeiss, Oberkochen, 365 

Germany) with images captured on CellSense imaging software (Olympus, Tokyo, Japan). 366 

Images were viewed and processed using OlyVia (Olympus).  367 

 368 

Immunofluorescence staining and confocal imaging. Fixed tissues were frozen in OCT and 369 

sectioned (10 μm thick). Colonoids were harvested from Matrigel using Cultrex Organoid 370 

Harvesting Solution. They were pelleted (300 xg, 10’, 4°C), and fixed for 40 min in 4% 371 

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA). Both fixed tissue and 372 

colonoids were permeabilized and blocked simultaneously for 1h using a 10% Fetal Bovine 373 

Serum (Atlanta Biologicals, Flowery Branch, GA), 0.1% saponin (MilliporeSigma) solution 374 

prepared in PBS. After three PBS washes, 100 μl of primary antibody against WNT2B 375 
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(HPA060696, MilliporeSigma) prepared at 1:100 dilution in PBS was added to the cells and 376 

incubated overnight at 4°C. Afterwards, cells were washed 3 times with PBS, and 100 μl of 377 

AlexaFluor secondary antibodies, AlexaFluor-647 phalloidin, and Hoechst 33342 (1 mg/ml, all 378 

ThermoFisher), diluted 1:100 in PBS, were added for 1h at room temperature. After three PBS 379 

washes, 50 μl of FluorSave Reagent (Calbiochem) was added to the colonoids and they were 380 

mounted between a glass slide and a number 1 coverslip. Confocal imaging was carried out in 381 

the Imaging Core of the Hopkins NIH/NIDDK Basic and Translational Research Digestive 382 

Disease Core Center using a LSM510 META laser scanning confocal microscope running ZEN 383 

2012 (black edition) imaging software (Zeiss).  384 

 385 

Protein extraction and proteomic analysis. Colonoids were harvested in Cultrex Organoid 386 

Harvesting Solution and centrifuged at 300 xg for 10’ at 4°C. The cells were washed with ice 387 

cold PBS 5 times to remove any serum proteins. Cells were lysed in 250 µl of  lysis buffer (60 388 

mM HEPES pH 7.4, 150 mM KCl, 5 mM Na3EDTA, 5 mM EGTA, 1 mM Na3VO4, 50 mM 389 

NaF, 1 mM PMSF, 2% SDS (all MilliporeSigma)) supplemented with 1:100 of protease inhibitor 390 

cocktail (P8340, MilliporeSigma). Cells incubated with lysis buffer were sonicated on ice 3 391 

times for 10 sec using 30% energy input. The lysed cells were centrifuged for 10 min at 5000 392 

rpm at 4°C (MC2 Centrifuge, Sarstedt Desaga) to remove any unbroken cells. Protein 393 

concentration was determined by Bradford assay (Bio-Rad). Lysate was stored at -80°C. 394 

Proteomic analysis was carried out by the Mass Spectrometry and Proteomics Facility, Johns 395 

Hopkins University School of Medicine. Raw data was sent to and analyzed by Creative 396 

Proteomics (Shirley, NY). Figure S1A and B were generated by Creative Proteomics. 397 

 398 
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RNA isolation and gene expression analysis  399 

Colonoids were harvested from Matrigel using Cultrex Organoid Harvesting Solution. Cells were 400 

centrifuged at 5000 rpm for 5 min at 4°C. Supernatant was removed and pellet was stored at -401 

80C until RNA extraction. RNA isolation was carried out using PureLink RNA Mini Kit 402 

(ThermoFisher) according to the manufacturer’s protocol. RNA concentration was determined 403 

using a DU 800 spectrophotometer (Beckman Coulter, Brea, CA). 500 ng to 2 ug of RNA was 404 

retro-transcribed into cDNA using SuperScript VILO Master Mix (ThermoFisher). DNA Real-405 

time qPCR were run using PowerUp SYBR green Master Mix and QuantStudio 12K Flex Real-406 

Time PCR instrument (all Applied Biosystems, Foster City, CA). Each sample was analyzed in 407 

triplicate. The primer oligonucleotide sequences are listed in Supplementary Table 3 (Xiaowei 408 

Wang, Athanasia Spandidos, Huajun Wang and Brian Seed: PrimerBank: a PCR primer database 409 

for quantitative gene expression analysis, 2012 update) AND (Bunaciu RP et al. 2008). The 410 

relative fold changes in mRNA levels between EspP-injured and control colonoids were 411 

determined using the 2
-ΔΔCT 

method with normalization to 18S ribosomal RNA. 412 

 413 

Statistics. Data are represented as means ± SEM. Statistical significances were calculated using 414 

Student’s t-test. Significance was represented as at least p < 0.05. All experiments were 415 

performed on a minimum of 3 different colonoid lines derived from separate normal human 416 

subjects, with a total of 7 colonoid lines used throughout these studies (Supplementary Table 1). 417 

N refers to number of independent replicates performed. All analyses were performed on 418 

GraphPad Prism 7.03 (GraphPad Software, La Jolla, CA). 419 

 420 

 421 
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FIGURE LEGENDS 422 

Figure 1. EspP requires serine protease function to cause cytotoxicity of human colonoids 423 
Representative images of colonoids after overnight treatment: control (left), EspP-treated 424 
(middle), and EspP 263A-treated (right). EspP requires serine protease activity to have a 425 
cytotoxic effect on the colonoids; scale bar = 200 μm. N=3 426 
 427 

Figure 2. Colonoids can model crypt regeneration after EspP washout 428 
(A and B) Representative images of colonoids after washout and replating: (A) 24h post-washout 429 
and (B) 48h post-washout; scale bar = 200 μm. N>3 430 

 431 

Figure 3. EspP-treated colonoids upregulate WNT2B and DHH during regeneration 432 
Gene expression of regenerating colonoids was analyzed by qRT-PCR. Relative gene expression 433 

is shown as a ratio of EspP-treated compared to control colonoids, and normalized to 18S. * p < 434 
0.05; ** p < 0.01. N≥11 435 
 436 

Figure 4. WNT2B compensates for inhibition of epithelial wnts in regenerating colonoids 437 
(A - C) Control (left) and EspP-treated (right) colonoids after washout, at 24h regeneration. (A) 438 
Representative images of colonoids at 24h regeneration. 439 

(B) Representative images of colonoids in the continued presence of IWP2 at 24h regeneration. 440 
(C) Representative image of colonoids in the continued presence of IWP2 and recombinant 441 
human WNT2B (rhWNT2B) at 24h regeneration; scale bar = 200 μm. N≥4 442 

 443 

Figure 5. TSK inhibits colonoid regeneration post EspP-treatment 444 
Representative images of control (left) and EspP-treated (right) colonoids after washout, at 24h 445 

regeneration. Control and EspP-treated colonoids were in the continued presence of recombinant 446 
human Tsukushi (rhTSK) (bottom panel); scale bar = 200 μm. N=3 447 
 448 

Figure 6. Hedgehog agonists upregulate WNT2B3 and DHH during regeneration 449 
Control and EspP-treated colonoids were treated with Smoothened agonist (SAG) or 450 
recombinant human Desert Hedgehog (DHH). Gene expression of regenerating colonoids was 451 

analyzed by qRT-PCR. Relative gene expression is shown as a ratio of treated (EspP and/or SAG 452 
or DHH) compared to control colonoids, and normalized to 18S. n>3; * p < 0.05; ** p < 0.01; 453 
*** p < 0.001. N≥3 454 

 455 

Figure S1. Proteomics analysis of differentially expressed proteins after EspP or EspP 456 
263A treatment compared to control  457 
(A) The Venn diagram depicts the number of differentially expressed proteins in the EspP 458 

S263A-treated (blue circle) and the EspP-treated (green circle) colonoids compared to control. 459 
Note the minimal overlap between the two treatments. 460 
(B) The distribution of subcellular localization of differentially expressed proteins in the EspP-461 

treated compared to control colonoids.  462 
 463 

Figure S2. WNT2B marks a specific cell in the colonic crypt 464 
(A and B) WNT2B is concentrated in a specific cell in (A) human colonic tissue and (B) human 465 
colonoids. WNT2B, green; nuclei, blue. 466 
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(C) EspP-treated colonoids regenerating 24h post-EspP washout. WNT2B staining is more 467 

diffuse with more WNT2B+ cells, seen in the zoomed inset (C’); scale bar = 10 μm; WNT2B, 468 
green; nuclei, blue. 469 
 470 

Figure S3. Knockdown of WNT2B results in non-viable colonoids 471 
shRNA against DRA (top panel) and WNT2B (bottom panel) was introduced into duodenal 472 
enteroids or colonoids, respectively via lentivirus transduction. Images were taken 17 days post-473 
transduction, showing healthy duodenal enteroids but lackluster colonoids. 474 

 475 
Table 1. EspP-injured colonoids upregulated proteins in the Wnt and Hedgehog pathways 476 
Selected proteins from the proteomics analysis show that proteins in the Wnt and Hedgehog 477 
pathways are upregulated in the EspP-injured colonoids. The ratio is protein expression of EspP-478 
injured over control colonoids.  479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 
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Figure 2 758 
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Figure 3 771 
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Figure 5 783 
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Figure 6 798 
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Table 1 821 

Accession Description ( Homo sapiens) Coverage 

Ratio 

(EspP/control) 

    630044901 Protein Wnt2b isoform 3 4.35 3.101 

27883842 Polycomb complex protein BMI-1 2.15 2.057 

4502805 chromogranin-A isoform 1 preproprotein 39.61 2.009 

31542745 protein wntless homolog isoform 1 precursor 6.10 1.997 

24431935 reticulon-4 isoform A 12.08 1.995 

4506055 cAMP-dependent protein kinase catalytic subunit 

alpha isoform 1 

36.47 1.807 

20544145 casein kinase I isoform delta isoform 2 16.63 1.734 

395394053 disheveled-associated activator of morphogenesis 1 

isoform 2 

7.49 1.585 

225903437 glycogen synthase kinase-3 beta isoform 2 20.95 1.678 

395394053 disheveled-associated activator of morphogenesis 1 

isoform 2 

7.49 1.585 

188528675 slit homolog 1 protein precursor 4.69 1.520 

34485714 ras-related protein Rab-23 12.24 1.477 

33636738 cAMP-dependent protein kinase catalytic subunit 

beta isoform 1 

28.14 1.464 

25121993 RNA-binding protein Musashi homolog 2 isoform b 27.49 1.391 

148727288 low-density lipoprotein receptor-related protein 6 

precursor 

4.15 1.350 

14916475 protein Wnt-3a precursor 27.56 1.269 

578808446 PREDICTED: slit homolog 2 protein isoform X5 13.65 1.259 

4885523 noggin precursor 22.84 1.247 

578808417 PREDICTED: prominin-1 isoform X5 3.68 1.194 

339276103 R-spondin-1 isoform 3 precursor 31.50 1.167 

11545873 

SPARC-related modular calcium-binding protein 1 

isoform 2 precursor 7.14 1.141 
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Figure S1 823 

 824 

 825 

 826 

 827 

 828 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434639doi: bioRxiv preprint 

https://doi.org/10.1101/434639


34 
 

Figure S2 829 
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Figure S3 842 
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Supplemental Table 1 861 

Number Patient pathology Colonic segment Age Gender 

     1 Normal, routine screening sigmoid 53 M 

2 Normal, routine screening distal 66 M 

3 Normal, routine screening transverse 50 M 

4 Normal, routine screening proximal 56 F 

5 Normal, routine screening proximal 58 M 

6 Normal, routine screening proximal 50 M 

7 Normal, routine screening proximal 67 F 
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Supplemental Table 2 883 

Reagent Supplier 

Catalog 

number Concentration 

    

IWP-2 MilliporeSigma 10536 2.5 μM 

Recombinant human Desert Hedgehog 

(rhDHH) R&D systems 4777-DH 2 μg/ml 

Recombinant human Tsukushi (rhTSK) R&D systems 3940-TS 2 μg/ml 

Recombinant human WNT2B (rhWNT2B) MyBioSource MBS1352751 1 μg/ml 

Smoothened Agonist (SAG) MilliporeSigma 566661 500 nM 
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Supplemental Table 3 903 

Gene Name Forward Primer Reverse Primer 

 

  

 
BMI1 CCATTGAATTCTTTGACCAGAA CTGCTGGGCATCGTAAGTATC 

DHH CGAGCGTTGTAAGGAGCGG CCCTCAGTCACTCGTAGGC 

GLI1 AACGCTATACAGATCCTAGCTCG GTGCCGTTTGGTCACATGG 

GLI2 CCCCTACCGATTGACATGCG GAAAGCCGGATCAAGGAGATG 

IHH TGCATTGCTCCGTCAAGTC CCACTCTCCAGGCGTACCT 

LGR4 GATAACAGCCTCCAGGACCA TTCAAGAGTGCTTGTGACATTTG 

LGR5 ACCAGACTATGCCTTTGGAAAC TTCCCAGGGAGTGGATTCTAT 

SHH GCTTCGACTGGGTGTACTACG GCCACCGAGTTCTCTGCT 

WNT2B-1 GATCCTTGAGGACGGCAGTA GCATGATGTCTGGGTAACGC 

WNT2B-2 CGTAGACACGTCCTGGTGGTA GCATGATGTCTGGGTAACGC 

WNT2B-3 CTAAAAGTACATTGGGGCAC GCATGATGTCTGGGTAACGC 

18S GCAATTATTCCCCATGAACG GGGACTTAATCAACGCAAGC 
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