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Abstract 

Virtually all tumors are genetically heterogeneous, containing subclonal populations of cells that 

are defined by distinct mutations1. Subclones can have unique phenotypes that influence 

disease progression2, but these phenotypes are difficult to characterize: subclones usually 

cannot be physically purified, and bulk gene expression measurements obscure interclonal 

differences. Single-cell RNA-sequencing has revealed transcriptional heterogeneity within a 

variety of tumor types, but it is unclear how this expression heterogeneity relates to subclonal 

genetic events – for example, whether particular expression clusters correspond to mutationally 

defined subclones3,4,5,6-9. To address this question, we developed an approach that integrates 

enhanced whole genome sequencing (eWGS) with the 10x Genomics Chromium Single Cell 5' 

Gene Expression workflow (scRNA-seq) to directly link expressed mutations with transcriptional 

profiles at single cell resolution. Using bone marrow samples from five cases of primary human 

Acute Myeloid Leukemia (AML), we generated WGS and scRNA-seq data for each case. 

Duplicate single cell libraries representing a median of 20,474 cells per case were generated 

from the bone marrow of each patient. Although the libraries were 5’ biased, we detected 

expressed mutations in cDNAs at distances up to 10 kbp from the 5’ ends of well-expressed 

genes, allowing us to identify hundreds to thousands of cells with AML-specific somatic 

mutations in every case. This data made it possible to distinguish AML cells (including normal-

karyotype AML cells) from surrounding normal cells, to study tumor differentiation and 
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intratumoral expression heterogeneity, to identify expression signatures associated with 

subclonal mutations, and to find cell surface markers that could be used to purify subclones for 

further study. The data also revealed transcriptional heterogeneity that occurred independently 

of subclonal mutations, suggesting that additional factors drive epigenetic heterogeneity. This 

integrative approach for connecting genotype to phenotype in AML cells is broadly applicable for 

analysis of any sample that is phenotypically and genetically heterogeneous. 

 
Main 

     Four cases of de novo AML and one of secondary AML were selected for study (clinical 

details in https://github.com/genome/scrna_mutations). eWGS (Fig. 1a) showed that these 

cases were genetically representative of AML, containing on average 26 mutations in well-

established driver genes (e.g. DNMT3A, FLT3, NPM1, TP53, NRAS, IDH1, CEBPA), and 

representative clonal architecture, with at least one detectable subclone per case (Table 1, 

Supplementary Table 1) 10. Bulk RNA-sequencing revealed that on average, fewer than half of 

the mutations detected by eWGS were expressed (Table 1). 

     High-depth sequencing of duplicate scRNA-seq libraries (Table 1) generated using the 5’ 

(v1) and 3’ (v2) 10x Genomics Chromium Single Cell Gene Expression workflows yielded 

consistent low-level coverage at least 10 kbp from the 5’ and 3’ ends of the average transcript 

(Fig. 1b). For the average gene assayed using the 5’ kit, at least 2.5% of the unique sequenced 

transcripts mapped to any given base up to 10 kbp away from the 5’ transcription start site of 

the gene. Moreover, the same transcripts had highly correlated coverage patterns in single cell 

and bulk RNA-seq data (Fig. 1c).  

     We identified mutation-containing reads and cells by extracting mutant and wild-type Unique 

Molecular Indices (UMIs) and cell barcodes corresponding to each variant position in the eWGS 

data (https://github.com/genome/scrna_mutations). A cell was labeled “mutant” if it contained at 

least one variant-containing read, and “wild-type” if only wild-type reads were detected. Due to 

low expression and allele dropout, mutations were not detectable in all AML cells; further, “wild-

type” cells may contain undetected heterozygous mutations. Most cells with detected somatic 

mutations contained one mutation, with one read mapping to the variant position 

(Supplementary Fig. 1). Single nucleotide variants (SNVs), insertions and deletions (indels, 

including FLT3-ITD and NPMc), and one gene fusion (NUP98-NSD1) were detectable in the 

single-cell data.  We detected an average of 49 mutant cells per variant (range: 1-3944). 

Founding clone mutations, subclonal mutations, and putative driver mutations were detectable 

in dozens to thousands of cells in each case (Table 1, Supplementary Table 1). Previously, 
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somatic variant detection from scRNA-seq data involved full-length cDNAs from small numbers 

of cells5,11. Sensitivity of mutation detection was comparable in single cell and bulk RNA-seq 

data: on average, a slightly higher fraction of known mutations were detected in the scRNA-seq 

data (Table 1, Fig. 1d, Supplementary Discussion). 

     We next sought to interpret the mutation data in the context of expression heterogeneity, 

which we summarized in each case using principal component analysis (Methods). We 

observed complex relationships among clusters (such as partially overlapping expression 

signatures), and multiple sources of heterogeneity in all samples, including variable expression 

of known hematopoietic cell-type markers (e.g. CD3D (T-cells), CD79A (B-cells), and HBA1 

(erythrocytes)), cell cycle genes (e.g. TUBA1B, TOP2A), markers of myeloid differentiation (e.g. 

AZU1, ELANE, MPO, PRTN3), mitochondrial genes, and ribosomal genes (Supplementary Fig. 

2-6, Supplementary Table 2). This suggested that the distribution of cell types within the bone 

marrow samples of AML patients is one major source of expression heterogeneity. 

     To investigate sample composition in a more granular and unsupervised manner, we 

identified the nearest hematopoietic lineage of each cell by matching it to the most similar 

lineage-specific expression profile in the DMAP database12 (Fig. 2c, Fig. 3). The inferred sample 

composition varied widely among subjects, particularly with respect to the fraction of lineage-

defined cells (e.g. cells resembling myelomonocytic cells, T-cells, B-cells, and erythrocytes). All 

samples contained clusters of immature cells, including cells resembling hematopoietic stem 

cells (HSCs), common myeloid progenitors (CMPs), and megakaryocyte-erythroid progenitors 

(MEPs), which could represent either immature non-malignant cells or AML cells. It is not 

possible to define AML cells using gene expression patterns alone, and previous approaches for 

deconvoluting mixtures of tumor and normal cells are not broadly applicable to AML samples, 

which usually have few copy number alterations3,4,8,10,13,14.  

     We therefore combined single-cell mutation data with expression-based clustering and 

lineage inference to distinguish AML cells from non-AML clusters. Using the bone marrow 

sample from 809653 (which contained many non-AML cells, according to morphology and flow 

cytometry) we overlaid mutation data on the t-SNE plots by highlighting mutant cells (Fig. 2e-g). 

A germline SNP in the BAG1 gene served as a positive control, marking SNP-containing cells in 

all expression clusters (Fig. 2h). By scRNA-seq, we detected cells expressing mutations in 8 

genes, including TP53, NRAS, and CEBPA (Table 1, Supplementary Table 1). Several clusters 

were significantly enriched (p ≤ 0.05, one-sided Fisher exact test) for mutant cells; other cells in 

these clusters presumably contained undetected mutations (Fig. 2b-g). Two of these clusters 

were composed of cells that had stem/progenitor expression signatures (HSCs and MEPs). The 
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other two were composed of cells expressing erythrocyte or monocyte markers; these cells 

would have been mistaken for normal cells using expression data alone. This was the only case 

with multiple copy number alterations, which provided additional sensitivity for defining AML 

cells (Supplementary Fig. 2c). In the other 4 cases, somatic mutations were also concentrated 

in specific cell clusters, suggesting that they represented AML cells (Fig. 3). This approach may 

miss small clusters with mutant cells, and rare AML cells that co-cluster with cells of different 

lineages. Overall, combining expression and mutation data delineated clusters of AML cells 

more comprehensively than either method alone, and allowed us to identify abnormally-

differentiated AML cells (“lineage infidelity”). 

     By combining lineage inference with single-cell mutation identification, we estimated the 

extent of differentiation of each tumor. Our conclusions were supported by flow cytometry and 

morphology, but provided more insight into the differentiation state of AML cells in individual 

samples (Fig. 2, Fig. 3). In two cases (809653, 782328), a considerable fraction of the mutant 

cells had expression signatures consistent with differentiated cells: erythrocytes and monocytes 

in 809653 (Fig. 2c), and monocytes and NK-T cells in 782328 (Fig. 3d). Likewise, 548327 

contained mutant cells that co-clustered with wild-type B- and T-cells, suggesting that some 

AML cells display lineage infidelity (Fig. 3b). Thus, this integrative genomic approach validates 

the concept that AML cells can have a variety of abnormal expression signatures, 

corresponding to different lineages and states of differentiation. 

     We next investigated the extent to which transcriptional heterogeneity was explained by 

mutational heterogeneity in each case. A subclonal mutation that drives an expression signature 

should be restricted in expression space. In contrast, a founding or subclonal mutation not 

associated with an expression signature should be present throughout expression space. 

Furthermore, this should not be dependent on restricted expression of the mutant gene. To this 

end, we highlighted mutant cells on the t-SNE plot of each sample, and identified mutations that 

are nonuniformly distributed, even after controlling for that gene’s expression (Fig. 2e-g, Fig. 3, 

Supplementary Fig. 7). The results reveal that the relationship between expression 

heterogeneity and mutational heterogeneity is case- and mutation-dependent. 

     Two cases, 721214 and 508084, contained subclonal mutations with nonuniform 

distributions (Fig 3a,c). Based on eWGS, 721214 contained a subclone defined by GATA2R361C. 

In the scRNA-seq data, cells expressing GATA2R361C were predominantly restricted to one side 

of the t-SNE plot, suggesting that AML cells containing this mutation have a unique expression 

signature (Fig. 3a). We characterized this signature using multiple regression, and orthogonally 

confirmed its existence using flow cytometry and PCR (Methods, Supplementary Methods, 
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Supplementary Discussion, Supplementary Fig. 8). Two cases (809653 (Fig. 2f-g) and 782328 

(Fig. 3d)) exhibited complex mutation-associated expression profiles, and a third, 548327 (Fig. 

3b), showed expression heterogeneity in the absence of discernable genetic heterogeneity 

(Supplementary Discussion). 

     The ability to map mutations in hundreds to thousands of individual cells also facilitates more 

conservative, direct analyses of intratumoral expression heterogeneity, using only cells that 

express a confirmed somatic mutation. We performed dimensionality reduction and graph-

based clustering using these mutationally-defined AML cells, and selected genes with the most 

variable expression patterns (Supplementary Fig. 9). We averaged expression of these genes 

within each cluster, and hierarchically clustered the results (Supplementary Fig. 10). All samples 

showed intercellular heterogeneity in the expression of cell cycle genes (as expected) and 

genes that function in the immune system, especially the MHC Class II genes and/or CD74. All 

but one case (782328) showed intercellular variability in expression of TP53-interacting genes15. 

Three cases (508084, 548327, 721214) showed intercellular heterogeneity in genes that 

interact with the vascular cell adhesion gene VCAM1, and three (721214, 782328, 809653) 

showed heterogeneous expression of myeloid differentiation genes. There were also case-

specific signatures, such as “response to reactive oxygen species” in 72121415. Notably, the 

GATA2R361C expression signature is also evident in the mutant cells, suggesting an 

autoregulatory loop (Supplementary Discussion, Extended Data Fig). 

     Integrating approaches that link genetic and transcriptomic information in single cells has 

important implications for the study of heterogeneous cell populations. By combining eWGS and 

scRNA-seq data, we have shown that we can distinguish between tumor and non-tumor cells, 

identify tumor cells displaying lineage infidelity, more comprehensively evaluate the 

differentiation state of individual tumor samples, derive mutation-associated expression 

signatures, study transcriptional heterogeneity within confirmed tumor cells, and identify cell-

surface markers that can be used to isolate specific cells for downstream studies.  Further, the 

approach described here should be applicable--without additional modifications or 

customization--to virtually any tumor type. 
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Methods 

 

Enhanced whole genome sequencing (eWGS), germline SNP detection, and somatic 

variant detection 

     For each case, we performed enhanced whole genome sequencing (eWGS) on bone 

marrow and matched normal tissue to identify germline and somatic variants. Libraries were 

captured using an IDT exome reagent enhanced with AML recurrently mutated genes16, then 

combined with WGS libraries and sequenced on an Illumina HiSeq4000, as described 

previously17. Germline mutations were called using GATK HaplotypeCaller v3.518 (parameters -

stand_emit_conf 10 -stand_call_conf 30) and filtered using recommended parameters (--

filterExpression "QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 || 

ReadPosRankSum < -8.0").  Somatic mutations (SNVs, indels, and copy number alterations) 

were detected using an ensemble mutation calling approach, with detailed protocols as 

previously published19. Somatic structural variants were detected using Manta v0.2920.    

 

Bulk RNA-sequencing 

     RNA libraries were prepared using the TruSeq stranded kit, sequenced on the Illumina 

HiSeq platform, and aligned as described previously19. Expression quantification was performed 

using Kallisto 0.43.1 21 and transcripts from ensembl version 74. 

 

Single-cell RNA-sequencing sample preparation, data generation, and coverage analysis 

 

Flow sorting for live cells. Cryovials of AML cells were thawed as follows: While 9 ml of Fetal 

Bovine Serum (FBS) was allowed to come to ~24℃, AML cryovials were removed from liquid 

nitrogen, and warmed in a 37℃ water bath until cells began to thaw. After 1 minute, 1 ml of 

room temperature FBS was added to the warming cryovial with a P1000 pipet tip and allowed to 

mix with thawing cells. The freshly added FBS was removed from the cell pellet and transferred 

back to the FBS stock. This process was repeated 3-4 times until all cells from the cryovial 

could be poured directly into the FBS stock. The empty cryovial was rinsed once more with the 

FBS mixture. Cells were then pelleted by centrifugation at 300 G for 5 minutes and resuspended 

in Phosphate Buffered Saline (PBS) at a concentration of 1x106 cell/ml in 1x PBS. Cells were 

then pipetted through a 70 µm filter into a 5 ml tube for sorting. Cells were then stained with 1 µl 

7-AAD per 1 ml of cells for 30 minutes at 4℃. If cell viability was ≤ 85%, stained cells were 
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filtered through a 40 µM Flowmi cell strainer (Miltenyi), flow sorted, and gated using the FACS 

Chorus software (BD Biosciences). 

5-prime unbiased single-cell RNA library construction and sequencing. Cells were 

processed using the 10x Genomics Chromium controller and the Chromium Single Cell 5′ 

Library & Gel Bead Kit (PN 1000006) following the standard manufacturer's protocols 

(https://tinyurl.com/y96l7lns). Two technical replicates were run in parallel for each sample. 

Briefly, between 14,000-21,000 live cells were loaded onto the Chromium controller in an effort 

to recover between 10,000-15,000 cells for library preparation and sequencing. Gel beads were 

prepared according to standard manufacturer’s protocols. Oil partitions of a single-cell + oligo 

coated gel beads (GEMs) were captured and reverse transcription was performed, resulting in 

cDNA tagged with a cell barcode and unique molecular index (UMI). Next, GEMs were broken 

and cDNA was amplified and quantified using an Agilent Bioanalyzer High Sensitivity chip  

(Agilent Technologies). 

     To prepare the final libraries, amplified cDNA was enzymatically fragmented, end-repaired, 

and polyA tagged. Fragments were then size selected using SPRIselect magnetic beads 

(Beckman Coulter). Next, Illumina sequencing adapters were ligated to the size-selected 

fragments and cleaned up using SPRIselect magnetic beads (Beckman Coulter). Finally, 

sample indices were selected and amplified for followed by a post sample index PCR double 

sided size selection using SPRIselect magnetic beads (Beckman Coulter). Final library quality 

was assessed using an Agilent Bioanalyzer High Sensitivity chip. Samples were then 

sequenced on the Illumina NovaSeq with a target of 150,000 reads/cell (2x150 paired end 

reads), yielding a median per-library depth of 192,427 reads per cell. 

Evaluating transcript coverage as a function of distance from transcription start and stop 

points. Transcript alignment, counting, and inter-library normalization were performed using the 

Cell Ranger pipeline (10x Genomics, default settings, Version 2.1.1, GRCh38 reference) 22. For 

the genes TP53, NPM1, GATA2, and DNMT3A, the depth at each transcript was evaluated 

using both scRNA-seq data as well as bulk RNA-seq data. For each gene, a canonical isoform 

was chosen by consulting the APPRIS database23 (ENST00000445888.6, 

ENST00000296930.9, ENST00000341105.6 and ENST00000264709.7 respectively). For the 

scRNA-seq data, the number of unique barcode/UMI pairs was counted at each position. For 

the bulk RNA-seq data, the tool bamCoverage24 was used to generate a wiggle file over the 

transcript at 1bp bin size. The resulting tracks were visualized using the UCSC Genome 

Browser25. To reduce visual noise from intergenic reads, positions not overlapping the canonical 
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isoform were not considered. Coverage plots for all mutated genes in this study are provided at 

https://github.com/genome/scrna_mutations. 

     To evaluate transcriptome-wide coverage, we used the annotation set GENCODE V27 to 

extract 20,090 genes with only one annotated isoform between 250bp and 11,000bp, with an 

average size of 1,569bp and median size of 829bp. Restricting to single isoform genes reduced 

noise related to alternative transcription start (TSS) and stop (TTS) sites. For each transcript in 

each sample in this study, single-cell transcriptome-wide coverage was quantified by counting 

the number of unique barcode/UMI pairs seen across the whole transcript. Then, for each 

position along the transcript, the number of unique pairs was divided by this total. This value 

was calculated as distance from the TSS for 5’ kit data, and distance from the TTS for 3’ kit 

data. To plot the results, the average value across all transcripts for all samples was calculated 

at each position. For shorter transcripts, positions with no data were not included in the average. 

The plot was also truncated to 10,000bp to avoid edge effects related to the transcript selection 

process. Coverage plots were generated using the Gviz26 and BiomaRt27 R packages, versions 

1.22.3 and 2.34.2 respectively. For each locus, both coding and non-coding exonic nucleotides 

were considered at a 1bp bin size. Gene region tracks were retrieved directly from Ensembl 

v93. scRNA total read coverage was generated using bamCoverage, part of the deepTools 

package24, and scRNA cell barcode coverage can be found at 

https://github.com/genome/scrna_mutations. 

Copy Number analysis. Gene expression matrices were analyzed with the CONICSmat 

package for R28. The default filtering and normalization procedures were followed, as outlined in 

https://github.com/diazlab/CONICS/wiki/Tutorial---CONICSmat;---Dataset:-SmartSeq2-scRNA-

seq-of-Oligodendroglioma. The mixture model results were obtained, then restricted to regions 

of known copy number events from the eWGS with the best log-likelihood scores from the 

modelling: For sample 809653, these were chromosomes 1p and 7q.  The z-scored posterior 

probabilities were clustered, using k = 4, and cell barcodes from the three clusters containing 

one or more of the expected events were gathered and visualized on the expression t-SNE plot 

(Supplementary Fig. 2c). High concordance was observed with expression-based classification 

of AML cells: 95.5% of cells classified as AML by copy number were also classified as AML by 

expression signature.  (Conversely, 94.9% of cells classified as AML by expression were 

confirmed by CN). 

Single-cell mutation identification and analysis. Using a Pysam-based tool 

(https://github.com/sridnona/cb_sniffer), we processed the aligned sequence data. For each cell 

barcode in the filtered Cell Ranger barcode list, and each somatic variant in the eWGS data, we 
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identified all reads spanning the variant. Only cell-associated UMIs (defined as reads containing 

both a Chromium “Cellular Barcode” (CB) tag and a Chromium “Molecular Barcode” (UB) tag) 

were considered for downstream analysis. Variant positions were required to have a minimum 

base quality and mapping quality of at least 1. For each cell, we counted the number of unique 

reads matching the reference or variant allele. In rare cases where duplicate reads existed for a 

given UB and the base at the mutant position was not identical across all reads, we selected the 

most common base if it was present in at least 75% of the reads; otherwise all reads in the 

group corresponding to that UB were discarded. Several variants required additional steps to 

accurately identify mutant cells: Manual review revealed that two small indels in repetitive 

regions (CEBPA and NPM1) were frequently misaligned to several adjacent bases. This was 

resolved by parsing the bam cigar string to identify reads containing insertions or deletions at 

the appropriate locations using an additional pysam-based tool 

(https://github.com/genome/scrna_mutations/tree/master/misc_scripts). The large size of the 

characteristic large internal tandem duplication (ITD) in FLT3 means that many reads containing 

the variant do not align correctly. We created a contig containing the variant sequence (+/- 250 

bp), appended it to the reference, and realigned the scRNA data. Barcodes from reads uniquely 

aligning to the mutant FLT3 sequence were then extracted. Similarly, the NUP98-NSD1 fusion 

in 508084 was detected by appending the fusion transcript to the input GTF file, then using 

kallisto21 and its companion tool, pizzly, to identify fusion-supporting transcripts.   

     By assaying the positions of known somatic mutations in samples that did not harbor those 

mutations, we found that the false positive rate (the rate at which wild-type UMIs are called 

mutant) is site-specific, and at most 0.39% (Supplementary Table 4). For most SNVs, the vast 

majority of cells had at most one unique read at the variant position, but SNVs in several highly 

expressed, high-coverage genes (U2AF1, NPM1, SRSF2, NRAS) were more likely to have 

multiple reads per cell (Supplementary Fig. 2a). We then recorded which cells had wild-type or 

mutant sequence at that position. After using SciClone29 to assign each somatic variant to a 

subclone, we assigned mutation-containing cells (“mutant cells”) to their corresponding 

subclones. Cell-variant assignment can also be performed in an automated manner using the 

VarTrix tool (https://github.com/10xgenomics/vartrix). 

Single-cell RNA-seq expression analysis and mutation integration. Transcript alignment, 

counting, and inter-library normalization were performed using the Cell Ranger pipeline (10x 

Genomics, default settings, Version 2.1.1). Using the Seurat R package30, cells that contained 

fewer than 10 expressed genes, more than 50% ribosomal transcripts, or more than 10% 

mitochondrial transcripts were removed. Genes that were expressed in fewer than 3 cells were 
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also removed. For each cell, expression of each gene was normalized to the sequencing depth 

of the cell, scaled to a constant depth (10,000), and log-transformed. Variable genes were 

selected (x.low.cutoff = 0.0125, x.high.cutoff=5, y.cutoff=0.5, default settings otherwise). 

Principal component analysis was performed on the variable genes, and the optimal number of 

principal components (PCs) for each sample was chosen using a combination of elbow plots, 

jackstraw resampling, and PC expression heatmaps (508084: 6, 548327: 8, 721214: 5, 782328: 

7, 809653: 6, 809653 AML cells: 6). PCs were used for dimensionality reduction if they 

explained at least 2% of the variance; were statistically significant according to jackstraw 

resampling; exhibited consistent expression variation in heatmaps; and were not composed 

entirely of ribosomal, mitochondrial, or immune genes. Dimensionality reduction and 

visualization were performed with the t-SNE algorithm (Seurat implementation) using the PCs 

selected above. Unsupervised graph-based clustering of cells was performed using the 

indicated PCs, with resolution = 0.7. Cell cycle phase was determined using methodology 

provided in Seurat, based on relative expression of phase-specific genes3. The distribution of 

mutations on the t-SNE plot was robust to filtering for mitochondrial and ribosomal transcripts, 

the number of PCs used, the clustering resolution, and normalization for cell cycle phase. The 

mutation distribution was also robust to the particular implementation of the t-SNE algorithm, 

with the Seurat and Cell Ranger implementations giving consistent results. To assess the 

relationship between mutation distribution and expression of the mutated gene, we colored each 

cluster in each t-SNE plot according to the expression-normalized mutant cell fraction (mutant 

cell fraction divided by the average expression of the mutant gene in that cluster). 

     Mutation-expressing cells were analyzed in isolation using analogous methods, with the 

exception that fewer PCs were required to capture the variability in the data (508084: 4, 548327: 

3, 721214: 6, 782328: 7, 809653: 6). 

Expression heatmaps. An expression heatmap was generated for each sample by selecting 

the top 10 genes in each of the top 20 PCs, and averaging the expression of each gene in each 

cluster. To connect heterogeneity to the graph-based clusters, and to examine relationships 

among clusters, we averaged expression within each cluster, and hierarchically clustered the 

results. For the analogous analysis performed on mutant cells in isolation, we used the top 20 

genes from each of the top n PCs, where n was chosen separately for each sample to minimize 

noise (508084: 4, 548327: 3, 721214: 6, 782328: 7, 809653: 6). 

Lineage inference and AML cell identification. Cell-type inference was performed in an 

unsupervised, marker-free manner by training a nearest-neighbor algorithm on expression data 

from the DMAP database12, using Spearman correlation as the distance metric. Using this 
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approach, cells that co-cluster by graph-based clustering tend to have the same inferred lineage 

and express the corresponding cell-type markers (when known). In the case of AML cells, the 

assigned lineage represents the normal lineage to which the AML cell is most transcriptionally 

similar. To identify AML cells in highly heterogeneous samples (549327 and 809653), a one-

sided Fisher exact test was used to identify cell clusters that were enriched for somatic 

mutations. In cases where most cells are AML cells, normal cell clusters were identified using a 

one-sided Fisher exact test for under-enrichment. 

GATA2R361C expression signature. Each cell containing a GATA2R361C mutation was assigned 

to an expression cluster. Mutant cells were more highly concentrated in a contiguous group of 

expression clusters. To derive an expression signature for this mutation, we developed a 

regression model to identify genes whose expression varies with mutant cell concentration. For 

each gene i, multiple regression was used to quantify the relationship between mean expression 

(Ei) and GATA2R361C mutant cell fraction (m) across the 12 AML clusters, while controlling for 

mean cluster-wise GATA2 expression (g): �� � ��  � ��� � ��	. After correcting for multiple 

hypotheses, we selected genes whose p-value for yi was at most 0.05. 

Functional enrichment. Functional enrichment analyses were performed using ToppFun 

(https://toppgene.cchmc.org/enrichment.jsp) 15. 

 

Data Availability 

Enhanced whole genome sequence (eWGS), bulk RNA-sequence, and single cell RNA-
sequence (scRNA-seq) data generated during the current study are available in dbGaP 
(https://www.ncbi.nlm.nih.gov/gap/) with the primary accession code phs000159. The SRA IDs 
for this study are: SRR7904017, SRR7904018, SRR7904019, SRR7904020, SRR7910353, 
SRR7910351, SRR7910349, SRR7904016, SRR7903979, SRR7825447, SRR7825459, 
SRR7825446, SRR7825444, SRR7825491, SRR7825473, SRR7825453, SRR7825466, 
SRR7825499, SRR7825482, and SRR7939318. 
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Table 1. Overview of mutation discovery and detection in eWGS and scRNA-seq data. 
 

Sample 508084 548327 721214 782328 809653 Mean 
[SD] 

No. Cells 14,964 11,620 20,474 21,731 21,038 17,965 
[3,979] 

Reads/Cell 192,427 346,965 176,035 214,284 189,751 223,892 
[62,745] 

Reads Mapped 
Confidently to 
Genome (%) 

84.9 87.2 92.2 79.8 90 87 [4.29] 

Reads Mapped 
Confidently to 
Transcriptome 
(%) 

64.2 63.7 73 61.9 68.8 66 [4.04] 

Median Genes 
detected per Cell 2,405 1,383 2,260 1,376 1,829 1,851 

[428] 
Total Genes 
Detected 22,645 22,503 23,376 25,389 23,102 23,403 

[1041] 
WGS variants 19 13 41 31 28 26.4 
Expressed WGS 
variants (Bulk) 10 5 18 7 8 9.6 

scRNA-seq 
variants 8 7 17 12 8 10.4 

% expressed 
WGS variants 
discovered in 
scRNA-seq 

80% 140% 94% 170% 100% 117% 

Mutant cells per 
variant 13-453 1-3012 1-3944 1-2619 1-207 3.4-2047 

Mutant cells per 
variant (median) 32 48 30 111 21.5 48.5 

Key WGS 
Variants (No. cells 
with scRNA-seq 
coverage) 

IKBKBV616M 
(150) 
FLT3-ITD 
(707) 
NUP98-
NDS1 
(1) 

IDH1R132H 

(118) 
NPM1W288fs 

(5591) 
SRSF2P95H 

(2349) 

DNMT3A 
R882H (409) 
FLT3-ITD 
(479) 
FLT3F612L 
(306) 
NPM1W288fs 
(11,672) 
GATA2R361C 
(1629) 

NRASG12S 
(949) 
NRASG12D 
(951) 
U2AF1S34F 

(4509) 

NRASG12D 
(1412) 
TP53E286G 

(239) 
CEBPAR142fs 
(84) N/A 

Additional 
variants with 
expression 
signature 
(number of cells 
with coverage) 

RNF10 
(103) 

  NAGLUE634K 
(216) 

 N/A 
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Figures and Legends 

Figure 1. Workflow, coverage, and performance metrics for variant detection in single 

cells. (a) Cryopreserved bone marrow cells from AML patients underwent eWGS, bulk RNA-

seq, and scRNA-seq. Somatic mutations were defined using eWGS data, identified in individual 

cells using scRNA-seq data, and interpreted in the context of expression heterogeneity. (b) 

Fraction of unique transcripts (molecules) whose reads map to any given position up to 10 kbp 

away from the capture site in both the 5’ and 3’ kits. (c) Comparison of single-cell and bulk RNA-

seq coverage data for specific genes of interest. (d) Relationship between RNA and eWGS 

VAF; dependence of Mutant Cell Fraction on eWGS VAF; dependence of Mutant Cell Detection 

Rate on bulk RNA VAF, and dependence of Mutant Cell Detection Rate on bulk RNA VAF. 
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Figure 2. Single-cell mutation detection and interpretation in case 809653. (a) Clonality 

inferred from eWGS, with driver genes associated with each subclone. (b) t-SNE plot of scRNA-

seq data with cells colored according to graph-based cluster assignment. In panels b-g, putative 

clusters of AML cells are circled. (c) Cells colored according to inferred lineage. (d) Cells 

colored according to cell cycle phase. (e-g) Cells colored according to single-cell genotype at 

the TP53E286G, CEBPAR142fs, and NRASG12D sites: blue, at least one mutant read detected; 

yellow, wild-type reads only; gray, no coverage. (h) Cells colored according to single-cell 

genotype at the homozygous BAG1 germline SNP: blue, at least one mutant read detected; 

gray, no coverage. 
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Figure 3. Single-cell mutation detection and interpretation in additional cases ordered by 

the differentiation signature of AML cells. (a) 721214, top to bottom: Clonality inferred from 

eWGS; cells colored according to cell cycle phase; cells colored according to single-cell 

genotype at the indicated site: blue, at least one mutant read detected; yellow, wild-type reads 

only; gray, no coverage. (b) 548327, putative AML cells circled. (c) 508084. (d) 782328. 

 

Supplementary Figure Legends 

 

Supplementary Figure 1. Additional performance metrics for single-cell variant detection. 

(a) Distribution of variant-spanning reads for mutations in the indicated gene(s). (b) Log-scale 

distribution of variant-spanning reads for mutations in the indicated gene(s). (c) Relationship 

between single-cell and bulk RNA-seq VAF. (d) Mutant Cell Detection Rate as a function of 

gene expression in the single-cell data.  

 

Supplementary Figure 2. Clustering, overview of expression heterogeneity, and copy 

number analysis in 809653. (a) t-SNE plot of scRNA-seq data, cells colored according to 

graph-based cluster assignment; putative AML clusters circled. (b) Hierarchical clustering of 

most heavily weighted genes in each principal component, averaged within graph-based 

clusters. (c) CNV analysis: blue, cells with detected CNVs; gray, no detected CNVs. 

 

Supplementary Figure 3. Clustering and overview of expression heterogeneity in 721214. 

(a) t-SNE plot of scRNA-seq data, cells colored according to graph-based cluster assignment; 

putative AML clusters circled. (b) Hierarchical clustering of most heavily weighted genes in each 

principal component, averaged within graph-based clusters. 

 

Supplementary Figure 4. Clustering and overview of expression heterogeneity in 548327. 

(a) t-SNE plot of scRNA-seq data, cells colored according to graph-based cluster assignment; 

putative AML clusters circled. (b) Hierarchical clustering of most heavily weighted genes in each 

principal component, averaged within graph-based clusters. 

 

Supplementary Figure 5. Clustering and overview of expression heterogeneity in 508084. 

(a) t-SNE plot of scRNA-seq data, cells colored according to graph-based cluster assignment; 

putative AML clusters circled. (b) Hierarchical clustering of most heavily weighted genes in each 

principal component, averaged within graph-based clusters. 
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Supplementary Figure 6. Clustering and overview of expression heterogeneity in 548327. 

(a) t-SNE plot of scRNA-seq data, cells colored according to graph-based cluster assignment; 

putative AML clusters circled. (b) Hierarchical clustering of most heavily weighted genes in each 

principal component, averaged within graph-based clusters. 

 

Supplementary Figure 7. Clustered t-SNE plots colored according to expression-

normalized mutation fraction in each cluster (selected genes). (a) 809653, putative AML 

cells only. (b) 721214. (c) 548327. (d) 508084. (e) 782328. 

 

Supplementary Figure 8. GATA2R361C Expression Signature in 721214. (a) (left to right) t-

SNE plot showing mutation-expressing cells in blue; cells colored according to graph-based 

cluster assignment; heatmap of mutation-dependent genes, with bar graph showing mutant cell 

fraction in each cluster. (b) Cells colored according to VIM expression, and scatterplot showing 

average VIM expression in each cluster as a function of the mutation fraction of each cluster. (c) 

t-SNE plot constructed from mutant cells, which are colored according to the mutation they 

contain: GATA2R361C, yellow; DNMT3AR882H, pink; FLT3-ITD, green; FLT3F612L, purple; 

NPM1W288FS; other somatic mutation, gray. (d) Cells colored according to CD99 expression, and 

scatterplot showing average VIM expression in each cluster as a function of the mutation 

fraction of each cluster. (e) Gating of cells based on CD99 expression using flow cytometry. (f) 

Variant allele fraction of the founding clone DNMT3A R882H mutation and the subclonal GATA2 

R361C mutation in unsorted cells (gray), CD99-high cells (blue), and CD99-low cells (red).  

 

Supplementary Figure 9. Dimensionality reduction, clustering, and lineage inference of 

mutant cells. (a) 809653. (b) 721214. (c) 548327. (d) 508084. (e) 782328. 

 

Supplementary Figure 10. Cluster-averaged gene expression profiles of variable genes in 

mutant cells. (a) 809653. (b) 721214. (c) 548327. (d) 508084. (e) 782328. 
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