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Abstract 30 

The sexually transmitted disease gonorrhea (causative agent: Neisseria gonorrhoeae) 31 

remains an urgent public health threat globally due to the repercussions on reproductive 32 

health, high incidence, widespread antimicrobial resistance (AMR), and absence of a 33 

vaccine. To mine gonorrhea antigens and enhance our understanding of gonococcal AMR 34 

at the proteome level, we performed the first large-scale proteomic profiling of a diverse 35 

panel (n=15) of gonococcal strains, including the 2016 World Health Organization (WHO) 36 

reference strains. These strains show all existing AMR profiles, previously described in 37 

regard to phenotypic and reference genome characteristics, and are intended for quality 38 

assurance in laboratory investigations. Herein, these isolates were subjected to subcellular 39 

fractionation and labeling with tandem mass tags coupled to mass spectrometry and multi-40 

combinatorial bioinformatics. Our analyses detected 901 and 723 common proteins in cell 41 

envelope and cytoplasmic subproteomes, respectively. We identified nine novel gonorrhea 42 

vaccine candidates. Expression and conservation of new and previously selected antigens 43 

were investigated. In addition, established gonococcal AMR determinants were evaluated 44 

for the first time using quantitative proteomics. Six new proteins, WHO_F_00238, 45 

WHO_F_00635, WHO_F_00745, WHO_F_01139, WHO_F_01144, and WHO_F_01226, 46 

were differentially expressed in all strains, suggesting that they represent global proteomic 47 

AMR markers, indicate a predisposition toward developing or compensating gonococcal 48 

AMR, and/or act as new antimicrobial targets. Finally, phenotypic clustering based on the 49 

isolates’ defined antibiograms and common differentially expressed proteins yielded seven 50 

matching clusters between established and proteome-derived AMR signatures. Together, 51 

our investigations provide a reference proteomics databank for gonococcal vaccine and 52 
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AMR research endeavors, which enables microbiological, clinical, or epidemiological 53 

projects and enhances the utility of the WHO reference strains.     54 
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The abbreviations used are:  55 

ACN  Acetonitrile 56 

AGC  Automatic gain control 57 

AMR  Antimicrobial resistance 58 

C  Cytoplasmic  59 

CDC  Centers for Disease Control and Prevention  60 

CE  Cell envelope  61 

COG  Cluster of orthologous genes 62 

cRAP   Common repository of adventitious proteins 63 

FDR  False discovery rate 64 

GCB  Gonococcal base agar 65 

GCBL  Gonococcal base liquid medium 66 

KEGG  Kyoto encyclopedia of genes and genomes 67 

LPS  Lipopolysaccharide 68 

OMV  Outer membrane vesicle 69 

ORF  Open reading frame 70 

WHO  World Health Organization 71 

 72 

  73 
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INTRODUCTION 74 

Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of 75 

the sexually transmitted disease gonorrhea. Gonorrhea is a global public health concern. In 76 

2012 the World Health Organization (WHO) estimated over 78 million new urogenital cases 77 

per year in adults (15–49 years of age) worldwide (1, 2). The spread of gonorrhea is 78 

facilitated by the high prevalence of asymptomatic infections. Urogenital gonorrhea is 79 

asymptomatic in up to 10-15% of infected men and up to 50% of infected women. 80 

Pharyngeal and rectal infections, which have increased in prevalence in both sexes and are 81 

predominant among men who have sex with men, are primarily asymptomatic (3, 4). 82 

Untreated or inappropriately treated gonorrhea can result in serious consequences on 83 

reproductive and neonatal health. Women, in particular, are disproportionately affected, as 84 

gonococcal infection can ascend from the cervix to the uterus, Fallopian tubes, ovaries, and 85 

surrounding tissue, causing pelvic inflammatory disease. Long-term sequelae include 86 

ectopic pregnancy, chronic pelvic pain, and infertility. Furthermore, gonorrhea is strongly 87 

associated with an increased risk of both the acquisition and transmission of HIV (5). 88 

 Antimicrobial therapy is the only mainstay in the effective management and control 89 

of gonorrhea. However, N. gonorrhoeae exhibits an extraordinary capacity to develop 90 

antimicrobial resistance (AMR) through mutations and acquisition of AMR genes. The 91 

evolution of AMR in N. gonorrhoeae has overcome every therapeutic option since the 92 

“miracle drug” penicillin was introduced for gonorrhea treatment. Currently, a dual 93 

antimicrobial therapy (mainly ceftriaxone and azithromycin) is recommended for treatment 94 

of uncomplicated infections (6). Of grave concern over the past decade is the proliferation 95 

of resistance or decreased susceptibility to ceftriaxone worldwide. Azithromycin resistance 96 

has also emerged in most settings (7). The first failure of one of the recommended dual 97 
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antimicrobial therapies against pharyngeal gonorrhea was reported in 2016 (8), and the first 98 

N. gonorrhoeae isolates with resistance to ceftriaxone combined with high-level resistance 99 

to azithromycin were identified in the United Kingdom (9, 10) and Australia (11, 12) in early 100 

2018. In consideration of dwindling treatment options, scarce therapeutic alternatives, 101 

disease prevalence and morbidity, and lack of a vaccine(s), N. gonorrhoeae has been 102 

categorized by the WHO as a high priority pathogen globally and by the Centers for Disease 103 

Control and Prevention (CDC) as an urgent level threat in the USA (13).  104 

 Developing an effective gonococcal vaccine is essential because this is the only 105 

sustainable solution to quell the spread of gonococcal AMR and gonorrhea in general. The 106 

battle against penicillin-nonsusceptible Streptococcus pneumoniae exemplifies a successful 107 

vaccination strategy. Introduction of a pneumococcal conjugate vaccine in 2010 reduced the 108 

number of infections over 45% (14). Unfortunately, despite its public health importance, 109 

gonorrhea vaccine development remains in its infancy. Since 1970, only three small-scale 110 

vaccine trials using whole cell (15), pilin (16), and porin proteins (17) have been launched. 111 

All were unsuccessful in developing immunity against reinfection with gonorrhea. However, 112 

recent breakthroughs, including the development of small animal models for evaluating 113 

gonorrhea vaccines (18, 19), increased knowledge about N. gonorrhoeae immune evasion 114 

mechanisms (20-26), and the development of an effective vaccine for the closely related N. 115 

meningitidis serogroup B, which provided a low level of cross-protection against gonococcal 116 

infection (27), have reinvigorated the interest in gonococcal vaccine development (28).  117 

 Proteomic technology offers a powerful toolbox to enable vaccine antigen mining (28-118 

32) and AMR proteome analysis (33-35), and to provide insights into host-pathogen 119 

interactions (36-39). Proteomic approaches have an advantage over genomics in drug and 120 

vaccine discovery endeavors by delivering information pertaining to protein abundance, 121 
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post-translational modification(s), structure-function relationships, and protein-protein 122 

interactions (40-42). In addition, subcellular fractionation steps preceding proteomic 123 

applications reduce sample complexity, increase the likelihood of discovering low-124 

abundance proteins, and aid in defining protein localization, all of which provide further 125 

insights into the proteins’ functions and interactomes (43, 44). For N. gonorrhoeae, 126 

proteomic approaches have begun to deliver proteinaceous vaccine candidates (29, 30, 39, 127 

45) and to support elucidation of AMR patterns (46, 47). Current off-gel proteomics, such as 128 

isobaric tag labeling (isobaric tagging for absolute quantification, iTRAQ; and tandem mass 129 

tags, TMT) coupled with high-pressure liquid chromatography and mass spectrometry 130 

techniques (LC-MS/MS), demonstrate superb protein separation and identification and 131 

enable detection of proteins in the low femtomole to high attomole range with precision and 132 

reliability (29, 48, 49).  133 

To address the need for discovery of additional gonorrhea vaccine and drug 134 

candidates and to enhance our understanding of AMR at the proteome level, herein we 135 

examined the 2016 WHO N. gonorrhoeae reference strains (50) and the FA6140 strain (51) 136 

using a global quantitative proteomic approach. The WHO panel consists of 14 N. 137 

gonorrhoeae reference strains strictly selected and validated internationally to represent the 138 

N. gonorrhoeae species. All known gonococcal phenotypic and genetic AMR determinants 139 

are included for use as quality control strains during phenotypic and genetic laboratory 140 

testing. Eight of the strains were initially included in the 2008 WHO reference strains [WHO 141 

F, G, K, L, M, N, O, and P; (52)] to which 6 novel strains (U, V, W, X, Y, and Z) were added 142 

to constitute the 2016 WHO reference strains (50). All WHO panel strains have been 143 

subjected to extensive phenotypic, genomic, and genetic analyses to establish diagnostic 144 

markers, molecular epidemiological characteristics, reference genomes, and AMR profiles 145 
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(phenotypic and genetic) for all antimicrobials currently and previously used for gonorrhea 146 

treatment, in addition to novel antimicrobials considered for future interventions. This panel 147 

includes WHO X, the first extensively drug-resistant gonococcal strain identified with high-148 

level resistance to ceftriaxone, as well as additional strains with different levels of resistance 149 

to ceftriaxone, azithromycin and any additional therapeutic antimicrobials. Complete 150 

genomes with detailed annotations are available for all panel strains, providing a 151 

fundamental resource for future molecular studies. Accordingly, the well-characterized 2016 152 

WHO reference strains (50) are ideally suited to provide detailed descriptions of the global 153 

N. gonorrhoeae proteome, a greater understanding of gonococcal AMR at the proteome 154 

level, and a source for the identification of broadly conserved novel vaccine candidates. In 155 

addition to the WHO panel strains, we have included in our investigations N. gonorrhoeae 156 

FA6140, which is a penicillin-resistant, β-lactamase-negative isolate that was originally 157 

described after a local epidemic outbreak of 199 gonococcal cases in Durham, North 158 

Carolina, USA in 1983 (51). It serves as a model for gonococcal AMR studies and has 159 

facilitated the characterization of mutations in genes encoding the “multiple transferable 160 

resistance” repressor MtrR (53), ribosomal protein S10 (54), and penicillin-binding protein 2 161 

(55) and their impact on AMR.  162 

Our study is the first to investigate the global proteomic profiles of 15 N. gonorrhoeae 163 

reference strains using subcellular fractionation to separate cytoplasmic (C) and cell 164 

envelope (CE) associated proteomes, which were measured with tandem mass tags 165 

coupled to liquid chromatography and tandem mass spectrometry [TMT-LC-MS/MS; (56)], 166 

a highly reproducible and sensitive technique. These proteomic studies achieved our three 167 

major objectives. First, to enhance progress on gonorrhea vaccine development, novel 168 

vaccine candidates were identified, and the expression profiles of currently proposed 169 
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antigens were established in diverse clinical isolates. Second, to broaden our understanding 170 

of AMR, proteomic signatures associated with AMR were defined by conducting a pairwise 171 

analysis of differentially expressed proteins to compare FA6140 and the 2016 WHO panel 172 

to WHO F, which possesses the largest genome and is susceptible to all relevant 173 

antimicrobials (50). Third, to facilitate the use of the 2016 WHO panel in various types of 174 

basic research and quality assurance, the complete reference proteomes of all tested strains 175 

were defined.   176 
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EXPERIMENTAL PROCEDURES 177 

Bacterial strains and growth conditions. The 2016 WHO N. gonorrhoeae reference 178 

strains [n=14; (50, 52)] and the N. gonorrhoeae FA6140 strain (51) were used in this study. 179 

The AMR profiles of all isolates were described previously (50). Gonococcal strains were 180 

cultured from frozen stocks (−80°C) onto gonococcal base agar (GCB) medium (Difco) with 181 

Kellogg's supplements I and II, diluted 1:100 and 1:1,000, respectively (57). After incubation 182 

at 37°C in a 5% CO2–enriched atmosphere for 18-20 h, nonpiliated and transparent colonies 183 

were subcultured onto GCB and incubated as described above. To initiate growth in liquid 184 

medium, nonpiliated colonies were collected from GCB and suspended to an OD600 of 0.1 185 

in pre-warmed GCB liquid (GCBL) medium supplemented as described above with the 186 

addition of 0.042% sodium bicarbonate. Suspensions were incubated at 37°C with shaking 187 

at 220 rpm.  188 

Subcellular fractionation and TMT labeling. All 15 N. gonorrhoeae strains were 189 

simultaneously cultured in GCBL as described above. Cells were collected by centrifugation 190 

(20 min, 6,000 × g) when the Optical Density (OD600) of each culture reached 0.6 – 0.8, re-191 

suspended in PBS and lysed by passage through a French Press. The cell debris was 192 

removed by centrifugation and the crude CE fraction was separated from the C proteins 193 

using a sodium carbonate extraction procedure and subsequent ultracentrifugation steps. 194 

The fraction enriched with CE proteins was reconstituted in PBS supplemented with 0.1% 195 

SDS (29, 30). Experiments were conducted in two biological replicates. Sample quality and 196 

the overall sub-proteome profiles were examined by SDS-PAGE coupled with Colloidal 197 

Coomassie staining (58, 59). The total protein amount in each fraction was assessed using 198 

a Protein Assay Kit (Bio Rad). Each CE and C fraction containing 100 μg of protein in 25 μL 199 

volume of triethylammonium bicarbonate buffer was reduced with tris(2-200 
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carboxyethyl)phosphine hydrochloride and the cysteines were alkylated using 201 

iodoacetamide. Proteins were digested using trypsin (Promega) at a 1:40 ratio. TMT 202 

reagents (ThermoFisher Scientific) were dissolved in acetonitrile (ACN) and used to label 203 

proteins in CE and C fractions as follows for the 10-plex experiment (ref 90111, Thermo 204 

Fisher Scientific): WHO F strain: TMT10-126, WHO K strain: TMT10-127C, WHO G strain: 205 

TMT10-127N, WHO M strain: TMT10-128C, WHO L strain: TMT10-128N, WHO O strain: 206 

TMT10-129C, WHO N strain: TMT10-129N, WHO U strain: TMT10-130C, WHO P strain: 207 

TMT10-130N, WHO V strain: TMT10-131; for the 6-plex experiment (ref 90402, Thermo 208 

Fisher Scientific):  WHO F strain: TMT6-126, WHO W strain: TMT6-127,  WHO X strain: 209 

TMT6-128, WHO Y strain: TMT6-129, WHO Z strain: TMT6-130, FA6140 strain: TMT6-131. 210 

Mixtures were incubated for 1 h at room temperature. The reaction was quenched by 211 

addition of 8 μL of 5% hydroxylamine. Samples were pooled, dried in a vacuum concentrator 212 

and stored at -80°C before separation by high pressure liquid chromatography (HPLC) and 213 

MS analysis. 214 

Sample fractionation and MS analysis. Samples were fractionated by strong cation 215 

exchange (SCX) with a Paradigm (Michrom Biosciences) HPLC with mobile phases of 5 mM 216 

potassium phosphate monobasic in 30% ACN/70% water (v/v) pH 2.7 (buffer A) and 5 mM 217 

potassium phosphate monobasic in 30% ACN/70% water (v/v) pH 2.7 with 500 mM 218 

potassium chloride (buffer B). The sample was brought up in buffer A (200 µL). The peptides 219 

were separated using a 2.1 mm x 100 mm Polysulfoethyl A column (PolyLC) over 60 min at 220 

a flow rate of 200 µL/min. The separation profile was as follows: hold 2% B for 5 min, 2% to 221 

8% B in 0.1 min, 8% to 18% B in 14.9 min, 18% to 34% B in 12 min, 34% to 60% B in 18 222 

min, 60% to 98% B in 0.1 min and hold for 10 min. Fractions were collected in 96-well 223 

microtiter plates at 1 min/fraction. Sixty fractions were pooled into 12 and dried using a 224 
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speed vac. The samples were desalted using Oasis HLB 1cc cartridges. The cartridges were 225 

washed with 70% ACN/0.1% trifluoroacetic acid (TFA) and equilibrated with 0.1% TFA. 226 

Samples were loaded onto the cartridge in 0.1% TFA, washed with 0.1% TFA, and eluted 227 

in 1 mL 70% ACN/0.1% TFA. The samples were dried by vacuum centrifugation. 228 

Desalted SCX fractions were analyzed by liquid chromatography electrospray 229 

ionization mass spectrometry (LC/ESI MS/MS) with a Thermo Scientific Easy-nLC II 230 

(Thermo Scientific) nano HPLC system coupled to a hybrid Orbitrap Elite ETD (Thermo 231 

Scientific) mass spectrometer. In-line de-salting was accomplished using a reversed-phase 232 

trap column (100 μm × 20 mm) packed with Magic C18AQ (5-μm 200Å resin; Michrom 233 

Bioresources) followed by peptide separations on a reversed-phase column (75 μm × 250 234 

mm) packed with Magic C18AQ (5-μm 100Å resin; Michrom Bioresources) directly mounted 235 

on the electrospray ion source. A 90-minute gradient from 7% to 35% ACN in 0.1% formic 236 

acid at a flow rate of 400 nL/min was used for chromatographic separations. The heated 237 

capillary temperature was set to 300C and a spray voltage of 2750 V was applied to the 238 

electrospray tip. The Orbitrap Elite instrument was operated in the data-dependent mode, 239 

switching automatically between MS survey scans in the Orbitrap [automatic gain control 240 

(AGC) target value 1,000,000; resolution 120,000; and injection time 250 msec] with MS/MS 241 

spectra acquisition in the Orbitrap (AGC target value of 50,000; 15,000 resolution; and 242 

injection time 250 msec). The 15 most intense ions from the Fourier-transform full scan were 243 

selected for fragmentation in the higher-energy C-trap dissociation (HCD) cell by higher-244 

energy collisional dissociation with a normalized collision energy of 40%. Selected ions were 245 

dynamically excluded for 30 sec with a list size of 500 and exclusion mass by mass width 246 

+/- 10ppm. HPLC and MS/MS analyses were performed in the Proteomic Facility at the Fred 247 

Hutchinson Cancer Center, Seattle.  248 
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Proteomic data analysis. Data analysis was performed using Proteome Discoverer 1.4 249 

(Thermo Scientific). The data were searched against WHO_F_CDS with the common 250 

Repository of Adventitious Proteins (cRAP, http://www.thegpm.org/crap/) fasta file. Trypsin 251 

was set as the enzyme with maximum missed cleavages set to 2. The precursor ion 252 

tolerance was set to 10 ppm and the fragment ion tolerance was set to 0.8 Da. Variable 253 

modifications included TMT 6Plex (+229.163 Da) on any N-Terminus, oxidation on 254 

methionine (+15.995 Da), carbamidomethyl on cysteine (+57.021 Da), and TMT 6Plex on 255 

lysine (+229.163 Da). Data were searched using Sequest HT. All search results were run 256 

through Percolator for scoring. Quantification was performed using the canned TMT 6plex 257 

or TMT 10plex methods through Proteome Discoverer with stringent criteria for protein 258 

identification including 1% False Discovery Rate (FDR), at least one unique peptide per 259 

protein, each identified peptide restricted to a single protein, and the score for every detected 260 

peptide of 1. Differential protein expression between CE and C fractions was determined 261 

by comparing the normalized total reporter ion intensities of groups using the WHO F protein 262 

expression profile as a reference.  263 

Bioinformatic Analysis. To detect potential homologous proteins, amino acid sequences 264 

of each identified N. gonorrhoeae vaccine candidate were downloaded and compared 265 

against the GenBank proteome database (https://www.ncbi.nlm.nih.gov/genbank/) using 266 

our in-house designed program based on the Reciprocal Best Blast Hit approach (60) using 267 

BLASTP with the following parameters: percentage identity ≥50%, and E-value ≤1.0 e-5.  268 

Differential protein expression in four proteomics data sets (CE and C fractions in two 269 

biological replicates) was designated by fold changes ≥1.5 or ≤0.667 in reference to strain 270 

WHO F. Due to the variable nature of protein expression in N. gonorrhoeae, we took a 271 

conservative approach to designate protein expression and a protein was categorized as 272 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/434753doi: bioRxiv preprint 

http://www.thegpm.org/crap/
https://www.ncbi.nlm.nih.gov/genbank/)
https://doi.org/10.1101/434753


 15 

“up-regulated” or “down-regulated” solely when the fold change abundance was higher than 273 

1.5 or lower than 0.667, respectively, to that of WHO F consistently in two biological 274 

experiments. A protein was designated as “ubiquitous” when its abundance was between 275 

0.667-1.5-fold compared to WHO F in both experiments, or “variable” when its protein levels 276 

were not consistent between experiments.  277 

A comprehensive assessment of predicted subcellular protein localization was 278 

accomplished by using the CELLO (61), PsortB 3.0.2 (62), SOSUI-GramN (63), SignalP 4.1 279 

(64), LipoP 1.0 (65), and TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) prediction 280 

algorithms and a majority voting strategy. Furthermore, for proteins whose subcellular 281 

localization was not predicted using the aforementioned algorithms, we relied on the 282 

difference between their unique peptide counts in the CE and C fractions as follows:  283 

Unique Peptide Count Difference (UPCD) = ∑ 𝑥2
𝑖=1 𝐶𝐸 ∑ x2

i=1 CE-  ∑ 𝑥2
𝑖=1 𝐶   284 

where “i ” is the sequential number assigned for samples and “𝑥” is the total number of 285 

peptides detected in each fraction. Cytoplasmic proteins had more of their unique peptides 286 

detected in the C fraction (UPCD < 0), while membrane proteins had unique peptides 287 

enriched in the CE fraction (UPCD > 0). Proteins with UPCD=0 were excluded from analysis 288 

using this UPCD formula. Proteins were categorized as follows: outer membrane, 289 

periplasmic, inner membrane, C proteins, and proteins with unknown localization.  290 

The phenotypic and proteotypic clusters of all strains were constructed using as 291 

variables both their AMR (50) and proteomic profiles obtained in this study. These clusters 292 

were designed based on the Hamming distance between tested strains, which counts how 293 

many elements differ between two vectors, and is equivalent to Manhattan distance on 294 

binary data. Average linkage was used to determine distances between clusters.  295 
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Graphs were generated with GraphPad Prism version 7 for Mac (GraphPad 296 

Software). The proteotypes of strains that belong to the same phenotypic cluster were 297 

compared, highlighting proteins that are significantly up- or down-regulated with respect to 298 

those proteins of WHO F. 299 

Data Availability. The raw mass spectrometry data have been deposited to the 300 

ProteomeXchange Consortium via the PRIDE (66) partner repository with the data set 301 

identifier PXD008412. 302 

  303 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/434753doi: bioRxiv preprint 

https://doi.org/10.1101/434753


 17 

RESULTS and DISCUSSION 304 

Study rationale. In our study design (Fig. 1), all 15 strains were cultured concurrently to 305 

mid-logarithmic growth, harvested, and subjected to subcellular fractionation to separate CE 306 

(outer membrane, periplasmic, inner membrane) and C proteins. We utilized TMT reagent 307 

technology for protein identification and quantitation as it provides a highly sensitive method 308 

for peptide labeling (56) and allows up to 10 biological samples to be analyzed in a single 309 

experiment (67). TMT-labeling, two-dimensional liquid chromatography fractionation, and 310 

subsequent MS/MS analyses were conducted on every 6-plex and 10-plex experiment 311 

pertaining to the CE and C fractions derived from each strain (Fig. 1). We selected WHO F 312 

as the reference strain for protein identification and quantitation because it has the largest 313 

genome (2,292,467 bp) and proteome (2,450 ORFs) among the 2016 WHO reference 314 

strains (50) and FA6140 (68), and it is susceptible to most antimicrobials currently or 315 

historically used for gonorrhea treatment.  316 

 Sub-cellular fractionation experiments coupled with proteomics repeatedly show 317 

cytoplasmic proteins associated with the membranes, which are commonly regarded as 318 

“contaminating” or “moonlighting” proteins (29, 30, 69, 70). Therefore, to focus solely on the 319 

enriched proteins in individual subproteomes, we first eliminated C and CE proteins that 320 

were detected in the CE and C protein fractions, respectively, from further analyses. 321 

Complete lists of all identified proteins are in Supplemental Tables S1-S2. Subsequently, 322 

we performed two-armed proteomic data analyses: 1) for vaccine antigen mining, we 323 

focused on common proteins identified in all strains in the CE fraction with the overarching 324 

goal to discover omnipresent N. gonorrhoeae proteins; 2) to profile AMR signatures, we 325 

performed a pairwise comparison of individual strains to WHO F to enhance the discovery 326 

of strain-specific feature(s).   327 
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Overview of cell envelope and cytoplasmic proteomes. The 10-plex biological replicate 328 

experiments identified a total of 1150 proteins in the CE fraction of all ten strains, of which 329 

1010 were common in both sets (Fig. 2 A). In the two 6-plex experiments, 1194 proteins 330 

were identified; 975 were shared in all six isolates (Fig. 2 A). Taken together, the 10-plex 331 

and the 6-plex experiments resulted in identification of 1084 proteins in the CE fractions, of 332 

which 901 were common among all examined N. gonorrhoeae strains (Fig. 2 A). The 333 

proteome coverage per strain ranged from 41.22% (981 proteins) for WHO Y to 45.32% 334 

(1042 proteins) for WHO G (Supplemental Table S3).  335 

 Proteomics of the C fraction in the 10-plex set conducted in biological replicates 336 

yielded 904 proteins that were shared among all 10 strains, of which 747 were common in 337 

both experiments (Fig. 2 B). The two 6-plex experiments identified 1023 shared proteins, 338 

with 852 common among the two replicates (Fig. 2 B). Cumulatively, C fraction profiling 339 

resulted in identification of 876 proteins with 723 common in all 15 N. gonorrhoeae strains 340 

(Fig. 2 B). Proteome coverage ranged from 31.37% (746 proteins) in WHO U to 38.43% 341 

(852 proteins) in FA6140 (Supplemental Table S3).  342 

 Subsequently, we allocated common proteins that were identified in all 15 N. 343 

gonorrhoeae strains to outer membrane, inner membrane, periplasm, cytoplasm, or 344 

unknown localization categories based on PSORTb 3.0.2 (62), SOSUIGramN (63), and 345 

CELLO (61) predictions and the majority-voting strategy. We used these software packages 346 

to take advantage of their different algorithms and statistical approaches for the prediction 347 

of protein subcellular localization. As expected from our subcellular fractionation approach 348 

(49, 69, 71), the CE fraction was enriched in membrane proteins in comparison to the C 349 

sample, with outer membrane (26 vs. 8), periplasmic (51 vs. 38), and inner membrane 350 

proteins (145 vs. 6) that were also identified with considerably higher peptide counts (Fig. 3 351 
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A-C, and Supplemental Tables S1-S2, and S4-S5). The C preparations yielded 592 352 

cytoplasmic proteins that were identified with greater peptide counts in comparison to the 353 

cytoplasmic proteins associated with the CE fraction (Fig. 3 D, Supplemental Tables S5-354 

S6). Furthermore, to increase the discovery of potential vaccine candidates, we searched 355 

the 149 proteins of unknown localization identified in the CE fraction (Fig. 3 D) for the 356 

presence of signal peptides and transmembrane motifs using SignalP 4.1 (64), LipoP 1.0 357 

(65), and TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM/). The results of all software 358 

programs and the majority votes strategy revealed six additional CE proteins, four of which 359 

were found in the majority of examined strains (Supplemental Table S6). In addition, 360 

literature searches for experimental evidence of protein surface exposure allowed 361 

assignment of BamE [NGO1780; (72)], SliC [NGO1063; (73)], MetQ [NGO2139; (30, 74)], 362 

Ng-MIP [NGO1225; (30, 75)], and BamG [NGO1985; (76)] to the cell surface. 363 

Expression patterns of common identified proteins in comparison to WHO F. Proteins 364 

were categorized as ubiquitous, up- or down-regulated, or variable based on their 365 

abundance in relation to the corresponding protein in WHO F in biological duplicate 366 

experiments. We investigated expression patterns of detected proteins in both sub-367 

proteome fractions that were shared among all strains (Figs. 4-5, Supplemental Tables S4-368 

5). Annotated cell envelope proteins were predominantly ubiquitous in the CE fraction. The 369 

proportion of ubiquitous CE outer membrane proteins (n=26) ranged from 73% (n=19 in 370 

WHO N) to 46.15% (n=12 in WHO L; Fig. 4 A). Ubiquitous periplasmic proteins ranged from 371 

76.47% (n=39 in WHO N) to 35.2% (n=18 in WHO U) of the total number of proteins 372 

annotated to localize to the periplasm (n=51; Fig. 4 B). Finally, between 83.4% (n=121 in 373 

WHO M) and 44.1% (n=64 in WHO U) of inner membrane proteins (n=145) were 374 

ubiquitously expressed (Fig. 4 C). Up-regulated outer membrane (0 – 19.23%), periplasmic 375 
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(0 – 8%) and inner membrane (0 – 4.8%) proteins made up the smallest proportion of 376 

proteins in the CE fraction (Supplemental Table S4), whereas down-regulated outer 377 

membrane (3.85 – 26.9%), periplasmic (0 – 23.53%) and inner membrane (1.38 – 24.8%) 378 

proteins were moderately prevalent (Supplemental Figure S4). Further analysis of the CE 379 

fraction detected 121 common proteins with unknown localization (Fig. 3 E, Supplemental 380 

Table S4). Ubiquitous expression was the dominant pattern for these proteins in WHO G, 381 

K, M, N, V, W, and X and ranged from 42.97% (n=52, WHO V) to 66.94% (n=81, WHO W). 382 

Variable expression of proteins with unknown localization dominated in WHO L, O, P, Y, Z, 383 

and FA6140. WHO U had the highest number of down-regulated proteins (39.67%, n=48) 384 

with respect to those in WHO F (Fig. 4 D).  385 

 In contrast to the CE expression pattern, we observed a striking increase in the 386 

number of variably expressed cytoplasmic proteins in the C fraction of analyzed strains in 387 

comparison to WHO F (Fig. 5 A, Supplemental Table S5). The percentage of variable 388 

proteins ranged from 32.9% to 82.6% for WHO G and WHO Y, respectively (Supplemental 389 

Table S5). Ubiquitous proteins were the next most common category and oscillated from 390 

15.5% in WHO Y to 56.4% in WHO G. The third group contained up-regulated proteins (0 – 391 

21.28%), and down-regulated proteins ranged from 0.5 – 3.88% (Supplemental Table S5). 392 

For proteins with no assigned localization, variable expression was the most prevalent 393 

pattern in WHO K, L, O, P, U, W, X, Y, Z, and FA6140 (Fig. 5 B), ranging from 79.75% (n= 394 

63, WHO Y) to 46.83% (n= 37, WHO L). Ubiquitous proteins were the dominating group in 395 

WHO G, M, N, and V (Fig. 5 B). Finally, up- and down-regulated proteins constituted up to 396 

11.39% and 7.59%, respectively, of the total proteins with unknown localization in the C 397 

fraction.  398 
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 Together, the first quantitative proteomic profiling of the 15 N. gonorrhoeae strains 399 

demonstrated distinct differences in their proteomes and showed that a pattern of ubiquitous 400 

protein expression was prevalent in the CE fraction, whereas variably expressed proteins 401 

were the dominant group in the C subproteome.  402 

Antigen mining decision tree. To identify novel gonorrhea antigens and to gain information 403 

about expression of previously identified vaccine candidates (49, 71, 77, 78), we designed 404 

an antigen mining decision tree (Fig. 6). We included in this process 25 outer membrane 405 

proteins (all outer membrane proteins identified except RmpM) and 121 proteins of unknown 406 

localization identified in CE proteomic profiling (Fig. 6 and Supplemental Table S1). The 407 

latter group of proteins was subjected to signal sequence and transmembrane motif 408 

analyses to increase the coverage of potential vaccine candidates. Together, these 409 

investigations yielded nine novel antigens including NGO0282, NGO0425, NGO0439, 410 

NGO0778, NGO1251, NGO1688, NGO1889, NGO1911a, and NGO2105 in addition to 411 

previously discovered proteomics-derived antigens [(29, 30); Table 1] and vaccine 412 

candidates identified by other means (Table 2).  413 

Further bioinformatics and literature searches were performed to gain insights into 414 

the new proteomics-derived vaccine candidates. The putative lipoprotein NGO0282 is a 415 

homolog of the outer membrane localized LptE, which is a component of the trans-envelope 416 

LptA-G machinery involved in the transport of lipopolysaccharide/lipooligosaccharide 417 

(LPS/LOS) molecules to the E. coli and N. meningitidis outer membrane, respectively. 418 

LptE’s chaperone-like role in LptD biogenesis is conserved in both bacteria but LptE works 419 

in concert with LptD to translocate LPS to the cell surface only in E. coli (79, 80). LptD is 420 

essential for E. coli and N. gonorrhoeae viability but is dispensable for N. meningitidis (81-421 

83). Therefore, the function of N. gonorrhoeae LptE in both LOS transport and LptD 422 
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biogenesis needs to be elucidated. NGO0425 contains a tetratricopeptide repeat–like 423 

domain and a transmembrane helix. Together with its E. coli homolog, YfgM, NGO0425 424 

belongs to the UPF0070 family. In E. coli, YfgM was proposed to act within the -barrel 425 

trafficking chaperone network and its depletion in ∆skp and ∆surA knockout backgrounds 426 

contributed to further alterations in outer membrane integrity (84). The vaccine candidate 427 

protein NGO0439 is homologous to the E. coli outer membrane protein LolB, which is 428 

involved in lipoprotein trafficking to the outer membrane (85, 86). We consider N. 429 

gonorrhoeae LolB to be a vaccine candidate antigen because its surface localization should 430 

be experimentally verified. Differences in the localization of homologous proteins exist. For 431 

instance, fHbp is a surface-displayed lipoprotein in N. meningitidis but not in N. gonorrhoeae 432 

(87), while BamE is on the surface of gonococci but faces the periplasmic side of the outer 433 

membrane in E. coli (72). Protein NGO1688, annotated as OmpU, is a putative iron uptake 434 

outer membrane protein that is positively regulated by the oxygen-sensing transcription 435 

factor, FNR (88). NGO1911a is a predicted pilus assembly protein that is associated with 436 

the adhesin PilY (89). Finally, NGO0778, NGO1251 (a putative lipoprotein), and NGO1889 437 

are hypothetical proteins. NGO1889 belongs to the LprI family (PFO7007) that comprises 438 

bacterial proteins of ~120 amino acids in length that contain four conserved cysteine 439 

residues. LprI from Mycobacterium tuberculosis acts as a lysozyme inhibitor (90), providing 440 

the exciting possibility that N. gonorrhoeae LprI contributes to residual lysozyme resistance 441 

observed in gonococci deprived of surface-exposed lysozyme inhibitors SliC and ACP (73, 442 

91). Lastly, NGO2105 contains peptidase S6 (residues 43-310) and autotransporter 443 

(residues 1215-1468) domains potentially involved in proteolytic activity and auto-444 

translocation, respectively, suggesting that this is a newly identified autotransporter protein 445 

in N. gonorrhoeae. In support of this notion, the NGO2105 locus, also known as adhesion 446 
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and penetration protein or “NEIS1959 (iga2)” in the PubMLST database, encodes IgA2 447 

protease (AidA) and has homologs in other Neisseria (Table 1) as well as Haemophilus 448 

influenzae (92). 449 

Together, our investigations yielded nine novel gonorrhea vaccine candidates, 450 

including proteins with implications in pathogenesis such as IgA2 (AidA) and LprI, and 451 

provided valuable information regarding the expression patterns of previously selected 452 

vaccine candidates. 453 

Expression and homologs of gonorrhea vaccine candidates. We first evaluated 454 

expression profiles of extensively studied gonorrhea vaccine candidates including MtrE (93-455 

95), PorB (96, 97), PilQ (98), TbpA (99, 100), Opa (101, 102), and AniA (19, 103-105). MtrE 456 

and PorB were up- and down-regulated, respectively, in 12 isolates (Table 2). Compared to 457 

WHO F, PorB was present at similar levels only in WHO G and N. PilQ (98) was ubiquitously 458 

expressed in 10 strains, whereas expression of Opa proteins was widely variable, as 459 

expected (106, 107). The TbpA level was similar in 8 strains; however, we did not detect 460 

TbpB (108). Nor did we detect ACP (109, 110) or OpcA (111, 112) under the standard 461 

growth conditions used in our studies, which suggested that they might be specifically 462 

regulated. AniA was present at different levels in 7 strains, ubiquitous in five, and up-463 

regulated in two isolates. Immunoblotting experiments with anti-AniA antisera corroborated 464 

these findings (105). The cellular pool of NspA (113) varied in ten isolates, while lactoferrin 465 

binding protein LbpA (114) was variable in five strains and was ubiquitous in WHO L and G 466 

(Table 2).  467 

Strikingly, most of the proteome-derived vaccine candidates showed ubiquitous 468 

expression among numerous strains (Table 1). In particular, SliC, PldA, BamE, BamA, and 469 

BamG were ubiquitous in all 15 isolates. Similar results for these proteins were obtained by 470 
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iTRAQ-MS/MS applied to the proteomic profiling of cell envelopes and outer membrane 471 

vesicles (OMVs) isolated from four different strains of N. gonorrhoeae (29). Further, LolB, 472 

Ng-MIP, NGO1559, and NGO2054 were unvaryingly expressed in at least 12 isolates. 473 

Among the novel vaccine candidates identified in our study, LptE, LolB, IgA2, and NGO1251 474 

were found ubiquitous in at least 13 strains. In addition, LprI and NGO0778 were similarly 475 

expressed in 12 and 9 isolates, respectively. In support of our proteomics data, 476 

immunoblotting analyses demonstrated similar cellular levels of BamA, MetQ, TamA, LptD, 477 

NGO2054 (30), BamE-D (72), SliC (73), and BamG (76) in whole cell lysates of the 2016 478 

WHO strains as well as geographically and temporally diverse clinical isolates of N. 479 

gonorrhoeae from Baltimore (n=5) and Seattle (n=13). Our previous studies showed that 480 

PorB, PilQ, BamA-D, SliC, MafA, PldA, MetQ, IgA1 protease, and LptD are cargo proteins 481 

present at similar levels in naturally released gonococcal OMVs (29, 72, 73), which further 482 

highlights their potential as vaccine antigens considering the success of N. meningitidis 483 

OMV-based vaccines (26, 115).  484 

Finally, we examined the presence of homologs of the gonorrhea vaccine candidates 485 

among non-gonococcal Neisseria species, other commensal bacteria (116, 117), and co-486 

infecting microbes (118-121) that inhabit the same ecological niche as N. gonorrhoeae. 487 

Antigens conserved between these pathogens and preferably not in commensals have the 488 

potential to eradicate several sexually transmitted infections, if formulated into a protective 489 

vaccine(s). Our comparative analyses showed that all of the proteomics-based antigens 490 

have homologous proteins in the majority of investigated N. meningitidis strains, and none 491 

are present in M. hominis (Table 1). In addition, Ng-MIP-like proteins exist in C. trachomatis, 492 

G. vaginalis, and P. ruminicola; BamA and NGO1559 homologs were found in C. 493 

trachomatis and P. ruminicola. MetQ, a methionine transporter (74), was the only 494 
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proteomics-derived vaccine candidate with homologs across all examined bacteria with the 495 

exception of C. trachomatis and P. ruminicola. Further, we detected protein homologs of 496 

PilQ in two C. trachomatis strains and MtrE and ZnuD in P. ruminicola; these three proteins 497 

were absent in commensal species.  498 

Together, our investigations provide pioneering information into newly identified and 499 

existing gonorrhea vaccine candidates. We have established each candidate’s expression 500 

pattern in diverse N. gonorrhoeae isolates and identified homologs among other pathogenic 501 

and/or commensal bacteria that share the same ecological niche. Stable expression in the 502 

WHO gonococcal panel coupled to presence in N. meningitidis and co-infecting agents – 503 

but rarely in urogenital commensals – further highlights the importance of including these 504 

antigens in gonorrhea vaccine(s). 505 

Proteomics profiling of N. gonorrhoeae antimicrobial resistance. Various genome-506 

based AMR determinants have been deciphered in the gonococcus over the past decades 507 

(51, 122-127). However, many AMR determinants remain to be identified and characterized, 508 

e.g. the chromosomally-encoded penicillin and cephalosporin resistance determinant “factor 509 

X” (128-130) and the AMR mechanisms that contribute to a large proportion of azithromycin 510 

resistance (131). The uncertainty behind these AMR determinants illustrates the need for 511 

alternative approaches to enhance our understanding of gonococcal AMR complexity. At 512 

the proteomic level, only two studies have attempted to address this challenge, both of which 513 

used 2D-SDS PAGE exclusively (47, 132). Therefore, we focused on identifying proteomic 514 

AMR signatures that exist in the absence of antimicrobial pressure during standard in vitro 515 

growth conditions by performing a pairwise comparison of all identified proteins in each 516 

individual strain to the WHO F reference strain (Supplemental Tables S1-S2). As expected, 517 

we identified different numbers of proteins in the CE and C fractions in each comparison set 518 
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due to differences in the number of open reading frames (ORFs) between the gonococcal 519 

strains (Supplemental Table S3). Similarly to our previous analysis, we excluded typical 520 

cytoplasmic proteins from the CE subproteome and cell envelope proteins from the C 521 

fraction. We solely focused on proteins with significantly different expression in the 522 

examined strains compared to the fully antimicrobial-susceptible strain WHO F with the 523 

rationale that these proteins may provide clues about the proteomic basis of AMR. For 524 

instance, we identified MtrE as up-regulated in many strains with increased resistance to 525 

numerous antimicrobials even in the absence of antimicrobial exposure, which represents 526 

an up-regulation of the multidrug MtrCDE efflux pump and possibly additional efflux pumps 527 

for which MtrE acts as the outer membrane channel (29, 94, 133-135). Overall, we identified 528 

162 (including 21 known AMR determinants) and 95 proteins with known and unpredicted 529 

subcellular locations, respectively (Figure 6). Peptide counting performed for the latter group 530 

of proteins yielded 55 and 36 proteins that are likely localized to the CE and C, respectively, 531 

and four proteins with ambiguous localization. Next, we separated proteins that have been 532 

previously verified as N. gonorrhoeae AMR determinants (Table 3) from new potential 533 

proteomic AMR signatures (Tables 4-5).  534 

Proteomic signature of previously verified gonococcal antimicrobial resistance 535 

determinants. Our proteomic analysis detected subcomponents of all the five efflux pumps 536 

described in N. gonorrhoeae, i.e., MtrCDE, MtrF, FarAB, MacAB, and NorM (Table 3). The 537 

outer membrane-barrel protein MtrE serves as the channel for the tripartite MtrCDE pump 538 

and likely fulfills this same function in the MacAB and FarAB efflux pumps (133, 135). The 539 

MtrCDE complex is the most studied efflux pump system in N. gonorrhoeae. The multiple 540 

transferable resistance (mtr) locus contains the mtrCDE operon (136) that is negatively 541 

regulated by the repressor MtrR (137). Mutations that abrogate mtrR activity result in an 542 
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over-expression of the MtrCDE efflux pump and decreased susceptibility to numerous 543 

antimicrobials, e.g. macrolides, penicillins, cephalosporins, and tetracycline (53, 135). AMR 544 

mutations in the mtrR promoter were previously identified in WHO G, K, M, O, P, V, W, X, 545 

Y, and Z and within the mtrR gene (G45D or a frame shift mutation resulting in a truncated 546 

peptide) in WHO K, L, M, P, and W (50), suggesting an over-expression of the MtrCDE efflux 547 

pump. Our proteomic profiling also verified that the levels of MtrE were significantly 548 

increased in all isolates with the exception of two strains lacking any type of mtrR AMR 549 

determinant (WHO U and N; Table 3). Accordingly, MtrE proved to be an effective indicator 550 

of expression of the MtrCDE efflux pump. Our findings were further supported by the down-551 

regulation of MtrR in all examined strains except WHO L (Table 3). WHO L is also the only 552 

examined strain that contains an mtr120 mutation, which generates a novel promoter for 553 

mtrCDE transcription and further enhances the expression of the MtrCDE efflux pump (50, 554 

138). The second efflux system that showed differential expression was the MacAB efflux 555 

pump, which can decrease macrolide susceptibility (139). MacA expression varied across 556 

the isolates. Expression of the inner membrane component, MacB, was enhanced in the 557 

azithromycin resistant strains WHO P and V, but also in the azithromycin susceptible strains 558 

WHO N and K, as well as WHO L, which is intermediately susceptible to azithromycin. 559 

Interestingly, MacB was the most highly expressed in WHO V, the only strain with high-level 560 

azithromycin resistance [MIC>256 µg/mL; due to the 23S rRNA A2059G mutation in all four 561 

alleles (50)], which indicates that over-expression of the MacAB efflux pump may contribute 562 

to the high MICs of azithromycin and other macrolides in WHO V. The FarA component of 563 

the FarAB efflux pump system, which exports long-chain fatty acids and other hydrophobic 564 

agents (140), was not over-expressed in any of the examined strains and was instead 565 

ubiquitously expressed in seven WHO strains (M, N, K, L, X, Z, and V) and down-regulated 566 
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in WHO U, O, FA6140. Our proteomic profiling also revealed that the NorM and MtrF efflux 567 

pumps, which can decrease the susceptibility to fluoroquinolones and sulfonamides, 568 

respectively (141, 142), were not over-expressed in any of the examined strains.   569 

Among other established AMR determinants that were differentially expressed was 570 

the major porin of N. gonorrhoeae, PorB (143, 144), which was down-regulated in all strains 571 

with the exception of WHO G and N (Table 4). This down-regulation suggests reduced 572 

import of antimicrobials such as penicillins, cephalosporins and tetracyclines, which can 573 

contribute to a decreased antimicrobial susceptibility. Furthermore, the WHO F, G, and N 574 

express PorB1a, which is associated with a lack of the AMR determinant penB and 575 

consequently high-level chromosomally-mediated resistance to penicillins and 576 

cephalosporins (127), while all other strains express PorB1b. All WHO strains with PorB1b 577 

(n=11), except WHO U, contained the AMR determinant penB. Consequently, our proteomic 578 

data suggest that penB may be associated with also a decreased expression of PorB1b in 579 

addition to the previously documented decreased penetration through PorB1b, resulting in 580 

a decreased susceptibility to several antimicrobials. The expression of penicillin-binding 581 

protein 1 (PBP1) was significantly down-regulated in nine out of the twelve WHO strains that 582 

possess the ponA1 resistance determinant, which encodes a L421P amino acid substitution 583 

in PBP1 that contributes to high-level chromosomally-mediated penicillin resistance (50). 584 

Accordingly, our proteomic data indicate that the PBP1 L421P amino acid alteration, in 585 

addition to decreased expression of PBP1, might contribute to high-level chromosomally 586 

mediated penicillin resistance. In contrast, PBP2 (the main lethal target for penicillins and 587 

cephalosporins) was ubiquitously expressed in 13 of the 14 WHO strains. Similarly, GyrA 588 

expression was ubiquitous in 13 of the 14 WHO strains. No association between GyrA 589 

expression and the main fluoroquinolone resistance mutations [amino acids S91 and D95 590 
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(50)] was identified. Both GyrB and the second fluoroquinolone target, ParC, were over-591 

expressed in the four ciprofloxacin-resistant WHO strains G, N, V and X, which may suggest 592 

that these strains upregulate GyrB and ParC to compensate for the mutated main 593 

fluoroquinolone target GyrA (Table 3).   594 

New potential proteomic-derived antimicrobial resistance signatures. In the CE 595 

fraction, two hypothetical proteins predicted to localize to the inner membrane, 596 

WHO_F_00238c and WHO_F_01226, were down-regulated in all examined strains 597 

compared to the antimicrobial-susceptible WHO F strain (Table 4). WHO_F_00238c, which 598 

corresponds to NGO0222 in the FA1090 genome, is a small protein with a predicted 599 

molecular weight of 8.32 kDa that contains two predicted transmembrane domains but no 600 

signal peptide. WHO_F_01226 lacks a homologous protein in FA1090. This is also a small 601 

protein (5.39 kDa) with no peptides predicted to be recognized by signal peptidase I or II. In 602 

the C fraction, no protein was differentially expressed in all strains, but two cytoplasmic 603 

proteins, NGO0597 and NGO0701, were up-regulated in all strains except WHO L. 604 

NGO0597 is a nucleoside diphosphate kinase (Ndk; 15.4 KDa) involved in DNA and RNA 605 

synthesis (145), regulation of gene transcription (146), and peptide chain elongation during 606 

translation (147), all processes that are targets for different antimicrobials. NdK is secreted 607 

from Pseudomonas aeruginosa (146), M. tuberculosis (148), and Leishmania (149) to 608 

modulate interaction with host cells, block phagosome maturation in macrophages (148, 609 

150), and promote host cell apoptosis and necrosis (151). It remains to be investigated 610 

whether the gonococcal Ndk is secreted during infection and whether it may serve as an 611 

anti-virulence or antimicrobial target. Finally, we detected two proteins with undefined 612 

subcellular localization displaying global differential expression. WHO_F_01139 and 613 

WHO_F_01144, which have no homologs in the FA1090 genome, were down-regulated in 614 
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all strains. Our use of UPCD predicted WHO_F_01139 to localize to the cell envelope. 615 

WHO_F_01139 is a putative lipoprotein (16.9 KDa) with a predicted signal peptide II domain. 616 

Based on UPCD, in addition to the lack of a predicted signal peptide and the absence of 617 

transmembrane domains, we predict the hypothetical protein WHO_F_01144 (7.4 kDa) is 618 

cytoplasmic. The impact of these six proteins on AMR is yet to be elucidated; however, our 619 

data suggest that they may represent general proteomic markers for gonococcal AMR, a 620 

predisposition toward developing or compensating for gonococcal AMR, and/or new 621 

antimicrobial targets.  622 

Phenotypic clustering based on antibiograms and common differentially expressed 623 

proteins. To link AMR phenotypes with proteomic signatures, we performed phenotypic 624 

clustering of gonococcal strains based on their defined antibiograms (50, 53-55, 152) and 625 

common differentially expressed proteins (Tables 4-5). We additionally investigated each 626 

protein’s Cluster of Orthologous Genes (COG) annotations and inferred the functional 627 

relevance to the observed phenotypes. These analyses generated seven phenotypic 628 

clusters that matched between established and proteome-derived AMR signatures (I-VII; 629 

Tables 4-6).  630 

Cluster I strains, WHO P and U, exhibit resistance to azithromycin and the majority 631 

of up-regulated proteins identified were involved in ribosomal biogenesis: 30S ribosomal 632 

proteins S15 and S19; 50S ribosomal proteins L1, L2, and L22; the small GTPase EngA; 633 

pseudouridine synthase; RNA helicase; and ribonuclease E. In contrast, proteins involved 634 

in cell envelope biogenesis – PilE, LolA, and PglB – were down-regulated in both strains, 635 

which may be associated with the strains’ decreased susceptibility to penicillin G.  636 

Cluster II strains, WHO M and N, exhibit resistance to penicillin G, tetracycline, and 637 

ciprofloxacin. Up-regulated proteins included DNA repair factors (DnaE, a putative type I-638 
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site specific deoxyribonuclease NGO0407, and exonuclease UvrB). Proteins involved in 639 

amino acid metabolism (NGO0269, NGO0679); and translation (NGO0803, NGO1870) 640 

were also up-regulated, which suggested strains in Cluster II possess compensatory 641 

mechanisms for ciprofloxacin and tetracycline resistance, respectively. Hypothetical 642 

proteins represented the majority of down-regulated proteins and included WHO_F_00875c, 643 

NGO1299, NGO1945, NGO1967, NGO1969, NGO1970, and NGO2089.  644 

Cluster III, IV, and V are comprised of WHO X and L, WHO W and K, and WHO Y 645 

and Z, respectively, and exhibit resistance to at least four different antimicrobials, with 646 

ciprofloxacin and tetracycline in common (Table 4-5). Three proteins in common between 647 

strains in Cluster III and IV were identified. Of these, homoserine dehydrogenase and holo-648 

ACP synthase – involved in amino acid and lipid metabolism, respectively – were down-649 

regulated, while thioredoxin, which is involved in defense against oxidative stress and 650 

protein turnover, was up-regulated (153, 154). The NADP quinone reductase (MdaB, 651 

modulator of drug activity B) was up-regulated in Cluster IV and V strains. In E. coli, MdaB 652 

protects against polyketide compound toxicity (155), while overproduction of this protein 653 

defends P. aeruginosa from oxidative stress (156).  654 

Strains in Cluster VI (WHO V and G) are resistant to penicillin G (WHO G intermediate 655 

susceptible), tetracycline and ciprofloxacin. Differentially regulated proteins in this cluster 656 

were strikingly similar to Cluster II, with 13 proteins in common (Table 4-6). Seven proteins 657 

involved in DNA repair, amino acid metabolism and translation were up-regulated, further 658 

strengthening a possible compensatory mechanism for the resistance to ciprofloxacin and 659 

tetracycline. Six proteins functioning in coenzyme metabolism (NGO2056) and with 660 

unknown functions (NGO1299, NGO1945, NGO1969, NGO1970, NGO2089) were down-661 

regulated (Table 6).  662 
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Finally, the cluster VII strains (WHO O and FA6140), displaying resistance to penicillin 663 

G and tetracycline, had nine common differentially expressed proteins (Table 6). Among 664 

these proteins, two metabolic coenzymes (NGO0360 and NGO2056) and a putative 665 

cytochrome b561 involved in energy production were down-regulated. This cluster 666 

possessed a similar expression profile to strains in Cluster I that are intermediately 667 

susceptibility to penicillin G and tetracycline. Finally NGO2017, a putative integral inner 668 

membrane protein; NGO0452, a potassium proton/antiporter; PilW; and PilE were also 669 

down-regulated in the cluster VII strains (Table 6).  670 

Our proteomic findings elucidate many differentially regulated proteins as potential 671 

general proteomic markers for gonococcal AMR, a predisposition toward developing or 672 

compensating for gonococcal AMR, and/or new antimicrobial targets, e.g. NGO0222, 673 

WHO_F_01226, NGO0597, NGO0701, WHO_F_01139, WHO_F_011144. Deeper analysis 674 

of gonococcal proteotypes that relied on AMR-based phenotypic clustering identified 675 

additional proteomic markers potentially associated with (or compensating for) AMR in 676 

clusters I, II, VI, and VII. Further studies should examine the proteomic profiles of wild type 677 

and AMR gonococcal strains during exposure to varying levels of different antimicrobials. In 678 

line with this, the expression of eight outer membrane proteins was enhanced in ampicillin 679 

resistant E. coli strains upon exposure to the minimal inhibitory concentration of ampicillin 680 

(33). Additionally, the functional role(s) of the differentially regulated hypothetical proteins 681 

potentially involved in gonococcal AMR need to be elucidated, which would help decode the 682 

intricate AMR network and promote the design of ways to curb the spread of AMR among 683 

N. gonorrhoeae strains.  684 

 685 

CONCLUSIONS 686 
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The present study provides the first global quantitative proteomic characterization of the 687 

2016 WHO N. gonorrhoeae reference strains (50) and FA6140 (51) to identify new vaccine 688 

candidates, gain information about expression of previously identified antigens, and 689 

enhance our understanding of AMR in N. gonorrhoeae. To our knowledge, this is also the 690 

largest quantitative proteomics study performed on bacterial sub-proteomes to date. 691 

Importantly, nine novel vaccine candidates have been identified, significantly broadening 692 

the gonorrhea antigen repertoire. Further, expression of 21 previously verified AMR 693 

determinants at the proteome level was investigated and six new proteomic signatures that 694 

may be associated with AMR or may indicate a strain’s likelihood of developing or 695 

compensating for the physiological consequences of gonococcal AMR. The proteomic 696 

signatures we identified may also represent new antimicrobial targets. Expression patterns 697 

of antimicrobial targets and AMR determinants provide proteomic signatures that can 698 

complement, verify, and enhance our phenotypic- and genetic-derived understanding of 699 

gonococcal AMR complexity. Cumulatively, our studies provide a wealth of information 700 

regarding gonococcal proteomic profiles and will contribute to ongoing efforts in 701 

vaccine/drug development as well as elucidation of AMR mechanisms in N. gonorrhoeae.   702 
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TABLES 1171 

 1172 

TABLE 1. Expression and homologs of proteomics-derived Neisseria gonorrhoeae vaccine candidates#. 1173 

#Color legends for protein expression: Ubiquitous (green), up-regulated (red), down-regulated (blue), variable (grey). Ubiquitous expression among all 15 strains is marked with (***), 14 strains 1174 
with (**), 12-13 strains with (*). Abbreviations: OM: Outer membrane, CE: cell envelope, +: protein homolog detected. 1175 
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WHO_F_00053c NGO0055 OM Pilus assembly protein PilC           
 

    
  

      
 

            + + + + + + + +         

WHO_F_00104c NGO0097 CE Pilus assembly protein PilN             
 

      
  

              + + + + + + + + +         

WHO_F_00296c** NGO0277 CE Outer membrane biogenesis protein BamD                                       + + + + + + + + +         

WHO_F_00301*** NGO0282 CE LPS-assembly lipoprotein LptE                                       + + + + + + + + +         

WHO_F_00453c** NGO0425 CE Hypothetical protein                                         + + + + + +   + +         

WHO_F_00467* NGO0439 OM Outer membrane lipoprotein LolB LolB     
 

                    
 

          + + + + + + + + +         

WHO_F_00839c NGO0778 CE Membrane protein             
  

    
  

                + + + + + + + + +         

WHO_F_00962 NGO0834 OM Membrane protein CsgG 
   

  
  

                          + + + + + + + + +         

WHO_F_01229c*** NGO1063 OM Surface-exposed lysozyme inhibitor  SliC                                         + + + + + + + +         

WHO_F_01388 NGO1205 OM Zinc uptake component D protein ZnuD     
  

                          +   + + + + + + + + +         

WHO_F_01407c* NGO1225 OM Ng-MIP Ng-MIP                             + + + +   + + + + + + + + +         

WHO_F_01438c* NGO1251 CE Lipoprotein                                         + +   + + + + + +         

WHO_F_01539 NGO1344 CE AsmA-like protein                                         + + + + + + + + +         

WHO_F_01599c NGO1393 CE Adhesin MafA     S
U 

    
 

    
  

  
 

              + + + + + + + +           

WHO_F_01745c*** NGO1492 OM Phospholipase A1 PldA                                       + + + + + + + + +         

WHO_F_01817* NGO1559 CE OmpA/MotB domain-containing protein             
 

                  + + +         + + + +   +         

WHO_F_01959c NGO1688 OM Outer membrane protein OmpU                 
  

    
  

          + + + + + + + + +         

WHO_F_01995c** NGO1715 OM LPS-assembly protein LptD                                       + + + + + + + + +         

WHO_F_02071*** NGO1780 OM Outer membrane biogenesis protein BamE                                       + + + + + + + + +         

WHO_F_02094*** NGO1801 OM Outer membrane biogenesis protein BamA                               + + +   + + + + + + + + +         

WHO_F_02195c* NGO1889 CE Lipoprotein                 
 

                      + + + + + + + + +         

WHO_F_02224c NGO1911a OM Pilus assembly protein         
 

  
 

              
 

            + + + + + + +           

WHO_F_02269c** NGO1956 OM Translocation and assembly module A TamA                                       + + + + + + + + +         

WHO_F_02304c*** NGO1985 OM Lipoprotein BamG                                       + + + + + + + + +         

WHO_F_02385c* NGO2054 OM Hypothetical protein       
 

                                +   + + + +   + +         

WHO_F_02440c NGO2092 CE Iron ABC transporter protein                                         + + + + + + + +           

WHO_F_02455c* NGO2105 CE Adhesion and penetration protein AidA                                       + + + + + + + +           

WHO_F_02462 NGO2111 OM Hypothetical protein                     
    

            + + + + + + + + +         

WHO_F_02473 NGO2121 CE Lipoprotein component MlaA                                       + + + + + + + + +         

WHO_F_02490** NGO2139 OM Methionine ABC transporter protein MetQ                              +         + + + + + + + + + + + + + 
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TABLE 2. Expression and homologs of Neisseria gonorrhoeae vaccine candidates identified by other means#. 1177 
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WHO_F_00101c NGO0094 OM 
Type IV pilus biogenesis and 
competence protein 

PilQ                                + +     + + + + + +   + +         

WHO_F_00249c NGO0233 OM NspA protein NspA                                       + + + + + + + + +         

WHO_F_00279   OM Lactoferrin binding protein A LbpA                                       + + + +   + + +           

WHO_F_00294c NGO0275 OM IgA-specific protease IgA1                                       + + + + + + +             

WHO_F_00995 NGO0868 OM OpcA protein OpcA                                       + + + + + +   +           

WHO_F_01461 NGO1276 OM Copper-containing nitrite reductase AniA                                       + +   + + + + + +         

WHO_F_01561c NGO1363 OM Multidrug transporter MtrE                                    +   + + + + + + + + +         

WHO_F_01749c NGO1495 OM Transferrin-binding protein A TbpA                                        + + + + + +   + +         

WHO_F_01750c NGO1496 OM Transferrin-binding protein B TbpB                                       + + + + + + + + +         

WHO_F_02106 NGO1812 OM Porin PorB                                        + + + + + + + + +         

WHO_F_02300c NGO1981 OM Adhesin complex protein ACP                                       + + + + + + + + +         

WHO_F_01083 *Multiple OM PIIC_3 opacity protein PiiC_3                                        + + + + + + +             

WHO_F_01464 *Multiple OM PIIC_6 opacity protein PiiC_6                                        + + + + + + +             

WHO_F_01766 *Multiple OM PIIC_9 opacity protein PiiC_9                                        + + + + + + +             

WHO_F_02168c *Multiple OM PIIC_11 opacity protein PiiC_11                                        + + + + + + + +           

#Color legends for protein expression in cell envelope fraction: Ubiquitous (green), up-regulated (red), down-regulated (blue), and variable (grey). *Multiple protein homologs in Neisseria 1178 
gonorrhoeae FA1090 are detected: NGO0066a, NGO0070, NGO0950a, NGO1040a, NGO1073a, NGO1277a, NGO1463a, NGO1513, NGO1553a, NGO1861a, NGO2060a. Abbreviations: OM: 1179 
Outer membrane, +: protein homolog detected. 1180 
 1181 
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TABLE 3. Proteomic signature of previously verified gonococcal antimicrobial resistance determinants#. 1183 
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Protein 
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WHO_F_00422c NGO0395 NorM IM Fluoroquinolones Multidrug efflux protein                             
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WHO_F_01562c NGO1364 MtrD 

(MexB) 

IM Macrolides, 
tetracycline, 

penicillin,  
fluoroquinolones, 
cephalosporins 

MtrD (MexB)                             

WHO_F_01563c NGO1365 MtrC 
(MexA) 

P MtrC (MexA)                             

WHO_F_01561c NGO1363 MtrE  OM Multiple transferable resistance pump, component E                             

WHO_F_01564 NGO1366 MtrR  C Repressor of multiple transferable resistance pump                             

WHO_F_01566 NGO1368 MtrF IM Sulfonamides AbgT transporter                             

WHO_F_01653c NGO1439 MacB IM Macrolide MacB Macrolide export ATP-binding/permease protein                             

WHO_F_01654c NGO1440 MacA P MacA ABC transporter periplasmic protein                             

WHO_F_01953c NGO1683 FarA P Fatty acids Fatty acid resistance MFS efflux transporter adaptor 

subunit 
                            

WHO_F_02142c NGO1841 RpsJ C Tetracyclines RpsJ 30S ribosomal protein S10                             

WHO_F_00106 NGO0099 PBP1 
(PonA1) 

P Penicillin 
(cephalosporins) 

Penicillin-binding protein 1                             

WHO_F_01799c NGO1542 PBP2 

(PenA) 

IM Penicillin-binding protein 2                             

WHO_F_02106 NGO1812 PorB OM Porin 1B (PorB)                             

WHO_F_01865 NGO1603 MtgA  P MtgA Penicillin-binding protein 4                              

WHO_F_00668c NGO0629 GyrA  C Fluoroquinolone DNA gyrase subcomponent GyrA                              

WHO_F_02057 NGO1772 GyrB  C DNA gyrase subcomponent GyrB                             

WHO_F_01444 NGO1259 ParC C Topoisomerase IV subcomponent C                             

WHO_F_01528c NGO1333 ParE C Topoisomerase IV subcomponent E                             

WHO_F_01537c NGO1342 FolP C Sulfonamide 7,8-dihydropteroate synthase                             
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#
Color legends for protein expression: Ubiquitous (green), up-regulated (red), down-regulated (blue), variable (grey), and undetected (white). Color legends for phenotype against antimicrobial 1215 

agents are as follows: resistant (dark purple), intermediate susceptible/resistant (purple), susceptible (light purple). Abbreviations: OM: Outer membrane, IM: inner membrane, C: cytoplasmic, 1216 
P: periplasmic.  1217 
 1218 

 1219 

 1220 

 1221 

 1222 

 1223 

 1224 

 1225 

 1226 

 1227 

 1228 

 1229 

 1230 

 1231 

 1232 

 1233 

 1234 

 1235 

 1236 

 1237 

 1238 

 1239 

 1240 

 1241 

 1242 

 1243 

 1244 

 1245 

 1246 

 1247 

 1248 

 1249 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/434753doi: bioRxiv preprint 

https://doi.org/10.1101/434753


 48 

TABLE 4. New potential proteomic-derived antimicrobial resistance signatures with defined subcellular localizations#. 1250 
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WHO_F_02461c   E Putative hemoglobin receptor component HpuA                                  

WHO_F_00057 NGO0057 IM Thioredoxin COG0526OC Protein turnover                             

WHO_F_00073 NGO0071 IM Lipoprotein signal peptidase II COG0597MU Cell wall/membrane/envelope biogenesis                               

WHO_F_00089c NGO0083 IM Pilin glycosylation protein COG1086MG Cell wall/membrane/envelope biogenesis                               

WHO_F_00091c NGO0085 IM UDP-glucose lipid carrier transferase COG2148M Cell wall/membrane/envelope biogenesis                                 

WHO_F_00139c NGO0127 IM Ribonuclease BN-like family  COG1295S Function unknown                                 

WHO_F_00155 NGO0143 IM Sodium/proton antiporter COG1757C Energy production and conversion                                 

WHO_F_00191c NGO0178 IM Lipid A core - O-antigen ligase  COG3307M Cell wall/membrane/envelope biogenesis                                 

WHO_F_00211 NGO0196 IM Putative spermidine/putrescine transport system permease, COG1177E Amino acid transport and metabolism                                 

WHO_F_00213c NGO0198 IM Ammonia transporter COG0004P Inorganic ion transport and metabolism                                 

WHO_F_00238c NGO0222 IM Hypothetical protein                                 

WHO_F_00246c NGO0230 IM Potassium transporter COG0168P Inorganic ion transport and metabolism                                 

WHO_F_00303 NGO0284 IM Membrane protein                                 

WHO_F_00311 NGO0291 IM Potassium/proton antiporter COG3263P Inorganic ion transport and metabolism                                 

WHO_F_00328 NGO0307 IM Phage T7 F exclusion suppressor FxsA COG3030R General function prediction only                                 

WHO_F_00385 NGO0360 IM Putative uroporphyrinogen-III C-methyltransferase COG2959H Coenzyme transport and metabolism                                 

WHO_F_00386 NGO0361 IM Uncharacterized enzyme of heme biosynthesis COG3071H Coenzyme transport and metabolism                                 

WHO_F_00425c NGO0399 IM Putative Zn-dependent protease COG0501O Protein turnover                             

WHO_F_00585 NGO0551 IM Predicted membrane protein COG3671S Function unknown                                 

WHO_F_00627c NGO0589 IM Uracil transporter COG2233F Nucleotide transport and metabolism                                 

WHO_F_00666c NGO0627 IM Site-specific recombinase COG4389L Replication, recombination and repair                                 

WHO_F_00696 NGO0656 IM Oxalate/formate antiporter family transporter COG2807P Inorganic ion transport and metabolism                                 

WHO_F_00816c NGO0753 IM Nitrate/nitrite sensor protein  COG3850T Signal transduction mechanisms                                 

WHO_F_00996 NGO0869 IM Hypothetical protein COG0586S Function unknown                                 

WHO_F_01057c NGO0923 IM Putative succinate dehydrogenase cytochrome COG2009C Energy production and conversion                                 

WHO_F_01100c NGO0968 IM Glutamine transport system permease protein glnP COG0765E Amino acid transport and metabolism                                 

WHO_F_01106c NGO0974 IM Lysophospholipid transporter lplT                                 

WHO_F_01110c NGO0978 IM Thiol:disulfide interchange protein DsbD COG4232OC Protein turnover                             

WHO_F_01126   IM Hypothetical protein                                  

WHO_F_01200c NGO1032 IM Inner membrane transport protein yajR COG2814G Carbohydrate transport and metabolism                                 

WHO_F_01225c NGO1059 IM Membrane protein COG0861P Inorganic ion transport and metabolism                                 

WHO_F_01371 NGO1188 IM Magnesium transporter COG2239P Inorganic ion transport and metabolism                                 

WHO_F_01381 NGO1198 IM Phosphoethanolamine transferase eptB COG2194R General function prediction only                                 

WHO_F_01398c NGO1216 IM Diacylglycerol kinase COG0818M Cell wall/membrane/envelope biogenesis                                 

WHO_F_01428c NGO1246 IM Signal peptide peptidase SppA COG0616OU Protein turnover                             

WHO_F_01445 NGO1260 IM Transcriptional regulatory protein ZraR COG3829KT Transcription                              

WHO_F_01460c NGO1275 IM Nitric oxide reductase subunit B COG3256P Inorganic ion transport and metabolism                                 

WHO_F_01535c NGO1340 IM DedA-family integral membrane protein COG0586S Function unknown                                 

WHO_F_01568c NGO1370 IM Uncharacterized iron-regulated membrane protein COG3182S Function unknown                                 

WHO_F_01572c NGO1374 IM Cbb3-type cytochrome oxidase, subunit 1 COG3278O Protein turnover                             

WHO_F_01579 NGO1380 IM Zn-dependent proteases COG1994R General function prediction only                                 

WHO_F_01621 NGO1410 IM Inner membrane protein ybaN COG2832S Function unknown                                 

WHO_F_01623 NGO1411 IM Citrate transporter  COG1055P Inorganic ion transport and metabolism                                 

WHO_F_01626 NGO1414 IM Na( )-translocating NADH-quinone reductase subunit B COG1805C Energy production and conversion                                 

WHO_F_01629 NGO1417 IM Na( )-translocating NADH-quinone reductase subunit E COG2209C Energy production and conversion                                 

WHO_F_01669c NGO1455 IM Manganese transport protein MntH COG1914P Inorganic ion transport and metabolism                                 

WHO_F_01739c NGO1485 IM Inner membrane protein ybhI COG0471P Inorganic ion transport and metabolism                                 

WHO_F_01797c NGO1540 IM Putative phosphoethanolamine transferase ybiP COG2194R General function prediction only                                 

WHO_F_01811 NGO1552 IM Proline:sodium symporter PutP COG0591ER Amino acid transport and metabolism                               

WHO_F_01835c NGO1574 IM Phosphatidylglycerophosphatase A COG1267I Lipid transport and metabolism                                 

WHO_F_01979c NGO1699 IM Inner membrane protein ypjD COG4137R General function prediction only                                 

WHO_F_01990c NGO1710 IM O-acetyltransferase OatA COG1835I Lipid transport and metabolism                                 

WHO_F_01998 NGO1718 IM Virulence factor MviN COG0728R General function prediction only                                 

WHO_F_02013 NGO1732 IM Putative multidrug export ATP-binding/permease protein  COG1132V Defense mechanisms                                                     
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 1252 WHO_F_02018c NGO1737 IM NADH dehydrogenase subunit N COG1007C Energy production and conversion                                 

WHO_F_02019c NGO1738 IM NADH dehydrogenase subunit M COG1008C Energy production and conversion                                 

WHO_F_02021c NGO1740 IM NADH:ubiquinone dehydrogenase, L subunit COG1009CP Energy production and conversion                               

WHO_F_02025c NGO1744 IM NADH-quinone oxidoreductase subunit H COG1005C Energy production and conversion                                 

WHO_F_02033c NGO1751 IM NADH dehydrogenase I subunit A COG0838C Energy production and conversion                                 

WHO_F_02034c NGO1752 IM Putative integral membrane protein COG0421E Amino acid transport and metabolism                                 

WHO_F_02035c NGO1753 IM Putative integral membrane protein COG4262R General function prediction only                                 

WHO_F_02053 NGO1768 IM Integral membrane protein COG1971S Function unknown                                 

WHO_F_02078 NGO1787 IM Na /alanine symporter COG1115E Amino acid transport and metabolism                                 

WHO_F_02091 NGO1798 IM Phosphatidate cytidylyltransferase COG0575I Lipid transport and metabolism                                 

WHO_F_02174c NGO1867 IM Two-component system sensor kinase COG5000T Signal transduction mechanisms                                 

WHO_F_02207c NGO1900 IM Membrane protein COG1297S Function unknown                                 

WHO_F_02222 NGO1910 IM Inner membrane protein yccS COG1289S Function unknown                                 

WHO_F_02262c NGO1948 IM Membrane protein COG2259S Function unknown                                 

WHO_F_02267c NGO1954 IM Amino acid/peptide transporter (Peptide:H  symporter) COG3104E Amino acid transport and metabolism                                 

WHO_F_02308c   IM Putative cytochrome B561 COG3038C Energy production and conversion                                 

WHO_F_02419 NGO2071 IM Putative integral membrane protein COG1368M Cell wall/membrane/envelope biogenesis                                 

WHO_F_02432 NGO2084 IM Integral membrane protein COG0670R General function prediction only                                 

WHO_F_02468 NGO2116 IM ABC-type spermidine/putrescine transport systems COG1127Q Secondary metabolites biosynthesis                             

WHO_F_02481 NGO2128 IM Inner membrane protein  COG1807M Cell wall/membrane/envelope biogenesis                                 

WHO_F_01084 NGO0952 OM TonB-dependent heme/hemoglobin receptor family protein COG1629P Inorganic ion transport and metabolism                                 

WHO_F_02460c NGO2109 OM Outer membrane cobalamin receptor protein COG1629P Inorganic ion transport and metabolism                                 

WHO_F_00222 NGO0206 P Spermidine/putrescine ABC transporter COG0687E Amino acid transport and metabolism                                 

WHO_F_00233c NGO0217 P ABC-type thiamine transport system COG1840P Inorganic ion transport and metabolism                                 

WHO_F_00242 NGO0225 P Protein of unknown function                                  

WHO_F_00268c NGO0250 P Cryptic protein cnp1                                 

WHO_F_00397 NGO0372 P Lysine-arginine-ornithine-binding periplasmic protein COG0834ET Amino acid transport and metabolism                               

WHO_F_00650c NGO0613 P Hypothetical protein                                  

WHO_F_00702c NGO0662 P Aspartyl/glutamyl-tRNA amidotransferase subunit A COG0154J Translation, ribosomal structure and biogenesis                              

WHO_F_00717c NGO0678 P Lipoprotein                                 

WHO_F_00728c NGO0690 P Lipoprotein                                 

WHO_F_00809 NGO0747 P Lipoprotein COG1729S Function unknown                                 

WHO_F_00828 NGO0766 P Peptidyl-prolyl cis-trans isomerase D                                 

WHO_F_01000 NGO0873 P DNA modification methylase  COG0270L Replication, recombination and repair                                 

WHO_F_01209c NGO1044 P Hypothetical protein                                 

WHO_F_01214 NGO1049 P Nickel uptake substrate protein COG5266P Inorganic ion transport and metabolism                                 

WHO_F_01249   P Putative serotype-1-specific antigen                                 

WHO_F_01256 NGO1080 P C-type cytochrome COG3909C Energy production and conversion                                 

WHO_F_01289   P Predicted transcriptional regulator COG1396K Transcription                                 

WHO_F_01440c NGO1253 P Putrescine-binding periplasmic protein  COG0687E Amino acid transport and metabolism                                 

WHO_F_01652 NGO1438 P Probable thiol:disulfide interchange protein DsbC  COG1651O Protein turnover                             

WHO_F_01747 NGO1494 P Spermidine/putrescine ABC transporter substrate-binding 
protein 

COG0687E Amino acid transport and metabolism                                 

WHO_F_01754 NGO1502 P N-acetylmuramoyl-l-alanine amidase I COG0860M Cell wall/membrane/envelope biogenesis                                 

WHO_F_01757c NGO1505 P Hypothetical protein                                 

WHO_F_01925c NGO1655 P Putative peptidyl-prolyl isomerase                                 

WHO_F_01926c NGO1656 P Cell-binding factor COG0760O Protein turnover                             

WHO_F_01981 NGO1701 P Hypothetical protein                                 

WHO_F_02051 NGO1767 P Catalase COG0753P Inorganic ion transport and metabolism                                 

WHO_F_02387 NGO2056 P Thiamine transporter substrate binding subunit COG4143H Coenzyme transport and metabolism                                 

WHO_F_00060 NGO0059 C 4-hydroxyphenylacetate 3-monooxygenase reductase 
subunitF 

COG1853R Coenzyme transport and metabolism                                 

WHO_F_00082c NGO0078 C DNA polymerase III subunit alpha COG0587L Replication, recombination and repair                                 

WHO_F_00198c NGO0185 C Phosphoribosyl-ATP pyrophosphatase COG0140E Amino acid transport and metabolism                                 

WHO_F_00206 NGO0191 C 30S ribosomal protein S15 COG0184J Translation, ribosomal structure and biogenesis                                 

WHO_F_00288c NGO0269 C Amino acid ABC transporter ATP-binding protein COG1126E Amino acid transport and metabolism                                 

WHO_F_00434 NGO0407 C type I restriction-modification system endonuclease COG0610V Defense mechanisms                                 

WHO_F_00452c NGO0424 C GTP-binding protein EngA COG1160R General function prediction only                                 

WHO_F_00481c   C SodB_2 superoxide dismutase COG0605P Inorganic ion transport and metabolism                                 

WHO_F_00610 NGO0573 C Excinuclease uvr subunit B COG0556L Replication, recombination and repair                                 

WHO_F_00635c NGO0597 C Ndk nucleoside diphosphate kinase COG0105F Nucleotide transport and metabolism                                 

WHO_F_00663 NGO0624 C Acyl-CoA dehydrogenase  COG1960I Lipid transport and metabolism                                 

WHO_F_00690c NGO0650 C ATP-dependent RNA helicase COG0513LK Replication, recombination and repair                              

WHO_F_00697c NGO0657 C Pseudouridine synthase COG1187J Translation, ribosomal structure and biogenesis                                 

WHO_F_00718c NGO0679 C Isopropylmalate isomerase large subunit COG0065E Amino acid transport and metabolism                                 

WHO_F_00745 NGO0701 C Hypothetical protein                                 

WHO_F_00840c NGO0779 C Homoserine dehydrogenase COG0460E Amino acid transport and metabolism                                 

WHO_F_00930c NGO0803 C GTPases - translation elongation factors COG1217T Signal transduction mechanisms                                 
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#Color legends for protein expression: up-regulated (red), down-regulated (blue), and undetected (white). Abbreviations: OM: Outer membrane, IM: inner membrane, C: cytoplasmic, COG: 1253 
cluster of orthologous genes, PBP: penicillin binding protein. Color legends for phenotype against antimicrobial agents are as follows: resistant (dark purple), intermediate susceptible/resistant 1254 
(purple), susceptible (light purpl1255 

WHO_F_01222 NGO1055 C Acyl-CoA hydrolase COG1607I Lipid transport and metabolism                                 

WHO_F_01314c NGO1141 C Hypothetical protein  COG3680S Function unknown                                 

WHO_F_01421 NGO1239 C Hypothetical protein  COG3680S Function unknown                                 

WHO_F_01425 NGO1243 C Hgd 3-hydroxyacid dehydrogenase COG2084I Lipid transport and metabolism                                 

WHO_F_01585c NGO07315 C Uncharacterized protein                                 

WHO_F_01684c NGO1473 C NADPH quinone reductase COG2249R Coenzyme transport and metabolism                                 

WHO_F_01759c NGO1507 C Holo-ACP synthase COG0736I Lipid transport and metabolism                                 

WHO_F_01996 NGO1716 C Phosphotransferase COG3178R General function prediction only                                 

WHO_F_02076 NGO1785 C Ribonuclease E COG1530J Translation, ribosomal structure and biogenesis                                 

WHO_F_02135c NGO1833 C 50S ribosomal protein L22 COG0091J Translation, ribosomal structure and biogenesis                                 

WHO_F_02136c NGO1834 C 30S ribosomal protein S19 COG0185J Translation, ribosomal structure and biogenesis                                 

WHO_F_02137c NGO1835 C 50S ribosomal protein L2 COG0090J Translation, ribosomal structure and biogenesis                                 

WHO_F_02156c NGO1854 C 50S ribosomal protein L1 COG0081J Translation, ribosomal structure and biogenesis                                 

WHO_F_02177c NGO1870 C Methionyl-tRNA formyltransferase COG0223J Translation, ribosomal structure and biogenesis                             

WHO_F_02198c   C Restriction endonuclease    DNA repair                             

WHO_F_02422 NGO2074 C Ubiquinone biosynthesis O-methyltransferase COG2227H Coenzyme transport and metabolism                                 

WHO_F_02437c NGO2089 C Hypothetical protein  COG2191C Energy production and conversion                                 
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TABLE 5. New potential proteomic-derived antimicrobial resistance signatures with undefined localization# 1256 
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WHO_F_00006 NGO0006 Leucyl-tRNA synthetase COG0495J   S
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WHO_F_00026c NGO0029 Orotate trphosphoribosyltransferase COG0461F     
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WHO_F_00468 NGO0440 4-diphosphocytidyl-2-C-methyl-D-erythritol 

kinase 
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WHO_F_01578c NGO1379 Gram-negative bacterial tonB protein COG0810M     
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# Color legends for protein expression: Up-regulated (red), down-regulated (blue). Color legends for phenotype against antimicrobial agents are as follows: resistant (dark purple), 1258 
intermediate susceptible/resistant (purple), susceptible (light purple). Abbreviations: UPCD: unique peptide count difference; PBP: penicillin binding protein.  1259 
                                                                1260 
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TABLE 6. Common differentially expressed proteins in phenotypically clustered Neisseria gonorrhoeae strains. 1277 
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FIGURE LEGENDS 1282 

Figure 1. Experimental paradigm of quantitative proteomic profiling of the N. 1283 

gonorrhoeae 2016 WHO reference strains and the FA6140 strain. All gonococci were 1284 

cultured concurrently in liquid medium until reaching mid-logarithmic growth. Bacterial cells 1285 

were harvested, lysed, and subjected to subcellular fractionation to separate the crude cell 1286 

envelope (CE) and cytoplasmic (C) proteomes. CE proteins were enriched using a sodium 1287 

carbonate wash and ultracentrifugation. The obtained CE and C protein  samples (100 µg) 1288 

were denatured, reduced, alkylated, trypsinized, and the peptides from each strain were 1289 

labeled using 10-plex and 6-plex Tandem mass tag (TMT) reagents, as indicated. Finally, 1290 

samples were pooled, fractionated by strong cation exchange, and analyzed by liquid 1291 

chromatography electrospray ionization mass spectrometry. Experiments were performed 1292 

in biological duplicates.  1293 

    1294 

Figure 2. Venn diagrams illustrating the distribution of proteins identified in cell 1295 

envelope and cytoplasmic fractions in two independent proteomic experiments. (A) 1296 

Cell envelope proteomes derived from the 2016 WHO reference strains and FA6140 were 1297 

analyzed in 10-plex and 6-plex experiments performed in biological duplicates. A total of 1298 

1079 and 1081 proteins was identified in Experiments 1 and 2, respectively, and 1010 1299 

common proteins were found in both 10-plex experiments. The 6-plex TMT labeling revealed 1300 

975 common proteins as well as 197 and 22 unique proteins in Experiments 1 and 2, 1301 

respectively. Further analyses were applied to 901 proteins mutually identified in both 10-1302 

plex and 6-plex experiments. (B) The proteomic profiling of cytoplasmic fractions yielded 1303 

904 proteins shared among all 10 strains, of which 747 were common in both experiments. 1304 

The 6-plex TMT identified 904 and 971 proteins in Experiments 1 and 2, respectively; of 1305 
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which 852 were common between replicates. In further analyses solely the 723 proteins 1306 

shared between both experiments were included. Exp 1 – experiment 1; Exp 2 – experiment 1307 

2.  1308 

 1309 

Figure 3. Subcellular localization of proteins identified in cell envelope and 1310 

cytoplasmic subproteomes. Proteins identified in the cell envelope (blue circle) and 1311 

cytoplasmic (red circle) fractions were subjected to comprehensive assessments of 1312 

subcellular localization using different prediction algorithms and were allocated into the outer 1313 

membrane (A), periplasm (B), inner membrane (C), cytoplasm (D), or unknown localization 1314 

(E).  1315 

 1316 

Figure 4. Expression patterns of common proteins identified in the cell envelope 1317 

fraction. Outer membrane (A), periplasmic (B), inner membrane (C), or proteins with 1318 

unknown localization (D) are shown. Expression of each protein in each gonococcal strain 1319 

was compared to the protein level in the reference WHO F isolate. Protein expression is 1320 

categorized as ubiquitous (green bars); up-regulated (red  bar); down-regulated (blue bar); 1321 

and variable (grey bar).  1322 

 1323 

 1324 

Figure 5. Expression patterns of common proteins identified in the cytoplasmic 1325 

proteome. Cytoplasmic (A) and proteins with unknown localization (B) are shown. Protein 1326 

levels in individual gonococcal strains were compared to the protein level in the reference 1327 
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WHO F isolate. Protein expression is categorized as ubiquitous (green bars); up-regulated 1328 

(red bar); down-regulated (blue bar); and variable (grey bar).   1329 

 1330 

Figure 6. Decision tree designed for proteomic mining of Neisseria gonorrhoeae 1331 

vaccine candidates and antibiotic resistance markers. Detailed description is provided 1332 

in the text.  1333 
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