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Abstract 
 

Single-cell transcriptomic and epigenomic analyses provide powerful strategies for 

unbiased determination of cell types in mammalian tissues. Although previous studies 

have identified cell types using individual molecular signatures, the generation of 

consensus cell type classification requires the integration of multiple data types. Most 

existing single-cell techniques can only make one type of molecular measurement. Here 

we describe single-nucleus methylcytosine and transcriptome sequencing (snmCT-seq), 

a multi-omic method that requires no physical separation of DNA and RNA molecules. 

We demonstrated that snmCT-seq profiles generated from single cells or nuclei robustly 

distinguish human cell types and accurately measures cytosine DNA methylation and 

gene expression signatures of each cell type.  
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Introduction 
 

Single-cell transcriptome, DNA methylation (5mC) and chromatin profiling techniques 

have been successfully applied for cell-type classification and studies of gene 

expression and regulatory diversity in complex tissues. The different techniques used 

for cell-type identification create a challenge for integration across data modalities. For 

example, mouse cortical neurons have been studied using various single-cell assays 

that profile RNA, 5mC or chromatin accessibility 1–4, with each study reporting their own 

classification of cell types. Although it is possible to correlate the major cortical cell 

types (e.g. cortical layers) identified by transcriptomic and epigenomic approaches, 

comparing fine level subtypes defined by each of these different methods often yields 

ambiguous results2. Recently, more sophisticated methods based on Canonical 

Correlation Analysis (CCA) or mutual nearest neighbors (MMN) have been developed to 

combat batch effects and these methods can potentially be used for integration of 

different molecular types 5,6. However, it is difficult to validate the results of multi-mode 

comparison solely based on computational analyses, without having a multi-omic 

reference with different types of molecular measurements made from the same cell.  

 

Existing method such as scM&T-seq and scMT-seq for joint profiling of transcriptome 

and 5mC rely on the physical separation of RNA and DNA followed by parallel 

sequencing library preparation 7,8. The generation of separate transcriptome and 5mC 

sequencing libraries leads to a complex workflow and extra costs. It is also unknown 

whether these methods can be applied to single nuclei, which contain much less 

polyadenylated RNA than whole cells. Since the cell membrane is ruptured in 

improperly frozen tissues, the ability to produce robust transcriptome profiles from single 

nuclei is critically required for applying a multi-omic assay for cell type classification in 

human tissue specimens.  

 

Here we introduce methylCytosine & Transcriptome (mCT-seq) a method that can 

jointly capture cytosine DNA methylome (5mC) and transcriptome profiles from single 

cells/nuclei requiring no physical separation of RNA and DNA. This method has been 
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successfully applied for analyzing single cells (scmCT-seq) or single nuclei(snmCT-

seq). We demonstrated robust separation of two human cultured cell types - H1 human 

embryonic stem cells (hESC) and HEK293T cells using either transcriptomic or 5mC 

profiles extracted from scmCT-seq or snmCT-seq. Transcriptomic and 5mC signatures 

of H1 and HEK293 cells can be accurately measured using snmCT-seq and snmCT-seq 

profiles.  

 

Results 
 

Joint analysis of RNA and DNA methylome with molecular partitioning 
In mCT-seq, RNA and DNA molecules are molecularly partitioned by incorporating 5’-

methyl-dCTP instead of dCTP during reverse transcription of RNA (Fig.1). We use the 

well-established Smart-seq and Smart-seq2 reactions for cDNA synthesis and the 

amplification of full-length cDNA (Fig.1) 9,10. The cDNA amplification reaction (second 

strand synthesis) also incorporates 5’-methyl-dCTP, generating fully methylated double-

stranded cDNA amplicons. Using this strategy, all sequencing reads derived from RNA 

are completely cytosine methylated and do not show the expected C to U  sequence 

changes that would normal occur during treatment with sodium bisulfite. By contrast, 

more than 95% of cytosines in mammalian genomic DNA are unmethylated and 

converted to uracils during bisulfite conversion, being read during sequencing as 

thymine 11. In this way sequencing reads originated from RNA and genomic DNA can be 

distinguished by parsing read-level 5mC density and distribution. Since CpG 

dinucleotides are highly methylated in mammalian genomes, we used the read-level 

non-CG methylation (mCH) to sort reads into RNA or DNA partitions. Specifically, we 

expect all RNA-derived reads to show a 5mC level greater than 90% and DNA-derived 

reads to show a 5mC level less than 50%. Using this threshold, only 0.04% of single-

cell methylome reads were mis-classified as transcriptomic reads whereas only 0.23% ± 

0.03% of single-cell RNA-seq reads were mis-classified as methylome reads. These 

results suggest that RNA- and DNA- derived snmCT-seq reads can be effective 

separated.  
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Following cDNA amplification and bisulfite conversion, sequencing libraries  containing 

both RNA- and DNA- derived molecules are generated using the snmC-seq2 method 12. 

Using a shared library preparation reaction requiring no physical separation of RNA and 

DNA molecules simplifies the procedure and reduces the cost. In addition, the relative 

abundance between RNA- and DNA- derived reads can be adjusted by tuning the 

number of cycles for cDNA amplification.  

 

mCT-seq can be applied to either single whole cells (scmCT-seq) or single nuclei 

(snmCT-seq). scmCT-seq only uses an oligo-dT primer containing Smart-seq2 adaptor 

sequence during reverse transcription 10, whereas snmCT-seq uses both oligo-dT and 

random hexamer primers to more efficiently anneal to primary transcripts that often 

contain introns.  

  

scmCT-seq and snmCT-seq distinguish human cell types using transcriptome 
reads 
scmCT-seq profiles were generated from 62 H1 hESC and 96 HEK293T cells using 12 

cycles of cDNA amplification. H1 and HEK293T cells behaved similarly for both scmCT-

seq and snmCT-seq (Supplementary Table 1-2). scmCT-seq detected 4,220 ± 1,251 

genes from single whole cells (Fig.2a). Since nuclei contain much less RNA than whole 

cells, 15 cycles of cDNA amplification were performed for snmCT-seq. We generated 

334 snmCT-seq profiles from an equal mixture of H1 and HEK293 nuclei. H1 and 

HEK293 nuclei were identified using unbiased clustering and validated using overall 

5mC levels and signature genes (e.g. NANOG, LIN28A) specifically expressed in hESC. 

If only reads mapped to exons were considered, snmCT-seq detected 1,396 ± 863 

genes from single nuclei (Fig.2a). Considering reads mapped to both exons and introns, 

4,531 ± 1,888 genes can be detected by snmCT-seq (Fig.2a). As expected, 17.3 ± 6.1% 

of snmCT-seq reads were mapped to exons, compared to 68.1 ± 15.2% of scmCT-seq 

reads mapping to exons (Fig.2b). Transcriptome reads accounted for 22.2 ± 13.6% and 

9.2% ± 6.5% of all mapped reads for scmCT-seq and snmCT-seq, respectively (Fig.2c). 

Using a dimension reduction technique t-Distributed Stochastic Neighbor Embedding (t-

SNE)13, the two human cell types H1 and HEK293T can be readily separated by 
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transcriptomic signatures measured using either scmCT-seq or snmCT-seq (Fig.1d-e).  

Further, scmCT-seq or snmCT-seq profiles recapitulate H1 or HEK293 specific gene 

expression signatures (Fig.1f).   

 

scmCT-seq and snmCT-seq distinguish human cell types using DNA methylome 
reads 
To test whether H1 and HEK293T cells can be distinguished using 5mC signatures, 

tSNE was performed using the average CG methylation (mCG) level of 100 kb non-

overlapping genomic bins measured from single cells or nuclei. The two cell types can 

be readily separated using 5mC profiles extracted from scmCT-seq and snmCT-seq 

data (Fig.3a-b). The two single-cell multi-omic assays produced 5mC profiles that are 

highly consistent to that generated by bulk methylome, as shown by the browser views 

of pluripotent gene NANOG, and CRNDE locus with enriched expression in colorectal 

cancer cells (Fig.3c) 14. H1 cells are more heavily methylated (83.6%) in CG context 

than HEK293T cells (60.1%) as determined from bulk methylomes. In addition, a 

significant level of mCH (1.3%) is only found in H1 cells but not in HEK293T cells11. 

scmCT-seq and snmCT-seq correctly identified 5mC differences between H1 and 

HEK293T cells in both CG and non-CG contexts (Fig.3d-g). To examine whether local 

5mC signatures can be recapitulated in scmCT-seq and snmCT-seq profiles, we 

identified differentially methylated (DMRs) from bulk H1 and HEK293 methylomes. 

Plotting mCG levels measured using scmCT-seq and snmCT-seq across DMRs showed 

highly consistent patterns compared to bulk cell methylomes (Fig.3h-i). 

 

 
Discussion 
Epigenomic studies often incorporate multiple molecular profiles from the same sample 

to explore possible correlations between gene regulatory elements and expression. The 

need for multi-omic comparison poses a challenge for single-cell analysis, since most 

existing single-cell techniques terminally consume the cell, precluding multi-dimensional 

analysis. To address this challenge, we have developed a single-cell multi-omic assay 

snmCT-seq to jointly profile the transcriptome and DNA methylome and can be applied 
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to either single cells or nuclei. snmCT-seq requires no physical separation of DNA and 

RNA and is designed to be a “single-tube” reaction for steps before bisulfite conversion 

to minimize material loss. snmCT-seq is fully compatible with  high-throughput single-

cell methylome techniques such as snmC-seq212 and can be readily scaled to analyze 

thousands of cells/nuclei.  

 

 

Methods 
 
Cell culture  
HEK293T cells were cultured in DMEM with 15% FBS and 1% Penicillin-Streptomycin 

and dissociated with 1X TrypLE. H1 human ESCs (WA01, WiCell Research Institute) 

were maintained in feeder-free mTesR1 medium (Stemcell Technologies). hESCs 

(passage 26) were dispersed with 1U/ml Dispase and collected for single-cell sorting or 

nuclei isolation. For the sorting of single H1 and HEK293T cells, equal amounts of H1 

and HEK293T cells were mixed and stained with anti-TRA-1-60 (Biolegend, 

Cat#330610) antibody.  

 

Nuclei isolation from cultured cells 
Cell pellets containing 1 million cells were resuspended in 600 µl NIBT [250 mM 

Sucrose, 10 mM Tris-Cl pH=8, 25 mM KCl, 5mM MgCl2, 0.1% Triton X-100, 1mM DTT, 

1:100 Proteinase inhibitor (Sigma-Aldrich P8340), 1:1000 SUPERaseIn RNase Inhibitor 

(ThermoFisher Scientific AM2694), 1:1000 RNaseOUT RNase Inhibitor (ThermoFisher 

Scientific 10777019)]. The lysate was transferred to a pre-chilled 2 ml dounce 

homogenizer (Sigma-Aldrich D8938) and dounced using loose and tight pestles for 20 

times each. The lysate was then mixed with 400 µl of 50% Iodixanol (Sigma-Aldrich 

D1556) and gently pipetted on top of 500 µl 25% Iodixanol cushion. Nuclei were 

pelleted by centrifugation at 10,000 x g at 4°C for 20 min. The pellet was resuspended 

in 2 ml of DPBS supplemented with 1:1000 SUPERaseIn RNase Inhibitor and 1:1000 

RNaseOUT RNase Inhibitor. Hoechst 33342 was added to the sample to a final 

concentration of 1.25 nM and incubated on ice for 5 min for nuclei staining. Nuclei were 
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pelleted by 1,000 x g at 4°C for 10 min and resuspended in 1 ml of DPBS supplemented 

with RNase inhibitors.  

 

Reverse transcription 
Single cells or single nuclei were sorted into 384-well PCR plates (ThermoFisher 

4483285) containing 1 µl mCT-seq reverse transcription reaction per well. The mCT-seq 

reverse transcription reaction contained 1X Superscript II First-Strand Buffer, 5mM DTT, 

0.1% Triton X-100, 2.5 mM MgCl2, 500 µM each of 5’-methyl-dCTP, dATP, dTTP and 

dGTP, 1.2 µM dT30VN_4 oligo-dT primer (5’-

AAGCAGUGGUAUCAACGCAGAGUACUTTTTTUTTTTTUTTTTTUTTTTTUTTTTTVN-

3’), 2.4 µM TSO_3 template switching oligo 

(/5SpC3/AAGCAGUGGUAUCAACGCAGAGUGAAUrGrG+G), 1U RNaseOUT RNase 

inhibitor, 0.5 U SUPERaseIn RNase inhibitor, 10U Superscript II Reverse Transcriptase. 

For snmCT-seq, the reaction further included 2 µM N6_2 random primer 

(/5SpC3/AAGCAGUGGUAUCAACGCAGAGUACNNNNNN). After sorting, the PCR 

plates were vortexed and centrifuged at 2000 x g. The plates were placed in a 

thermocycler and incubated using the following program: 25°C for 5 min, 42°C for 

90min, 70°C 15min followed by 4°C.  

 

cDNA amplification 
3 µl of mCT-seq cDNA amplification mix was added into each mCT-seq reverse 

transcription reaction. mCT-seq cDNA amplification reaction contains 1X KAPA 2G 

Buffer A, 600 nM ISPCR23_2 PCR primer 

(/5SpC3/AAGCAGUGGUAUCAACGCAGAGU), 0.08U KAPA2G Robust HotStart DNA 

Polymerase (5 U/μL). A PCR reaction was performed using a thermocycler with the 

following conditions: 95°C 3min -> [95°C 15 sec -> 60°C 30 sec -> 72°C 2min] -> 72°C 

5min -> 4°C. The cycling steps were repeated for 12 to 15 cycles.  

 

Digestion of unincorporated DNA oligos 
1 µl uracil cleavage mix was added to into cDNA amplification reaction. Each 1 µl uracil 

cleavage mix contains 0.25 µl Uracil DNA Glycosylase (G5010) and 0.25 µl 
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Endonuclease VIII (Y9080) and 0.5 µl Elution Buffer (Qiagen 19086). Unincorporated 

DNA oligos were digested at 37°C for 30 min using a thermocycler.  

 

Bisulfite conversion and library preparation 
Detailed methods for bisulfite conversion and library preparation are previously 

described2,12. The following modifications were made to accommodate the increased 

reaction volume of snmCT-seq:  Following the digestion of unused DNA oligos, 25 µl 

instead of 15 µl of CT conversion reagent was added to each well of 384-well plate. 90 

µl instead of 80 µl M-binding buffer was added to each well of 384-well DNA binding 

plate. scmCT-seq libraries were generated using snmC-seq method as described in Luo 

et al., 20172. snmCT-seq libraries were generated using snmC-seq2 method as 

described in Luo et al., 201812.  The libraries were sequenced using a Illumina HiSeq 

4000 instrument with 150 bp paired-end reads.  

 

Read mapping and the partitioning of transcriptome and methylome reads  
To map methylome reads, sequencing reads were mapped to in-silico bisulfite 

converted hg19 reference genome as previously described 2. Mapped reads with 

MAPQ > 10 were retained for further analyses. Sequencing reads with non-CG 

methylation level less than 0.5 were considered as true methylome reads. Tab-delimited 

(allc) files containing methylation level for every cytosine positions was generated using 

methylpy call_methylated_sites function 15.  

 

To map transcriptome reads, sequencing reads were mapped to Gencode V19 

transcriptome index using STAR 2.5.2b with the following parameters: --alignEndsType 

EndToEnd --outSAMstrandField intronMotif --outSAMtype BAM Unsorted --

outSAMunmapped Within --outSAMattributes NH HI AS NM MD --sjdbOverhang 100 --

outFilterType BySJout --outFilterMultimapNmax 20 --alignSJoverhangMin 8 --

alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 

0.04 --alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000 --

outSAMattrRGline ID:4 PL:Illumina. Mapped reads with MAPQ > 10 were retained for 

further analyses. Non-CG methylation levels for each STAR mapped read  was 
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determined from the MD tag. Mapped reads with non-CG methylation levels greater 

than 0.9 were considered as true transcriptome reads. Transcriptome reads were 

counted across gene annotations using htseq 0.10.0 with the following parameters: -s 

no -a 10 -i gene_id -m union. Gene expression was quantified using either only exonic 

reads with -t exon, or both exonic and intronic reads with -t gene.  

 

The stringency of read partitioning  was determined by applying the criteria for 

identifying snmCT-seq transcriptome reads to snmC-seq2 data (SRR6911760, 

SRR6911772, SRR6911776) 12, which contains no transcriptomic reads. Similarly, the 

criteria for identifying snmCT-seq methylome reads was applied to Smart-seq data 

(SRR944317, SRR944318, SRR944319, SRR944320) 10, which contains no methylome 

reads.   

 

Quantification of DNA methylation  

For both snmCT-seq and scmCT-seq datasets, after allc files were generated, the 

methylated and unmethylated cytosine base calls for cytosines in the CG context were 

counted for each 100kb bin across genome. All bins with less than 10 total cytosine 

base calls in CG context were marked as NA. Bins with ＞ 10% of NA were removed. 

mCG/CG levels were then calculated for each 100kb bin and further normalized by the 

genome-wide mCG/CG level for each cell. All of the NA values were then replaced with 

imputed values that are equal to the mean bin value across all cells. To select for highly 

variable bins and remove outliers, bins with an average mCG/CG > 0.3 and normalized 

dispersion > 0.2 were retained for further analyses. The normalized dispersion was 

calculated using SCANPY’s filter_genes_dispersion function 16, in which the raw 

dispersion (variance / mean) of a bin was scaled by standard deviation and mean of 

regions belong to each bin of mean mCG/CG of regions (n_bins=100). The remaining 

matrix was transformed with log(X+1) and scaled to mean equal to 0 and variance equal 

to 1 on each region to produce a mCG matrix. 
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Quantification of transcripts abundance 

For both snmCT and scmCT datasets, the raw read counts for each whole gene body 

were transformed into Transcripts Per Kilobase Million (TPM). To select highly variable 

genes and remove outliers, a method similar to methylation bin filtering was used:  

genes with mean TPM ∈ [0.1, 50] and normalized dispersion ≥ 0.2 were retained for 

further analyses. The remaining matrix was transformed by log(X+1) and scaled to 

mean equal to 0 and variance equal to 1 on each gene to produce an RNA matrix. 

 

Methylation and RNA Data Clustering and Visualization 
For both snmCT and scmCT datasets, PCA was used for dimension reduction of the 

mCG and RNA matrices. Since only two cell types (H1 and HEK293T) need to be 

separated, only the first 5 PCs from each matrix were selected to construct K-Nearest 

Neighbor (KNN) graphs (K=25). On each KNN graph for mCG and RNA, the Louvain 

method was used to determine clusters (r=0.5) 17,18. tSNE was used to visualize the 2- 

dimensional manifold (perplexity=30) on selected PCs. The Louvain method and tSNE 

were deployed using functions implemented in SCANPY 16. 

 

Clusters were annotated by examining the genome-wide methylation levels and marker 

gene expression. Data acquired from single cells or nuclei were then merged for each 

cluster for comparisons with bulk methylome and transcriptome data. 

 

Comparison to bulk H1 and HEK293 Methylome 
The bulk HEK293 cell whole genome bisulfite sequencing (WGBS-seq) data was 

downloaded from Libertini et. al. (GSM1254259) 19. The bulk WGBS-seq data of H1 cell 

was downloaded from Schultz et al (GSE16256) 15. Methylpy was used to call CG-

DMRs between these two cell lines15. DMRs were filtered by DMS (differentially 

methylated sites) ≥ 5 and methylation level difference ≥ 0.6.  
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Bulk H1 and HEK293 RNA Data Analysis 
The bulk HEK293 cell RNA-seq data was downloaded from Aktas et. al. (GSE85161) 20, 

the bulk H1 cell RNA-seq data was downloaded from encodeproject.org 

(ENCLB271KFE, generated by Roadmap Epigenome). Gene count tables and bigwig 

tracks were generated using GENCODE v19 gene annotation. In addition, genes with Z-

score < 0  in all of the merged cluster RNA profiles were filtered out.  

 

Data Availability 
Methylome and transcriptomic profiles generated by scmCT-seq, snmCT-seq and bulk 

methylome and transcriptome experiments can be visualized at 

[http://neomorph.salk.edu/Human_cells_snmCT-seq.php].  

 

 
Figure legends 
 
Figure 1. Schematic of mCT-seq shows the molecular partitioning of DNA- and RNA-

derived reads. 

Figure 2. Joint profiling of the transcriptome and DNA methylome detects cell-type 

specific gene expression signatures. (a-c) Number of detected genes (a), percentage of 

mapped reads that located in exons (b) and mapping rates of methylation and RNA 

reads (c) for scmCT-seq and snmCT-seq. (d-e) Separation of H1 and HEK293T cells by 

tSNE using transcriptome reads extracted from scmCT-seq (d) or snmCT-seq (e) 

datasets. (f) scmCT-seq and snmCT-seq detect genes specifically expressed in H1 or 

HEK293T cells.  

 

 

Figure 3. Joint profiling of transcriptome and DNA methylome detects cell-type specific 

DNA methylation signatures. (a-b) Separation of H1 and HEK293T cells by tSNE using 

DNA methylation information extracted from scmCT-seq (a) or snmCT-seq (b) datasets. 

(c) Browser view of NANOG and CRNDE loci. (d-g) Distribution of mCG and mCH 

levels for single H1 and HEK293 cells/nuclei. (h-i) scmCT-seq and snmCT-seq 
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recapitulate bulk mCG patterns at CG-DMRs showing greater mCG levels in HEK293T 

(h) or H1 (i) cells. 
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