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Abstract	

Rewards	usually	have	multiple	attributes	that	are	relevant	for	behavior.	For	instance,	
even	apparently	simple	choices	between	liquid	or	food	rewards	involve	comparisons	of	
at	least	two	attributes,	flavor	and	amount.	Thus,	in	order	to	make	the	best	choice,	an	
organism	will	 need	 to	 take	multiple	 attributes	 into	 account.	 Theories	 and	models	 of	
decision	 making	 usually	 focus	 on	 how	 strongly	 different	 attributes	 are	 weighted	 in	
choice,	 e.g.,	 as	 a	 function	 of	 their	 importance	 or	 salience	 to	 the	 decision-maker.	
However,	when	different	attributes	 impact	on	the	decision	process	 is	a	question	that	
has	 received	 far	 less	 attention.	 Although	 one	 may	 intuitively	 assume	 a	 systematic	
relationship	 between	 the	 weighting	 strength	 and	 the	 timing	 with	 which	 different	
attributes	impact	on	the	final	choice,	this	relationship	is	untested.	Here,	we	investigate	
whether	 attribute	 timing	 has	 a	 unique	 influence	 on	 decision	 making	 using	 a	 time-
varying	sequential	 sampling	model	 (tSSM)	and	data	 from	 four	 separate	experiments.	
Contrary	to	expectations,	we	find	only	a	modest	correlation	between	how	strongly	and	
how	 quickly	 reward	 attributes	 impact	 on	 choice.	 Experimental	 manipulations	 of	
attention	and	neural	activity	demonstrate	that	we	can	dissociate	at	the	cognitive	and	
neural	levels	the	processes	that	determine	the	relative	weighting	strength	and	timing	
of	attribute	consideration.	Our	findings	demonstrate	that	processes	determining	either	
the	 weighting	 strengths	 or	 the	 timing	 of	 attributes	 in	 decision	 making	 can	 adapt	
independently	 to	 changes	 in	 the	 environment	 or	 goals.	Moreover,	 they	 show	 that	 a	
tSSM	 incorporating	 separable	 influences	 of	 these	 two	 sets	 of	 processes	 on	 choice	
improves	 understanding	 and	 predictions	 of	 individual	 differences	 in	 basic	 decision	
behavior	and	self-control.	
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Introduction	

Decisions	 regularly	 involve	 comparisons	 of	 several	 attributes	 of	 the	 choice	 options.	

Consider	 the	 example	 of	 deciding	 between	 foods	 that	 differ	 in	 two	 key	 attributes,	

tastiness	 and	 healthiness.	 Often	 these	 attributes	 are	 misaligned,	 creating	 a	 conflict	

between	the	goal	of	eating	healthy	foods	and	the	desire	to	experience	pleasant	tastes.	

Typically,	 we	 assume	 that	 choices	 for	 the	 healthier	 or	 better	 tasting	 food	 are	

determined	 by	 the	 values	 of	 these	 attributes,	 together	 with	 a	 subjective	 decision	

weight	that	the	decision	maker	assigns	to	healthiness	and	taste.	The	assumption	that	

reward	attributes	are	 subjectively	weighted	 in	 the	 course	of	decision-making	applies	

not	only	to	food	choices,	but	also	to	many	other	types	of	decisions.	In	fact,	it	is	a	core	

feature	 of	 the	 standard	 analysis	 approaches	 for	 intertemporal,	 social,	 and	 risky	

decisions	 (Kahneman	 and	 Tversky,	 1979;	 Mazur,	 1987;	 Laibson,	 1997;	 Fehr	 and	

Schmidt,	1999).	Here,	we	show	that	 this	common	approach	 is	 incomplete	because	 it	

overlooks	the	possibility	that	reward	attributes	can	enter	into	the	decision	process	at	

different	 times	 (in	 addition	 to	 having	 different	 weighting	 strengths).	 Across	 several	

food	 choice	 paradigms,	 we	 find	 that	 there	 is	 considerable	 asynchrony	 in	 when	

tastiness	 and	 healthiness	 attributes	 enter	 into	 consideration.	 Furthermore,	 we	

demonstrate	 that	 the	 relative	 weighting	 strengths	 (i.e.,	 the	 degree	 to	 which	 an	

attribute	influences	the	evidence	accumulation	rate)	and	the	onset	times	for	tastiness	

and	healthiness	attributes	in	the	decision	process	have	separable	influences	on	dietary	

choices	and	self-control.			

	

We	 used	 an	 adapted	 time-varying	 sequential	 sampling	 model	 (tSSM)	 to	 better	

understand	the	dynamic	decision	processes	underlying	choices	between	rewards	with	

multiple	attributes.	This	model	allows	us	 to	draw	 inferences	on	 latent	aspects	of	 the	

decision	process	 from	the	observable	choice	outcomes	and	response	times.	 It	 is	well	

established	that	direct	measures	and	estimates	of	information	acquisition,	evaluation,	

and	 comparison	 processes	 during	 choice	 provide	 a	 key	means	 of	 testing	 predictions	

from	different	models	of	how	 stimulus	 and	decision	 values	are	 constructed	or	used.	

Uncovering	 such	 features	 of	 the	 decision	 process	 allows	us	 to	 discriminate	 between	

and	evaluate	the	plausibility	of	different	models	that	seek	to	explain	choice	behavior	

(Palminteri	 et	 al.,	 2017).	 For	 example,	 choice	 models	 utilizing	 not	 only	 decision	
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outcomes	 but	 also	 response	 times	 and	 eye-	 or	 mouse-tracking	 data	 have	 provided	

insights	 into	 how	 and	 why	 decision-making	 is	 influenced	 by	 visual	 attention,	 time	

delays	or	pressure,	additional	alternatives,	and	earlier	versus	 later	occurring	external	

evidence	 (Krajbich	 et	 al.,	 2010;	 Summerfield	 and	 Tsetsos,	 2012;	 Hunt	 et	 al.,	 2014;	

Carland	 et	 al.,	 2016;	 Forstmann	 et	 al.,	 2016;	 Gluth	 et	 al.,	 2017;	 Kunar	 et	 al.,	 2017;	

Reeck	et	al.,	2017).	Moreover,	 it	has	been	shown	that	dynamic	accumulation	models	

utilizing	 response-time	 data	 provide	 a	 deeper	 understanding	 of	 decisions	 and	make	

better	 out-of-sample	 predictions	 than	 reduced	 form	 models	 such	 as	 logistic	

regressions	 (Clithero,	 2018;	 Webb,	 2018).	 Here,	 we	 show	 that	 we	 can	 also	 use	

response-time	 data	 to	 determine	 when	 specific	 attributes	 enter	 into	 the	 decision	

process,	in	addition	to	how	strongly	they	influence	the	evidence	accumulation	rate.		

	

An	 important	 implication	 of	 the	 finding	 that	 different	 attributes	 can	 enter	 into	 the	

choice	process	at	separate	times	is	that	coefficients	from	traditional	regression	models	

(e.g.,	 linear,	 logit,	or	probit)	will	represent	a	combination	of	both	the	true	underlying	

weight	 or	 importance	 placed	 on	 each	 attribute	 and	 its	 relative	 (dis)advantage	 in	

processing	 time	 over	 the	 decision	 period.	 Therefore,	 any	 form	 of	 static 1 	or	

synchronous	onset	dynamic	model	will	fail	to	fully	capture	the	true	underlying	choice	

generating	process.	As	 a	 consequence,	 even	 though	 such	models	may	explain	multi-

attribute	choice	patterns	relatively	well	if	the	relationship	between	attribute	weighting	

and	timing	is	fixed	or	sufficiently	stable,	they	will	fail	to	explain	or	predict	alterations	in	

decision	 behavior	 if	 attribute	 weights	 and	 processing	 onset	 times	 can	 change	

independently	 in	 response	 to	external	environmental	 features	or	 changes	 in	 internal	

cognitive	 strategies.	 The	 plausibility	 of	 this	 latter	 scenario	 is	 underlined	 by	 findings	

from	mouse-tracking	experiments	(Sullivan	et	al.,	2015;	Lim	et	al.,	2018)	that	different	

attributes	 (taste,	 healthiness)	 of	 the	 same	 food	 reward	 can	 enter	 into	 the	 decision	

process	 at	 separate	 times.	 However,	 the	 fundamental	 question	 of	 whether	 the	

relationship	 between	 attribute	 weighting	 strength	 and	 timing	 is	 stable	 or	 instead	

flexible	and	context-dependent	has	not	yet	been	addressed.			

	

                                                
1 By static we mean models that treat values or value-differences as fixed rather than being actively 
constructed.  
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We	 addressed	 this	 question	 using	 an	 adapted	 sequential	 sampling	 model	 that	

quantifies	both	the	weight	given	to	each	attribute	and	 its	 temporal	onset	during	 the	

decision	process.	This	allows	us	to	explicitly	measure	whether	the	weighting	strength	

and	 timing	 with	 which	 different	 attributes	 impact	 on	 choice	 are	 determined	 by	 a	

unitary	 process	 (or	 a	 set	 of	 consistently	 linked	 processes),	 or	 if,	 instead,	 attribute	

timing	and	weighting	are	the	results	of	separable	processes.	By	modeling	choices	from	

four	 separate	 datasets,	 which	 measured	 decision	 behavior	 under	 different	

experimental	 manipulations,	 we	 show	 that	 attribute	 timing	 and	 weighting	 are	

determined	by	dissociable	decision	mechanisms.	 For	example,	we	 find	 that	explicitly	

instructing	 individuals	 to	 consider	 either	 tastiness	 or	 healthiness	 during	 the	 choice	

process	exerts	separate	effects	on	attribute	weighting	strength	and	timing.	In	another	

experiment,	we	show	that	 transcranial	direct	current	stimulation	 (tDCS)	over	 the	 left	

dlPFC	during	self-control	has	a	selective	effect	on	attribute	weighting	strength	but	not	

timing,	demonstrating	the	separability	of	the	underlying	neural	processes.	

	

Results	

We	adapted	the	traditional	drift	diffusion	modeling	(DDM)	framework	(Ratcliff,	1978;	

Ratcliff	et	al.,	2016)	to	allow	for	each	attribute	in	a	multi-attribute	decision	problem	to	

enter	 into	the	evidence	accumulation	process	at	separate	times	(Figure	1).	Note	that	

we	use	 the	DDM	as	a	 starting	point	 for	our	modeling	analysis	because	 this	 flavor	of	

sequential	sampling	model	is	relatively	simple,	well	established,	and	widely	used	to	fit	

choice	 and	 response-time	 data	 across	 cognitive	 domains.	 However,	 a	 number	 of	

different	 sequential	 sampling	 model	 formulations	 exist,	 and	 in	 specific	 cases,	 these	

models	 make	 different	 predictions	 about	 choice	 and	 reaction-time	 distributions	

(Busemeyer	 and	 Townsend,	 1993;	 Roe	 et	 al.,	 2001;	 Usher	 and	 McClelland,	 2001;	

Stewart	et	al.,	2006;	Brown	and	Heathcote,	2008;	Cisek	et	al.,	2009;	Hunt	et	al.,	2014).	

However,	 in	our	food	choice	datasets,	most	of	these	sequential	sampling	models	will	

be	nearly	indistinguishable	(Bogacz	et	al.,	2006;	Hawkins	et	al.,	2015;	Thura	and	Cisek,	

2016);	 we	 therefore	 refer	 to	 our	 current	 model	 as	 a	 sequential	 sampling	 model	 to	

emphasize	it	as	one	representative	of	this	larger	class	of	models.	We	also	note	that	our	

results	from	the	tSSM	are	consistent	with	theoretical	and	empirical	work	showing	that	

sequential	sampling	models	can	capture	changes	in	perceptual	decision	processes	that	
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result	from	known	changes	in	externally	presented	evidence	over	time	(Ratcliff,	1980;	

Cisek	 et	 al.,	 2009;	 Diederich	 and	 Oswald,	 2016;	 Holmes	 et	 al.,	 2016;	 Holmes	 and	

Trueblood,	2017).	However,	in	contrast	to	previous	work	on	perception,	we	tested	for	

asynchronous	 attribute	 consideration	 onsets	 in	 value-based	 choices	 for	 which	 the	

externally	 presented	 evidence	 is	 constant.	 In	 other	 words,	 we	 examined	 timing	

differences	resulting	from	internal	cognitive	and	neural	processes	 instead	of	changes	

in	the	stimuli	themselves.		

	

The	 full	 details	 of	 the	 tSSM	 are	 described	 in	 the	 Methods	 section,	 but	 briefly	 the	

relevant	addition	 is	a	 free	parameter	estimating	how	quickly	one	attribute	begins	 to	

influence	 the	 rate	of	 evidence	accumulation	 relative	 to	 another.	 In	 the	 food	 choices	

analyzed	here,	the	parameter	always	measures	the	start	time	for	healthiness	relative	

to	 taste	 (relative	 start	 time).	 This	 effectively	 allows	 for	different	 amounts	of	 time	 to	

pass	 between	 stimulus	 onset	 and	 the	 points	 at	 which	 healthiness	 versus	 tastiness	

attributes	 begin	 to	 influence	 the	 rate	 of	 evidence	 accumulation.	 Based	 on	 previous	

mouse-tracking	 results	 (Sullivan	 et	 al.,	 2015),	 our	 model	 formulation	 makes	 the	

simplifying	assumption	that	once	an	attribute	comes	into	consideration	it	continues	to	

influence	the	rate	of	evidence	accumulation	until	 the	choice	 is	made.	We	tested	this	

formulation	 of	 the	 tSSM	 in	 four	 datasets	 with	 different	 experimental	 conditions	

(mouse-tracking	 choices,	 standard	binary	 choices	 repeated	 two	weeks	apart,	 choices	

following	 attentional	 cues	 toward	 taste	 or	 healthiness,	 and	 choices	 under	 tDCS;	 see	

Methods	 for	details)	and	a	 total	of	272	participants.	The	tSSM	yielded	a	better	 fit	 to	

choices	 and	 reaction	 time	 distributions	 overall	 than	 the	 standard	 formulation	 of	 an	

SSM	with	a	single,	synchronous	onset	time	(tSSM	BIC	=	280632.3,	standard	SSM	BIC	=	

281909).	Moreover,	 the	 improvement	 in	 the	 fit	 for	 the	 tSSM	over	 the	 standard	SSM	

was	proportional	to	the	absolute	value	of	the	estimated	relative	start	time	for	a	given	

participant	(Table	S1).	This	relationship	is	expected	because	the	greater	the	difference	

in	onset	times	between	taste	and	healthiness,	the	more	behavior	will	deviate	from	the	

predictions	of	the	standard,	synchronous	onset	SSM.				
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Parameter	recovery	tests	for	attribute	weighting	and	relative-start-times.		

The	 fact	 that	 the	 tSSM	 yields	 a	 better	 fit	 to	 the	 behavioral	 data	 indicates	 that	 the	

model	 captures	 the	 choice	 process	 better	 than	 a	 standard	 SSM.	 However,	 we	 also	

conducted	a	 set	 of	 parameter	 recovery	 tests	 to	determine	how	accurately	 the	 tSSM	

could	recover	known	combinations	of	the	weighting	and	timing	parameters,	holding	all	

other	parameters	constant.	These	tests	showed	that	our	implementation	of	the	tSSM	

accurately	 recovers	 various	 combinations	 of	 known	 attribute	 weighing	 and	 relative	

start	time	parameters	from	simulated	choice	and	response	time	data.	A	Bayesian	pair-

wise	test	(Kruschke,	2013)	showed	that	the	model	accurately	recovered	the	generating	

parameters	because	we	found	no	significant	differences	between	the	true	generating	

and	 model-estimated	 parameters	 (ωtaste	 mean	 difference	 =	 -0.008,	 Posterior	

Probability	 (PP)	 (mean	 difference	 >	 0)	 =	 0.36,	 95%	 highest	 density	 interval	 (HDI)	 =		

[-0.05;	0.04];	ωhealth	mean	difference	=	0.03,	PP(mean	difference	>	0)	=	0.92,	95%	HDI	=	

[-0.01;	0.08];	RST	mean	difference	=	0.004,	PP(mean	difference	>	0)	=	0.65,	95%	HDI	=	

[-0.02;	0.02]).		

	

Evaluating	tSSM	performance	on	human	choice	data.		

As	 an	 initial	 test	 of	 our	 model	 estimation	 procedures	 on	 real	 choice	 data,	 we	

reanalyzed	 the	 data	 from	 Sullivan	 et	 al.	 (2015),	 henceforth	 SHHR,	 using	 our	 tSSM.	

SHHR	used	an	analysis	based	on	computer-mouse	response	trajectories	in	food	choices	

to	 determine	 the	 relative	 times	 at	 which	 health	 and	 taste	 attributes	 enter	 into	 the	

decision.	We	 compared	 the	 estimates	 they	 obtained	 from	 this	 analysis	 of	 response	

trajectories	with	those	we	computed	using	the	tSSM	for	the	same	data	(Table	1).	There	

was	 a	 high	 correspondence	 in	 timing	 estimates	 across	 the	 two	 analysis	 strategies:	

Using	a	Bayesian	correlation	analysis,	we	found	that	SHHR’s	estimates	of	healthiness	

onset	 times	 (i.e.,	 the	 earliest	 time	 at	 which	 the	 healthiness	 attribute	 became	

significantly	 correlated	 with	 response	 trajectories,	 see	 their	 Figure	 4b)	 were	

significantly	 correlated	 with	 the	 times	 at	 which	 the	 tSSM	 estimated	 healthiness	

attributes	to	enter	into	the	evidence	accumulation	process	(r	=	0.503,	PP(r	>	0)	=	0.991,	

95%	HDI	=	[0.157;	0.811]).		Together	with	the	parameter	recovery	tests,	these	findings	

indicate	 that	 our	 tSSM	 procedure	 can	 accurately	 distinguish	 between	 the	 effects	 of	
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onset	 timing	 and	 attribute	 weighting	 (i.e.,	 effects	 on	 the	 rate	 of	 evidence	

accumulation)	in	multi-attribute,	value-based	decision	problems.		

	

Predicting	behavior	within	and	across	samples.	

The	 tSSM	parameters	predicted	 individual	differences	 in	decision-making	patterns	 in	

SHHR’s	participants	 (Table	 S2;	 for	other	 studies	 see	Tables	 S3,	 S4,	 and	Table	3).	 The	

measure	of	 individual	 differences	we	 focus	on	 is	 self-control	 success,	 defined	as	 the	

percentage	of	 trials	on	which	a	participant	 chose	 the	healthier	over	 the	 tastier	 food	

when	 these	 two	 attributes	 conflicted.	 We	 took	 a	 leave-one-subject-out	 (LOSO)	

approach	 to	 generate	 independent	 self-control	 predictions	 for	 each	 of	 the	 28	

participants	 in	 SHHR’s	 dataset	 with	 a	 linear	 regression	 model	 that	 used	 the	 tSSM	

parameters	 to	 explain	 self-control	 in	 the	 remaining	 27	 participants	 (see	 Eq.	 3).	 The	

mean	correlation	between	predicted	and	observed	self-control	was	r	=	0.61	(PP(r	>	0)	=	

0.9998,	95%	HDI	=	[0.37;	0.82])	and	the	mean	absolute	error	between	predicted	and	

observed	self-control	was	6.3%	(95	%	HDI	=	[0.59%;	14.0%]).		

	

In	 order	 to	 address	 the	 issues	of	 predictive	utility	 and	 generalizability,	we	examined	

the	 tSSM’s	 accuracy	 in	 predicting	 decision	 outcomes	 for	 individual	 trials	 as	 well	 as	

participants’	self-control	across	different	samples	and	experiments.	First,	we	predicted	

individual	 trial	 outcomes	 using	 data	 on	 binary	 food	 choices	 made	 by	 the	 same	

individuals	on	 two	separate	visits	 to	 the	 lab	 (2	weeks	apart;	 see	data	 set	2	–	GFC	 in	

Methods	 section).	 On	 each	 visit,	 150	 choice	 pairs	 were	 randomly	 generated	 and	

selected	 for	 each	 participant	 under	 the	 constraint	 that	 the	 two	 items	 could	 not	 be	

rated	 equally	 on	 the	 healthiness	 attribute.	 We	 fit	 the	 tSSM	 to	 each	 participant’s	

Session1	responses	and	used	those	fitted	parameters	to	predict	the	choices	made	by	

the	same	 individual	on	every	 trial	 in	Session2.	The	mean	balanced	accuracy	 (BA,	 see	

Eq.	2	in	methods)	for	predicting	future	choices	(left	vs	right	item)	was	0.77	(95%	HDI	=	

[0.74;	0.79],	PP(BA	>	.50)	>	0.99999)	over	all	participants	and	was	better	than	chance	

(0.50)	 for	 all	 individuals	 (min	 =	 0.63,	 max	 =	 0.87).	 Reversing	 the	 process	 to	 predict	

Session1	 choices	 from	 fits	 to	 Session2	 responses	 yielded	 similar	 results	 (mean	 BA	 =	

0.77,	95%	HDI	=	[0.75;	0.79],	PP(BA	>	.50)	>	0.99999).		
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Next,	 we	 used	 the	 tSSM	 parameters	 fit	 to	 data	 from	 each	 of	 the	 four	

independent	studies	(Fig.	S1)	to	predict	participants’	self-control	in	the	other	3	studies.	

This	 procedure	 yielded	 12	 sets	 of	 cross-study	 predictions	 in	 total	 and	 tested	 the	

model’s	 ability	 to	 predict	 self-control	 across	 different	 food	 choice	 paradigms,	

study/participant	 locations	 (Pasadena,	 U.S.A.	 vs	 Zurich,	 Switzerland),	 and	

environmental	contexts	(e.g.,	supine	inside	the	MRI	scanner,	sitting	in	a	computer	lab,	

anticipating	tDCS).	Note	that	only	one	out	of	the	four	studies	(study	4,	TDCS)	recruited	

participants	based	on	the	criteria	that	they	had	an	internal	desire	to	maintain	a	healthy	

lifestyle	 and	 that	 were	 explicitly	 committed	 to	 using	 dietary	 self-control	 during	 the	

choice	 task.	 In	 the	other	 three	studies,	 references	 to	 self-control	 included:	 reading	a	

text	on	the	importance	of	eating	healthy	before	making	choices	(study	1,	SHHR),	cues	

to	 direct	 attention	 toward	 healthiness	 on	 a	 subset	 of	 trials	 (study	 3,	 HMR),	 or	 no	

mention	of	self-control	whatsoever	(study	2,	GFC).	Nevertheless,	there	was	substantial	

variability	in	how	often	participants	used	self-control	(i.e.,	chose	healthier	over	tastier	

outcomes	when	the	two	attributes	were	in	conflict)	within	all	four	studies.		

Despite	 the	differences	 in	 experimental	 design	 and	participant	 characteristics	

across	 studies,	 the	 correlations	 between	 predicted	 and	 observed	 self-control	 were	

significant	in	11	out	of	12	cross-study	prediction	tests	(Table	S5).	A	direct	comparison	

of	the	mean	absolute	error	(MAE)	between	tSSM-	and	legit-based	predictions	showed	

that,	on	average,	tSSM-based	out-of-sample	predictions	of	self-control	led	to	an	MAE	

that	was	6.7	percentage	points	smaller	(i.e.	better)	(95	%	HDI	=	[2.38;	10.9],	PP(tSSM	

MAE	<	logit	MAE)	>	0.9973).	These	results	indicate	that	the	tSSM	can	be	used	to	make	

out-of-sample	 and	 cross-context	 predictions	 about	 dietary	 choice	 behavior	 that	 are	

superior	 to	 those	 derived	 from	 commonly	 used	 logistic	 regression	 modeling	

techniques.	 Thus,	 rather	 than	 being	 limited	 by	 overfitting,	 we	 find	 that	 the	 tSSM	

generalizes	better	than	simpler	 logistic	regression	models,	 in	terms	of	making	out-of-

sample	predictions	about	decision	making.				
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Using	the	tSSM	to	test	the	links	between	attribute	weighting	and	timing		

Having	 established	 the	 face	 validity,	 accuracy,	 and	 predictive	 utility	 of	 our	modeling	

approach,	we	next	 used	 the	 tSSM	 to	 test	 several	 fundamental	 questions	 about	 how	

attribute	 timing	 and	weighting	work	 together,	 or	 potentially	 separately,	 to	 influence	

choice	outcomes	during	self-control	challenges.	

	

Are	more	abstract	attributes	considered	later	in	the	choice	process?		

One	may	assume	that	for	dietary	choices,	the	relative	start	time	of	the	more	abstract	

attribute	 (healthiness)	will	 lag	 behind	 the	more	 concrete	 and	 immediately	 gratifying	

attribute	of	taste.	However,	our	results	 indicate	that	this	 is	not	the	case.	Pooling	the	

data	 across	 all	 studies,	 we	 found	 that	 the	 posterior	 probability	 that	 healthiness	

entered	 into	 consideration	 later	 than	 tastiness	 was	 only	 0.48	 (mean	 difference	 in	

starting	times	=	0.001	seconds,	95%	HDI	=	[-0.05;	0.06). In	total,	only	130	out	of	272	

participants	 (48	%)	had	 relative-start-times	 for	healthiness	 attributes	 that	were	 later	

than	those	for	tastiness.	Figure	2a	shows	the	relative	start	times	for	all	participants	by	

study.	 While	 more	 abstract	 or	 complicated	 attributes	 can	 enter	 into	 the	 decision	

process	later	in	some	cases,	our	results	demonstrate	that	abstractness	is	not	the	main	

determinant	of	when	an	attribute	will	begin	to	be	considered	during	a	multi-attribute	

choice	(see	also	supplementary	results	section	1.1).		

	

How	 are	 relative	 start	 times	 related	 to	 attribute	 weights	 and	 other	 tSSM	

parameters?		

We	addressed	this	question	by	computing	a	linear	regression	model	that	estimated	the	

association	between	relative	start	times	and	all	other	tSSM	parameters	(see	Eq.	1).	The	

relative-start-time	 parameter	 was	 related	 to	 both	 the	 tastiness	 and	 healthiness	

weights	as	well	as	the	to	the	starting	point	bias	parameter	(Table	S6),	but	overall	the	

combination	of	other	tSSM	parameters	explained	only	30%	of	the	variability	in	relative	

start	 times	 across	 participants.	 Figure	 2b	 displays	 the	 relationship	 between	 relative	

start	 times	 and	 weights	 for	 taste	 and	 healthiness	 and	 shows	 that	 while	 the	 higher	

weighted	item	most	often	entered	into	consideration	faster	(gray	dots),	this	was	only	

true	for	62%	of	the	participants	(95%	HDI	=	[56%;	68%]).	These	results	suggest	that	the	
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onset	 times	 for	 choice	 attributes	 are	 not	 strictly	 determined	 by	 either	 their	 relative	

weights	or	other	aspects	of	the	decision	process	quantified	by	the	tSSM	parameters.		

	

Effects	of	attention	cues	on	attribute	weights	and	relative-start-times	

We	also	examined	whether	directing	attention	toward	either	healthiness	or	tastiness	

could	 change	 the	 time	 at	 which	 those	 attributes	 enter	 the	 decision	 process	 and	 if	

changes	 in	 timing	 were	 linked	 to	 changes	 in	 weighting	 strength.	 This	 analysis	 was	

motivated	 by	 previous	 findings	 (Hare	 et	 al.,	 2011)	 that	 directing	 attention	 to	 the	

healthiness	aspects	of	a	 food	 item	resulted	 in	 substantial	 changes	 in	choice	patterns	

(Figure	3a).	In	that	experiment,	instructive	cues	highlighted	health	(HC),	taste	(TC),	or	

neither	attribute	(NC)	for	explicit	consideration	during	the	upcoming	block	of	10	food	

choices.	The	original	analysis	of	 these	choice	data	 focused	on	the	regression	weights	

for	taste	and	health	attributes	 in	each	choice	condition	but	did	not	consider	that	the	

cues	might	change	the	relative	times	at	which	these	attributes	entered	into	the	choice	

process.	Our	goal	was	to	determine	how	potential	alterations	 in	attribute	timing	and	

weighting	contributed	 to	 the	observed	changes	 in	choice	behavior	during	health	cue	

relative	 to	natural	blocks.	Therefore,	we	 reanalyzed	 the	choice	data	 from	 this	 study,	

fitting	the	tSSM	to	each	attention	condition	separately.	

First,	 we	 found	 that	 attention	 cues	 changed	 both	 the	 relative	weighting	 and	

timing	of	taste	and	healthiness	attributes.	Compared	to	the	natural	choice	blocks,	70%	

of	 participants	 reversed	 their	 relative	weighting	 of	 taste	 and	 healthiness	 in	 taste	 or	

health	cue	blocks	(i.e.,	went	from	taste	>	healthiness	to	taste	<	healthiness	weight	or	

vice	versa),	and	64%	switched	whether	they	considered	tastiness	or	healthiness	first.	

There	 was	 no	 significant	 difference	 in	 the	 prevalence	 of	 weighting	 versus	 timing	

reversals	between	attribute-cued	and	natural-choice	blocks	(PP(weight	reversal	more	

prevalent	than	timing	reversal	=	0.70))	

Focusing	on	 the	health	 cue	blocks	 that	 showed	a	 significant	 change	 in	 choice	

outcomes	 compared	 to	 natural	 choices	 (Fig.	 3a),	 we	 found	 that	 cuing	 attention	 to	

health	 attributes	 both	 significantly	 increased	 the	magnitude	 of	 participants’	weights	

for	health	(ωhealth)	and	sped	up	the	time	at	which	health	entered	into	the	accumulation	

process	 (relative	 to	 taste,	 i.e.,	 relative	 start	 times)	 (Figure	3b-c;	Table	2).	The	weight	

placed	 on	 taste	 attributes	 did	 not	 significantly	 change,	 on	 average,	 in	 health-cued	

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2018. ; https://doi.org/10.1101/434860doi: bioRxiv preprint 

https://doi.org/10.1101/434860
http://creativecommons.org/licenses/by-nc/4.0/


	 12	

relative	 to	 natural	 blocks.	 Furthermore,	 the	 changes	 in	 health	 relative	 to	 taste	

weighting	 parameters	 and	 relative-starting-times	 were	 not	 significantly	 correlated	

across	 participants	 (r	 =	 0.141,	 95%	 HDI	 =	 [-0.197;	 0.462],	 PP(r	 >	 0	 )	 =	 0.79).	 These	

results	 indicate	 that	 individuals	 responded	 to	 attention	 cues	 in	 different	ways.	Over	

90%	of	 participants	 shifted	 at	 least	 one	 of	 three	 possible	 parameters	 (the	 health	or	

taste	attribute	weight	or	the	relative-start-time)	in	favor	of	healthy	choices	during	the	

health-cued	 trials.	However,	only	64%	changed	one	of	 the	attribute	weights	and	 the	

relative	timing,	while	just	33%	changed	both	attribute	weights	plus	the	relative	timing.	

Thus,	 attribute	 timing	 and	 weighting	 appeared	 to	 explain	 separate	 aspects	 of	 the	

individual	variation	in	dietary	self-control.		

		Therefore,	we	 tested	 the	 ability	 of	 each	 of	 the	 tSSM	 parameters	 to	 explain	

individual	differences	 in	behavior	within	 this	dataset.	 First,	we	a	 fit	 linear	 regression	

model	 to	 test	 if	 attention	 to	 different	 attributes	 changed	 the	 relationship	 between	

self-control	 behavior	 and	 tSSM	 parameters.	 This	 regression	 showed	 that	 the	

relationships	between	both	attribute	weighting	and	relative-start-time	parameters	and	

behavior	were	changed	by	attention	cues	(Table	3a).	The	health	weighting	parameter	

was	more	closely	 related	 to	 self-control	 in	health-cued	 trials	 than	 in	natural	 choices.	

Moreover,	 the	 relative	 starting	 time	 was	 associated	 with	 self-control	 only	 in	 the	

health-cued	decision	blocks.		

Second,	 we	 tested	 if	 and	 how	 changes	 in	 the	 tSSM	 parameters	 related	 to	

changes	in	behavior	between	the	health-cued	and	natural	conditions.	To	do	so,	we	fit	a	

linear	model	(see	Eq.	4)	using	both	the	baseline	(i.e.,	natural)	values	and	the	difference	

scores	 between	 health-cued	 and	 natural	 tSSM	 parameters	 to	 explain	 the	 within-

subject	 changes	 in	 choice	 patterns	 across	 conditions	 (Table	 3b).	 This	 regression	

showed	that	changes	in	behavior	were	explained	by	both	baseline	non-decision	times	

and	 changes	 in	 the	 relative	 start	 times	 between	 the	 health-cued	 and	 natural	

conditions.	Specifically,	self-control	increased	more	in	the	health-cued	trials	for	those	

participants	 who	 began	 to	 consider	 healthiness	 earlier	 in	 the	 health-cued	 trials.	 In	

contrast,	 individual	 differences	 in	 the	 degree	 of	 self-control	 improvement	 between	

health-cued	 and	 natural	 choices	 were	 not	 systematically	 related	 to	 changes	 in	

attribute	weighting	between	the	two	attention	conditions.		
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Finally,	 we	 computed	 predictions	 of	 behavioral	 change	 between	 the	 two	

conditions	using	the	same	linear	regression	specification	(Eq.	4)	in	a	leave-one-subject-

out	 (LOSO)	 fashion.	 In	 other	 words,	 we	 recomputed	 the	 linear	 regression	 model	

multiple	times,	each	time	leaving	out	a	single	participant	in	order	to	generate	an	out-

of-sample	 prediction	 of	 that	 participant’s	 behavioral	 change	 across	 conditions	 using	

the	 model	 fitted	 to	 the	 data	 of	 the	 other	 participants.	 The	 tSSM	 parameters	

significantly	 predicted	 the	 change	 from	 baseline	 (i.e.,	 natural	 choice	 cues)	 behavior	

during	the	health-cued	choices	in	held-out	test	participants	(Figure	4;	r	=	0.69,	(PP(r	>	

0)	=	.99995,	95%	HDI	=	[0.465;	0.837]).	

	

Dissociating	attribute	weighting	strengths	and	timing	at	the	neural	level	

We	next	addressed	 the	question	of	whether	attribute	weighting	 strength	and	 timing	

are	implemented	by	dissociable	neural	processes.	We	did	so	by	analyzing	data	from	an	

experiment	applying	cathodal,	anodal,	or	sham	transcranial	direct	current	stimulation	

(tDCS)	over	left	dlPFC	during	food	choices	(see	Methods	section	for	details).	Numerous	

neuroimaging	 and	 electrophysiological	 studies	 have	 reported	 correlational	 evidence	

for	a	role	of	the	dlPFC	in	multi-attribute	choice	(Krawczyk,	2002;	Kable	and	Glimcher,	

2007;	Rushworth	and	Behrens,	2008).	There	is	also	ample	evidence	that	applying	brain	

stimulation	(both	transcranial	direct	current	and	magnetic)	over	multiple	different	sub-

regions	of	the	left	or	right	dlPFC	is	associated	with	changes	in	several	forms	of	multi-

attribute	decision	making	(Knoch	et	al.,	2008;	Camus	et	al.,	2009;	Figner	et	al.,	2010;	

Cho	 et	 al.,	 2012;	 Essex	 et	 al.,	 2012;	 Ruff	 et	 al.,	 2013;	 Shen	 et	 al.,	 2016).	 Here,	 we	

applied	 tDCS	 over	 a	 region	 of	 the	 left	 dlPFC	 that	 has	 been	 shown	 to	 correlate	with	

individual	 differences	 in	 dietary	 self-control	 and	 multi-attribute	 decisions	 more	

generally	 (Zysset	et	al.,	2006;	Hare	et	al.,	2009;	Hare	et	al.,	2011;	Kahnt	et	al.,	2011;	

Luo	et	al.,	2012;	Kool	et	al.,	2013;	Hare	et	al.,	2014;	Rudorf	and	Hare,	2014;	Enax	et	al.,	

2015;	Maier	 et	 al.,	 2015)	 in	order	 to	uncover	 the	mechanistic	 changes	 in	 the	 choice	

process	caused	by	tDCS	over	this	particular	region.		

	

Previous	studies	suggest	that	the	effects	of	stimulation	over	left	dlPFC	are	strongest	on	

trials	in	which	the	participant	does	not	strongly	favor	one	outcome	over	the	other	(i.e.,	

stimulation	 effects	 are	 greatest	 in	 difficult	 choices)	 and	 depend	 on	 baseline	
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preferences	 over	 the	 rewards	 (Figner	 et	 al.,	 2010;	 Shen	 et	 al.,	 2016).	 Therefore,	we	

restricted	our	analysis	of	dietary	self-control	to	trials	in	which	the	predicted	probability	

of	choosing	the	healthier	food	was	between	0.2	and	0.8	and	focused	on	the	difference	

in	 behavior	 between	 baseline	 and	 active-stimulation	 choice	 sessions	 (Table	 S7;	 see	

Methods	 for	 details).	 To	 quantify	 how	 active	 versus	 baseline	 tDCS	 affects	 individual	

levels	of	self-control,	we	compared	the	interaction	effects	measuring	changes	in	each	

participant’s	 self-control	 from	 the	 baseline	 to	 the	 stimulation	 condition	 for	 cathodal	

and	 anodal	 versus	 sham	 simulation	 groups.	 This	 revealed	 a	 greater	 decrease	 in	 self-

control	 under	 cathodal	 relative	 to	 sham	stimulation	 (regression	 coef.	 =	 -0.36	±	0.15,	

95%	HDI	=	[-0.67;	-0.06],	PP(cathodal	polarity	X	active	stimulation	interaction	coef.	<	0)	

=	0.99,	Figure	5a),	but	no	change	in	self-control	for	anodal	relative	to	sham	stimulation	

(regression	 coef.	 =	 -0.03	±	 0.15,	 95%	HDI	 =	 [-0.32;	 0.27],	 PP(anodal	 polarity	 X	 active	

stimulation	interaction	coef.	>	0)	=	0.44).	Thus,	we	find	that	inhibitory	stimulation	over	

left	dlPFC	leads	to	decreased	dietary	self-control.	

	

In	order	to	elucidate	the	changes	in	choice	processes	caused	by	the	stimulation,	we	fit	

the	 tSSM	 to	 dietary	 choices	made	 during	 the	 pre-stimulation	 baseline	 and	 active	 or	

sham	tDCS	sessions.	Before	reporting	the	tDCS-induced	changes	in	choice	mechanisms,	

we	note	 that	 the	 tSSM	 fit	 choice	behavior	well	 in	both	 sessions	 (see	Figure	S1).	 The	

tSSM	fits	to	both	the	baseline	and	stimulation	choices	predicted	a	substantial	amount	

of	 the	variation	 in	 self-control	 success	across	 individuals	 (correlation	between	LOSO-

predicted	and	observed	self-control	at	baseline:	r	=	0.83,	(PP(r	>	0)	=	0.99995,	95%	HDI	

=	[0.78;	0.87],	Figure	6a;	and	under	stimulation:	r	=	0.90,	(PP(r	>	0)	=	0.99995,	95%	HDI	

=	[0.87;	0.92],	Figure	6b).	Furthermore,	the	changes	in	tSSM	parameters	also	predicted	

changes	 in	 self-control	 between	 the	 stimulation	 and	 baseline	 sessions	 for	 all	

participants	regardless	of	the	stimulation	condition	(r	=	0.57,	(PP(r	>	0)	=	0.99995,	95%	

HDI	 =	 [0.48;	 0.67],	 Figure	 6c).	 Lastly,	 we	 found	 that	 tSSM	 parameters	 fit	 to	 odd	

stimulation	 trials	 predicted	 even	 trial	 outcomes	 accurately	 overall	 (mean	 balanced	

accuracy	 for	 trial-wise	 predictions	 across	 all	 participants	 was	 67%	 (PP(BA	 >	 0.5)	 >	

0.99999,	 95%	 HDI	 [65%;	 69%]),	 and	 that	 the	 accuracy	 levels	 did	 not	 differ	 by	

stimulation	condition	(see	supplemental	results).	These	results	indicate	that	the	tSSM	

captured	 the	 choice	 process	 equally	 well	 in	 the	 anodal,	 cathodal,	 and	 sham	 tDCS	
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conditions	 and	 that	 it	 is	 reasonable	 to	 compare	 the	 parameters	 across	 sessions	 and	

groups.		

	

Having	 established	 that	 the	 tSSM	 can	 explain	 the	 patterns	 of	 choice	 behavior,	 we	

tested	 how	 the	 tSSM	 parameters	 changed	 between	 baseline	 and	 active	 stimulation	

sessions	in	each	group.	We	found	that	the	cathodal	group	had	increased	weighting	of	

taste	attributes	relative	to	baseline	choices	(mean	difference	=	0.14,	HDI	=	[0.03;	0.25],	

PP(Cath	active	>	Cath	baseline)	=	0.99;	Figure	7a)	and	that	 the	change	from	baseline	

was	greater	under	cathodal	stimulation	than	sham	(mean	difference	=	0.21,	95%	HDI	=	

[0.01;	 0.42],	 PP(∆	 Cath	 >	 ∆	 Sham)	 =	 0.98).	 There	were	 no	 significant	 changes	 in	 the	

health	 weighting	 parameter.	 Crucially,	 the	 relative-start-time	 parameters	 were	 also	

unaffected	during	left	dlPFC	targeted	cathodal	tDCS	(Table	4,	Figure	7b).	Moreover,	the	

tDCS-induced	 changes	 in	 taste	 relative	 to	 health	 weighting	 parameters	 and	 relative	

start	times	were	not	significantly	correlated	(r	=	-0.07,	95%	HDI	=	[-0.325;	0.188],	PP(r	>	

0)	 =	 0.30).	 Consistent	 with	 the	 lack	 of	 significant	 change	 in	 choice	 behavior	 under	

anodal	 tDCS,	we	 found	 no	 significant	 changes	 in	 any	 tSSM	 parameter	 under	 anodal	

stimulation	 (Table	 4).	 In	 summary,	 we	 found	 that	 cathodal	 tDCS	 over	 left	 dlPFC	

selectively	influenced	the	decision	weight	placed	on	taste	attributes,	but	not	the	speed	

with	which	taste,	relative	to	healthiness,	began	to	influence	the	choice	process	(Table	

4).		

	

Discussion	

We	 have	 shown	 that	 separable	 mechanisms	 determine	 the	 degree	 to	 which	 an	

attribute	affects	the	evidence	accumulation	rate	(weighting	strength)	and	the	relative	

speed	with	which	 it	 begins	 to	do	 so	 (timing).	Moreover,	 these	weighting	 and	 timing	

parameters	 each	 explain	 substantial	 unique	 variation	 in	 decision	 making	 across	

individuals	and	account	 for	distinct	aspects	of	 the	change	 in	behavior	 in	 response	 to	

attention	cues	and	brain	stimulation.	Thus,	we	conclude	that	both	attribute	timing	and	

weighting	strength	must	be	examined	if	we	seek	to	better	understand	decision	making	

at	the	mechanistic	level.		

	 The	clearest	evidence	that	timing	and	weighting	strength	are	dissociable	comes	

from	 our	 tDCS	 experiment	 showing	 that	 stimulation	 over	 the	 left	 dlPFC	 caused	 a	
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change	 in	 the	weights	placed	on	 the	 taste	 factor,	 but	not	 the	 timing	of	 taste	 versus	

healthiness	 attributes	 during	 dietary	 choices.	 Moreover,	 changes	 in	 the	 relative	

weighting	 and	 the	 relative	 timing	 of	 each	 attribute	 between	 baseline	 and	 cathodal	

stimulation	 sessions	 were	 not	 significantly	 correlated,	 further	 indicating	 that	 the	

neural	mechanisms	altered	by	our	tDCS	protocol	were	specifically	related	to	attribute	

weighting.		

The	 use	 of	 analysis	 strategies	 that	 quantify	 the	 separate	 effects	 on	 relative	

timing	and	weighting	is	important	for	interpreting	brain	stimulation	data	on	the	role	of	

dlPFC	and	other	brain	regions	in	value-based	choices.	Previous	studies	have	reported	

that	stimulation	targeted	over	various	brain	regions	causes	changes	in	several	forms	of	

decision	making	including	choices	over	tradeoffs	between	monetary	amounts	and	risk	

or	time,	or	between	rewards	for	oneself	and	others	(Knoch	et	al.,	2008;	Camus	et	al.,	

2009;	Figner	et	al.,	2010;	Cho	et	al.,	2012;	Essex	et	al.,	2012;	Ruff	et	al.,	2013;	Brevet-

Aeby	et	al.,	2016;	Shen	et	al.,	2016;	Marechal	et	al.,	2017).	Notably,	all	of	these	choices	

involve	 multi-attribute	 stimuli	 and,	 frequently,	 conflict	 between	 the	 different	

attributes.	 In	 light	 of	 our	 modeling	 results,	 we	 can	 speculate	 that	 the	 mechanistic	

change	caused	by	 stimulation	over	 the	dlPFC	 is	 in	 the	attribute	weighting	process	 in	

some	cases.	However,	the	different	studies	have	targeted	a	range	of	dlPFC	coordinates	

across	 both	 the	 left	 and	 right	 hemispheres	 and	 have	 used	 various	 forms	 of	 brain	

stimulation	 with	 potentially	 different	 local	 and	 widespread	 effects.	 Therefore,	 we	

should	not	assume	that	altered	attribute	weighting	 is	the	mechanistic	result	of	every	

dlPFC-targeted	 stimulation	 protocol.	 Fortunately,	 asynchronous	 evidence	

accumulation	 modeling	 methods,	 such	 as	 the	 tSSM	 used	 here,	 could	 be	 applied	 to	

most	 of	 the	 existing	 datasets	 cited	 above	 or	 newly	 acquired	 data	 to	 gain	 further	

insights	 into	 how	 and	 why	 brain	 stimulation	 causes	 changes	 in	 choice	 behavior.	

Moreover,	 such	 analyses	 are	 by	 no	 means	 limited	 to	 brain	 stimulation	 and	 can	 be	

applied	to	any	set	of	response-time	and	choice	data	on	multi-attribute	decisions	(e.g.	

self/other,	 amount/delay,	 risk/magnitude)	 under	different	 biological	 or	 experimental	

conditions,	perhaps	elucidating	other	neural	regions	that	are	 involved	 in	determining	

the	relative	timing	of	attribute	consideration.	

In	 our	 current	 work,	 for	 example,	 we	 found	 that	 the	 importance	 given	 to	 a	

specific	 attribute,	 as	 well	 as	 its	 speed	 in	 entering	 into	 the	 choice	 process,	 could	 be	
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altered	by	instructions	that	directed	attention	to	a	specific	attribute.	Although	a	large	

body	of	work	has	 established	 that	 value	 construction	 and	 comparison	processes	 are	

malleable	 and	 subject	 to	 attention,	 perceptual	 constraints,	 and	 other	 contextual	

factors	(Krajbich	et	al.,	2010;	Bhatia,	2013;	Hunt	et	al.,	2014;	Caplin,	2016;	Reeck	et	al.,	

2017),	the	influence	of	attribute	consideration	timing	within	a	given	decision	is	rarely	

discussed	or	directly	tested.	Query	theory	(Johnson	et	al.,	2007;	Weber	and	Johnson,	

2009)	is	a	notable	exception	in	that	it	explicitly	posits	that	the	order	in	which	attribute	

values	are	queried	from	memory	or	external	sources	will	bias	value	construction	and	

choice	 processes	 because	 the	 recall	 of	 initial	 attributes	 reduces	 the	 accessibility	 of	

subsequent	 attributes.	 Although	 the	 current	 data	 cannot	 be	 used	 to	 address	 the	

question	directly,	future	experiments	may	address	the	important	mechanistic	question	

whether	 or	 not	 memory	 retrieval	 is	 a	 driving	 factor	 in	 the	 consideration	 onset	

asynchronies	revealed	by	the	tSSM.		

Despite	open	questions	about	 the	 relationship	between	memory	and	 relative	

starting	 times,	 our	 finding	 that	 attribute	 consideration	 start	 times	 are	 asynchronous	

lends	strong	support	to	the	idea	that	choices	are	made	based	on	comparisons	of	both	

separate	attribute	values	as	well	as	overall	option	values.	Hunt	and	colleagues	(Hunt	et	

al.,	2014)	demonstrated	that	a	hierarchical	sequential	sampling	process	that	operates	

over	both	separate	attribute	and	overall	option	values	explains	risky	choice	behavior	

and	brain	activity	better	than	models	operating	only	on	integrated	values.	Reeck	and	

colleagues	 (Reeck	 et	 al.,	 2017)	 have	 shown	 that	 individual	 variation	 in	 temporal	

discounting	 can	 be	 explained	 by	 patterns	 of	 information	 acquisition	 that	 support	

attribute-wise	or	option-wise	comparisons;	moreover,	 their	study	shows	that	choices	

can	be	made	more	patient	by	an	experimental	manipulation	that	promotes	attribute-

wise	 comparisons	 compared	 to	 one	 promoting	 option-wise	 comparisons.	 Together,	

these	 results	 and	 others	 (e.g.	 Roe	 et	 al.	 (2001)	 and	 Bhatia	 (2013))	 indicate	 that	

attribute-level	 comparisons	 play	 an	 important	 role	 in	 determining	 choice	 outcomes.	

Hierarchical	attribute	and	option-level	comparisons	are	implicit	in	our	specification	of	

the	 tSSM	 because	 the	 choice	 outcome	 and	 response	 time	 are	 determined	 by	 a	

weighted	sum	of	the	differences	in	attribute	values.	However,	we	show	that	attribute-

level	comparisons	do	not	all	begin	at	the	same	point	in	time,	and	that	the	magnitude	

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2018. ; https://doi.org/10.1101/434860doi: bioRxiv preprint 

https://doi.org/10.1101/434860
http://creativecommons.org/licenses/by-nc/4.0/


	 18	

of	the	difference	in	relative	start	times	across	attributes	influences	both	attribute-level	

and	option-level	comparisons.	

The	 results	 from	the	attention-cuing	paradigm	also	establish	 that	 the	 relative	

start	 times	 for	 different	 attributes	 are	 not	 automatic	 or	 fixed.	 This	 implies	 that	 the	

asynchrony	of	attribute	consideration	onset	times	in	food	choices	is	unlikely	to	be	the	

result	of	competition	between	fast	automatic	processes	and	slower,	more	deliberate	

processing.	Although	other	theoretical	and	empirical	work	(Achtziger	and	Alós-Ferrer,	

2013;	 Caplin	 and	 Martin,	 2016;	 Alós-Ferrer,	 2018)	 has	 shown	 that,	 in	 some	 cases,	

sequential	 sampling	 processes	might	 be	 separately	 employed	 or	 influenced	 by	 both	

fast,	 automatic	 or	 heuristic	 systems	 and	 slower	 deliberative	 processing,	 such	 dual-

process	 competition	 is	 inconsistent	 with	 our	 findings.	 If	 tastiness	 (or	 healthiness)	

affected	 the	 choice	 process	 first	 only	 because	 it	 was	 processed	 automatically,	 then	

attention	 cues	 would	 not	 change	 the	 order	 of	 relative	 starting	 times	 between	

attributes.	However,	we	found	that	attribute	cuing	led	to	a	reversal	of	which	attribute	

was	 processed	 faster	 for	 64%	 of	 the	 sample.	 Furthermore,	 the	 block	 type	 changed	

every	10	 trials,	 indicating	 that	 the	adjustments	 to	 relative	start	 times	occurred	more	

flexibly	and	rapidly	than	could	be	accounted	for	by	habitual	processing.	A	heuristic	or	

rule-based	strategy	(i.e.,	always	choose	the	healthier	food)	is	also	inconsistent	with	our	

data	 because	 both	 tastiness	 and	 healthiness	 levels	 influenced	 choices	 and	 response	

times,	 indicating	 active	 evaluation	 of	 both	 attributes	 rather	 than	 application	 of	 a	

simple	 rule.	 In	 summary,	 our	 data	 are	 consistent	 with	 asynchronous	 attribute	

consideration	 onset	 times	 within	 a	 goal-directed	 processing	 system	 rather	 than	

competition	between	goal-directed	and	other	forms	of	behavior.	

Our	results	raise	important	questions	about	how	attribute	weighting	strengths	

and	onset	timing	jointly	influence	choice	outcomes:	How	should	we	interpret	choices	

in	which	the	outcome	is	determined	by	the	advantage	in	relative	timing	as	opposed	to	

weighted	evidence?	Could	this	be	strategic	use	of	cognitive	flexibility	to	align	decision	

making	 with	 current	 goals	 or	 should	 we	 consider	 such	 outcomes	 to	 be	 mistakes?	

Traditionally,	 a	weighted	 combination	 of	 all	 attribute	 values	 is	 assumed	 to	 yield	 the	

“correct”	 choice	 (Payne	 et	 al.,	 1993).	 If	 the	 weighting	 strength	 on	 each	 attribute	 is	

appropriate,	 then	 any	 asynchrony	 in	 onset	 timing	 could	produce	 suboptimal	 choices	

(i.e.,	 choices	 in	 favor	of	options	with	a	 lower	weighted	 sum	over	all	 attribute	values	
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than	 another	 available	 alternative).	 In	 that	 sense,	 it	 is	 surprising	 that	 we	 find	

substantial	attribute	onset	asynchrony	in	healthy	young	adults	and	that,	in	individuals	

striving	 to	 maintain	 a	 healthy	 lifestyle	 (i.e.,	 the	 sample	 recruited	 for	 our	 tDCS	

experiment),	a	higher	level	of	asynchrony	is	associated	with	better	dietary	self-control.	

However,	 this	 view	 is	 predicated	 on	 the	 assumption	 that	 the	 attribute	 weighting	

strengths	 are	 appropriate	 for	 the	 current	 goal	 or	 context.	 On	 the	 other	 hand,	 if	 a	

decision	maker	knows	 (not	necessarily	explicitly)	 that	her	 standard	attribute	weights	

are	inconsistent	with	her	current	decision	context	or	goal,	and	adjusting	those	weights	

by	 the	necessary	amount	 is	 costly	or	unlikely,	 then	 shifting	 the	 relative	onset	 timing	

could	be	an	effective	means	of	reducing	effort	and	improving	the	chances	of	making	a	

goal-consistent	choice.	For	example,	a	decision	maker	who	goes	on	a	diet	may	find	it	

difficult	 to	 convince	 herself	 that	 she	 does	 not	 like	 the	 taste	 of	 ice	 cream	 and/or	 to	

constantly	trade	off	this	delicious	taste	against	the	downsides	of	excess	sugar	and	fat.	

An	 alternative	way	 to	 bring	 about	 self-control	 in	 this	 situation	may	be	 to	 adjust	 the	

process(es)	that	determine	relative	start	times	for	healthiness	and	tastiness,	to	focus	

on	the	healthiness	of	each	alternative	option	alone	for	a	brief	period	in	order	to	forgo	

extremely	 unhealthy	 options	 (without	 putting	 in	 time	 or	 effort	 to	 compare	 taste	

benefits	 to	 health	 costs).	 This	 would	 be	 consistent	 with	 the	 idea	 that	 rational	

inattention	 strategies	 (Sims,	 2003;	 Caplin	 and	Dean,	 2015;	 Krajbich	 and	Dean,	 2015)	

can	 be	 employed	 as	 a	 means	 of	 reducing	 effort	 costs.	 Specifically,	 if	 the	 time	

advantage	for	healthiness	is	large	enough,	then	one	could	theoretically	decide	against	

eating	an	unhealthy	food	before	even	considering	its	tastiness	and	thus	not	experience	

temptation	 or	 conflict.	 However,	 we	 do	 not	 yet	 know	 if	 this	 actually	 happens	 or	 if	

adjusting	the	process	determining	relative	onset	times	is,	in	fact,	less	effortful	or	more	

likely	to	succeed	than	strategies	that	alter	the	attribute	weighting	strengths.		

Altering	 the	 processes	 that	 determine	 the	 relative	 onset	 times	 could	 be	 a	

means	 or	 a	 result	 of	 delaying	 and	 reducing	 attention.	 However,	 although	we	 found	

that	both	cueing	attention	to	healthiness	and	having	the	goal	of	maintaining	a	healthy	

lifestyle	 (tDCS	 sample	vs	all	 others)	were	associated	with	 faster	average	onset	 times	

for	 healthiness	 attributes,	 we	 do	 not	 know	 yet	 if	 relative	 onset	 times	 can	 be	

manipulated	 as	 part	 of	 a	 deliberate	 strategy.	 It	 is	 also	 important	 to	 note	 that	 the	

response	 to	 healthiness	 cues	 was	 heterogeneous	 in	 the	 sense	 that,	 although	 most	
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participants	made	healthy	choices	more	often	following	those	cues,	many	participants	

changed	only	attribute	weights	or	only	attribute	start	times	in	favor	of	healthy	choices,	

rather	 than	 both.	We	 do	 not	 yet	 know	why	 individuals	 responded	 to	 these	 cues	 in	

different	ways.	 Critically,	 the	 sources	 of	 this	 heterogeneity	 in	 response	 to	 attention	

cues	-	or	any	other	manipulation	or	environmental	change	-	can	only	be	identified	and	

further	 studied	 if	one	uses	models	of	decision	making	 that	explicitly	 account	 for	 the	

asynchrony	in	attribute	consideration	start	times.		

The	ability	to	understand	or	predict	how	an	intervention	or	policy	change	will	

affect	choice	processes	and	their	outcomes	for	specific	individuals	or	groups	of	people	

is	 important	 for	 any	 program	 hoping	 to	 promote	 behavioral	 change,	 for	 example	 in	

domains	 such	 as	 health,	 crime,	 or	 financial	 stability.	 Greater	 knowledge	 of	 the	

cognitive	 and	 neural	 mechanisms	 that	 drive	 choices	 in	 specific	 individuals	 is	 an	

important	 step	 toward	 this	 understanding.	 Our	 findings	 demonstrate	 that	 when	 a	

specific	 attribute	 begins	 to	 influence	 the	 decision	 process	 -	 a	 factor	 that	 has	 been	

generally	 neglected	 -	 is	 an	 important	 determinant	 of	 choice	 outcomes.	 They	 also	

suggest	 that	 examining	 relative	 differences	 in	 attribute	 start	 times	may	 prove	 to	 be	

useful	 in	understanding	why	 interventions	 and	policies	work	 in	 some	cases	 (e.g.,	 for	

specific	 individuals	 or	 groups)	 but	 not	 in	 others,	 and	 may	 help	 to	 increase	 their	

effectiveness.	 Overall,	 the	 work	 we	 present	 here	 provides	 both	 a	 concrete	

advancement	 in	 our	 knowledge	 of	multi-attribute	 choice	 processes	 and	 a	 functional	

set	of	computational	modeling	tools	that	can	be	applied	to	extract	deeper	mechanistic	

insights	from	data	on	choice	outcomes	and	response	times.		 	
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Methods	

For	all	data	sets	in	which	we	relied	on	published	studies,	we	included	the	final	reported	

sample	in	our	analyses.	For	these	studies,	we	will	describe	the	methodological	details	

relevant	for	our	analyses	and	refer	the	reader	to	the	published	papers	for	any	further	

details.	 All	 participants	 provided	 written	 informed	 consent	 in	 accordance	 with	 the	

procedures	of	the	Institutional	Review	Board	of	the	California	Institute	of	Technology,	

the	Institutional	Review	Board	of	the	Faculty	of	Business,	Economics	and	Informatics	at	

the	 University	 of	 Zurich,	 or	 the	 Ethics	 Committee	 of	 the	 Canton	 of	 Zurich.	 All	

participants	 received	a	 flat	 fee	 to	 compensate	 for	 their	 time	 in	 addition	 to	 the	 food	

they	chose.	

	

Data	set	1	-	SHHR:		

We	use	the	choice	and	response	time	data	from	the	study	of	Sullivan	et	al.	(2015)	to	

test	the	face	validity	of	our	time-varying	sequential	sampling	model.	All	participants	in	

the	SHHR	sample	were	healthy	adults	and	had	no	specific	dietary	restrictions.	Before	

making	 any	 choices,	 they	 were	 reminded	 of	 the	 importance	 of	 healthy	 eating	 by	

reading	a	short	excerpt	from	WebMD.com	before	starting	the	choice	task.	

	

Participants.	 The	 Institutional	Review	Board	of	 the	California	 Institute	of	Technology	

approved	 the	 experiment.	 Twenty-eight	 (7	 female)	 healthy	 adult	 participants	

completed	the	study.		

	

Procedure.	 Participants	were	 asked	 to	 fast	 for	 4	 hours	 prior	 to	 the	 study.	 They	 first	

rated	160	foods	for	taste	and	health	on	a	5-point	Likert	scale	with	values	from	-2	(“very	

little”)	to	+2	(“very	much”).	After	these	ratings,	participants	were	asked	to	read	a	short	

text	from	WebMD.com	on	the	beneficial	effect	of	healthy	eating,	in	order	to	increase	

the	frequency	with	which	they	used	self-control	in	the	following	dietary	choice	task.	In	

the	choice	paradigm,	participants	made	280	choices	between	two	foods	on	the	screen	

(see	 Fig	 S3a).	 The	 selection	 ensured	 that	 food	 pairs	 would	 represent	 all	 possible	

combinations	 of	 taste	 and	 health	 ratings	 equally.	 After	 each	 block	 of	 40	 choices,	

participants	 could	 take	 a	 short	 break.	 In	 240	 trials,	 participants	 used	 the	mouse	 to	

answer,	while	in	the	remaining	40	trials,	they	answered	with	the	keyboard.	In	mouse	
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trials,	participants	had	to	click	the	“Start”	box	at	the	bottom	of	the	screen	to	 initiate	

the	trial.	The	cursor	reappeared	after	a	random	waiting	period	of	0.2	to	0.5	seconds.	

From	this	point	on,	participants	had	to	move	the	mouse	continuously	towards	the	food	

they	wanted	 to	 select.	 They	were	 instructed	 to	 answer	 as	 quickly	 and	 accurately	 as	

possible.	A	random	fixation	time	of	0.4	to	0.7	seconds	separated	the	trials.	In	keyboard	

trials,	participants	selected	food	items	by	pressing	the	left	or	right	choice	keys.	At	the	

end	of	the	study,	one	randomly	selected	trial	was	paid	out	and	participants	were	asked	

to	stay	in	the	lab	for	30	minutes	or	until	they	had	eaten	their	obtained	food.	

	

Data	set	2	-	GFC	

Data	for	this	behavioral	study	(gamble	plus	food	choice,	GFC)	were	collected	from	the	

same	individuals	 in	two	testing	sessions	two	weeks	apart.	The	two	sessions	were	run	

on	the	same	weekday	and	daytime	in	a	two-hour	visit	in	the	afternoon.	Participants	in	

this	study	were	healthy	and	did	not	have	any	specific	dietary	restrictions.	During	the	

study,	they	chose	naturally	and	were	neither	reminded	about	eating	a	healthy	diet	nor	

encouraged	to	use	dietary	self-control	in	any	way.	

	

Participants.	 The	 Study	 was	 approved	 by	 the	 Institutional	 Review	 Board	 of	 the	

University	 of	 Zurich’s	 Faculty	 of	 Business,	 Economics	 and	 Informatics.	 Thirty-seven	

participants	(17	female,	mean	age	=	22.6	±	3	years	SD)	were	included	in	this	study.	A	

pre-screening	procedure	ensured	that	all	participants	regularly	consumed	sweets	and	

other	snack	foods	and	were	not	currently	following	any	specific	diet	or	seeking	to	lose	

weight.	All	participants	were	healthy	and	had	no	current	or	recent	acute	illness	(e.g.,	

cold	or	flu)	at	the	time	of	the	study.	All	participants	complied	with	the	following	rules	

to	ensure	comparability	across	the	study	sessions:	They	got	a	good	night’s	sleep	and	

did	not	consume	alcohol	the	evening	before	the	study.	On	the	study	day,	they	took	a	

photograph	of	 the	 small	meal	 that	 they	 consumed	3	hours	before	 the	appointment,	

and	 sent	 this	 photo	 to	 the	 experimenter.	One	 day	 before	 the	 second	 study	 session,	

participants	received	a	reminder	about	the	rules	above	and	were	asked	to	consume	a	

small	meal	before	their	second	appointment	that	was	equivalent	to	their	meal	before	

the	first	test	session.	Participant	received	37.5	CHF	(approx.	39	USD)	for	each	session.	
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Procedure.	Participants	were	asked	to	eat	a	small	meal	of	approximately	400	calories	3	

hours	prior	to	their	appointment	and	to	consume	nothing	but	water	 in	the	2.5	hours	

before	the	study	started.	In	the	laboratory,	participants	first	rated	180	food	items	for	

taste	 and	 health.	 They	 then	 made	 150	 food	 choices,	 one	 of	 which	 was	 randomly	

selected	to	be	realized	at	the	end	of	the	experiment.	On	each	trial,	the	screen	showed	

2	foods	next	to	each	other	and	participants	chose	the	food	they	wanted	to	eat	using	a	

4-point	 scale,	 picking	 either	 “strong	 left”,	 “left”,	 “right”,	 or	 “strong	 right”	 (Fig.	 S3b).	

The	 pairing	 order	 and	 positions	 of	 the	 foods	 on	 the	 screen	 (left	 vs	 right)	 were	

completely	 randomized,	 and	 the	 allocation	 algorithm	ensured	 that	 one	 of	 the	 foods	

would	be	rated	as	healthier	than	the	other.	Participants	had	3	seconds	to	make	their	

choice,	with	a	jittered	interval	of	1-3	seconds	fixation	between	trials.	Between	blocks	

of	dietary	decisions,	participants	played	a	game	in	which	they	had	to	guess	cards	for	

monetary	 rewards.	We	 ignore	 the	 card	 guessing	 choices	 for	 the	 analyses	 presented	

here.	 At	 the	 end	 of	 the	 experiment,	 participants	 stayed	 in	 the	 laboratory	 for	 an	

additional	30	minutes	during	which	they	ate	the	food	they	obtained	during	the	study.	

Note	 that	 participants	 on	 the	 second	day	 saw	a	 new	 set	 of	 choice	 options	 that	was	

created	based	on	the	taste	and	health	ratings	they	gave	on	that	second	day,	using	the	

same	allocation	algorithm	as	in	session	1.	

	

	

Data	set	3	-	HMR	

In	order	to	determine	how	attention	cues	affected	attribute	timing	and	weighting,	we	

re-analyzed	data	from	Hare	et	al.	(2011).	Participants	in	this	study	were	not	following	a	

specific	health	or	dietary	goal	in	their	everyday	life,	but	received	a	cue	to	think	about	

the	healthiness	or	tastiness	of	the	foods	before	deciding	on	a	subset	of	choices	in	the	

study.	

	

Participants.	 The	 study	 was	 approved	 by	 the	 Institutional	 Review	 Board	 of	 the	

California	Institute	of	Technology.	Thirty-three	participants	(23	female,	mean	age	24.8	

±	 5.1	 years	 SD)	 were	 included.	 Screening	 ensured	 that	 they	 were	 not	 currently	

following	any	specific	diet	or	seeking	to	lose	weight.	All	participants	were	healthy,	had	
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no	history	of	psychiatric	diagnoses	or	neurological	or	metabolic	illness,	were	not	taking	

medication,	had	normal	or	corrected-to-normal	vision,	and	were	right-handed.	

	

Procedure.	 Participants	were	 instructed	 to	 fast	 and	 drink	 only	water	 in	 the	 3	 hours	

prior	to	the	study.	In	this	experiment,	participants	made	a	series	of	180	choices	within	

an	MRI	scanner	while	BOLD	fMRI	was	acquired.	The	experiment	had	three	conditions	

with	60	trials	each	that	were	presented	 in	blocks	of	10,	with	the	order	of	blocks	and	

foods	shown	within	blocks	fully	randomized	for	each	participant.	Each	food	was	shown	

only	 once	 (Fig.	 S3c).	 In	 condition	 one,	 participants	 were	 asked	 to	 attend	 to	 the	

tastiness	of	the	food	when	making	their	choices,	in	the	second	condition,	to	attend	to	

the	 healthiness	 of	 the	 food,	 and	 in	 the	 third	 condition,	 to	 choose	 naturally.	 The	

instructions	emphasized	that	participants	should	always	choose	what	they	preferred	to	

eat	 regardless	 of	 the	 attention/consideration	 cues.	 Before	 each	 block,	 the	 attention	

condition	 cue	was	 displayed	 for	 5	 seconds.	 On	 each	 choice	 trial,	 participants	 had	 3	

seconds	 to	 answer	 and	were	 shown	 feedback	 on	 their	 choice	 for	 0.5	 seconds	 after	

responding.	Trials	were	separated	by	a	variable	fixation	period	of	4	to	6	seconds.	Most	

participants	responded	on	a	4-point	scale	“strong	yes”,	“yes”,	“no”	or	“strong	no”	to	

indicate	if	they	preferred	to	eat	or	to	not	eat	the	food	shown	on	the	current	trial.	Five	

out	 of	 33	 participants	 completed	 a	 version	 of	 the	 task	 including	 a	 fifth	 option	 that	

allowed	 them	 to	 signal	 indifference	 between	 eating	 and	 not	 eating	 the	 food.	 We	

followed	the	original	analysis	procedures	 in	HMR	and	analyzed	all	33	subjects	as	one	

set.	 After	 the	 scan,	 participants	 rated	 the	 180	 food	 items	 for	 taste	 (regardless	 of	

health)	 and	 health	 (regardless	 of	 taste),	 with	 the	 order	 of	 rating	 types	 randomized	

across	 participants.	 After	 both	 the	 choice	 task	 and	 ratings	were	 complete,	 one	 trial	

from	the	choice	task	was	randomly	chosen	to	be	realized.	Participants	were	required	

to	 eat	 the	 food	 if	 they	 answered	 “yes”	 or	 “strong	 yes”.	 If	 they	 answered	 “no”	 or	

“strong	no”,	they	still	had	to	stay	 in	the	laboratory	for	the	30-minute	waiting	period;	

however,	 they	 were	 not	 allowed	 to	 eat	 any	 other	 food.	 Participants	 were	 fully	

informed	of	these	choice	incentivization	procedures	before	beginning	the	study.		
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Data	set	4	-	TDCS	

All	participants	in	this	study	were	pre-screened	during	recruitment	to	ensure	that	they	

were	actively	 following	a	healthy	 lifestyle.	They	were	specifically	asked	 if	 they	would	

agree	to	do	their	best	to	choose	the	healthier	option	whenever	possible	on	the	day	of	

the	study.	Participants	who	indicated	that	they	would	not	do	so	were	still	allowed	to	

complete	the	experiment	and	were	reimbursed	for	their	time,	but	we	did	not	analyze	

their	data.	All	participants	received	a	flat	fee	of	100	CHF	(approx.	104	USD).	

	

Participants.	 The	 Ethics	 Committee	 of	 the	 Canton	 of	 Zurich	 approved	 the	 study	

protocol	 and	 all	 participants	 provided	 written	 informed	 consent.	 In	 total,	 199	

participants	 were	 enrolled	 in	 the	 study.	 No	 participants	 reported	 any	 history	 of	

psychiatric	 or	 neurological	 conditions	 or	 had	 any	 acute	 somatic	 illness.	 Participants	

were	 pre-screened	 in	 telephone	 interviews	 to	 ensure	 they	 did	 not	 suffer	 from	 any	

allergies,	food	intolerances,	or	eating	disorders.	To	ensure	that	the	snacks	in	the	food	

choice	 task	 would	 present	 a	 temptation,	 participants	 were	 only	 eligible	 if	 they	

reported	regularly	consuming	snack	foods	(at	a	minimum	2-3	times	per	week)	while	at	

the	same	time	trying	to	maintain	an	overall	balanced	and	healthy	diet.		

Data	from	25	participants	were	excluded	because	they	failed	to	meet	a	priori	inclusion	

criteria	or	data	quality	checks.	Within	the	study	we	requested	a	written	statement	of	

compliance	with	a	health	goal	for	the	time	of	the	experiment	(see	below).	Seven	men	

and	1	woman	indicated	they	would	not	comply	with	the	health	goal;	their	data	were	

excluded	 from	 all	 analyses.	 Note	 that	 these	 participants	 still	 completed	 the	

experimental	 procedures	 and	 received	 the	 same	 compensation	 through	 food	 and	

monetary	 incentives	 as	 those	 who	 complied,	 so	 there	 was	 no	 incentive	 for	 the	

participants	to	lie	about	following	the	health	goal.	Data	from	8	participants	had	to	be	

excluded	 because	 they	 confused	 the	 response	 keys	 or	 forgot	 the	 identity	 of	 the	

reference	item	during	the	task.	Four	participants	were	excluded	on	site	due	to	safety	

precautions	 regarding	 tDCS.	 Three	 participants	were	 excluded	 on	 site	 because	 a	 re-

check	of	 the	 inclusion	 criteria	 revealed	 that	 they	did	not	 actually	 like	 snacks	or	only	

consumed	 them	 on	 1-2	 occasions	 per	 month	 instead	 of	 the	 minimum	 2	 times	 per	

week.	One	additional	participant	had	to	be	excluded	because	the	choice	set	could	not	

be	constructed	due	to	the	fact	that	he	reported	only	the	most	extreme	values	on	all	
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health	and	taste	ratings.	Lastly,	data	 from	one	participant	was	excluded	because	she	

never	used	 self-control	 in	 the	baseline	 condition,	 precluding	 inference	 about	within-

subject	 changes	 due	 to	 stimulation.	 This	 left	 87	 men	 and	 87	 women	 in	 the	 final	

dataset.		

Participants	 were	 randomly	 allocated	 to	 stimulation	 conditions.	 The	 anodal	 (58	

participants,	 30	 female),	 cathodal	 (57	 participants,	 30	 female),	 and	 sham	 (59	

participants,	27	female)	stimulation	groups	did	not	differ	from	each	other	with	regard	

to	 age,	 body	mass	 index	 (BMI),	 or	 self-reported	 eating	 patterns	 (as	 assessed	 by	 the	

Three	 Factor	 Eating	 Questionnaire,	 German	 validated	 version	 by	 Pudel	 and	

Westenhöfer	 (1989))	 (see	 SI	 Table	 S9).	 The	groups	also	did	not	differ	with	 regard	 to	

impulse	 control	 (in	 the	 stop	 signal	 reaction	 time,	 SSRT),	 working	 memory	 capacity	

(digit	span	test),	or	time	discounting	preferences.	Finally,	the	groups	did	not	differ	 in	

the	level	of	hunger	that	they	reported	before	the	choice	task	(see	SI	Tables	S10-17).	

	

tDCS	stimulation	protocol.	The	target	electrode	(5	x	7	cm)	was	placed	on	the	left	dlPFC	

(see	SI	Figure	S2a).	The	reference	electrode	(10	x	10	cm)	was	placed	over	the	vertex,	

off-centered	 to	 the	 contralateral	 side	 in	 such	 a	 way	 that	 a	 5	 x	 7	 cm	 area	 of	 the	

reference	electrode	was	centered	over	the	vertex	while	the	remaining	area	was	placed	

more	to	the	right	side.	The	target	electrode	covered	the	two	dlPFC	regions	depicted	in	

SI	Figure	S2b	(MNI	peak	coordinates	=	[-46	18	24]	and	[-30	42	24]).	These	targets	were	

selected	because	they	both	showed	greater	activity	for	self-control	success	>	failure	in	

two	previous	fMRI	studies	(Hare	et	al.,	2009;	Maier	et	al.,	2015).	The	coordinates	for	

both	 dlPFC	 and	 vertex	 were	 identified	 in	 each	 participant’s	 individual	 T1-weighted	

anatomical	 MR	 image	 using	 a	 neuronavigation	 system	 (Brainsight,	 Rogue	 Research,	

RRID:SCR_009539,	https://www.rogue-researcher.com/;	see	 insert	 in	Figure	S2b).	We	

applied	 anodal,	 cathodal,	 or	 sham	 tDCS	 over	 this	 dlPFC	 site	 using	 a	 commercially	

available	multi-channel	stimulator	(neuroConn	GmbH).	Between	a	ramp-up	and	ramp-

down	phase	of	20	seconds,	active	stimulation	with	1	milliampere	(mA)	took	place	for	

30	minutes	 (anodal	and	cathodal	 group)	or	5	 seconds	 (sham).	 Sham	stimulation	was	

delivered	with	either	the	anode	or	the	cathode	over	the	dlPFC,	counterbalanced	over	

the	 whole	 sham	 group.	 Both	 the	 participants	 and	 the	 experimenters	 mounting	 the	

tDCS	electrodes	were	blind	to	the	stimulation	condition.		
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Procedure.	 Participants	 first	 rated	 180	 food	 items	 for	 health	 and	 taste.	 They	 were	

instructed	to	rate	taste	regardless	of	the	healthiness	and	vice	versa	for	each	of	our	180	

food	 items	on	 a	 continuous	 scale	 that	 showed	 visual	 anchor	points	 from	 -5	 (“not	 at	

all”)	 to	 +5	 (“very	 much”).	 Before	 or	 after	 these	 ratings,	 participants	 completed	 a	

battery	of	 control	 tasks	 in	 randomized	order.	All	 control	 tasks	were	performed	both	

before	and	after	stimulation:	a	stop	signal	reaction	time	task	(SSRT),	a	self-paced	digit	

span	 working	memory	 (WM)	 test,	 and	 a	 self-paced	monetary	 inter-temporal	 choice	

task	 (ITC).	 In	 order	 to	 test	 for	 stimulation	 effects	 on	 taste	 and	 health	 ratings,	

participants	 also	 re-rated	 a	 subset	 of	 foods	 after	 stimulation	 (see	 supplemental	

information	section	1).		

After	all	pre-stimulation	tasks	had	been	completed,	but	before	any	food	choices	were	

made,	we	asked	participants	 to	sign	a	health	goal	 statement	 in	which	 they	 indicated	

whether	 they	would	 commit	 to	maintaining	 a	 health	 goal	 during	 the	 following	 food	

choice	task	or	not	(see	SI	section	1.2	for	an	English	translation	of	the	health	goal	text).	

Participants	 indicated	 that	 they	would	or	would	not	 commit	 to	 the	 goal,	 dated,	 and	

signed	the	document,	and	then	handed	it	back	to	the	experimenter.	Participants	could	

not	 see	 which	 option	 others	 in	 the	 room	 had	 selected	 and	 the	 experimenter	

randomizing	the	tDCS	conditions	was	blind	to	the	participants’	responses	to	the	health	

goal.		

	

Just	prior	to	beginning	the	food	choice	task,	participants	indicated	their	current	hunger	

levels.	They	then	completed	a	series	of	food	choices.	The	first	101	participants	made	

60	food	choices	at	baseline,	however	we	increased	the	number	of	baseline	choices	to	

80	for	the	final	98	participants	in	order	to	have	an	even	number	at	baseline	and	under	

stimulation.	All	other	experimental	factors	were	kept	the	same	for	all	199	participants.	

The	 baseline	 choices	 allowed	 us	 to	make	within-subject	 comparisons	 of	 self-control	

before	 and	 during	 stimulation.	 Once	 participants	 had	 finished	 making	 the	 baseline	

choices,	stimulation	was	applied.	Participants	did	not	make	any	choices	for	the	first	3	

minutes	 of	 stimulation	 to	 allow	 the	 current	 to	 stabilize.	 Following	 the	 stabilization	

period,	they	completed	another	set	of	food	choices	(n	=	120	for	participants	1:101	and	

n	=	80	for	participants	102:199).	No	choice	pairs	were	repeated	between	the	baseline	
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and	 stimulation	 choice	 sets.	However,	 the	difficulty	 in	 terms	of	 taste	difference	was	

balanced	across	the	two	choice	sets	(see	SI).	

	

Participants	 completed	 the	 set	 of	 food	 choices	 under	 stimulation	 (or	 sham)	 in	 a	

maximum	of	16	minutes.	In	the	remaining	8-14	minutes	of	stimulation	(or	sham)	time,	

participants	 completed	 several	 control	 tasks.	We	 randomized	 the	 order	 of	 the	 post-

stimulation	 control	 tasks	 so	 that	 all	 tasks	 had	 an	 equal	 chance	 of	 being	 run	 in	 the	

period	 when	 current	 was	 still	 being	 applied	 versus	 the	 5-10	 minute	 window	

immediately	after	stimulation	(during	which	physiological	aftereffects	of	the	tDCS	were	

still	 present,	 see	 (Nitsche	 and	 Paulus,	 2001;	 Fritsch	 et	 al.,	 2010).	 Once	 they	 had	

completed	 all	 post-stimulation	 control	 tasks,	 participants	 filled	 in	 a	 questionnaire	

battery	 (Three	 Factor	 Eating	 Questionnaire	 (TFEQ),	 Cognitive	 Reflection	 Test	 (CRT),	

“Big	 Five”	 personality	 dimensions	 (NEO-FFI),	 socio-economic	 status).	 They	 also	

indicated	whether	and	to	what	degree	they	had	tried	to	comply	with	the	health	goal	

throughout	 the	 study,	whether	 they	 had	 felt	 the	 stimulation	 and	 how	 strongly,	 and	

whether	 they	had	 any	problems	understanding	or	 following	 the	 instructions.	 Finally,	

participants	received	and	ate	their	selected	food	30	minutes	after	they	made	their	final	

decision	in	the	food	choice	task.	

	

Food	choice	paradigm.	Participants	were	asked	to	eat	a	small	meal	of	approx.	400	kcal	

3	 hours	 prior	 to	 the	 study	 and	 consume	nothing	 but	water	 in	 the	meantime.	 In	 the	

dietary	self-control	paradigm,	participants	chose	which	food	they	wanted	to	eat	at	the	

end	of	 the	 study.	 In	order	 to	 comply	with	 their	 health	 goal,	 they	had	 to	 choose	 the	

healthier	 item	 as	 often	 as	 they	 could.	 However,	 the	 paradigm	was	 engineered	 such	

that	health	and	taste	of	the	food	options	always	conflicted	based	on	the	participant’s	

ratings,	so	they	would	always	have	to	forgo	the	tastier	food	in	order	to	choose	healthy.	

Participants	 knew	 that	 one	 of	 their	 choices	 would	 be	 realized	 in	 the	 end,	 and	 they	

would	have	to	eat	whatever	they	chose	on	the	trial	that	was	randomly	selected.		

Participants	were	shown	the	picture	of	a	reference	food	for	3	seconds	at	the	beginning	

of	each	block.	This	reference	food	was	either	healthier	and	less	tasty	than	all	10	items	

shown	 in	the	upcoming	block	or	tastier	and	 less	healthy	than	all	10	upcoming	 items.	

On	each	of	the	10	trials	within	a	block,	participants	had	to	decide	if	they	preferred	to	
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eat	 the	 food	currently	 shown	on	 the	 screen	or	 the	 reference	 food	at	 the	end	of	 the	

study.	 The	 identity	 of	 the	 reference	 food	was	written	 in	 text	 on	 the	 screen	 so	 that	

participants	 did	 not	 need	 to	 remember	 it	 (see	 Figure	 S3d).	 During	 each	 choice	 trial,	

participants	had	3	seconds	to	make	their	decisions,	and	each	trial	was	separated	by	a	

jittered	 inter-trial	 interval	 of	 2-6	 seconds.	 One	 trial	 was	 selected	 at	 random	 to	 be	

realized	after	 all	 experimental	procedures	were	 completed.	At	 the	end	of	 the	 study,	

participants	 stayed	 in	 the	 lab	 for	 30	 minutes	 to	 eat	 the	 food	 they	 obtained	 in	 the	

study.	

	

Statistical	Analyses	

All	analyses	presented	in	this	paper	were	performed	with	the	R	(“R	Core	Team,”	2015),	

STAN	 (Carpenter	 et	 al.,	 2016)	 and	 JAGS	 (Hornik	 et	 al.,	 2003)	 statistical	 software	

packages.	 For	 all	 Bayesian	 modeling	 analyses,	 we	 used	 the	 default,	 uninformative	

priors	 specified	 by	 the	 brms	 package	 (Bürkner,	 2017)	 or	 BEST	 (Kruschke,	 2013)	 R-

packages).	Throughout	the	paper,	the	notation	PP()	indicates	the	posterior	probability	

of	 the	 comparison	 given	 within	 the	 parentheses.	Whenever	 we	 analyzed	 previously	

published	 data,	 we	 applied	 the	 same	 subject-	 and	 trial-level	 exclusion	 criteria	

described	in	the	original	papers.		

	

Time-varying	Sequential	Sampling	Model	

We	fit	a	sequential	sampling	model	that	allowed	for	differential	onset	times	for	taste	

and	 health	 attributes	 during	 evidence	 accumulation	 to	 participants	 choice	 outcome	

and	 reaction	 time	 data.	 Several	 of	 the	 food	 choice	 tasks	 used	 a	 4-point	 decision	

strength	 scale,	 and	 for	 these	 data	 we	 collapsed	 choices	 into	 a	 binary	 yes/no	 or	

left/right	choice.	The	following	six	free	parameters	were	estimated	separately	for	each	

participant	and	condition:	

	

Thr:	evidence	threshold	for	responding	(symmetric	around	zero)	

Bias:	starting	point	bias	for	the	evidence	accumulation	process	

nDT:	non-decision	time	

RST:	relative	start	time	for	health	(positive	values	mean	that	health	enters	the	process	

after	taste,	negative	values	mean	health	enters	before	taste)	
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ωtaste:	 weighting	 factor	 determining	 how	 much	 taste	 contributes	 to	 the	 evidence	

accumulation	rate.		

ωhealth:	 weighting	 factor	 determining	 how	 much	 healthiness	 contributes	 to	 the	

evidence	accumulation	rate.		

	

The	values	of	these	six	parameters	were	used	to	simulate	choices	and	response	times	

using	 the	 sequential	 sampling	model	described	 in	 the	equation	below	 to	update	 the	

relative	evidence	level	at	each	subsequent	time	step	t.	

		

𝐸!  =  𝐸!!! + τ! ∗  𝜔!"#!$  ∗  TD  +  η! ∗  𝜔!!"#$! ∗  HD ∗  dt +  N(0,1.4)  ∗  𝑑𝑡	
	

	

Here,	 the	 times	at	which	 the	weighted	value	differences	 in	 tastiness	and	healthiness	

attributes	 (ωtaste*TD	 and	 ωhealth*HD,	 respectively)	 begin	 to	 influence	 the	 evidence	

accumulation	 rate	are	determined	by	 the	 free	parameter	RST.	 If	RST	>	0,	 then	η!=	0	

until	t	>	(RST	/	dt),	and	equals	1	for	all	subsequent	time	steps.	On	the	other	hand,	 if	

RST	<	0,	then	τ!	=	0	until	t	>	(|RST	/	dt|),	and	equals	1	for	all	subsequent	time	steps.	

Thus,	the	resulting	binary	vectors	η!	and	τ!	effectively	delay	the	entrance	of	one	of	the	

attributes	 (tastiness	 or	 healthiness)	 into	 the	 evidence	 accumulation	 process	 by	

multiplying	the	weighted	difference	by	zero	for	a	specific	period	of	time	whenever	RST	

does	not	equal	 zero.	 In	our	 case,	 the	evidence	accumulation	process	begins	with	 an	

initial	 value	 (𝐸!)	that	 is	 equal	 to	 the	 value	of	 the	Bias	 parameter,	 and	 is	 updated	 in	

discrete	time-steps	of	dt	=	0.008	s	until	|𝐸!|	is	either	greater	than	the	threshold	(Thr)	

parameter	value.	The	noise	at	each	step	of	the	accumulation	process	is	drawn	from	a	

Gaussian	 distribution	 with	 mean	 0	 and	 SD	 =	 1.4.	 The	 differences	 in	 taste	 and	

healthiness	 ratings	 between	 Food1	 and	 Food2	 (or	 Food1	 vs	 0	 for	 the	 single	 item	

choices	in	the	HMR	dataset)	on	a	given	trial	are	denoted	by	TD	and	HD,	respectively.	

Once	 the	 threshold	 is	 crossed,	 the	 response	 time	 is	 computed	as	 t*dt	+	nDT,	where	

nDT	is	a	free	parameter	for	a	non-decision	time	that	accounts	for	the	time	required	for	

any	 initial	 perceptual	 or	 subsequent	 motor	 processes	 that	 surround	 the	 period	 of	

active	evidence	accumulation	and	comparison.	
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	 We	 estimated	 the	 best	 values	 for	 all	 six	 free	 parameters	 described	 above	

separately	for	each	participant	and	condition	using	the	Differential	Evolution	algorithm	

described	 in	Mullen	et	al.	 (2011)	with	a	population	size	of	60	members	run	over	150	

iterations.	On	every	iteration,	we	simulated	3000	decisions	and	response	times	for	all	

unique	combinations	of	taste	and	healthiness	tradeoffs	in	the	participant’s	choice	set	

using	 each	 population	 member’s	 six	 tSSM	 parameters.	 We	 then	 computed	 the	

likelihood	of	the	observed	data	given	the	distribution	generated	by	the	3000	simulated	

choices	 for	 a	 given	 set	of	parameters.	On	each	 subsequent	 iteration,	 the	population	

evolves	toward	a	set	of	parameters	that	maximize	the	likelihood	of	the	observed	data	

using	 the	 procedures	 described	 by	Mullen	 and	 colleagues	 (Mullen	 et	 al.,	 2011).	 The	

upper	and	lower	bounds	on	the	search	space	for	each	of	the	6	parameters	are	listed	in	

Table	 S17.	 The	 ratings	 for	 taste	 and	 healthiness	 were	 z-scored	 across	 all	 available	

ratings	of	each	type	for	the	whole	set	of	participants	in	each	study.	

Lastly,	we	also	fit	a	standard	SSM	to	all	datasets	using	the	same	procedures	as	

the	 tSSM,	except	 that	 the	equation	omitted	 the	relative-start-time	parameter,	which	

meant	that	both	tastiness	and	healthiness	were	constrained	to	enter	into	the	evidence	

accumulation	process	at	the	same	time.	

We	 also	 note	 that	 we	 fit	 the	 tSSM	 using	 two	 levels	 of	 resolution	 for	 the	

tastiness	 and	 healthiness	 ratings	 in	 the	 GFC	 and	 TDCS	 studies.	 The	 tastiness	 and	

healthiness	ratings	from	these	two	studies	were	collected	on	a	426-point	visual	analog	

scale.	We	initially	fit	the	tSSM	using	the	426-point	ratings	scale.	We	also	estimated	the	

fits	after	first	reducing	the	resolution	to	10	equally-sized	bins	(i.e.,	42.6	points	per	bin)	

for	both	taste	and	health.	Both	versions	yielded	very	similar	results,	but	the	estimation	

proceeded	considerably	faster	when	using	the	binned	ratings	because	this	reduced	the	

number	of	unique	combinations	of	attributes	and	therefore	the	number	of	simulations	

required	 for	 the	 fitting	procedure.	We	report	 the	parameter	values	and	 results	 from	

the	model	with	binned	ratings	for	these	studies.	

	

Tests	of	parameter	recovery	

In	 order	 to	 determine	 the	 tSSM’s	 ability	 to	 recover	 known	 parameter	 values,	 we	

simulated	choices	and	reaction	times	using	various	combinations	of	the	ωtaste,	ωhealth,	

and	RST	parameters.	We	then	fit	these	simulated	data	to	test	the	ability	of	the	model	
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to	recover	the	generating	parameters.	To	generate	the	simulated	choices,	we	took	the	

following	5	parameter	values	for	the	attribute	weightings	and	3	values	for	RST:	ωtaste:		

[-1,	 -0.25,	 0.25,	 1];	 ωhealth:	 [-1,	 -0.25,	 0.25,	 1];	 RST:	 [-0.2,	 0,	 0.2].	 	 The	 full	 set	 of	

combinations	of	these	parameter	values	yields	48	possibilities,	however,	we	excluded	

cases	where	both	ωtaste	and	ωhealth	=	 0.25	or	 -0.25,	 given	 these	were	 redundant	with	

combinations	where	both	ωtaste	and	ωhealth	=	 1	 or	 -1.	 This	 resulted	 in	 choice	datasets	

generated	from	42	different	combinations	of	weighting	and	RST	parameter	values.	

		

We	used	the	median	values	fitted	from	the	TDCS	study	data	for	the	other	three	tSSM	

parameters	in	all	simulations	(threshold	=	1.26,	nDT	=	0.76,	bias	=	-0.08).	To	simulate	

taste	 and	 health	 value	 differences,	we	 combined	 all	 19	 possible	 differences	 in	 taste	

and	 health	 ratings	 (i.e.	 -5	 to	 +5)	 from	 this	 study,	 resulting	 in	 361	 value	 difference	

combinations	and	then	sampled	(with	replacement)	from	these	combinations	to	create	

60	 virtual	 trials.	 The	median	 threshold,	 nDT,	 and	 bias	 parameter	 values	 and	 the	 60	

value-difference	virtual	trials	were	used	together	with	each	of	the	18	combinations	of	

taste	and	health	parameters	to	simulate	choice	data	100	times.			

In	 order	 to	 test	 the	 accuracy	 of	 our	 DDM	 in	 recovering	 the	 ωtaste,	 ωhealth,	 and	 RST	

parameters	 used	 for	 generating	 the	 simulated	 data,	 we	 compared	 the	 posterior	

estimates	of	the	mean	differences	for	the	simulated	and	recovered	parameters	using	a	

Bayesian	 t-like	 test	 (BEST	 R	 Package,	 version	 3.1.0	 (Kruschke,	 2013)),	 which	 in	 turn	

relies	on	JAGS	(version	3.3.0	(Plummer,	2003).			

Specifically,	we	compared	the	differences	between	the	generating	and	recovered	taste	

and	health	 parameters	 against	 zero.	 Finally,	we	 examined	whether	 these	 estimation	

errors	 were	 correlated	 across	 the	 taste	 and	 health	 parameters	 using	 pairwise	

Pearson’s	correlations.	For	all	correlations	reported	in	this	paper,	rho-values	represent	

the	mean	 of	 the	 posterior	 distribution	 generated	 by	 a	 Bayesian	 correlation	 analysis	

implemented	 based	 on	 R	 and	 JAGS	 code	 from	 the	 blog,	

doingbayesiandataanalysis.blogspot.com,	that	accompanies	the	“Doing	Bayesian	Data	

Analysis”	book	by	Kruschke	(2015).	
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Correspondence	of	tSSM	health	delay	estimates	with	SHHR’s	estimates	

With	 their	mousetracking	method,	 SHHR	were	 able	 to	 estimate	 to	within	 a	 fraction	

(1/101)	of	each	 response	 time	when	health	 first	became	and	 remained	significant	 in	

each	 choice	 (their	 Figure	4b).	 In	order	 to	 compare	our	estimate	 (which	was	given	 in	

seconds	and	represents	a	mean	value	across	all	of	a	given	set	of	choices)	to	the	one	of	

SHHR,	we	 transformed	 the	mouse-tracking	estimates	of	 start	 times	 for	health	 into	a	

mean	 estimate	 in	 seconds	 as	 well.	 Specifically,	 we	 took	 the	mean	 of	 the	 estimated	

trial-wise	 health	 start	 time	 bins	 for	 each	 participant	 and	 multiplied	 it	 by	 the	

participant’s	mean	RT,	then	divided	by	101.	SHHR’s	method	was	only	able	to	estimate	

health	start	times	for	N=18	(out	of	28)	participants	and,	therefore,	we	calculated	the	

Bayesian	 equivalent	 of	 Pearson’s	 correlation	 coefficient	 between	 tSSM	 and	 mouse-

tracking	estimates	of	health	start	times	in	this	subset	of	participants.		

	

Relationship	between	relative-start-times	and	other	tSSM	parameters	

To	 explain	 how	 individual	 differences	 in	 the	 relative-start-time	 for	 healthiness	were	

related	to	the	other	tSSM	parameters,	we	estimated	the	model	specified	in	equation	1	

below:	

	

Eq.	(1)	RST	=		β0	+	β1	ωtaste		+	β2	ωhealth		+	β3	nDT	+	β4	Thr	+	β5	Bias	*	Study	+	e	

	

Note	that	we	interacted	the	Bias	parameter	from	the	tSSM	with	a	dummy	variable	for	

the	Study,	because	the	bias	measures	different	answers	across	studies	given	the	task	

designs	(e.g.	left/right,	eat/do	not	eat).	

	

	

	

Out	of	sample	tests	for	model	fit	robustness	and	predictive	accuracy	

Trial	level	

To	examine	the	generalizability	of	the	tSSM	fits	at	the	trial	level,	we	tested	whether	we	

could	predict	an	individual’s	decisions	in	one	set	of	choices	(the	test	set)	based	on	the	

fits	to	a	separate	set	of	choices	(the	training	set).	When	dividing	the	trials	into	training	

and	 test	 sets,	 we	 either	 trained	 on	 one	 entire	 session	 and	 predicted	 choices	 in	 the	
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other	(GFC	study)	or	trained	on	odd	trials	and	predicted	choices	for	even	trials	in	the	

same	session	(TDCS	study).	We	made	predictions	for	each	test	trial	by	simulating	the	

binary	choice	outcome	 [0,1]	100	 times	using	 the	 tSSM	parameters	 fit	 to	 the	 training	

data,	 and	 then	 rounding	 the	 mean	 of	 the	 100	 simulations	 to	 form	 a	 binary	 choice	

prediction.	 From	 these	 predictions,	 we	 then	 calculated	 the	 balanced	 accuracy	

according	to	Equation	2:	

	

Eq.	(2)	Balanced	Accuracy	=	!
!

!"
!"!!"

+  !"
!"!!"

,	

	

where	TP	and	TN	represent	the	number	of	correctly	predicted	(i.e.,	true)	positives	and	

negatives,	while	FN	and	FP	represent	the	number	of	 incorrectly	predicted	(i.e.,	 false)	

negatives	and	positives,	respectively.		

	

Individual	level	

We	 also	 computed	 out-of-sample	 predictions	 about	 dietary	 self-control	 at	 the	

individual	level	both	within	and	across	studies.	When	predicting	individual	differences	

within	a	single	study,	we	used	a	leave-one-subject-out	procedure.	We	first	fit	the	linear	

model	 specified	by	Equation	 (3)	using	N-1	participants	N	 times	 (where	N	 is	 the	 total	

number	of	participants	 in	the	study),	 leaving	out	a	different	participant	 (i.e.,	 the	test	

data)	 in	each	 iteration.	We	 then	predicted	self-control	 for	each	participant	based	on	

the	independently	estimated	set	of	regression	coefficients	and	calculated	the	Bayesian	

equivalent	of	Pearson’s	correlation	coefficient	and	mean	squared	error	(MSE)	between	

the	predicted	and	actual	self-control	levels	across	all	participants.		

	

Eq.	(3)	Self-Control	=	β0	+	β1	RST	+	β2	ωtaste	+	β3	ωhealth	+	β4	Thr	+	β5	nDT	+	β6	Bias	+	e		

	

We	 also	 used	 Eq.	 3	when	predicting	 individuals’	 self-control	 levels	 across	 studies.	 In	

those	tests,	we	fit	Eq.	3	to	all	participants	in	a	given	study	and	then	used	those	fitted	

coefficients	to	predict	self-control	for	all	participants	in	the	other	three	studies.		
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Changes	in	self-control	between	conditions	

To	 examine	 how	 well	 changes	 in	 our	 tSSM	 parameters	 captured	 changes	 in	 self-

control,	we	fit	the	linear	model	specified	by	Equation	4	for	all	participants	in	the	HMR	

and	TDCS	studies.	

	

Eq.	(4)	ΔSelf-Control	=	β0	+	β1RSTbase	+	β2ωhealth	base	+	β3ωtaste	base	+	β4Thrbase	+	β5nDTbase	+	

β6Biasbase	+	β7ΔRST	+	β8Δωhealth		+	β9Δωtaste		+	β10ΔThr	+	β11ΔnDT	+	β12Δbias	+	e		

	

Note	 that	 the	 regressors	 with	 the	 subscript	 base	 denote	 the	 natural	 condition	 in	

dataset	 HMR	 and	 the	 baseline	 condition	 in	 TDCS.	 The	 delta	 (Δ)	 regressors	 were	

generated	by	subtracting	the	parameters	for	the	stimulation	and	health	condition	from	

the	 baseline	 parameter	 estimates	 in	 each	 study.	 The	 same	 applies	 to	 the	

explanandum,	 where	 we	 also	 subtracted	 self-control	 levels	 in	 the	 baseline/natural	

condition	 from	 the	 self-control	 levels	 under	 stimulation/health	 cue	 for	 each	

participant.	

	

Comparing	response	times	during	rating	sessions	to	relative	start	times	

We	used	response	times	during	the	rating	sessions	as	an	estimate	of	the	participants’	

fluency	 in	 recalling	or	 constructing	 taste	 and	healthiness	 attributes.	 To	 test	whether	

the	relative	start	time	(RST)	depended	on	the	speed	of	ratings	for	either	health	or	taste	

aspects,	we	estimated	the	following	model	for	each	participant:	

	

(Eq.	5)	RST	=	β0	+	β1	mRTtaste	+	β2mRThealth	+	β3nDT	+	e	

	

where	mRT	is	the	mean	reaction	time	over	all	taste	ratings	or	health	ratings	that	the	

participant	made	at	the	beginning	of	the	experiment,	and	nDT	is	the	non-decision	time	

estimated	 in	 the	 tSSM.	We	conducted	 this	 analysis	using	 the	data	 from	 the	baseline	

session	 in	 our	 tDCS	 experiment	 (i.e.,	 our	 largest	 set	 of	 data	 from	 a	 single	 choice	

paradigm/context).	
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Modeling	changes	in	behavior	under	tDCS	

We	first	 fit	 the	hierarchical	regression	model	specified	 in	Eq.	6	to	the	odd-numbered	

baseline	 trials	 in	 our	 tDCS	 dataset.	 Based	on	 those	 fitted	 parameters,	we	 generated	

predictions	about	the	probability	of	self-control	success	 in	even-numbered	trials	as	a	

function	 of	 tDCS	 polarity	 (anodal,	 cathodal,	 sham),	 stimulation	 session	 (baseline,	

active),	health	difference,	taste	difference,	and	participant	identity.	We	then	estimated	

Eq.	6	on	all	even-numbered	trials	for	which	the	probability	of	self-control	success	was	

predicted	to	be	between	0.2	and	0.8	(Table	S7).	

	

To	examine	whether	stimulation	over	left	dlPFC	caused	changes	in	dietary	self-control,	

we	 fit	 a	 Bayesian	 hierarchical	 logistic	 regression	 model	 to	 the	 tDCS	 dataset.	 The	

population-level	regressors	for	this	model	are	given	in	condensed	notation	in	Equation	

6.		

	

Eq.	(6)	Self-Control	=	(TD	+	HD)*stimulationON*stimulationType	+	e	

	

Here,	 TD	 and	 HD	 denote	 the	 absolute	 value	 of	 taste	 and	 healthiness	 difference	

between	foods	on	each	trial,	stimulationON	was	a	dummy	variable	taking	the	value	1	

under	 stimulation	 and	 0	 at	 baseline,	 and	 stimulationType	 was	 a	 factor	 with	 3	

categories	 (Anodal,	Cathodal,	 and	Sham).	The	model	 included	 the	main	effects	of	all	

regressors	as	well	as	the	two	and	three-way	interactions	between	attribute	differences	

and	 stimulation	 Type	 and	 session	 (i.e.,	 baseline	 vs	 stimulation	 on).	 The	 model	 also	

included	subject-specific	intercepts,	stimulation	effects,	and	slopes	for	HD	and	TD	(see	

Table	S7).	
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Figures	and	tables	

	

	
	
Figure	 1.	 Simulated	 examples	 of	 asynchronous	 evidence	 accumulation.	 Both	 panels	
show	two	example	trials	in	which	the	choice	outcome	was	determined	by	a	faster	but	
weaker	 attribute	 or	 a	 slower,	 stronger	 attribute.	 The	 tastier	 choice	 is	 arbitrarily	
assigned	to	the	+1	boundary,	while	the	healthier	choice	is	represented	by	-1.	(a)	In	this	
example,	tastiness	 is	considered	before	healthiness,	as	 indicated	by	the	red	and	blue	
vertical	dotted	 lines,	 respectively.	For	the	first	several	milliseconds	only	taste-related	
evidence	 (red	 solid	 lines)	 is	 accumulated.	 In	 the	 case	 of	 trial	 A1,	 the	 cumulative	
evidence	reaches	the	threshold	before	healthiness	 is	ever	considered	and	a	choice	in	
favor	of	the	tastier	 item	is	made.	However,	 in	trial	A2,	the	cumulative	evidence	does	
not	 reach	 the	 threshold	 before	 healthiness	 begins	 to	 be	 considered	 and	 the	
combination	 of	weighted	 taste	 and	 healthiness	 attributes	 (red	 +	 blue	 =	 purple	 solid	
line)	drive	the	choice	to	be	made	in	favor	of	the	healthier	option.	Trials	A1	and	A2	are	
identical	in	all	respects	and	the	two	different	outcomes	are	the	result	of	variability	in	
the	sampling	noise	over	time.	(b)	Simulated	trials	B1	and	B2	are	analogous	to	A1	and	
A2,	 with	 the	 relative	 timing	 and	weighting	 parameters	 swapped	 between	 taste	 and	
healthiness	such	that	healthiness	(blue	solid	line)	now	enters	into	consideration	before	
tastiness.	
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Figure	2.	Panel	(a)	shows	the	relative	start	times	in	seconds	for	healthiness	compared	
to	tastiness	for	all	participants	 in	each	study.	Positive	values	indicate	that	tastiness	is	
considered	 before	 healthiness	 and	 negative	 values	 that	 healthiness	 is	 considered	
before	 tastiness.	 In	 each	 column	every	dot	 is	 a	 separate	participant.	 The	 thick	black	
horizontal	bars	represent	within-study	means	and	the	rectangular	bands	 indicate	the	
95%	 highest	 density	 intervals	 (HDIs).	 Dataset	 abbreviations:	 SHHR	 =	 data	 from	 the	
computer-mouse	 response	 trials	 in	Sullivan	et	al	2015;	HMR	=	data	 from	the	natural	
choice	 condition	 in	 Hare	 et	 al	 2011;	 GFC	 =	 newly	 collected	 data	 from	 the	 first	
session/day	 of	 an	 experiment	 combining	 gambles	 and	 food	 choices;	 TDCS	 =	 newly	
collected	data	from	the	pre-stimulation	baseline	choices	in	our	tDCS	experiment.	The	
scatterplot	in	(b)	plots	each	participants’	relative	timing	data	against	attribute	weights,	
separated	 by	 whether	 the	 relative	 weighting	 of	 tastiness	 and	 healthiness	 and	 their	
relative	 timing	 are	 aligned	 (gray	 circles)	 or	 whether	 there	 is	 misalignment	 between	
weighting	and	timing	 (i.e.,	 the	highest	weighted	 is	not	 the	 fastest;	black	circles).	The	
highest	weighted	 and	 fastest-to-be-considered	 attributes	were	misaligned	 in	 38%	 of	
participants.		
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Figure	3.	Choice	patterns	and	tSSM	parameter	estimates	for	the	HMR	study	by	
condition.	(a)	Proportion	of	times	that	subjects	chose	to	eat	the	food	(i.e.,	they	
responded	“yes”	or	“strong	yes”)	as	a	function	of	attention	cue	type	(Health,	Natural,	
or	Taste)	and	taste-health	combination	of	food	under	consideration	(Tasty	or	Untasty	
crossed	with	Healthy	or	Unhealthy).	In	terms	of	mean	choice	proportions,	directing	
attention	towards	healthiness	decreased	the	proportion	of	choosing	healthy-untasty	
items	and	decreased	the	proportion	of	choosing	unhealthy-tasty	items	compared	to	
the	natural	condition.	The	changes	in	choices	during	Health	blocks	were	accompanied	
by	higher	weights	and	faster	relative-start-times	for	healthiness.	(b)	Compared	to	the	
natural	condition,	attention	cues	to	health	resulted	in	a	higher	drift	weight	(arbitrary	
units)	for	the	corresponding	attribute	health	attribute	compared	to	the	natural	
condition	(blue	shading),	whereas	no	such	effect	was	observed	for	the	drift	weights	of	
the	tastiness	attribute	(red	shading).	(c)	Attention	cues	to	health	also	led	to	a	faster	
relative	start	time	(seconds)	for	health	compared	to	taste	attributes	compared	to	
natural	blocks	(green	shading).	For	all	plots,	the	dots	within	each	column	represent	the	
value	for	a	single	participant	in	the	sample.	Darker	shading	indicates	that	multiple	
participants	share	the	same	value	for	that	parameter.	Black	horizontal	bars	indicate	
condition	means	and	white,	blue,	red,	or	green	shaded	rectangles	indicate	the	95%	
HDIs	for	each	measure.	The	gray	shaded	bars	in	each	plot	serve	to	visually	separate	the	
columns	for	each	condition	and	demarcate	the	zero-points	on	the	y-axes.	
	
	
	
	
	

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2018. ; https://doi.org/10.1101/434860doi: bioRxiv preprint 

https://doi.org/10.1101/434860
http://creativecommons.org/licenses/by-nc/4.0/


	 46	

	
	
	
Figure	4.	Out-of-sample	predicted	and	observed	changes	in	self-control	(SC)	choices	
from	the	natural	choice	cue	baseline	to	health	cue	choices	in	the	HMR	study.	Each	dot	
represents	one	participant.	The	tSSM	parameter	changes	predicted	the	self-control	
change	from	baseline	significantly,	as	indicated	by	the	correlation	between	the	
difference	of	actual	self-control	levels	(y-axis)	and	the	out-of-sample	predicted	self-
control	levels	based	on	the	tSSM	estimates	(r	=	0.61	(PP(r	>	0)	=	.99995,	95%	HDI	=	
[0.383,0.804]).	The	solid	line	indicates	the	best	linear	fit	and	the	gray	shading	indicates	
the	95%	confidence	interval.	
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Figure	 5.	Changes	 in	 self-control	 (SC)	 following	 tDCS	over	 left	dlPFC.	This	plot	 shows	
the	changes	in	self-control	under	stimulation	compared	to	baseline	across	stimulation	
groups.	Each	dot	represents	the	difference	between	stimulation	or	sham	and	baseline	
in	 one	 participant.	 Left	 dlPFC-targeted	 cathodal	 (but	 not	 anodal)	 stimulation	
significantly	 decreased	 self-control	 compared	 to	 sham	 stimulation,	 PP(cathodal	
polarity	X	active	stimulation	interaction	coef.	<	0)	=	0.96.	Black	horizontal	bars	indicate	
group	means	and	rectangular	bands	depict	the	95%	HDIs.	The	gray	shaded	bars	in	each	
plot	serve	to	visually	separate	the	columns	for	each	condition	and	demarcate	the	zero-
points	on	the	y-axes.	
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Figure	6.	Out-of-sample	predicted	and	observed	self-control	in	the	TDCS	study	across	
all	stimulation	conditions.	Each	dot	represents	one	participant.	(a)	The	tSSM	fits	to	the	
baseline	choices	significantly	predicted	out-of-sample	self-control	during	the	baseline,	
pre-stimulation	choice	session,	r	=	0.83	(PP(r	>	0)	>	0.99995,	95%	HDI	=	[0.78,0.87]).	(b)	
The	 tSSM	 fits	 to	 the	 stimulation	 session	 choices	 also	 predicted	 out-of-sample	 self-
control,	r	=	0.90,	(PP(r	>	0)	=	0.99995,	95%	HDI	=	[0.87;	0.92].	(c)	Lastly,	changes	in	the	
tSSM	 parameters	 between	 the	 baseline	 and	 stimulation	 choice	 sessions	 significantly	
predicted	 intra-individual	 changes	 in	 self-control	 between	 sessions	 regardless	 of	
stimulation	condition	(r	=	0.52,	PP	(r	>	0)	=	0.99995,	HDI	=	[0.42,0.63]).	The	solid	lines	
indicate	the	best	linear	fit	and	the	gray	shading	indicates	the	95%	confidence	intervals.	
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Figure	 7.	 Changes	 in	 tSSM	 parameters	 during	 tDCS	 over	 left	 dlPFC.	 (a)	 Cathodal	
stimulation	 increased	 the	 weighting	 of	 taste	 attributes	 (ωtaste,	 red	 shading	 on	 right)	
relative	to	baseline	choices,	PP(Cath	ST	>	Cath	BL)	=	0.99).	This	change	from	baseline	
was	greater	under	cathodal	stimulation	than	sham,	PP((Cath	ST	–	Cath	BL)	>	(Sham	ST	
–	Sham	BL))	=	0.98).	The	red	lines	and	stars	highlight	this	main	effect	and	interaction.	
Anodal	 stimulation	 did	 not	 lead	 to	 significant	 changes	 in	 attribute	 weighting	
parameters,	and	neither	tDCS	protocol	affected	drifts	weights	for	healthiness	(ωhealth,	
blue	shading	on	left).	The	weighting	strength	parameters	are	plotted	in	arbitrary	units.	
(b)	 tDCS	 had	 no	 significant	 effect	 on	 the	 RST	 parameters	 (plotted	 in	 seconds,	 green	
shading).	Black	horizontal	bars	 indicate	group	means	and	blue,	 red,	or	green	shaded	
rectangles	 indicate	 the	 95%	HDIs	 for	 each	 parameter.	 The	 gray	 shaded	 bars	 in	 each	
plot	serve	to	visually	separate	the	columns	for	each	condition	and	demarcate	the	zero-
points	on	the	y-axes.	
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Table	1.	Fitted	tSSM	parameters	for	each	study	and	condition	

Dataset	 Parameter	estimate	

(1)	SHHR	 ωtaste	 ωhealth	 Thr	 nDT	 RST	 Bias	

Keyboard	
trials	

1.42	±	
0.45	

0.12	±	
1.03	

1.04	± 
0.28	

0.65	± 
0.14	

0.26±	
0.36	

0.11	± 
0.18	

Mouse		
trials	

0.94	±		
0.36	

0.27	±		
0.32	

1.36	±		
0.25	

0.77± 
0.16	

0.14±		
0.34	

0.07±		
0.19	

(2)	HMR	 ωtaste	 ωhealth	 Thr	 nDT	 RST	 Bias	

Natural		
Choice	

1.37±		
0.79	

0.33±	 
1.33	

1.27	±		
0.28	

0.86±		
0.12	

0.42±		
0.54	

0	±	 
0.37	

Health		
Cue	

0.98	±		
1.12	

1.11	±		
0.60	

1.39±	
	0.36	

0.85	±	
0.14	

-0.06	±	 
0.55	

-0.22	±	
0.33	

Taste		
Cue	

1.42	±		
0.96	

0.47	±	 
0.99	

1.36	±		
0.36	

0.83	±	
0.14	

0.28±		
0.49	

0.00±		
0.31	

(3)	GFC	 ωtaste	 ωhealth	 Thr	 nDT	 RST	 Bias	

Session	1	
1.11	± 
0.35	

-0.07	± 
0.65	

1.29	± 
0.17	

0.84	± 
0.13	

0.3	± 
0.37	

-0.01	± 
0.08	

Session	2	
1.19	± 
0.36	

-0.29	± 
0.62	

1.19	± 
0.22	

0.75	± 
0.12	

0.29	± 
0.37	

-0.03	± 
0.12	

(4)	tDCS		 ωtaste	 ωhealth	 Thr	 nDT	 RST	 Bias	

Sham		
Baseline	

0.74	± 
0.67	

1.01	±	 
0.5	

1.29	± 
0.23	

0.77	± 
0.16	

-0.21	±		
0.4	

-0.11±	
0.26	

Sham	
Stimulation	

0.67	±		
0.61	

1.03	±		
0.55	

1.21	±	 
0.21	

0.71	±	
0.14	

-0.1	±		
0.34	

-0.14	±	
0.24	

Cathodal	
Baseline	

0.63	±		
0.81	

1.01	±	 
0.62	

1.26	±		
0.24	

0.75	±	
0.14	

-0.05	±	
0.44	

-0.07	±	
0.24	

Cathodal	
Stimulation	

0.92	±		
0.45	

1.07	±	 
0.73	

1.19	±		
0.21	

0.69	±	
0.11	

-0.03	±	
0.38	

-0.03	±	
0.22	

Anodal	
Baseline	

0.6	±	 
0.84	

1.15	±	 
0.48	

1.25	±		
0.2	

0.75	±	
0.13	

-0.09	±	
0.41	

-0.08	±	
0.24	

Anodal	
Stimulation	

0.85	±	 
0.6	

1.19	±	 
0.62	

1.16	±		
0.2	

0.7	±		
0.12	

-0.09	±	
0.38	

-0.04	±	
0.25	

	
All	parameters	are	reported	as	mean	±	standard	deviation.	Abbreviations:		
𝝎𝒕𝒂𝒔𝒕𝒆=	weighting	factor	determining	how	much	the	difference	in	taste	attributes	
contributes	to	the	evidence	accumulation	rate.		
𝝎𝒉𝒆𝒂𝒍𝒕𝒉=weighting	 factor	 determining	 how	much	 the	 difference	 in	 health	 attributes	
contributes	to	the	evidence	accumulation	rate.	
Thr	=	evidence	threshold	for	responding.	
nDT=non-decision	time	and	corresponds	to	the	starting	time	for	taste	in	our	model.		
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RST:	relative	start	time	for	health	(timing	relative	to	start	of	taste	processing,	positive	
values	denote	that	health	enters	the	process	later	than	taste).	
Bias:	starting	point	bias	for	the	evidence	accumulation	process	(zero	=	no	bias).	
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Table	2.	Changes	in	tSSM	parameters	between	attention	cued	conditions.	

	 	 Mean	

difference		

95%	HDI	 Posterior	

Probability	

A.	Taste	weighting	(ωtaste)	

Natural	-	Health	 0.354	 [-0.113	0.832]	 0.933	

Taste	-	Health	 0.455	 [-0.088	1.003]	 0.951	

B.		Health	weighting	(ωhealth)	

Health	-	Natural		 0.746	 [0.188	1.325]	 0.995	

Health	-	Taste	 0.633	 [0.245	1.028]	 0.999	

C.	Relative	start	time	of	health	(RST)	

Natural	-	Health		 0.469	 [0.2	0.748]	 0.999	

Taste	-	Health	 0.336	 [0.121	0.548]	 0.999	

	
This	table	shows	the	effects	of	attention	cues	on	the	tSSM	parameters	estimated	from	
choice	 data	 in	 HMR’s	 study.	 Changes	 in	 relative	 starting	 times	 (RST),	 taste,	 and	
healthiness	 weighting	 parameters	 induced	 by	 the	 experimental	 conditions	 that	 are	
shown	in	bold	were	significantly	different	from	zero.	Mean	differences	and	their	95%	
highest	density	intervals	(HDI)	were	computed	based	on	100,000	samples	drawn	from	
the	 posterior	 distributions	 of	 each	 parameter	 (Kruschke,	 2013).	 The	 third	 column	
displays	 the	 posterior	 probabilities	 that	 differences	 are	 greater	 than	 zero.	 	 All	
comparisons	were	made	so	that	a	priori	predicted	effects	would	be	positive.	
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Table	3.	Linear	regressions	explaining	variation	in	self-control	levels	by	tSSM	
parameter	estimates	in	HMR’s	attention	cuing	study.	
Model	parameter	 Mean	beta	±	SD	 95%	Credible	Interval		

A.	Self-control	by	Condition	and	tSSM	parameters	 	

(Intercept)	 0.03	±	0.10	 [-0.17;	0.23]	

ωtaste	 -0.48	±	0.15	 [-0.77;	-0.19]	

ωhealth	 0.02	±	0.08	 [-0.15;	0.18]	

RST	 0.12	±	0.10	 [-0.08;	0.33]	

Thr	 0.10	±	0.11	 [-0.12;	0.33]	

nDT	 -0.36	±	0.13	 [-0.61;	-0.11]	

bias	 -0.30	±	0.11	 [-0.51;	-0.10]	

Health	Cue	 -0.19	±	0.17	 [-0.52;	0.14]	

Taste	Cue	 -0.29	±	0.13	 [-0.55;	-0.03]	

ωtaste	X	Health	Cue	 0.25	±	0.2	 [-0.14;	0.64]	

ωtaste	X	Taste	Cue	 0.27	±	0.19	 [-0.09;	0.63]	

ωhealth	X	Health	Cue	 0.61	±	0.21	 [0.20;	1.02]	

ωhealth	X	Taste	Cue	 0.22	±	0.13	 [-0.03;	0.47]	

RST	X	Health	Cue	 -0.63	±	0.16	 [-0.94;	-0.32]	

RST	X	Taste	Cue	 -0.15	±	0.16	 [-0.48;	0.16]	

Thr	X	Health	Cue	 -0.10	±	0.15	 [-0.39;	0.19]	

Thr	X	Taste	Cue	 -0.17	±	0.15	 [-0.47;	0.11]	

nDT	X	Health	Cue	 0.36	±	0.17	 [0.04;	0.68]	

nDT	X	Taste	Cue	 0.19	±	0.17	 [-0.14;	0.50]	

bias	X	Health	Cue	 0.09	±	0.16	 [-0.24;	0.40]	

bias	X	Taste	Cue	 -0.20	±	0.15	 [-0.50;	0.09]	

Bayesian	R2	 0.8	 	

B.	Change	in	self-control	versus	change	in	tSSM	parameters	 	

(Intercept)	 0.19	±	0.04	 [0.12;	0.26]	

Δ	ωtaste	 -0.16	±	0.10	 [-0.35;	0.04]	

Δ	ωhealth	 0.25	±	0.14	 [-0.02;	0.53]	

Δ 	RST	 -0.19	±	0.09	 [-0.37;	-0.02]	

Δ	Thr	 0.04	±	0.05	 [-0.06;	0.14]	

Δ	nDT	 0.10	±	0.07	 [-0.05;	0.25]	

Δ	bias	 -0.03	±	0.07	 [-0.17;	0.11]	

natural	ωtaste		 -0.05	±	0.12	 [-0.28;	0.17]	

natural	ωhealth	 0.23	±	0.14	 [-0.05;	0.50]	

natural	RST	 -0.12	±	0.08	 [-0.29;	0.04]	

natural	Thr	 -0.10	±	0.06	 [-0.22;	0.02]	
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natural	nDT	 0.18	±	0.08	 [0.03;	0.34]	

natural	bias	 0.05	±	0.06	 [-0.07;	0.17]	

Bayesian	R2	 0.75	 	

	

Results	 from	Bayesian	 linear	 regression	models	explaining	self-control	 levels	 (SCL)	by	
attention	cues	and	parameters	of	the	tSSM	in	the	HMR	data.	A)	shows	the	results	of	a	
hierarchical	 linear	 regression	 that	 seeks	 to	 explain	 SCL	 as	 a	 function	 of	 tSSM	
parameters	 and	 attention	 conditions.	 The	 regression	 includes	 random	 intercepts	 for	
each	participant.	B)	shows	the	results	of	linear	regression	testing	if	the	change	in	SCL	
between	the	health	and	natural	cue	conditions	is	associated	with	baseline	(i.e.,	natural	
condition)	 tSSM	 parameters	 and/or	 the	 change	 in	 tSSM	 parameter	 values	 between	
conditions	(i.e.	HC	–	NC).	The	linear	regression	reported	in	part	B	 is	also	the	basis	for	
the	 predictions	 shown	 in	 Figure	 4,	 but	 in	 that	 case	 is	 estimated	 33	 separate	 times,	
leaving	one	participant	out	on	each	iteration.		
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Table	4.	Effects	of	tDCS	over	left	dlPFC	on	tSSM	parameters.	

	 	 Mean	

difference	

95%	HDI	 Posterior	

probability	

A.	Taste	weighting	(ωtaste)	

Baseline	-	Anodal	tDCS	 -0.094	 [-0.23	0.043]	 0.081	

Cathodal	tDCS	-	Baseline	 0.138	 [0.027	0.248]	 0.993	

Baseline	-	Sham	tDCS	 0.072	 [-0.087	0.23]	 0.815	

ΔSham	- Δ	Anodal		 -0.185	 [-0.41	0.047]	 0.053	

𝚫	Cathodal	-	𝚫	Sham	 0.215	 [0.014	0.42]	 0.982	

B.		Health	weighting	(ωhealth)	

Anodal	tDCS	-	Baseline	 0.098	 [-0.023	0.221]	 0.941	

Baseline	-	Cathodal	tDCS	 -0.074	 [-0.246	0.102]	 0.197	

Sham	tDCS	-	Baseline	 0.025	 [-0.082	0.13]	 0.685	

Δ	Anodal	-	Δ	Sham		 0.063	 [-0.093	0.223]	 0.787	

Δ	Sham	-	Δ	Cathodal	 -0.039	 [-0.241	0.164]	 0.349	

C.	Relative	start	time	of	health	(RST)	

Baseline		-	Anodal	tDCS	 -0.002	 [-0.098	0.093]	 0.484	

Cathodal	tDCS	-	Baseline	 0.021	 [-0.095	0.135]	 0.648	

Baseline	-	Sham	tDCS	 -0.103	 [-0.225	0.018]	 0.047	

ΔSham	-	Δ	Anodal	 0.098	 [-0.057	0.251]	 0.895	

ΔCathodal	-	Δ	Sham	 -0.081	 [-0.25	0.086]	 0.171	

	

This	 table	 reports	 changes	 in	 the	 tSSM	 relative-starting-times	 (RST),	 taste,	 and	
healthiness	weighting	parameters	as	a	result	of	tDCS	over	the	left	dlPFC.	Rows	in	bold	
indicate	 changes	 that	 are	 significantly	 different	 from	 zero.	 The	Δ 	symbol	 always	
indicates	a	difference	score	equal	 to	 the	value	 in	 the	stimulation	minus	 the	baseline	
session	 within	 a	 given	 condition.	 Rows	 containing	 this	 symbol	 report	 differences	 of	
differences	 across	 conditions.	 Mean	 differences	 (or	 differences	 of	 differences)	 and	
their	 95%	highest	 density	 intervals	 (HDI)	were	 computed	based	on	 100,000	 samples	
drawn	from	the	posterior	distributions	of	each	parameter.	The	third	column	displays	
the	posterior	probabilities	that	differences	are	greater	than	zero.	All	comparisons	were	
made	so	that	a	priori	predicted	effects	would	be	positive.		 	
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