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Abstract	

Rewards	 usually	 have	 multiple	 attributes	 that	 are	 relevant	 for	 behaviour.	 For	

instance,	 even	 apparently	 simple	 choices	 between	 liquid	 or	 food	 rewards	 involve	

comparisons	of	at	least	two	attributes,	flavour	and	amount.	Thus,	in	order	to	make	

the	 best	 choice,	 an	 organism	 will	 need	 to	 take	 multiple	 attributes	 into	 account.	

Theories	 and	 models	 of	 decision	 making	 usually	 focus	 on	 how	 strongly	 different	
attributes	are	weighted	in	choice,	e.g.,	as	a	function	of	their	importance	or	salience	

to	 the	 decision-maker.	 However,	when	 different	 attributes	 impact	 on	 the	 decision	

process	 is	 a	 question	 that	 has	 received	 far	 less	 attention.	 Although	 one	 may	

intuitively	assume	a	systematic	relationship	between	the	weighting	strength	and	the	

timing	with	which	different	attributes	impact	on	the	final	choice,	this	relationship	is	

untested.	Here,	we	 investigate	whether	attribute	 timing	has	a	unique	 influence	on	

decision	making	 using	 a	 time-varying	 drift	 diffusion	model	 (tDDM)	 and	 data	 from	

four	 separate	 experiments.	 Contrary	 to	 expectations,	 we	 find	 only	 a	 modest	

correlation	 between	 how	 strongly	 and	 how	 quickly	 reward	 attributes	 impact	 on	

choice.	 Experimental	 manipulations	 of	 attention	 and	 neural	 activity	 demonstrate	

that	 we	 can	 dissociate	 at	 the	 cognitive	 and	 neural	 levels	 the	 processes	 that	

determine	the	relative	weighting	strength	and	timing	of	attribute	consideration.	Our	

findings	demonstrate	 that	processes	determining	either	 the	weighting	strengths	or	

the	 timing	of	 attributes	 in	decision	making	 can	adapt	 independently	 to	 changes	 in	

the	 environment	 or	 goals.	 Moreover,	 they	 show	 that	 a	 tDDM	 incorporating	

separable	 influences	 of	 these	 two	 sets	 of	 processes	 on	 choice	 improves	

understanding	and	predictions	of	individual	differences	in	decision	behaviour.	
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Introduction	

Decisions	regularly	involve	comparisons	of	several	attributes	of	the	choice	options.	

Consider	the	example	of	deciding	between	foods	that	differ	in	two	key	attributes,	

tastiness	and	healthiness.	Often	these	attributes	are	misaligned,	creating	a	conflict	

between	the	goal	of	eating	healthy	foods	and	the	desire	to	experience	pleasant	

tastes.	Typically,	we	assume	that	choices	for	the	healthier	or	better	tasting	food	are	

determined	by	the	values	of	these	attributes,	together	with	a	subjective	decision	

weight	that	the	decision	maker	assigns	to	healthiness	and	taste.	The	assumption	that	

reward	attributes	are	subjectively	weighted	in	the	course	of	decision	making	applies	

not	only	to	food	choices,	but	also	to	many	other	types	of	decisions.	In	fact,	it	is	a	

core	feature	of	the	standard	analysis	approaches	for	intertemporal,	social,	and	risky	

decisions	1-4.	Here,	we	show	that	this	common	approach	is	incomplete	because	it	

overlooks	the	possibility	that	reward	attributes	can	enter	into	the	decision	process	at	

different	times	(in	addition	to	having	different	weighting	strengths).	Across	several	

food	choice	paradigms,	we	find	that	there	is	considerable	asynchrony	in	when	

tastiness	and	healthiness	attributes	enter	into	consideration.	Furthermore,	we	

demonstrate	that	the	relative	weighting	strengths	(i.e.,	the	degree	to	which	an	

attribute	influences	the	evidence	accumulation	rate)	and	the	onset	times	for	

tastiness	and	healthiness	attributes	in	the	decision	process	have	separable	

influences	on	whether	or	not	people	choose	to	eat	healthier	foods.			

	

We	used	an	adapted	time-varying	sequential	sampling	model	that	allows	for	

separate	attribute	consideration	onset	times	to	better	understand	the	dynamic	

decision	processes	underlying	choices	between	rewards	with	multiple	attributes.	

This	model	allows	us	to	draw	inferences	on	latent	aspects	of	the	decision	process	

from	the	observable	choice	outcomes	and	response	times.	It	is	well	established	that	

direct	measures	and	estimates	of	information	acquisition,	evaluation,	and	

comparison	processes	during	choice	provide	a	key	means	of	testing	predictions	from	

different	models	of	how	stimulus	and	decision	values	are	constructed	or	used.	

Uncovering	such	features	of	the	decision	process	allows	us	to	discriminate	between	

and	evaluate	the	plausibility	of	different	models	that	seek	to	explain	choice	

behaviour	5.	For	example,	choice	models	utilizing	not	only	decision	outcomes	but	
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also	response	times	and	eye-	or	mouse-tracking	data	have	provided	insights	into	

how	and	why	decision-making	is	influenced	by	visual	attention,	time	delays	or	

pressure,	additional	alternatives,	and	earlier	versus	later	occurring	external	evidence	
6-13.	Moreover,	it	has	been	shown	that	dynamic	accumulation	models	utilizing	

response-time	data	provide	a	deeper	understanding	of	decisions	and	make	better	

out-of-sample	predictions	than	reduced	form	models	such	as	logistic	regressions	
14,15.	Here,	we	show	that	we	can	also	use	response-time	data	to	determine	when	

specific	attributes	enter	into	the	decision	process,	in	addition	to	how	strongly	they	

influence	the	evidence	accumulation	rate.	Moreover,	incorporating	this	information	

into	the	model	improves	predictions	about	individual	decision-making	behaviour.		

	

An	important	implication	of	the	finding	that	different	attributes	can	enter	into	the	

choice	process	at	separate	times	is	that	coefficients	from	traditional	regression	

models	(e.g.,	linear,	logit,	or	probit)	will	represent	a	combination	of	both	the	true	

underlying	weight	or	importance	placed	on	each	attribute	and	its	relative	

(dis)advantage	in	processing	time	over	the	decision	period.	Therefore,	any	form	of	

static	or	synchronous	onset	dynamic	model	will	fail	to	fully	capture	the	true	

underlying	choice	generating	process.	By	static	we	mean	models	that	treat	values	or	

value-differences	as	fixed	rather	than	being	actively	constructed.	As	a	consequence,	

even	though	such	models	may	explain	multi-attribute	choice	patterns	relatively	well	

if	the	relationship	between	attribute	weighting	and	timing	is	fixed	or	sufficiently	

stable,	they	will	fail	to	explain	or	predict	alterations	in	decision	behaviour	if	attribute	

weights	and	processing	onset	times	can	change	independently	in	response	to	

external	environmental	features	or	changes	in	internal	cognitive	strategies.	The	

plausibility	of	this	latter	scenario	is	underlined	by	mouse-tracking	experiments	16,17	

showing	that	different	attributes	(taste,	healthiness)	of	the	same	food	reward	can	

enter	into	the	decision	process	at	separate	times.	However,	the	fundamental	

question	of	whether	the	relationship	between	attribute	weighting	strength	and	

timing	is	stable	or	instead	flexible	and	context-dependent	has	not	yet	been	

addressed.			

We	addressed	this	question	using	an	adapted	sequential	sampling	model	that	

quantifies	both	the	weight	given	to	each	attribute	and	its	temporal	onset	during	the	
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decision	process.	This	allows	us	to	explicitly	measure	whether	the	weighting	strength	

and	timing	with	which	different	attributes	impact	on	choice	are	determined	by	a	

unitary	process	(or	a	set	of	consistently	linked	processes),	or	if,	instead,	attribute	

timing	and	weighting	are	the	results	of	separable	processes.	By	modelling	choices	

from	four	separate	datasets,	which	measured	decision	behaviour	under	different	

experimental	manipulations	(Figure	1),	we	show	that	attribute	timing	and	weighting	

are	determined	by	dissociable	decision	mechanisms.	For	example,	we	find	that	

explicitly	instructing	individuals	to	consider	either	tastiness	or	healthiness	during	the	

choice	process	exerts	separate	effects	on	attribute	weighting	strength	and	timing.	In	

another	experiment,	we	show	that	transcranial	direct	current	stimulation	(tDCS)	

over	the	left	dlPFC	during	food	decisions	has	a	selective	effect	on	attribute	weighting	

strength	but	not	timing,	demonstrating	the	separability	of	the	underlying	neural	

processes.	

	

	

	

	

Figure	1.	Details	of	the	different	food	choice	tasks	used	in	each	study.	(a)	On	each	trial	in	the	mouse	
response	trajectory	(MRT)	task	used	by	Sullivan	et	al	16,	participants	first	saw	a	start	screen	and	had	to	
respond	 by	 continuously	 moving	 the	 mouse	 toward	 the	 option	 they	 wanted	 to	 choose	 until	 they	
reached	the	box	that	contained	the	desired	 item.	 (b)	 In	our	gambles	plus	 food	choices	 (GFC)	study,	
participants	chose	between	two	foods	without	ever	being	instructed	to	think	about	healthiness.	They	
had	 up	 to	 3	 seconds	 to	 make	 their	 choice	 on	 a	 4-point	 scale	 ranging	 from	 strongly	 prefer	 left	 to	
strongly	prefer	 right.	 Intermixed	between	the	 food	choices	were	trials	on	which	participants	had	to	
select	between	decks	of	 cards	 for	monetary	 rewards.	 (c)	 In	 the	 instructed	attention	cues	 (IAC)	 task	
used	by	Hare	 et	 al,	 18	 cues	 to	 consider	 a	 specific	 attribute	or	 choose	naturally	were	depicted	 for	 5	
seconds	before	each	choice	block	of	10	trials.	Participants	then	had	3	seconds	to	make	their	choice	on	
a	 4-point	 scale	 from	 strong	 no	 to	 strong	 yes.	 (d)	 In	 our	 TDCS	 study,	 the	 reference	 food	 for	 the	
upcoming	block	was	shown	for	3	seconds	before	each	block	began.	During	each	block,	a	series	of	10	
different	foods	were	shown	together	with	a	4-point	scale	from	strong	no	to	strong	yes	(in	favour	of	
eating	 the	 item	 shown	 over	 the	 reference).	 The	 identity	 of	 the	 reference	 food	was	written	 in	 text	
below	each	alternative	shown	on	the	screen	as	depicted	in	panel	d.	
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Results	
	
	

We	adapted	the	traditional	drift	diffusion	modelling	(DDM)	framework		19-21	to	allow	

for	each	attribute	in	a	multi-attribute	decision	problem	to	enter	into	the	evidence	

accumulation	process	at	separate	times	(Figure	2a).	We	chose	the	DDM	as	a	starting	

point	because	this	type	of	sequential	sampling	model	is	relatively	simple,	yet	has	

often	been	shown	to	be	useful	in	explaining	behaviour	across	many	domains	21	(see	

Supplemental	section	2.1	for	further	discussion	of	this	modelling	choice).	We	refer	to	

this	modified	DDM-like	model	as	a	time-varying	DDM	(tDDM)	because	the	separate	

consideration	onset	times	for	each	attribute	cause	the	drift	rate	to	vary	over	time	

within	a	choice.	The	full	details	of	this	tDDM	are	described	in	the	Methods	section,	

but	briefly	the	relevant	addition	is	a	feature	allowing	for	differences	in	how	soon	

choice	evidence	related	to	each	attribute	begins	to	be	considered.	Specifically,	we	

include	a	free	parameter	(relative	start	time	(RST))	estimating	how	quickly	one	

attribute	begins	to	influence	the	rate	of	evidence	accumulation	relative	to	another.		

The	drift	rate	determining	the	evidence	update	at	each	time	step	(dt	=	8	ms)	if	taste	

enters	first	is		

		

Eq. 1!   !!  =  !!!! + !!"#!$  ∗  TD + ! > |!"#!" | ∗  !!!"#$! ∗  HD ∗  dt +  noise	

	

While	if	healthiness	enters	first	it	is	

	

Eq. 1!   !!  =  !!!! + ! > |!"#!" | ∗  !!"#!$  ∗  TD +  !!!"#$! ∗  HD ∗  dt +  noise	

	

Thus,	the	times	at	which	the	weighted	value	differences	in	tastiness	and	healthiness	

attributes	(ωtaste*TD	and	ωhealth*HD,	respectively)	begin	to	influence	the	evidence	

accumulation	rate	are	determined	by	!"#.	When	the	conditional	statement	

! > | !"#!" |  is	false,	it	equals	0,	while	if	true	it	equals	1.	Multiplying	one	of	the	two	

weighted	attribute	values	by	0	until	 ! > | !"#!" |  is	true	means	that	that	attribute	

does	not	factor	into	the	evidence	accumulation	process	for	the	initial	time	period	
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determined	by	|RST|.	The	RST	parameter	is	defined	as	the	consideration	start	time	

for	healthiness	minus	the	starting	time	for	tastiness.	Thus,	RST	will	have	a	positive	

values	when	tastiness	enters	into	consideration	first	and	negative	values	when	

healthiness	is	considered	first.	Note	that	the	standard,	synchronous	onset	DDM	is	

equivalent	to	the	specific	case	of	RST	=	0,	and	then	equations	1a	and	1b	are	

equivalent	because	t	is	always	greater	than	(|RST	/	dt|)	and	 ! > | !"#!" |  always	
equals	1.	

	

In	the	food	choices	analysed	here	(Figure	1),	we	specified	the	RST	such	that	it	always	

measures	the	start	time	for	healthiness	relative	to	taste.	In	other	words,	it	measures	

the	amount	of	time	that	passes	between	the	points	at	which	healthiness	versus	

tastiness	attributes	begin	to	influence	the	rate	of	evidence	accumulation.	Based	on	

previous	mouse-tracking	results	from	Sullivan	et	al	16,	our	model	formulation	makes	

the	simplifying	assumption	that	once	an	attribute	comes	into	consideration	it	

continues	to	influence	the	rate	of	evidence	accumulation	until	the	choice	is	made.	

Model	comparisons	testing	this	assumption	showed	that	the	different	starting	time	

formulation	fit	the	data	better	than	DDMs	that	allowed	for	differential	attribute	

consideration	end	times,	both	different	start	and	end	times,	or	starting	point	biases	

in	favour	of	tastiness	(see	Supplemental	Table	S1).		

	

Furthermore,	we	found	that	the	attribute	timing	asynchrony	estimated	from	

response	times	by	our	tDDM	was	significantly	associated	with	the	results	from	

Sullivan	et	al’s	mouse	response	trajectory	analysis.	Participants	in	that	study	made	

choices	by	moving	a	computer	mouse	from	the	bottom	centre	to	the	upper	left	or	

right	corners	of	the	screen	to	indicate	their	choices.	Sullivan	et	al.	used	an	analysis	

based	on	those	computer-mouse	response	trajectories	to	determine	the	relative	

times	at	which	health	and	taste	attributes	enter	into	the	decision.	We	compared	the	

estimates	they	obtained	from	their	analysis	of	response	trajectories	with	those	we	

computed	using	the	tDDM	for	the	same	data	(see	Table	1).	We	found	that	the	time	

at	which	healthiness	attributes	entered	into	consideration	was	significantly	

correlated	across	the	two	analysis	methods	(r	=	0.503,	Posterior	Probability	of	the	
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correlation	being	positive	(PP(r	>	0))	=	0.991,	95%	Highest	Density	Interval	(HDI)		=	

[0.157;	0.811]).	

	

In	total,	we	tested	the	tDDM	in	272	participants	across	four	datasets	with	different	

experimental	conditions	(mouse	response	trajectory	choices	(MRT),	standard	binary	

choices	in	a	combined	gambling	and	food	choice	(GFC)	task	that	was	repeated	two	

weeks	apart,	choices	following	instructed	attention	cues	(IAC)	toward	taste	or	

healthiness,	and	choices	under	transcranial	direct	current	stimulation	(TDCS)	(see	

Figure	1	and	the	Methods	section	for	details	of	each	study).	The	tDDM	yielded	a	

better	fit	to	choices	and	response	time	(RT)	distributions	than	the	standard	

formulation	of	a	DDM	with	a	single,	synchronous	onset	time	(overall	tDDM	BIC	=	

280632.3,	overall	standard	DDM	BIC	=	281909;	Fig.	S1).	Parameter	recovery	tests	

demonstrated	that	choice	and	RT	patterns	simulated	using	known	values	of	the	

standard	and	tDDM	could	be	recovered	in	each	case	(see	Supplemental	Results	

section	1.1).	Furthermore,	the	tDDM	with	separate	onset	times	also	generated	

significantly	better	out-of-sample	predictions	for	food	choices	than	the	standard	

DDM.	The	mean	squared	error	for	this	tDDM	(0.204)	was	lower	than	that	of	the	

standard	DDM	(0.218)	(posterior	probability	of	greater	accuracy	for	this	tDDM	versus	

a	standard	DDM	=	0.98;	see	also	Table	S19).		
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Figure	 2.	 Patterns	 of	 behaviour	 resulting	 from	 asynchronous	 evidence	 accumulation.	 (a)	 In	 this	
diagram	of	the	drift-diffusion	evidence	accumulation	process,	we	have	assigned	the	tastier	choice	to	
the	upper	boundary	 (+1),	 the	healthier	choice	to	the	 lower	boundary	 (-1),	 the	starting	point	bias	 to	
zero,	 and	 the	 non-decision	 time	 to	 0.7	 s.	 The	 coloured	 lines	 indicate	 several	 example	 food	 choice	
response	 times	 from	 two	 distinct	 types	 of	 people.	 The	 traces	 that	 are	 initially	 coloured	 red	 are	
simulations	of	a	decision-maker	who	considers	tastiness	alone	for	a	period	of	time	before	beginning	
to	consider	healthiness.	The	traces	that	are	initially	blue	are	simulations	from	a	decision-maker	who	
considers	 healthiness	 alone	 for	 that	 same	 initial	 time	window.	 This	 time-varying	 DDM	 includes	 an	
additional	 parameter,	 the	 relative	 start	 time	 (RST),	 that	 represents	 the	 average	 duration	 of	 this	
difference	 in	consideration	start	times	for	each	attribute	(i.e.	 the	distance	 in	time	between	the	two	
vertical	dotted	lines).	If	a	boundary	is	not	reached	before	the	time-window	in	which	one	attribute	has	
the	initial	advantage	has	elapsed,	then	both	attributes	begin	to	influence	the	evidence	accumulation	
process.	This	 is	 shown	visually	by	 the	 lines	 turning	 from	red	or	blue	 to	purple	 (i.e.	 red	+	blue).	The	
histograms	at	each	boundary	show	the	distribution	of	response	times	for	each	choice	outcome.	The	
red	or	blue	shading	of	the	faster	response	times	highlights	the	fact	that	those	choices	should	be	more	
dependent	on	the	initially	considered	attribute	because	they	were	made	before	the	second	attribute	
began	to	be	considered,	on	average.	(b)	This	plot	shows	the	results	of	a	Hierarchical	Bayesian	logistic	
regression	 that	 tested	 for	 changes	 in	 the	 relative	 influence	 of	 tastiness	 and	 healthiness	 on	 choice	
outcomes	 as	 a	 function	 of	 which	 attribute	 was	 estimated	 to	 be	 considered	 first	 and	 when	 the	
response	was	made	(see	Eq.	2).	The	plot	shows	the	mean	plus	95%	highest	density	interval	(HDI)	for	
estimates	of	the	influence	of	taste	versus	healthiness	in	the	empirical	choice	data	as	well	as	simulated	
choices	generated	by	the	best-fitting	standard	DDM	and	tDDM	parameters	for	each	participant.	These	
influence	 estimates	were	 derived	 from	 contrasts	 of	 coefficients	 in	 Eq.	 2.	 Values	 to	 the	 left	 of	 zero	
(dotted	line)	indicate	a	stronger	influence	of	healthiness	than	tastiness,	while	values	greater	than	zero	
indicate	 the	 opposite.	 For	 each	 choice	 set	 (tDDM,	 Data,	 DDM),	 trials	 were	 divided	 into	 four	
categories.	Those	are,	1)	HF_After:	Healthiness	is	considered	first,	but	the	response	is	made	after	the	
average	timing	advantage	has	elapsed;	2)	HF_Before:	Healthiness	is	considered	first	and	the	response	
is	made	during	the	average	initial	advantage	time	window;	3)	TF_After:	Taste	is	considered	first,	but	
the	 response	 is	 made	 after	 the	 average	 timing	 advantage	 has	 elapsed;	 2)	 TF_Before:	 Taste	 is	
considered	 first	 and	 the	 response	 is	made	 during	 the	 average	 initial	 advantage	 time	window.	 The	
empirical	data	show	a	difference	in	taste	versus	healthiness	influences	on	choices	made	before	versus	
after	 the	 average	 time	 advantage	 has	 elapsed,	 especially	 when	 healthiness	 is	 considered	 first.	
Critically,	 the	 tDDM	 generates	 choices	 that	 reproduce	 these	 differences,	 while	 the	 standard	 DDM	
does	not.		
	
	

Adding	the	separate	onset	time	feature	allows	the	model	to	capture	important	

choice	and	RT	patterns.	Specifically,	different	onset	times	for	the	two	attributes	can	
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explain	the	fact	that	the	relative	contribution	of	tastiness	and	healthiness	attributes	

to	the	evidence	in	favour	of	one	option	over	another	changes	during	the	decision	

process.	This	change	in	the	relative	weighting	of	taste	versus	healthiness	in	our	food	

choice	data	can	be	seen	when	computing	a	logistic	regression	model	that	estimates	

the	influence	of	taste	and	healthiness	on	choices	made	before	or	after	both	

attributes	were	estimated	to	have	begun	being	considered	on	average	(Table	S2).	

Shared	onset	time	DDMs	cannot	replicate	the	effect	as	shown	in	Figure	2b	and	Table	

S4.	We	note	that	separate	attribute	consideration	onset	timing	is	a	general	feature	

that	could	be	added	to	many	other	types	of	sequential	sampling	models	in	addition	

to	the	DDM,	e.g.	12,22-28.		

	

This	feature	of	our	tDDM	differs	in	important	ways	from	other	types	of	multi-

process	sequential	sampling	models	that	include	a	combination	of	fast	automatic	

processes	and	slower	deliberate	processes	(e.g.	dual	process,	fast	guess,	Ulrich	DMC)	
29-32.	These	other	frameworks	can	account	for	changes	in	the	way	evidence	is	

accumulated	over	time	in	certain	cognitive	tasks,	but	are	fundamentally	inconsistent	

with	our	food	choice	data.	First,	responses	made	before	the	second	attribute	enters	

in	to	consideration	are	sensitive	to	the	level	of	the	first	attribute	indicating	that	they	

are	not	random	guesses,	or	prepotent	or	habitual	responses.	Second,	the	data	from	

the	instructed	attention	cue	experiment	described	below	show	that	whether	

tastiness	or	healthiness	is	considered	first	is	not	automatic.	Thus,	modifying	

sequential	sampling	models	to	allow	different	attributes	to	enter	into	a	deliberate	

consideration	process	at	separate	times	is	more	appropriate	to	explain	the	outcomes	

and	response	times	from	the	goal-directed	choice	process	studied	here.			
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Table	1.	Fitted	separate	attribute	onset	tDDM	parameters	for	each	study	and	condition	

Dataset	 Parameter	estimate	

(1)	MRT	 ωtaste	 ωhealth	 Thr	 nDT	 RST	 Bias	

Keyboard	
trials	

1.42	±	
0.45	

0.12	±	
1.03	

1.04	±�
0.28	

0.65	±�
0.14	

0.26±	
0.36	

0.11	±�
0.18	

Mouse		
trials	

0.94	±		
0.36	

0.27	±		
0.32	

1.36	±		
0.25	

0.77±�
0.16	

0.14±		
0.34	

0.07±		
0.19	

(2)	IAC	 ωtaste	 ωhealth	 Thr	 nDT	 RST	 Bias	

Natural		
Choice	

1.37±		
0.79	

0.33±	�
1.33	

1.27	±		
0.28	

0.86±		
0.12	

0.42±		
0.54	

0	±	�
0.37	

Health		
Cue	

0.98	±		
1.12	

1.11	±		
0.60	

1.39±	
	0.36	

0.85	±	
0.14	

-0.06	±	�
0.55	

-0.22	±	
0.33	

Taste		
Cue	

1.42	±		
0.96	

0.47	±	�
0.99	

1.36	±		
0.36	

0.83	±	
0.14	

0.28±		
0.49	

0.00±		
0.31	

(3)	GFC	 ωtaste	 ωhealth	 Thr	 nDT	 RST	 Bias	

Session	1	
1.11	±�
0.35	

-0.07	±�
0.65	

1.29	±�
0.17	

0.84	±�
0.13	

0.3	±�
0.37	

-0.01	±�
0.08	

Session	2	
1.19	±�
0.36	

-0.29	±�
0.62	

1.19	±�
0.22	

0.75	±�
0.12	

0.29	±�
0.37	

-0.03	±�
0.12	

(4)	tDCS		 ωtaste	 ωhealth	 Thr	 nDT	 RST	 Bias	

Sham		
Baseline	

0.74	±�
0.67	

1.01	±	�
0.5	

1.29	±�
0.23	

0.77	±�
0.16	

-0.21	±		
0.4	

-0.11±	
0.26	

Sham	
Stimulation	

0.67	±		
0.61	

1.03	±		
0.55	

1.21	±	�
0.21	

0.71	±	
0.14	

-0.1	±		
0.34	

-0.14	±	
0.24	

Cathodal	
Baseline	

0.63	±		
0.81	

1.01	±	�
0.62	

1.26	±		
0.24	

0.75	±	
0.14	

-0.05	±	
0.44	

-0.07	±	
0.24	

Cathodal	
Stimulation	

0.92	±		
0.45	

1.07	±	�
0.73	

1.19	±		
0.21	

0.69	±	
0.11	

-0.03	±	
0.38	

-0.03	±	
0.22	

Anodal	
Baseline	

0.6	±	�
0.84	

1.15	±	�
0.48	

1.25	±		
0.2	

0.75	±	
0.13	

-0.09	±	
0.41	

-0.08	±	
0.24	

Anodal	
Stimulation	

0.85	±	�
0.6	

1.19	±	�
0.62	

1.16	±		
0.2	

0.7	±		
0.12	

-0.09	±	
0.38	

-0.04	±	
0.25	

All	parameters	are	reported	as	mean	±	standard	deviation.	Abbreviations:		
!!"#!$=	weighting	factor	determining	how	much	the	difference	in	taste	attributes	contributes	to	the	
evidence	accumulation	rate.		
!!"#$%!=weighting	factor	determining	how	much	the	difference	in	health	attributes	contributes	to	the	
evidence	accumulation	rate.	
Thr	=	evidence	threshold	for	responding.	
nDT=non-decision	time	and	corresponds	to	the	starting	time	for	taste	in	our	model.		
RST:	relative	start	time	for	health	(timing	relative	to	start	of	taste	processing,	positive	values	denote	
that	health	enters	the	process	later	than	taste).	
Bias:	starting	point	bias	for	the	evidence	accumulation	process	(zero	=	no	bias).	
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Using	the	separate	attribute	consideration	onset	tDDM	to	test	links	between	

attribute	weighting	and	timing	 	

Having	established	the	face	validity,	accuracy,	and	predictive	utility	of	our	modelling	

approach,	we	next	used	this	tDDM	to	test	several	fundamental	questions	about	how	

attribute	timing	and	weighting	work	together,	or	potentially	separately,	to	influence	

choice	outcomes	during	healthy	choice	challenges.	

	

Are	more	abstract	attributes	considered	later	in	the	choice	process?		

One	may	assume	that	for	dietary	choices,	the	relative	start	time	of	the	more	abstract	

attribute	(healthiness)	will	lag	behind	the	more	concrete	and	immediately	gratifying	

attribute	of	taste.	However,	our	results	indicate	that	this	is	not	the	case.	Pooling	the	

data	across	all	studies,	we	found	that	the	posterior	probability	that	healthiness	

entered	into	consideration	later	than	tastiness	was	only	0.48	(mean	difference	in	

starting	times	=	0.001	seconds,	95%	HDI	=	[-0.05;	0.06). In	total,	only	130	out	of	272	

participants	(48	%)	had	relative-start-times	for	healthiness	attributes	that	were	

delayed	relative	to	those	for	tastiness.	Figure	3	shows	the	relative	start	times	for	all	

participants	by	study.	While	more	abstract	or	complicated	attributes	may	reliably	

enter	into	the	decision	process	later	in	some	decision	contexts,	our	results	

demonstrate	that	abstractness	is	not	the	main	determinant	of	when	an	attribute	will	

begin	to	be	considered	during	a	multi-attribute	choice	(see	also	supplemental	results	

section	1.3).		
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Figure	3.	Relative	start	times	 in	seconds	for	healthiness	compared	to	tastiness	for	all	participants	 in	
each	 study.	 Positive	 values	 indicate	 that	 tastiness	 is	 considered	 before	 healthiness	 and	 negative	
values	 that	 healthiness	 is	 considered	 before	 tastiness.	 In	 each	 column	 every	 dot	 is	 a	 separate	
participant.	The	thick	black	horizontal	bars	represent	within-study	means	and	the	rectangular	bands	
indicate	 the	 95%	 highest	 density	 intervals	 (HDIs).	 Dataset	 abbreviations:	 MRT	 =	 data	 from	 the	
computer-mouse	response	trials	in	Sullivan	et	al	2015;	IAC	=	data	from	the	natural	choice	condition	in	
Hare	et	al	2011;	GFC	=	newly	collected	data	 from	the	 first	session/day	of	an	experiment	combining	
gambles	and	food	choices;	TDCS	=	newly	collected	data	from	the	pre-stimulation	baseline	choices	in	
our	tDCS	experiment.		
	

	

	

	

How	 are	 relative	 start	 times	 related	 to	 attribute	 weights	 and	 other	 tDDM	

parameters?		

We	addressed	this	question	by	computing	a	linear	regression	model	that	estimated	

the	association	between	relative	start	times	and	all	other	tDDM	parameters	(see	Eq.	

3).	The	relative-start-time	parameter	was	related	to	both	the	tastiness	and	

healthiness	weights	as	well	as	the	to	the	starting	point	bias	parameter	(Table	S5,	

Table	S6),	but	overall	the	linear	combination	of	other	tDDM	parameters	explained	

only	30%	of	the	variability	in	relative	start	times	across	participants.	These	results	

suggest	that	the	onset	times	for	choice	attributes	are	not	strictly	determined	by	

either	their	relative	weights	or	other	aspects	of	the	decision	process	quantified	by	

the	tDDM	parameters.		
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Effects	of	attention	cues	on	attribute	weights	and	relative-start-times	

We	also	examined	whether	directing	attention	toward	either	healthiness	or	tastiness	

could	change	the	time	at	which	those	attributes	enter	the	decision	process	and	if	

changes	in	timing	were	linked	to	changes	in	weighting	strength.	This	analysis	was	

motivated	by	previous	findings	18	that	directing	attention	to	the	healthiness	aspects	

of	a	food	item	resulted	in	substantial	changes	in	choice	patterns	(Figure	4a).	In	this	

instructed	attentional	cues	(IAC)	experiment,	instructive	cues	highlighted	health,	

taste,	or	neither	attribute	for	explicit	consideration	during	the	upcoming	block	of	10	

food	choices.	We	refer	to	these	three	block	types	as	health-cued	(HC),	taste-cued	

(TC),	and	natural-cued	(NC).	The	original	analysis	of	these	choice	data	focused	on	the	

regression	weights	for	taste	and	health	attributes	in	each	choice	condition	but	did	

not	consider	that	the	cues	might	change	the	relative	times	at	which	these	attributes	

entered	into	the	choice	process.	Our	goal	was	to	determine	how	potential	

alterations	in	attribute	timing	and	weighting	contributed	to	the	observed	changes	in	

choice	behaviour	during	health	cue	relative	to	natural	blocks.	Therefore,	we	

reanalysed	the	choice	data	from	18,	fitting	the	tDDM	to	each	attention	condition	

separately.	

First,	we	found	that	attention	cues	changed	both	the	relative	weighting	and	

timing	of	taste	and	healthiness	attributes.	Compared	to	the	natural	choice	blocks,	

70%	of	participants	reversed	their	relative	weighting	of	taste	and	healthiness	in	taste	

or	health	cue	blocks	(i.e.,	went	from	taste	>	healthiness	to	taste	<	healthiness	weight	

or	vice	versa),	and	64%	switched	whether	they	considered	tastiness	or	healthiness	

first.	There	was	no	significant	difference	in	how	often	participants	reversed	the	order	

of	relative	weights	(switching	from	ωtaste		>	ωhealth	to	ωtaste		<	ωhealth,	or	vice	versa)	

compared	to	how	often	they	reversed	the	order	of	relative	onset	times	(switching	

from	taste	first	to	healthiness	first,	or	vice	versa)	when	moving	from	attribute-cued	

and	natural-choice	blocks	(PP(weight	reversal	more	prevalent	than	timing	reversal	=	

0.70)).	
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Figure	4.	Choice	patterns	and	separate	attribute	consideration	onset	tDDM	parameter	estimates	for	
the	 IAC	 study	 by	 condition.	 (a)	 Proportion	 of	 times	 that	 subjects	 chose	 to	 eat	 the	 food	 (i.e.,	 they	
responded	“yes”	or	“strong	yes”)	as	a	function	of	attention	cue	type	(Health,	Natural,	or	Taste)	and	
taste-health	 combination	 of	 food	 under	 consideration	 (Tasty	 or	 Untasty	 crossed	 with	 Healthy	 or	
Unhealthy).	In	terms	of	mean	choice	proportions,	directing	attention	towards	healthiness	decreased	
the	 proportion	 of	 choosing	 healthy-untasty	 items	 and	 decreased	 the	 proportion	 of	 choosing	
unhealthy-tasty	items	compared	to	the	natural	condition.	The	changes	in	choices	during	Health	blocks	
were	accompanied	by	higher	weights	and	faster	relative-start-times	for	healthiness.	(b)	Compared	to	
the	 natural	 condition,	 attention	 cues	 to	 health	 resulted	 in	 a	 higher	 relative	 drift	 weight	 (arbitrary	
units)	 for	 the	 corresponding	 attribute	 health	 attribute	 compared	 to	 the	 natural	 condition	 (blue	
shading).	There	was	no	significant	change	in	the	relative	drift	weights	of	the	two	attributes	during	the	
taste	 cue	 blocks	 (red-shading).	 (c)	 Attention	 cues	 to	 health	 also	 led	 to	 a	 faster	 relative	 start	 time	
(seconds)	for	health	compared	to	taste	attributes	compared	to	natural	blocks	(green	shading).	Once	
again,	there	was	no	significant	difference	in	relative	timing	between	natural	and	taste	blocks.	For	all	
plots,	the	dots	within	each	column	represent	the	value	for	a	single	participant	in	the	sample.	Darker	
shading	indicates	that	multiple	participants	share	the	same	value	for	that	parameter.	Black	horizontal	
bars	indicate	condition	means	and	white,	blue,	red,	or	green	shaded	rectangles	indicate	the	95%	HDIs	
for	each	measure.	The	grey	shaded	bars	in	each	plot	serve	to	visually	separate	the	columns	for	each	
condition	and	highlight	the	zero-points	on	the	y-axes.	
	
	

Focusing	our	analyses	on	the	health	cue	blocks	that	showed	a	significant	

change	in	choice	outcomes	compared	to	natural	blocks	(Fig.	4a),	we	found	that,	on	

average,	cuing	attention	to	health	attributes	both	significantly	increased	the	

magnitude	of	participants’	weights	for	healthiness	and	sped	up	the	time	at	which	

health	entered	into	the	accumulation	process	(relative	to	taste,	i.e.,	relative	start	

times)	(Figure	4b-c;	Table	2).	These	results	demonstrate	that	both	the	timing	and	

weighting	of	taste	and	healthiness	attributes	can	be	flexibly	and	rapidly	changed	in	

response	to	the	attention	cues	preceding	every	block	of	10	choices.		
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Table	2.	Changes	in	separate	attribute	consideration	onset	tDDM	parameters	between	attention	cued	
conditions.	
	

	
Mean	
difference		 95%	HDI	

Posterior	
Probability	

A.	Taste	weighting	(ωtaste)	

Natural	-	Health	 0.354	 [-0.113	0.832]	 0.933	

Taste	-	Health	 0.455	 [-0.088	1.003]	 0.951	

B.	Health	weighting	(ωhealth)	

Health	-	Natural		 0.746	 [0.188	1.325]	 0.995	

Health	-	Taste	 0.633	 [0.245	1.028]	 0.999	

C.	Relative	start	time	of	health	(RST)	

Natural	-	Health		 0.469	 [0.2	0.748]	 0.999	

Taste	-	Health	 0.336	 [0.121	0.548]	 0.999	

This	table	shows	the	effects	of	attention	cues	on	the	tDDM	parameters	estimated	from	choice	data	in	
the	 IAC	 study.	 Changes	 in	 relative	 starting	 times	 (RST)	 or	 weighting	 parameters	 (!!"#!$ ,	!!!"#$!)	
induced	by	the	experimental	conditions	that	are	shown	in	bold	were	significantly	different	from	zero.	
Mean	 differences	 and	 their	 95%	 highest	 density	 intervals	 (HDI)	 were	 computed	 based	 on	 100,000	
samples	drawn	from	the	posterior	distributions	of	each	parameter	33.	The	third	column	displays	the	
posterior	probabilities	that	differences	are	greater	than	zero.	 	All	comparisons	were	made	so	that	a	
priori	predicted	effects	would	be	positive.	Abbreviations:	!!"#!$ =	weighting	factor	determining	how	
much	 the	 difference	 in	 taste	 attributes	 contributes	 to	 the	 evidence	 accumulation	 rate.	!!!"#$! =	
weighting	 factor	 determining	 how	 much	 the	 difference	 in	 health	 attributes	 contributes	 to	 the	
evidence	accumulation	rate.	
	

	

	

Dissociating	attribute	weighting	strengths	and	timing	at	the	neural	level	

We	next	addressed	the	question	of	whether	attribute	weighting	strength	and	timing	

are	implemented	by	dissociable	neural	processes.	We	did	so	by	analysing	data	from	

an	experiment	applying	cathodal,	anodal,	or	sham	transcranial	direct	current	

stimulation	(tDCS)	over	left	dlPFC	during	food	choices	(see	Methods	section	for	

details).	Numerous	neuroimaging	and	electrophysiological	studies	have	reported	

correlational	evidence	for	a	role	of	the	dlPFC	in	multi-attribute	choice	34-37.	There	is	

also	ample	evidence	that	applying	brain	stimulation	(both	transcranial	direct	current	

and	magnetic)	over	multiple	different	sub-regions	of	the	left	or	right	dlPFC	is	

associated	with	changes	in	several	different	forms	of	multi-attribute	decision	making	
38-44.	Here,	we	applied	tDCS	over	a	region	of	the	left	dlPFC	that	has	been	shown	to	

correlate	with	individual	differences	in	health	challenge	success	rates	and	multi-
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attribute	decisions	more	generally	18,45-53	in	order	to	uncover	the	mechanistic	

changes	in	the	choice	process	caused	by	tDCS	over	this	particular	region.	Stimulation	

over	this	region	of	left	dlPFC	did	not	significantly	change	measures	of	working	

memory,	response	inhibition,	or	monetary	temporal	discounting	in	our	participants	

(Supplemental	Results	section	1.2).	

	

Previous	studies	suggest	that	the	effects	of	stimulation	over	left	dlPFC	are	strongest	

on	trials	in	which	the	participant	does	not	strongly	favour	one	outcome	over	the	

other	(i.e.,	stimulation	effects	are	greatest	in	difficult	choices)	and	depend	on	

baseline	preferences	over	the	rewards	39,43.	Therefore,	we	restricted	our	analysis	of	

health	challenge	success	to	trials	in	which	the	predicted	probability	of	choosing	the	

healthier	food	was	between	0.2	and	0.8	and	focused	on	the	difference	in	behaviour	

between	baseline	and	active-stimulation	choice	sessions.	Specifically,	we	computed	

a	Bayesian	hierarchical	logistic	regression	model	that	accounted	for	both	stimulation	

type	and	the	healthiness	and	tastiness	differences	on	each	trial	in	the	tDCS	dataset	

(see	Eq.	6	in	the	Methods	for	details).	We	compared	the	interaction	effects	

measuring	changes	in	each	participant’s	health	challenge	success	from	the	pre-

stimulation	baseline	to	the	active	stimulation	condition	for	cathodal	and	anodal	

versus	sham	simulation	groups.	This	revealed	a	greater	decrease	in	health	challenge	

success	under	cathodal	relative	to	sham	stimulation	(Table	S7;	regression	coef.	=	-

0.32	±	0.15,	95%	HDI	=	[-0.58;	-0.08],	PP(cathodal	polarity	X	active	stimulation	

interaction	coef.	<	0)	=	0.98),	but	no	change	in	health	challenge	success	for	anodal	

relative	to	sham	stimulation	(regression	coef.	=	-0.03	±	0.15,	95%	HDI	=	[-0.28;	0.22],	

PP(anodal	polarity	X	active	stimulation	interaction	coef.	>	0)	=	0.4).	There	was	also	a	

main	effect	within	the	cathodal	stimulation	group	indicating	that	these	individuals	

had	fewer	health	challenge	successes	when	making	food	choices	under	active	

stimulation	compared	to	their	pre-stimulation	baseline	choices	(regression	coef.	=	-

0.32	±	0.15,	95%	HDI	=	[-0.63;		

-0.03],	PP(active	stimulation	<	0)	=	0.9999).	Thus,	we	find	that	inhibitory	stimulation	

over	left	dlPFC	leads	to	fewer	health	challenge	successes	(see	Figure	5	as	well).	
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Figure	5.	Changes	in	health	challenge	success	following	tDCS	over	left	dlPFC.	This	plot	shows	the	raw	
changes	 in	 health	 challenge	 success	 under	 stimulation	 compared	 to	 baseline	 across	 stimulation	
groups.	Unlike	the	regression	summarized	in	Table	S7,	the	effects	shown	in	this	plot	do	not	account	
for	the	taste	or	health	differences	in	each	choice.	Each	dot	represents	the	difference	between	active	
stimulation	 or	 sham	 and	 baseline	 in	 one	 participant.	 Left	 dlPFC-targeted	 cathodal	 stimulation	
significantly	decreased	health	challenge	success	(mean	decrease	=	5.7%	±	0.02%,	95%	HDI	=	[-10%;	-
1.5%],	PP(active	cathodal	stimulation	<	0)	=	0.995).	Note	that	we	tested	the	change	under	cathodal	
stimulation	using	a	method	33	that	is	robust	to	outliers	such	as	the	two	extreme	participants	near	-1.	
There	 were	 no	 significant	 differences	 in	 healthy	 choices	 under	 anodal	 or	 sham	 stimulation.	 Black	
horizontal	bars	 indicate	group	means	and	 rectangular	bands	depict	 the	95%	HDIs.	The	grey	 shaded	
bars	 in	 each	 plot	 serve	 to	 visually	 separate	 the	 columns	 for	 each	 condition	 and	highlight	 the	 zero-
points	on	the	y-axes.	

	
	
In	order	to	elucidate	the	changes	in	choice	processes	caused	by	the	stimulation,	we	

fit	the	separate	attribute	consideration	onset	tDDM	to	dietary	choices	made	during	

the	pre-stimulation	baseline	and	active	or	sham	tDCS	sessions.	When	testing	how	

the	tDDM	parameters	changed	between	baseline	and	active	stimulation	sessions	in	

each	group,	we	found	that	the	cathodal	group	had	increased	weighting	of	taste	

attributes	under	stimulation	compared	to	baseline	choices	(mean	difference	=	0.14,	

HDI	=	[0.03;	0.25],	PP(Cath	active	>	Cath	baseline)	=	0.99;	Figure	6a)	and	that	the	

change	from	baseline	was	greater	under	cathodal	stimulation	than	sham	(mean	

difference	=	0.21,	95%	HDI	=	[0.01;	0.42],	PP(∆	Cath	>	∆	Sham)	=	0.98).	Crucially,	the	

relative-start-time	parameters	were	unaffected	during	left	dlPFC-targeted	cathodal	

tDCS	(Table	3,	Figure	6b).	Moreover,	the	tDCS-induced	changes	in	taste	relative	to	

health	weighting	parameters	and	relative	start	times	were	not	significantly	

correlated	(r	=	-0.07,	95%	HDI	=	[-0.325;	0.188],	PP(r	>	0)	=	0.30).	Consistent	with	the	
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lack	of	significant	change	in	choice	behaviour	under	anodal	tDCS,	we	found	no	

significant	changes	in	any	tDDM	parameter	under	anodal	stimulation	(Table	3).	In	

summary,	we	found	that	cathodal	tDCS	over	left	dlPFC	changed	the	relative	decision	

weight	placed	on	taste	attributes,	but	not	the	speed	with	which	taste,	relative	to	

healthiness,	began	to	influence	the	choice	process	(Table	3).		

	

	

	

	

	
Figure	6.	Changes	 in	the	separate	attribute	consideration	onset	tDDM	parameters	during	tDCS	over	
left	dlPFC.	(a)	Cathodal	stimulation	increased	the	weighting	of	taste	attributes	(ωtaste,	red	shading	on	
right)	 relative	 to	 baseline	 choices,	 PP(Cath	 ST	 >	 Cath	 BL)	 =	 0.99).	 This	 change	 from	 baseline	 was	
greater	under	cathodal	stimulation	than	sham,	PP((Cath	ST	–	Cath	BL)	>	(Sham	ST	–	Sham	BL))	=	0.98).	
The	red	lines	and	stars	highlight	this	main	effect	and	interaction.	Anodal	stimulation	did	not	 lead	to	
significant	 changes	 in	 attribute	 weighting	 parameters,	 and	 neither	 tDCS	 protocol	 affected	 drifts	
weights	for	healthiness	(ωhealth,	blue	shading	on	left).	The	weighting	strength	parameters	are	plotted	
in	arbitrary	units.	(b)	tDCS	had	no	significant	effect	on	the	RST	parameters	(plotted	in	seconds,	green	
shading).	 Black	 horizontal	 bars	 indicate	 group	 means	 and	 blue,	 red,	 or	 green	 shaded	 rectangles	
indicated	 the	 95%	 HDIs	 for	 each	 parameter.	 The	 grey	 shaded	 bars	 in	 each	 plot	 serve	 to	 visually	
separate	the	columns	for	each	condition	and	highlight	the	zero-points	on	the	y-axes.	
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Table	3.	Effects	of	tDCS	over	left	dlPFC	on	tDDM	parameters.	

	 	 Mean	

difference	

95%	HDI	 Posterior	

probability	

A.	Taste	weighting	(ωtaste)	

Baseline	-	Anodal	tDCS	 -0.094	 [-0.23	0.043]	 0.081	

Cathodal	tDCS	-	Baseline	 0.138	 [0.027	0.248]	 0.993	

Baseline	-	Sham	tDCS	 0.072	 [-0.087	0.23]	 0.815	

ΔSham	- Δ	Anodal		 -0.185	 [-0.41	0.047]	 0.053	

!	Cathodal	-	!	Sham	 0.215	 [0.014	0.42]	 0.982	

B.		Health	weighting	(ωhealth)	

Anodal	tDCS	-	Baseline	 0.098	 [-0.023	0.221]	 0.941	

Baseline	-	Cathodal	tDCS	 -0.074	 [-0.246	0.102]	 0.197	

Sham	tDCS	-	Baseline	 0.025	 [-0.082	0.13]	 0.685	

Δ	Anodal	-	Δ	Sham		 0.063	 [-0.093	0.223]	 0.787	

Δ	Sham	-	Δ	Cathodal	 -0.039	 [-0.241	0.164]	 0.349	

C.	Relative	start	time	of	health	(RST)	

Baseline		-	Anodal	tDCS	 -0.002	 [-0.098	0.093]	 0.484	

Cathodal	tDCS	-	Baseline	 0.021	 [-0.095	0.135]	 0.648	

Baseline	-	Sham	tDCS	 -0.103	 [-0.225	0.018]	 0.047	

ΔSham	-	Δ	Anodal	 0.098	 [-0.057	0.251]	 0.895	

ΔCathodal	-	Δ	Sham	 -0.081	 [-0.25	0.086]	 0.171	

This	 table	 reports	 changes	 in	 the	 separate	 attribute	 consideration	 onset	 tDDM	 relative	
starting	 times	 (RST)	or	weighting	parameters	 (!!"#!$,	!!!"#$!)	as	a	 result	of	 tDCS	over	 the	
left	 dlPFC.	 Rows	 in	 bold	 indicate	 changes	 that	 are	 significantly	 different	 from	 zero.	 The	Δ	
symbol	always	 indicates	a	difference	score	equal	to	the	value	 in	the	stimulation	minus	the	
baseline	session	within	a	given	condition.	Rows	containing	this	symbol	report	differences	of	
differences	across	conditions.	Mean	differences	(or	differences	of	differences)	and	their	95%	
highest	density	 intervals	 (HDI)	were	computed	based	on	100,000	samples	drawn	 from	the	
posterior	 distributions	 of	 each	 parameter.	 The	 third	 column	 displays	 the	 posterior	
probabilities	 that	 differences	 are	 greater	 than	 zero.	 All	 comparisons	were	made	 so	 that	a	
priori	predicted	effects	would	be	positive.		
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Discussion	

We	have	shown	that	separable	mechanisms	determine	the	degree	to	which	an	

attribute	affects	the	evidence	accumulation	rate	(weighting	strength)	and	the	

relative	speed	with	which	it	begins	to	do	so	(timing).	Thus,	both	attribute	timing	and	

weighting	strength	must	be	examined	if	we	seek	to	better	understand	decision	

making	at	the	mechanistic	level.		

	 The	clearest	evidence	that	timing	and	weighting	strength	are	dissociable	

comes	from	our	tDCS	experiment	showing	that	stimulation	over	the	left	dlPFC	

caused	a	change	in	the	weights	placed	on	the	taste	factor,	but	not	the	timing	of	taste	

versus	healthiness	attributes	during	dietary	choices.	Moreover,	changes	in	the	

relative	weighting	and	the	relative	timing	of	each	attribute	between	baseline	and	

cathodal	stimulation	sessions	were	not	significantly	correlated,	further	indicating	

that	the	neural	mechanisms	altered	by	our	tDCS	protocol	were	specifically	related	to	

attribute	weighting.		

The	use	of	analysis	strategies	that	quantify	the	separate	effects	on	relative	

timing	and	weighting	is	important	for	interpreting	brain	stimulation	data	on	the	role	

of	dlPFC	and	other	brain	regions	in	value-based	choices.	Previous	studies	have	

reported	that	stimulation	targeted	over	various	brain	regions	causes	changes	in	

several	forms	of	decision	making	including	choices	over	trade-offs	between	

monetary	amounts	and	risk	or	time,	or	between	rewards	for	oneself	and	others	38-

44,54,55.	Notably,	all	of	these	choices	involve	multi-attribute	stimuli	and,	frequently,	

conflict	between	the	different	attributes.	In	light	of	our	modelling	results,	we	can	

speculate	that	the	mechanistic	change	caused	by	stimulation	over	the	dlPFC	is	in	the	

attribute	weighting	process	in	some	cases.	However,	the	different	studies	have	

targeted	a	range	of	dlPFC	coordinates	across	both	the	left	and	right	hemispheres	and	

have	used	various	forms	of	brain	stimulation	with	potentially	different	local	and	

widespread	effects.	Therefore,	one	should	not	assume	that	altered	attribute	

weighting	is	the	mechanistic	result	of	every	dlPFC-targeted	stimulation	protocol.	

Fortunately,	asynchronous	evidence	accumulation	modelling	methods,	such	as	the	

separate	attribute	consideration	onset	tDDM	used	here,	could	be	applied	to	most	of	

the	existing	datasets	cited	above	or	newly	acquired	data	to	gain	further	insights	into	

how	and	why	brain	stimulation	causes	changes	in	choice	behaviour.	Moreover,	such	
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analyses	are	by	no	means	limited	to	brain	stimulation	and	can	be	applied	to	any	set	

of	response-time	and	choice	data	on	multi-attribute	decisions	(e.g.	self/other,	

amount/delay,	risk/magnitude)	under	different	biological	or	experimental	

conditions.	This	may	elucidate	other	neural	regions	that	are	involved	in	determining	

the	relative	timing	of	attribute	consideration.	

In	our	current	work,	for	example,	we	found	that	the	relative	importance	

given	to	a	specific	attribute,	as	well	as	its	speed	in	entering	into	the	choice	process,	

could	be	altered	by	instructions	that	directed	attention	to	that	attribute.	Although	a	

large	body	of	work	has	established	that	value	construction	and	comparison	

processes	are	malleable	and	subject	to	attention,	perceptual	constraints,	and	other	

contextual	factors	9-11,56,57,	the	influence	of	attribute	consideration	timing	within	a	

given	decision	is	rarely	discussed	or	directly	tested.	Query	theory	58,59	is	a	notable	

exception	in	that	it	explicitly	posits	that	the	order	in	which	attribute	values	are	

queried	from	memory	or	external	sources	will	bias	value	construction	and	choice	

processes	because	the	recall	of	initial	attributes	reduces	the	accessibility	of	

subsequent	attributes.	Although	the	current	data	cannot	be	used	to	address	the	

question	directly,	future	experiments	may	address	the	important	mechanistic	

question	of	whether	or	not	memory	retrieval	is	a	driving	factor	in	the	consideration	

onset	asynchronies	revealed	by	the	separate	attribute	consideration	onset	tDDM.		

Despite	open	questions	about	the	relationship	between	memory	and	relative	

starting	times,	our	finding	that	attribute	consideration	start	times	are	asynchronous	

lends	strong	support	to	the	idea	that	choices	are	made	based	on	comparisons	of	

both	separate	attribute	values	as	well	as	overall	option	values.	Hunt	and	colleagues	
11	demonstrated	that	a	hierarchical	sequential	sampling	process	that	operates	over	

both	separate	attribute	and	overall	option	values	explains	risky	choice	behaviour	and	

brain	activity	better	than	models	operating	only	on	integrated	values.	Reeck	and	

colleagues	10	have	shown	that	individual	variation	in	temporal	discounting	can	be	

explained	by	patterns	of	information	acquisition	that	support	attribute-wise	or	

option-wise	comparisons;	moreover,	their	study	shows	that	choices	can	be	made	

more	patient	by	an	experimental	manipulation	that	promotes	attribute-wise	

comparisons	compared	to	one	promoting	option-wise	comparisons.	Together,	these	

results	and	others	(e.g.	Roe,	et	al.	27	and	Bhatia	57)	indicate	that	attribute-level	
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comparisons	play	an	important	role	in	determining	choice	outcomes.	Hierarchical	

attribute	and	option-level	comparisons	are	implicit	in	our	specification	of	the	

separate	attribute	consideration	onset	tDDM	because	the	choice	outcome	and	

response	time	are	determined	by	a	weighted	sum	of	the	differences	in	attribute	

values.	However,	we	show	that	attribute-level	comparisons	do	not	all	begin	at	the	

same	point	in	time,	and	that	the	magnitude	of	the	difference	in	relative	start	times	

across	attributes	influences	option-level	comparisons	and	choice	outcomes.	

Our	results	raise	important	questions	about	how	attribute	weighting	

strengths	and	onset	timing	jointly	influence	choice	outcomes:	How	should	we	

interpret	choices	in	which	the	outcome	is	determined	by	the	advantage	in	relative	

timing	as	opposed	to	weighted	evidence?	Could	this	be	strategic	use	of	cognitive	

flexibility	to	align	decision	making	with	current	goals	or	should	we	consider	such	

outcomes	to	be	mistakes?	Traditionally,	a	weighted	combination	of	all	attribute	

values	is	assumed	to	yield	the	“correct”	choice	60.	If	the	weighting	strength	on	each	

attribute	is	appropriate,	then	any	asynchrony	in	onset	timing	could	produce	

suboptimal	choices	(i.e.,	choices	in	favour	of	options	with	a	lower	weighted	sum	over	

all	attribute	values	than	another	available	alternative).	In	that	sense,	it	is	surprising	

that	we	find	substantial	attribute	onset	asynchrony	in	healthy	young	adults	and	that,	

in	individuals	striving	to	maintain	a	healthy	lifestyle	(i.e.,	the	sample	recruited	for	our	

tDCS	experiment),	a	higher	level	of	asynchrony	is	associated	with	better	health	

challenge	success.	However,	this	view	is	predicated	on	the	assumption	that	the	

attribute	weighting	strengths	are	appropriate	for	the	current	goal	or	context.		

On	the	other	hand,	it	is	possible	that	shifts	in	the	timing	of	attribute	

consideration	can	be	used	to	achieve	the	desired	outcome.	Suppose	that	a	decision	

maker	knows	(not	necessarily	explicitly)	that	her	standard	attribute	weights	are	

inconsistent	with	her	current	decision	context	or	goal,	and	adjusting	those	weights	

by	the	necessary	amount	is	costly	or	unlikely.	In	that	case,	shifting	the	relative	onset	

timing	could	be	an	effective	means	of	reducing	effort	and	improving	the	chances	of	

making	a	goal-consistent	choice.	In	other	words,	altering	the	relative	starting	times	

may	be	a	form	of	proactive	control	61,62.	For	example,	a	decision	maker	who	goes	on	

a	diet	may	find	it	difficult	to	convince	herself	that	she	does	not	like	the	taste	of	ice	

cream	and/or	to	constantly	trade	off	this	delicious	taste	against	the	downsides	of	

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/434860doi: bioRxiv preprint 

https://doi.org/10.1101/434860
http://creativecommons.org/licenses/by-nc/4.0/


	 24	

excess	sugar	and	fat.	An	alternative	way	to	bring	about	health	challenge	success	in	

this	situation	may	be	to	adjust	the	process(es)	that	determine	relative	start	times	for	

healthiness	and	tastiness,	to	focus	on	the	healthiness	of	each	alternative	option	

alone	for	a	brief	period	in	order	to	forgo	extremely	unhealthy	options	(without	

putting	in	time	or	effort	to	compare	taste	benefits	to	health	costs).		

The	use	of	timing	differences	as	described	above	would	be	consistent	with	at	

least	two	existing	theories	on	the	role	of	attention	in	cognition.	First,	it	is	consistent	

with	the	idea	that	rational	inattention	strategies	63-65	can	be	employed	as	a	means	of	

reducing	effort	costs.	Specifically,	if	the	time	advantage	for	healthiness	is	large	

enough,	then	one	could	theoretically	decide	against	eating	an	unhealthy	food	before	

even	considering	its	tastiness	and	thus	not	experience	temptation	or	conflict.	

Second,	the	idea	that	distinct	processes	determine	consideration	onset	times	and	

weights	for	different	attributes	is	paralleled	in	theories	of	emotion	and	food-craving	

regulation	that	posit	separate	attention	deployment	and	stimulus	appraisal	steps	

(e.g.	35,66,67).	However,	we	don’t	yet	know	if	strategic	use	of	attribute	consideration	

onsets	or	related	processes	actually	happen,	nor	if	adjusting	the	process	determining	

relative	onset	times	is,	in	fact,	less	effortful	or	more	likely	to	succeed	than	strategies	

that	attempt	to	alter	the	attribute	weighting	strengths.		

Altering	the	processes	that	determine	the	relative	onset	times	could	be	a	

means	or	a	result	of	delaying	and	reducing	attention.	However,	although	we	found	

that	both	cueing	attention	to	healthiness	and	having	the	goal	of	maintaining	a	

healthy	lifestyle	(tDCS	sample	vs.	all	others)	were	associated	with	faster	average	

onset	times	for	healthiness	attributes,	we	don’t	know	yet	if	relative	onset	times	can	

be	manipulated	as	part	of	a	deliberate	strategy.	It	is	also	important	to	note	that	the	

response	to	healthiness	cues	was	heterogeneous	in	the	sense	that,	although	most	

participants	made	healthy	choices	more	often	following	those	cues,	some	

participants	changed	only	attribute	weights	or	only	attribute	start	times	in	favour	of	

healthy	choices,	rather	than	both.	Further	research	is	needed	to	understand	why	

individuals	responded	to	these	cues	in	different	ways.		

The	ability	to	understand	or	predict	how	an	intervention	or	policy	change	will	

affect	choice	processes	and	their	outcomes	for	specific	individuals	or	groups	of	

people	is	important	for	any	program	hoping	to	promote	behavioural	change,	for	
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example	in	domains	such	as	health,	crime,	or	financial	stability.	Greater	knowledge	

of	the	cognitive	and	neural	mechanisms	that	drive	choices	in	specific	individuals	is	an	

important	step	toward	this	understanding	68.	Our	findings	demonstrate	that	when	a	

specific	attribute	begins	to	influence	the	decision	process	-	a	factor	that	has	been	

generally	neglected	-	is	an	important	determinant	of	choice	outcomes.	They	also	

suggest	that	examining	relative	differences	in	attribute	start	times	may	prove	to	be	

useful	in	understanding	why	interventions	and	policies	work	in	some	cases	(e.g.,	for	

specific	individuals	or	groups)	but	not	in	others,	and	may	help	to	increase	their	

effectiveness.	Overall,	the	work	we	present	here	provides	both	a	concrete	

advancement	in	our	knowledge	of	multi-attribute	choice	processes	and	a	functional	

set	of	computational	modelling	tools	that	can	be	applied	to	extract	deeper	

mechanistic	insights	from	data	on	choice	outcomes	and	response	times.		 	
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Methods	

For	all	data	sets	in	which	we	relied	on	published	studies,	we	included	the	final	

reported	sample	in	our	analyses.	For	these	studies,	we	will	describe	the	

methodological	details	relevant	for	our	analyses	and	refer	the	reader	to	the	

published	papers	for	any	further	details.	All	participants	provided	written	informed	

consent	in	accordance	with	the	procedures	of	the	Institutional	Review	Board	of	the	

California	Institute	of	Technology,	the	Institutional	Review	Board	of	the	Faculty	of	

Business,	Economics	and	Informatics	at	the	University	of	Zurich,	or	the	Ethics	

Committee	of	the	Canton	of	Zurich.	All	participants	received	a	flat	fee	to	compensate	

for	their	time	in	addition	to	the	food	they	chose.	

	

Data	set	1	–	Mouse	response	trajectories	(MRT):		

We	use	the	choice	and	response	time	data	from	the	study	of	Sullivan	et	al.	16	to	test	

the	face	validity	of	our	time-varying	sequential	sampling	model.	These	data	are	

openly	available	at		https://osf.io/jmiwn/.	All	participants	in	the	MRT	sample	were	

healthy	adults	and	had	no	specific	dietary	restrictions.	Before	making	any	choices,	

they	were	reminded	of	the	importance	of	healthy	eating	by	reading	a	short	excerpt	

from	WebMD.com	before	starting	the	choice	task.	

	

Participants.	The	experiment	was	approved	by	the	Institutional	Review	Board	of	the	

California	Institute	of	Technology.	Twenty-eight	(7	female)	healthy	adult	participants	

completed	the	study.		

	

Procedure.	Participants	were	asked	to	fast	for	4	hours	prior	to	the	study.	They	first	

rated	160	foods	for	taste	and	health	on	a	5-point	Likert	scale	with	values	from	-2	

(“very	little”)	to	+2	(“very	much”).	After	these	ratings,	participants	were	asked	to	

read	a	short	text	from	WebMD.com	on	the	beneficial	effect	of	healthy	eating,	in	

order	to	increase	the	frequency	with	which	they	used	health	challenge	success	in	the	

following	dietary	choice	task.	In	the	choice	paradigm,	participants	made	280	choices	

between	two	foods	on	the	screen	(see	Fig.	1a).	The	selection	ensured	that	food	pairs	

would	represent	all	possible	combinations	of	taste	and	health	ratings	equally.	After	

each	block	of	40	choices,	participants	could	take	a	short	break.	In	240	trials,	
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participants	used	the	mouse	to	answer,	while	in	the	remaining	40	trials,	they	

answered	with	the	keyboard.	In	mouse	trials,	participants	had	to	click	the	“Start”	box	

at	the	bottom	of	the	screen	to	initiate	the	trial.	The	cursor	reappeared	after	a	

random	waiting	period	of	0.2	to	0.5	seconds.	From	this	point	on,	participants	had	to	

move	the	mouse	continuously	towards	the	food	they	wanted	to	select.	They	were	

instructed	to	answer	as	quickly	and	accurately	as	possible.	A	random	fixation	time	of	

0.4	to	0.7	seconds	separated	the	trials.	In	keyboard	trials,	participants	selected	food	

items	by	pressing	the	left	or	right	choice	keys.	At	the	end	of	the	study,	one	randomly	

selected	trial	was	paid	out	and	participants	were	asked	to	stay	in	the	lab	for	30	

minutes	or	until	they	had	eaten	their	obtained	food.	

	

Data	set	2	–	Gambles	plus	food	choices	(GFC)	

Data	for	this	behavioural	study	(gamble	plus	food	choice,	GFC)	were	collected	from	

the	same	individuals	in	two	testing	sessions	two	weeks	apart.	The	two	sessions	were	

run	on	the	same	weekday	and	daytime	in	a	two-hour	visit	in	the	afternoon.	

Participants	in	this	study	were	healthy	and	did	not	have	any	specific	dietary	

restrictions.	During	the	study,	they	chose	naturally	and	were	neither	reminded	about	

eating	a	healthy	diet	nor	encouraged	to	eat	healthy	in	any	way.	

	

Participants.	The	Study	was	approved	by	the	Institutional	Review	Board	of	the	

University	of	Zurich’s	Faculty	of	Business,	Economics	and	Informatics.	Thirty-seven	

participants	(17	female,	mean	age	=	22.6	±	3	years	SD)	were	included	in	this	study.	A	

pre-screening	procedure	ensured	that	all	participants	regularly	consumed	sweets	

and	other	snack	foods	and	were	not	currently	following	any	specific	diet	or	seeking	

to	lose	weight.	All	participants	were	healthy	and	had	no	current	or	recent	acute	

illness	(e.g.,	cold	or	flu)	at	the	time	of	the	study.	All	participants	complied	with	the	

following	rules	to	ensure	comparability	across	the	study	sessions:	They	got	a	good	

night’s	sleep	and	did	not	consume	alcohol	the	evening	before	the	study.	On	the	

study	day,	they	took	a	photograph	of	the	small	meal	that	they	consumed	3	hours	

before	the	appointment,	and	sent	this	photo	to	the	experimenter.	One	day	before	

the	second	study	session,	participants	received	a	reminder	about	the	rules	above	

and	were	asked	to	consume	a	small	meal	before	their	second	appointment	that	was	
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equivalent	to	their	meal	before	the	first	test	session.	Participant	received	37.5	CHF	

(approx.	39	USD)	for	each	session.	

	

Procedure.	Participants	were	asked	to	eat	a	small	meal	of	approximately	400	calories	

3	hours	prior	to	their	appointment	and	to	consume	nothing	but	water	in	the	2.5	

hours	before	the	study	started.	In	the	laboratory,	participants	first	rated	180	food	

items	for	taste	and	health.	They	then	made	150	food	choices,	one	of	which	was	

randomly	selected	to	be	realised	at	the	end	of	the	experiment.	On	each	trial,	the	

screen	showed	2	foods	next	to	each	other	and	participants	chose	the	food	they	

wanted	to	eat	using	a	4-point	scale,	picking	either	“strong	left”,	“left”,	“right”,	or	

“strong	right”	(Fig.	1b).	The	pairing	order	and	positions	of	the	foods	on	the	screen	

(left	vs.	right)	were	completely	randomized,	and	the	allocation	algorithm	ensured	

that	one	of	the	foods	would	be	rated	as	healthier	than	the	other.	Participants	had	3	

seconds	to	make	their	choice,	with	a	jittered	interval	of	1-3	seconds	fixation	

between	trials.	Between	blocks	of	dietary	decisions,	participants	played	a	game	in	

which	they	had	to	guess	cards	for	monetary	rewards.	We	ignore	the	card	guessing	

choices	for	the	analyses	presented	here.	At	the	end	of	the	experiment,	participants	

stayed	in	the	laboratory	for	an	additional	30	minutes	during	which	they	ate	the	food	

they	obtained	during	the	study.	Note	that	participants	on	the	second	day	saw	a	new	

set	of	choice	options	that	was	created	based	on	the	taste	and	health	ratings	they	

gave	on	that	second	day,	using	the	same	allocation	algorithm	as	in	session	1.	

	

	

Data	set	3	–	Instructed	attention	cues	(IAC)	

In	order	to	determine	how	attention	cues	affected	attribute	timing	and	weighting,	

we	re-analysed	data	from	Hare,	et	al.	18.	Participants	in	this	study	were	not	following	

a	specific	health	or	dietary	goal	in	their	everyday	life,	but	received	a	cue	to	think	

about	the	healthiness	or	tastiness	of	the	foods	before	deciding	on	a	subset	of	

choices	in	the	study.	

	

Participants.	The	study	was	approved	by	the	Institutional	Review	Board	of	the	

California	Institute	of	Technology.	Thirty-three	participants	(23	female,	mean	age	
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24.8	±	5.1	years	SD)	were	included.	Screening	ensured	that	they	were	not	currently	

following	any	specific	diet	or	seeking	to	lose	weight.	All	participants	were	healthy,	

had	no	history	of	psychiatric	diagnoses	or	neurological	or	metabolic	illness,	were	not	

taking	medication,	had	normal	or	corrected-to-normal	vision,	and	were	right-

handed.	

	

Procedure.	Participants	were	instructed	to	fast	and	drink	only	water	in	the	3	hours	

prior	to	the	study.	In	this	experiment,	participants	made	a	series	of	180	choices	

within	an	MRI	scanner	while	BOLD	fMRI	was	acquired.	The	experiment	had	three	

conditions	with	60	trials	each	that	were	presented	in	blocks	of	10,	with	the	order	of	

blocks	and	foods	shown	within	blocks	fully	randomized	for	each	participant.	Each	

food	was	shown	only	once	(Fig.	1c).	In	condition	one,	participants	were	asked	to	

attend	to	the	tastiness	of	the	food	when	making	their	choices,	in	the	second	

condition,	to	attend	to	the	healthiness	of	the	food,	and	in	the	third	condition,	to	

choose	naturally.	The	instructions	emphasized	that	participants	should	always	

choose	what	they	preferred	to	eat	regardless	of	the	attention/consideration	cues.	

Before	each	block,	the	attention	condition	cue	was	displayed	for	5	seconds.	On	each	

choice	trial,	participants	had	3	seconds	to	answer	and	were	shown	feedback	on	their	

choice	for	0.5	seconds	after	responding.	Trials	were	separated	by	a	variable	fixation	

period	of	4	to	6	seconds.	Most	participants	responded	on	a	4-point	scale	“strong	

yes”,	“yes”,	“no”	or	“strong	no”	to	indicate	if	they	preferred	to	eat	or	to	not	eat	the	

food	shown	on	the	current	trial.	Five	out	of	33	participants	completed	a	version	of	

the	task	including	a	fifth	option	that	allowed	them	to	signal	indifference	between	

eating	and	not	eating	the	food.	We	followed	the	original	analysis	procedures	in	IAC	

and	analysed	all	33	subjects	as	one	set.	After	the	scan,	participants	rated	the	180	

food	items	for	taste	(regardless	of	health)	and	health	(regardless	of	taste),	with	the	

order	of	rating	types	randomized	across	participants.	After	both	the	choice	task	and	

ratings	were	complete,	one	trial	from	the	choice	task	was	randomly	chosen	to	be	

realised.	Participants	were	required	to	eat	the	food	if	they	answered	“yes”	or	“strong	

yes”.	If	they	answered	“no”	or	“strong	no”,	they	still	had	to	stay	in	the	laboratory	for	

the	30-minute	waiting	period;	however,	they	were	not	allowed	to	eat	any	other	
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food.	Participants	were	fully	informed	of	these	choice	incentivization	procedures	

before	beginning	the	study.		

	

Data	set	4	–	Transcranial	direct	current	stimulation	study	(TDCS)	

All	participants	in	this	study	were	pre-screened	during	recruitment	to	ensure	that	

they	were	actively	following	a	healthy	lifestyle.	They	were	specifically	asked	if	they	

would	agree	to	do	their	best	to	choose	the	healthier	option	whenever	possible	on	

the	day	of	the	study.	Participants	who	indicated	that	they	would	not	do	so	were	still	

allowed	to	complete	the	experiment	and	were	reimbursed	for	their	time,	but	we	did	

not	analyse	their	data.	All	participants	received	a	flat	fee	of	100	CHF	(approx.	104	

USD).	

	

Participants.	The	Ethics	Committee	of	the	Canton	of	Zurich	approved	the	study	

protocol	and	all	participants	provided	written	informed	consent.	In	total,	199	

participants	were	enrolled	in	the	study.	No	participants	reported	any	history	of	

psychiatric	or	neurological	conditions	or	had	any	acute	somatic	illness.	Participants	

were	pre-screened	in	telephone	interviews	to	ensure	they	did	not	suffer	from	any	

allergies,	food	intolerances,	or	eating	disorders.	To	ensure	that	the	snacks	in	the	

food	choice	task	would	present	a	temptation,	participants	were	only	eligible	if	they	

reported	regularly	consuming	snack	foods	(at	a	minimum	2-3	times	per	week)	while	

at	the	same	time	trying	to	maintain	an	overall	balanced	and	healthy	diet.		

Data	from	25	participants	were	excluded	because	they	failed	to	meet	a	priori	

inclusion	criteria	or	data	quality	checks.	Within	the	study	we	requested	a	written	

statement	of	compliance	with	a	health	goal	for	the	time	of	the	experiment	(see	

below).	Seven	men	and	1	woman	indicated	they	would	not	comply	with	the	health	

goal;	their	data	were	excluded	from	all	analyses.	Note	that	these	participants	still	

completed	the	experimental	procedures	and	received	the	same	compensation	

through	food	and	monetary	incentives	as	those	who	complied,	so	there	was	no	

incentive	for	the	participants	to	lie	about	following	the	health	goal.	Data	from	8	

participants	had	to	be	excluded	because	they	confused	the	response	keys	or	forgot	

the	identity	of	the	reference	item	during	the	task.	Four	participants	were	excluded	

on	site	due	to	safety	precautions	regarding	tDCS.	Three	participants	were	excluded	
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on	site	because	a	re-check	of	the	inclusion	criteria	revealed	that	they	did	not	actually	

like	snacks	or	only	consumed	them	on	1-2	occasions	per	month	instead	of	the	

minimum	2	times	per	week.	One	additional	participant	had	to	be	excluded	because	

the	choice	set	could	not	be	constructed	due	to	the	fact	that	he	reported	only	the	

most	extreme	values	on	all	health	and	taste	ratings.	Lastly,	data	from	one	participant	

was	excluded	because	she	never	made	a	healthy	choice	when	taste	and	healthiness	

were	in	conflict	in	the	baseline	condition,	precluding	inference	about	within-subject	

changes	due	to	stimulation.	This	left	87	men	and	87	women	in	the	final	dataset.		

Participants	were	randomly	allocated	to	stimulation	conditions.	The	anodal	(58	

participants,	30	female),	cathodal	(57	participants,	30	female),	and	sham	(59	

participants,	27	female)	stimulation	groups	did	not	differ	from	each	other	with	

regard	to	age,	body	mass	index	(BMI),	or	self-reported	eating	patterns	(as	assessed	

by	the	Three	Factor	Eating	Questionnaire,	German	validated	version	by	Pudel	and	

Westenhöfer	67)	(see	SI	Table	S8).	The	groups	also	did	not	differ	with	regard	to	

impulse	control	(in	the	stop	signal	reaction	time,	SSRT),	working	memory	capacity	

(digit	span	test),	or	time	discounting	preferences.	Finally,	the	groups	did	not	differ	in	

the	level	of	hunger	that	they	reported	before	the	choice	task	(see	SI	Tables	S9-16).	

	

tDCS	stimulation	protocol.	The	target	electrode	(5	x	7	cm)	was	placed	on	the	left	

dlPFC	(see	SI	Figure	S2a).	The	reference	electrode	(10	x	10	cm)	was	placed	over	the	

vertex,	off-centred	to	the	contralateral	side	in	such	a	way	that	a	5	x	7	cm	area	of	the	

reference	electrode	was	centred	over	the	vertex	while	the	remaining	area	was	

placed	more	to	the	right	side.	The	target	electrode	covered	the	two	dlPFC	regions	

depicted	in	SI	Figure	S2b	(MNI	peak	coordinates	=	[-46	18	24]	and	[-30	42	24]).	These	

targets	were	selected	because	they	both	showed	greater	activity	for	health	

challenge	success	>	failure	in	two	previous	fMRI	studies	51,53.	The	coordinates	for	

both	dlPFC	and	vertex	were	identified	in	each	participant’s	individual	T1-weighted	

anatomical	MR	image	using	a	neuronavigation	system	(Brainsight,	Rogue	Research,	

RRID:SCR_009539,	https://www.rogue-researcher.com/;	see	insert	in	Figure	S2b).	

We	applied	anodal,	cathodal,	or	sham	tDCS	over	this	dlPFC	site	using	a	commercially	

available	multi-channel	stimulator	(neuroConn	GmbH).	Between	a	ramp-up	and	

ramp-down	phase	of	20	seconds,	active	stimulation	with	1	milliampere	(mA)	took	
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place	for	30	minutes	(anodal	and	cathodal	group)	or	5	seconds	(sham).	Sham	

stimulation	was	delivered	with	either	the	anode	or	the	cathode	over	the	dlPFC,	

counterbalanced	over	the	whole	sham	group.	Both	the	participants	and	the	

experimenters	mounting	the	tDCS	electrodes	were	blind	to	the	stimulation	

condition.		

	

Procedure.	Participants	first	rated	180	food	items	for	health	and	taste.	They	were	

instructed	to	rate	taste	regardless	of	the	healthiness	and	vice	versa	for	each	of	our	

180	food	items	on	a	continuous	scale	that	showed	visual	anchor	points	from	-5	(“not	

at	all”)	to	+5	(“very	much”).	Before	or	after	these	ratings,	participants	completed	a	

battery	of	control	tasks	in	randomized	order.	All	control	tasks	were	performed	both	

before	and	after	stimulation:	a	stop	signal	reaction	time	task	(SSRT),	a	self-paced	

digit	span	working	memory	(WM)	test,	and	a	self-paced	monetary	inter-temporal	

choice	task	(ITC).	In	order	to	test	for	stimulation	effects	on	taste	and	health	ratings,	

participants	also	re-rated	a	subset	of	foods	after	stimulation	(see	supplemental	

information	section	1).		

After	all	pre-stimulation	tasks	had	been	completed,	but	before	any	food	choices	

were	made,	we	asked	participants	to	sign	a	health	goal	statement	in	which	they	

indicated	whether	they	would	commit	to	maintaining	a	health	goal	during	the	

following	food	choice	task	or	not	(see	SI	section	1.2	for	an	English	translation	of	the	

health	goal	text).	Participants	indicated	that	they	would	or	would	not	commit	to	the	

goal,	dated,	and	signed	the	document,	and	then	handed	it	back	to	the	experimenter.	

Participants	could	not	see	which	option	others	in	the	room	had	selected	and	the	

experimenter	randomizing	the	tDCS	conditions	was	blind	to	the	participants’	

responses	to	the	health	goal.		

	

Just	prior	to	beginning	the	food	choice	task,	participants	indicated	their	current	

hunger	levels.	They	then	completed	a	series	of	food	choices.	The	first	101	

participants	made	60	food	choices	at	baseline,	however	we	increased	the	number	of	

baseline	choices	to	80	for	the	final	98	participants	in	order	to	have	an	even	number	

at	baseline	and	under	stimulation.	All	other	experimental	factors	were	kept	the	

same	for	all	199	participants.	The	baseline	choices	allowed	us	to	make	within-subject	
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comparisons	of	health	challenge	success	before	and	during	stimulation.	Once	

participants	had	finished	making	the	baseline	choices,	stimulation	was	applied.	

Participants	did	not	make	any	choices	for	the	first	3	minutes	of	stimulation	to	allow	

the	current	to	stabilize.	Following	the	stabilization	period,	they	completed	another	

set	of	food	choices	(n	=	120	for	participants	1:101	and	n	=	80	for	participants	

102:199).	No	choice	pairs	were	repeated	between	the	baseline	and	stimulation	

choice	sets.	However,	the	difficulty	in	terms	of	taste	difference	was	balanced	across	

the	two	choice	sets	(see	SI).	

	

Participants	completed	the	set	of	food	choices	under	stimulation	(or	sham)	in	a	

maximum	of	16	minutes.	In	the	remaining	8-14	minutes	of	stimulation	(or	sham)	

time,	participants	completed	several	control	tasks.	We	randomized	the	order	of	the	

post-stimulation	control	tasks	so	that	all	tasks	had	an	equal	chance	of	being	run	in	

the	period	when	current	was	still	being	applied	versus	the	5-10	minute	window	

immediately	after	stimulation	(during	which	physiological	aftereffects	of	the	tDCS	

were	still	present,	see	69,70.	Once	they	had	completed	all	post-stimulation	control	

tasks,	participants	filled	in	a	questionnaire	battery	(Three	Factor	Eating	

Questionnaire	(TFEQ),	Cognitive	Reflection	Test	(CRT),	“Big	Five”	personality	

dimensions	(NEO-FFI),	socio-economic	status).	They	also	indicated	whether	and	to	

what	degree	they	had	tried	to	comply	with	the	health	goal	throughout	the	study,	

whether	they	had	felt	the	stimulation	and	how	strongly,	and	whether	they	had	any	

problems	understanding	or	following	the	instructions.	Finally,	participants	received	

and	ate	their	selected	food	30	minutes	after	they	made	their	final	decision	in	the	

food	choice	task.	

	

Food	choice	paradigm.	Participants	were	asked	to	eat	a	small	meal	of	approx.	400	

kcal	3	hours	prior	to	the	study	and	consume	nothing	but	water	in	the	meantime.	In	

the	health	challenge	paradigm,	participants	chose	which	food	they	wanted	to	eat	at	

the	end	of	the	study.	In	order	to	comply	with	their	health	goal,	they	had	to	choose	

the	healthier	item	as	often	as	they	could.	However,	the	paradigm	was	engineered	

such	that	health	and	taste	of	the	food	options	always	conflicted	based	on	the	

participant’s	ratings,	so	they	would	always	have	to	forgo	the	tastier	food	in	order	to	
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choose	healthy.	Participants	knew	that	one	of	their	choices	would	be	realised	in	the	

end,	and	they	would	have	to	eat	whatever	they	chose	on	the	trial	that	was	randomly	

selected.		

Participants	were	shown	the	picture	of	a	reference	food	for	3	seconds	at	the	

beginning	of	each	block.	This	reference	food	was	either	healthier	and	less	tasty	than	

all	10	items	shown	in	the	upcoming	block	or	tastier	and	less	healthy	than	all	10	

upcoming	items.	On	each	of	the	10	trials	within	a	block,	participants	had	to	decide	if	

they	preferred	to	eat	the	food	currently	shown	on	the	screen	or	the	reference	food	

at	the	end	of	the	study.	The	identity	of	the	reference	food	was	written	in	text	on	the	

screen	so	that	participants	did	not	need	to	remember	it	(see	Figure	1d).	During	each	

choice	trial,	participants	had	3	seconds	to	make	their	decisions,	and	each	trial	was	

separated	by	a	jittered	inter-trial	interval	of	2-6	seconds.	One	trial	was	selected	at	

random	to	be	realised	after	all	experimental	procedures	were	completed.	At	the	end	

of	the	study,	participants	stayed	in	the	lab	for	30	minutes	to	eat	the	food	they	

obtained	in	the	study.	

	

Statistical	Analyses	

All	analyses	presented	in	this	paper	were	performed	with	the	R	(“R	Core	Team,”	

2015),	STAN	71	and	JAGS	72	statistical	software	packages.	For	all	Bayesian	modelling	

analyses,	we	used	the	default,	uninformative	priors	specified	by	the	brms	package	73	

or	BEST	33	R-packages).	Throughout	the	paper,	the	notation	PP()	indicates	the	

posterior	probability	that	the	relation	stated	within	the	parentheses	is	true.	

Whenever	we	analysed	previously	published	data,	we	applied	the	same	subject-	and	

trial-level	exclusion	criteria	described	in	the	original	papers.		

	

Time-varying	Drift	Diffusion	Model	with	separate	attribute	consideration	onset	

times	

We	fit	a	drift	diffusion	model	that	allowed	for	differential	onset	times	for	taste	and	

health	attributes	during	evidence	accumulation	to	participants	choice	outcome	and	

reaction	time	data.	Several	of	the	food	choice	tasks	used	a	4-point	decision	strength	

scale,	and	for	these	data	we	collapsed	choices	into	a	binary	yes/no	or	left/right	
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choice.	The	following	six	free	parameters	were	estimated	separately	for	each	

participant	and	condition:	

	

Thr:	evidence	threshold	for	responding	(symmetric	around	zero)	

Bias:	starting	point	bias	for	the	evidence	accumulation	process	

nDT:	non-decision	time	

RST:	relative	start	time	for	health	(positive	values	mean	that	health	enters	the	

process	after	taste,	negative	values	mean	health	enters	before	taste)	

ωtaste:	weighting	factor	determining	how	much	taste	contributes	to	the	evidence	

accumulation	rate.		

ωhealth:	weighting	factor	determining	how	much	healthiness	contributes	to	the	

evidence	accumulation	rate.		

	

The	values	of	these	six	parameters	were	used	to	simulate	choices	and	response	

times	using	the	sequential	sampling	model	described	in	the	equation	below	to	

update	the	relative	evidence	level	at	each	subsequent	time	step	t.	

If	taste	enters	first,	the	update	equation	is		

		

Eq. 1!   !!  =  !!!! + !!"#!$  ∗  TD + ! > |!"#!" | ∗  !!!"#$! ∗  HD ∗  dt 

+  noise	
	

While	if	healthiness	enters	first	it	is	

	

Eq. 1!   !!  =  !!!! + ! > |!"#!" | ∗  !!"#!$  ∗  TD +  !!!"#$! ∗  HD ∗  dt 

+  noise	
	

Thus,	the	times	at	which	the	weighted	value	differences	in	tastiness	and	healthiness	

attributes	(ωtaste*TD	and	ωhealth*HD,	respectively)	begin	to	influence	the	evidence	

accumulation	rate	are	determined	by	!"#.	When	the	conditional	statement	

! > | !"#!" |  is	false,	it	equals	0,	while	if	true	it	equals	1.	Multiplying	one	of	the	two	
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weighted	attribute	values	by	0	until	 ! > | !"#!" |  is	true	means	that	that	attribute	

does	not	factor	into	the	evidence	accumulation	process	for	the	initial	time	period	

determined	by	|RST|.	The	RST	parameter	is	defined	as	the	consideration	start	time	

for	healthiness	minus	the	starting	time	for	tastiness.	Thus,	RST	will	have	a	positive	

values	when	tastiness	enters	into	consideration	first	and	negative	values	when	

healthiness	is	considered	first.	Note	that	the	standard,	synchronous	onset	DDM	is	

equivalent	to	the	specific	case	of	RST	=	0,	and	then	equations	1a	and	1b	are	

equivalent	because	t	is	always	greater	than	(|RST	/	dt|)	and	 ! > | !"#!" |  always	
equals	1.	

	 Evidence	accumulation	proceeds	according	to	equation	1a	or	1b	in	the	

following	manner.	The	evidence	accumulation	process	begins	with	an	initial	value	

(!!)	that	is	equal	to	the	value	of	the	Bias	parameter.	This	value	is	then	updated	in	

discrete	time-steps	of	dt	=	0.008	s	until	|!!|	is	greater	than	the	threshold	(Thr)	
parameter	value.	The	noise	at	each	step	of	the	accumulation	process	is	drawn	from	a	

Gaussian	distribution	with	mean	0	and	SD	=	1.4.	The	differences	in	taste	and	

healthiness	ratings	between	Food1	and	Food2	(or	Food1	vs.	0	for	the	single	item	

choices	in	the	IAC	dataset)	on	a	given	trial	are	denoted	by	TD	and	HD,	respectively.	

Once	the	threshold	is	crossed,	the	response	time	is	computed	as	t*dt	+	nDT,	where	

nDT	is	a	free	parameter	for	a	non-decision	time	that	accounts	for	the	time	required	

for	any	initial	perceptual	or	subsequent	motor	processes	that	surround	the	period	of	

active	evidence	accumulation	and	comparison.	

	 We	estimated	the	best	values	for	all	six	free	parameters	described	above	

separately	for	each	participant	and	condition	using	the	Differential	Evolution	

algorithm	described	in	Mullen,	et	al.	74	with	a	population	size	of	60	members	run	

over	150	iterations.	On	every	iteration,	we	simulated	3000	decisions	and	response	

times	for	all	unique	combinations	of	taste	and	healthiness	trade-offs	in	the	

participant’s	choice	set	using	each	population	member’s	six	tDDM	parameters.	We	

then	computed	the	likelihood	of	the	observed	data	given	the	distribution	generated	

by	the	3000	simulated	choices	for	a	given	set	of	parameters.	On	each	subsequent	

iteration,	the	population	evolves	toward	a	set	of	parameters	that	maximize	the	

likelihood	of	the	observed	data	using	the	procedures	described	by	Mullen	and	
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colleagues	74.	We	examined	the	evolution	of	the	population	over	the	150	

iterations/generations	and	found	that	the	Differential	Evolution	algorithm	settled	on	

set	of	best-fitting	parameters	well	before	150	iterations	in	our	data	sets.	The	upper	

and	lower	bounds	on	the	search	space	for	each	of	the	6	parameters	are	listed	in	

Table	S17.	The	ratings	for	taste	and	healthiness	were	z-scored	across	all	available	

ratings	of	each	type	for	the	whole	set	of	participants	in	each	study.	

Lastly,	we	also	fit	a	standard	DDM	to	all	datasets	using	the	same	procedures	

as	the	tDDM,	except	that	the	equation	omitted	the	relative-start-time	parameter,	

which	meant	that	both	tastiness	and	healthiness	were	constrained	to	enter	into	the	

evidence	accumulation	process	at	the	same	time.	

We	also	note	that	we	fit	the	tDDM	using	two	levels	of	resolution	for	the	

tastiness	and	healthiness	ratings	in	the	GFC	and	TDCS	studies.	The	tastiness	and	

healthiness	ratings	from	these	two	studies	were	collected	on	a	426-point	visual	

analogue	scale.	We	initially	fit	the	tDDM	using	the	426-point	ratings	scale.	We	also	

estimated	the	fits	after	first	reducing	the	resolution	to	10	equally-sized	bins	(i.e.,	

42.6	points	per	bin)	for	both	taste	and	health.	Both	versions	yielded	very	similar	

results,	but	the	estimation	proceeded	considerably	faster	when	using	the	binned	

ratings	because	this	reduced	the	number	of	unique	combinations	of	attributes	and	

therefore	the	number	of	simulations	required	for	the	fitting	procedure.	We	report	

the	parameter	values	and	results	from	the	model	with	binned	ratings	for	these	

studies.	

	

Tests	of	parameter	recovery	

We	generated	simulated	choices	and	reaction	times	by	parameterizing	the	standard	

and	tDDMs	using	the	best	fitting	parameters	for	each	model	estimated	from	the	

choices	made	by	participants	in	the	baseline	condition	for	all	four	studies.	The	

simulated	choice	sets	were	based	on	these	parameters	and	the	tastiness	and	

healthiness	differences	participants	faced	on	every	decision	trial.	Thus,	the	simulated	

choice	sets	matched	the	empirical	data	in	terms	of	trial	numbers	and	attribute	

difference	distributions.	Fitting	these	simulated	choices	allowed	us	to	quantify	both	

models’	ability	to	recover	known	parameter	values	within	the	context	of	our	
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experimental	datasets	and	the	ability	to	distinguish	between	these	models	(see	

Supplemental	Figs.	S1-S3	and	Table	S1).		

	

Testing	taste	versus	healthiness	influence	by	response	time	

In	addition	to	parameter	recovery	tests,	we	used	the	simulated	choices	to	test	how	

well	each	model	reproduced	choice	and	response-time	characteristics	observed	in	

the	empirical	data.	A	hierarchical	Bayesian	logistic	regression	analysis	showed	that	

the	influence	of	taste	and	healthiness	on	choice	outcomes	differed	as	a	function	of	

response	times.	(Eq.	2;	Tables	S2-4).	More	specifically,	this	analysis	tested	the	

influence	of	each	attribute	on	trials	in	which	the	response	was	made	before	versus	

after	the	relative-starting-time	advantage	of	the	first	attribute	had	elapsed,	on	

average.	The	population-level	regressors	are	listed	in	Equation	2	below.	

	

Eq.	(2)	Left	=		β0	+	β1	HFirst	+	β2	InitAdv	+	β3	TD	+	β4	HD	+	β5	HFirst	*	InitAdv	+	β6	HFirst	

*	TD	+	β7	HFirst	*	HD	+	β8	InitAdv	*	TD	+	β9	InitAdv	*	HD	+	β10	HFirst	*	InitAdv	*	

TD	+	β11	HFirst	*	InitAdv	*	HD	+	e	

	

In	this	equation,	Left	is	a	binary	indicator	of	the	choice	outcome.	HFirst	is	a	dummy		

variable	(1	=	healthiness,	0	=	taste)	indicating	which	attribute	is	considered	first	–	as	

determined	by	the	tDDM.	InitAdv	is	a	dummy	variable	(1	=	before,	0=	after)	

indicating	whether	the	response	was	made	before	the	median	value	of	the	sum	of	

relative-starting-time	difference	plus	non-decision	time	across	participants	had	

elapsed.	This	sum	was	equal	to	1	second.	One	second	was	also	the	cut-off	for	first	

quartile	of	the	response	time	range,	meaning	that	25%	of	choices	were	made	in	1	

second	or	less.	The	abbreviations	TD	and	HD	stand	for	the	differences	in	tastiness	

and	healthiness,	respectively,	on	each	trial.	Subject-specific	coefficients	were	

estimated	for	all	regressors	except	HFirst,	because	each	participant	had	only	one	

level	of	that	regressor	in	his	or	her	in	baseline	condition.		

We	computed	this	regression	using	four	different	subsets	of	empirical	or	

simulated	data.	Initially,	we	analysed	the	baseline	choice	trials	pooled	over	all	4	

studies	(baseline	=	mouse	response	trials	from	MRT,	day	1	trials	from	GFC,	no-cue	

trials	from	IAC,	pre-stimulation	trials	from	TDCS).	We	then	compared	this	model	to	
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two	simpler	models	that	omitted	either	1)	the	dependency	on	response	time	(i.e.	

InitAdv	dummy	variable)	or	2)	both	the	dependency	on	response	time	and	the	

indicator	for	which	attribute	a	participant	considered	first		(i.e.	InitAdv	and	HFirst	

dummy	variables).	The	full	model	explained	the	data	better	(see	supplemental	

results	Table	S3),	and	therefore,	we	used	it	to	examine	choice	patterns	generated	by	

the	standard	and	tDDM.	The	means	and	95%	HDIs	for	regression	coefficients	plotted	

in	Figure	2b	come	from	estimating	the	hierarchical	logistic	regression	in	Eq.	2	to	

observed,	standard,	or	tDDM-simulated	choices	for	all	participants	in	whose	|RST|	

parameter	fell	into	the	third	quartile.	We	subset	the	data	into	this	quartile	so	that	

timing	differences	between	taste	and	healthiness	would	be	big	enough	to	have	a	

clear	effect	in	both	the	real	and	simulated	data,	as	well	as	to	reduce	the	

computational	burden	of	fitting	the	hierarchical	logistic	regression.	The	estimates	

plotted	in	Fig.	2b	were	computed	by	combining	the	beta	coefficients	for	specific	

regressors	as	listed	below.		

TF_After	=	TD-HD,			

TF_Before	=	InitAdv	*	TD	–	InitAdv	*	HD,			

HF_After	=	(HFirst	*	TD	+	TD)	–	(Hfirst	*	HD	+	HD),			

HF_Before	=	(HFirst	*	InitAdv	*	TD	+	InitAdv	*	TD	)	–	(Hfirst*	InitAdv	*	HD	+	InitAdv	*	HD).			

Essentially,	these	combinations	yield	the	relative	influences	of	taste	and	healthiness	

for	each	separate	category	of	choices	rather	than	representing	differences	in	the	

influence	across	choice	categories.			

	

	

Correspondence	of	tDDM	health	delay	estimates	with	MRT	estimates	

With	their	mouse	response	trajectory	analysis,	Sullivan	and	colleagues	were	able	to	

estimate	to	within	a	fraction	(1/101)	of	each	response	time	when	health	first	

became	and	remained	significant	in	each	choice	(their	Figure	4b).	In	order	to	

compare	our	estimate	(which	was	given	in	seconds	and	represents	a	mean	value	

across	all	of	a	given	set	of	choices)	to	the	MRT	estimates,	we	transformed	the	MRT	

estimates	of	start	times	for	health	into	a	mean	estimate	in	seconds	as	well.	

Specifically,	we	took	the	mean	of	the	estimated	trial-wise	health	start	time	bins	for	

each	participant	and	multiplied	it	by	the	participant’s	mean	RT,	then	divided	by	101.	

The	MRT	method	was	only	able	to	estimate	health	start	times	for	N=18	(out	of	28)	
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participants	and,	therefore,	we	calculated	the	Bayesian	equivalent	of	Pearson’s	

correlation	coefficient	between	tDDM	and	mouse-tracking	estimates	of	health	start	

times	in	this	subset	of	participants.	Unless	otherwise	noted,	all	correlation	

coefficients	reported	in	this	paper	represent	the	mean	of	the	posterior	distribution	

from	a	Bayesian	correlation	analysis.	These	Bayesian	correlations	were	implemented	

in	R	and	JAGS	based	on	code	published	on	the	blog,	

doingbayesiandataanalysis.blogspot.com,	that	accompanies	the	“Doing	Bayesian	

Data	Analysis”	book	by	Kruschke	75.	

	

Relationship	between	relative-start-times	and	other	tDDM	parameters	

To	explain	how	individual	differences	in	the	relative-start-time	for	healthiness	were	

related	to	the	other	tDDM	parameters,	we	estimated	the	model	specified	in	Eq.	3	

(Table	S5)	below:	

	

Eq.	(3)	RST	=		β0	+	β1	ωtaste		+	β2	ωhealth		+	β3	nDT	+	β4	Thr	+	β5	Bias	+	β6	Study	IAC	+	β7	

Study	MRT	+	β8	Study	TDCS	+	β9	Bias*Study	IAC	+	β10	Bias*Study	MRT	+	β11	Bias*	

Study	TDCS		+	e	

	

Note	that	we	interacted	the	Bias	parameter	from	the	tDDM	with	a	dummy	variable	

indicating	the	Study,	because	the	bias	measures	different	answers	across	studies	

given	the	task	designs	(e.g.	left/right,	eat/do	not	eat).	The	GFC	study	served	as	the	

baseline	in	this	regression.	

	

	

Out	of	sample	tests	for	comparing	the	standard	and	tDDMs	

We	fit	the	standard	and	tDDM	with	separate	attribute	consideration	onsets	to	the	

odd-numbered	choices	from	each	participant	and	then	compared	the	accuracy	of	

the	two	models	when	predicting	even-numbered	choice	outcomes.		We	used	the	

squared	error	in	predicting	choice	outcomes	as	our	measure	of	accuracy	76.		The	

predicted	outcome	for	each	choice	was	computed	as	the	mean	outcome	over	1000	

simulations	from	the	standard	and	tDDM.		Choices	for	the	food	on	the	left	or	to	eat	

the	food	in	single	option	decisions	were	set	to	a	value	of	1,	and	the	alternative	
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choice	was	set	to	a	value	of	0.		Thus,	the	mean	outcome	from	the	1000	simulations	

for	each	choice	represented	the	probability	of	a	given	outcome.		The	scoring	rule	for	

accuracy	on	each	trial	was	then	computed	as:	(True_Outcome	–	Prediction)2.		We	

computed	the	squared	error	separately	for	tastier	and	less	tasty	choice	outcomes	

and	then	took	the	mean	error	across	these	trials	types	to	obtain	a	measure	of	

balanced	error.		

	

Changes	in	tDDM	parameters	between	instructed	attention	conditions	

We	compared	tDDM	parameters	fit	to	choices	during	health-cued	(HC),	taste-cued	

(TC),	and	natural-cued	(NC)	blocks	using	a	Bayesian	t-like	test	(implemented	in	the	R	

Package,	BEST	version	3.1.0	33),	which	in	turn	relies	on	JAGS	(version	3.3.0	72).	

	

Modelling	changes	in	behaviour	under	tDCS	

We	first	fit	the	hierarchical	regression	model	specified	in	Eq.	6	to	the	odd-numbered	

baseline	trials	in	our	tDCS	dataset.	Based	on	those	fitted	parameters,	we	generated	

predictions	about	the	probability	of	health	challenge	success	in	even-numbered	

trials	as	a	function	of	tDCS	polarity	(anodal,	cathodal,	sham),	stimulation	session	

(baseline,	active),	health	difference,	taste	difference,	and	participant	identity.	We	

then	estimated	Eq.	6	on	all	even-numbered	trials	for	which	the	probability	of	health	

challenge	success	was	predicted	to	be	between	0.2	and	0.8.	

To	examine	whether	stimulation	over	left	dlPFC	caused	changes	in	health	challenge	

success,	we	fit	a	Bayesian	hierarchical	logistic	regression	model	to	the	tDCS	dataset.	

The	population-level	regressors	for	this	model	are	given	in	Eq.	4.		

	

Eq.	(4)	Health	Challenge	Success	=	β0	+	β1TD	+	β2HD	+	β3	stimulationON	+	β4	Cathodal	

+	β5	Anodal	+	β6	TD*stimulationON	+		β7	HD*stimulationON		+	β8	TD*Cathodal	+	β9	

TD*Anodal	+	β10	HD*Cathodal	+	β11	HD*Anodal	+	β12	stimulationON*Cathodal	+	β13	

stimulationON*Anodal	+	β14	TD*stimulationON*Cathodal	+	β15	

TD*stimulationON*Anodal	+	β16	HD*stimulationON*Cathodal	+	β17	

HD*stimulationON*Anodal	+	e	
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Here,	TD	and	HD	denote	the	absolute	value	of	taste	and	healthiness	difference	

between	foods	on	each	trial,	stimulationON	was	a	dummy	variable	taking	the	value	1	

under	stimulation	and	0	at	baseline,	and	Anodal	and	Cathodal	were	the	active	

stimulation	conditions.	The	Sham	condition	was	the	baseline	in	this	regression.	The	

model	included	the	main	effects	of	all	regressors	as	well	as	the	two	and	three-way	

interactions	between	attribute	differences	and	stimulation	Type	and	session	(i.e.,	

baseline	vs.	stimulation	on).	The	model	also	included	subject-specific	intercepts,	

stimulation	effects,	and	slopes	for	HD	and	TD	(see	Table	S7).	
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The	data	analysed	in	this	paper	and	code	for	fitting	the	diffusion	models	and	running	

the	other	analyses	are	openly	available	on	the	Open	Science	Framework	at		
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https://osf.io/g76fn/.		Additional	data	for	the	mouse	response	trajectory	

experiments	from	Sullivan	et	al.	(2015)	are	available	at	https://osf.io/jmiwn/	
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1.	Supplemental	Results	

1.1	Model	comparison	and	parameter	recovery	tests	for	the	standard	DDM	and	
time-varying	DDM	with	separate	attribute	consideration	onset	times.	

	

	
	
Figure	 S1.	 Response	 time	 (RT)	 patterns	 in	 the	 empirical	 data,	 and	 data	 simulated	
using	 the	best-fitting	 standard	and	 tDDM	parameters.	a)	These	density	plots	 show	
the	RT	distributions	in	the	empirical	data	(green),	as	well	as	choices	simulated	using	
the	standard	(red)	and	tDDM	(purple)	parameters.	The	columns	separate	responses	
into	healthy	and	unhealthy	choice	outcomes.	In	both	columns,	the	response	time	is	
shown	on	the	x-axis,	with	positive	RTs	indicating	left	(in	GFC,	MRT,	and	TDCS)	or	eat	
(in	IAC)	choices	and	negative	RTs	indicating	right	or	don’t	eat	choices.	b)	This	panel	
shows	the	cumulative	distribution	function	for	RTs	by	choice	outcome	in	each	study.	
The	 columns	 separate	 outcomes	 into	 healthy	 and	 unhealthy	 choice	 categories.	 In	
both	(a)	and	(b),	it	is	evident	that	participants	respond	faster	than	predicted	by	the	
standard	 DDM.	On	 the	 other	 hand,	 choices	 generated	 from	 the	 best-fitting	 tDDM	
parameters	more	closely	match	the	empirical	data.	
	

The	time-varying	DDM	with	separate	consideration	onset	times	for	taste	and	

healthiness	(tDDM)	yielded	a	better	fit	to	choice	and	reaction	time	distributions	

across	all	subjects	(N	=	272)	than	the	standard	formulation	of	a	DDM	with	a	single,	

synchronous	onset	time	(Figure	S1;	tDDM	BIC	=	280632.3,	standard	DDM	BIC	=	

281909).	Furthermore,	the	improvement	in	the	fit	for	the	tDDM	over	the	standard	

DDM	is	proportional	to	the	absolute	value	of	the	estimated	relative	start	time	for	a	

given	participant	(Table	S18).	This	relationship	is	expected	because	the	greater	the	

difference	in	onset	times	between	taste	and	healthiness,	the	more	behaviour	will	

deviate	from	the	predictions	of	the	standard,	synchronous	onset	DDM.		
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	 We	also	tested	the	out-of-sample	accuracy	for	standard	versus	tDDM	fits	to	

our	human	participants’	choices.		Specifically,	we	fit	the	standard	and	tDDMs	to	the	

odd-numbered	choices	from	each	participant	and	then	quantified	the	accuracy	of	

each	model	when	predicting	even-numbered	choice	outcomes.		The	mean	squared	

error	for	the	tDDM	(0.204)	was	lower	than	that	of	the	standard	DDM	(0.218).		Table	

S18	shows	the	results	of	a	hierarchical	Bayesian	linear	regression	on	the	trial-wise	

improvement	in	prediction	error	for	the	tDDM	over	the	standard	DDM	as	a	function	

of	the	taste	and	healthiness	differences	in	each	choice	and	the	best	fitting	tDDM	

parameters	for	each	human	participant.	Thus,	overall	the	tDDM	better	explains	

response-time	dependent	influences	of	taste	and	healthiness	on	choice	outcomes,	

response	time	distributions	regardless	of	whether	the	choice	was	healthy	or	

unhealthy,	and	makes	more	accurate	out-of-sample	predictions	for	choice	

outcomes.	

	 We	performed	parameter	recovery	tests	for	both	the	standard	and	tDDM.	

These	tests	were	based	on	the	actual	food	choices	each	of	the	272	participants	faced	

in	the	lab	experiments.		Specifically,	we	simulated	one	set	of	choices	using	the	best-

fitting	standard	DDM	parameters	and	a	second	set	using	the	best-fitting	tDDM	

parameters	for	each	participant	using	the	choice	options	(i.e.	taste	and	healthiness	

differences)	the	participant	faced	in	the	lab.		We	then	fit	both	simulated	choice	sets	

using	the	standard	and	tDDM.		This	gave	us	four	new	sets	of	fitted	parameters	that	

we	could	compare	with	the	known	generating	parameters	and	models.		

Parameter	recovery	was	very	good	for	both	the	standard	and	tDDM	when	

fitting	to	the	corresponding	generating	model	(Fig.	S2	and	S3;	Table	S20).		

Furthermore,	when	fitting	the	tDDM	to	choices	generated	by	the	standard	DDM,	

there	was	no	correlation	between	errors	in	the	relative	weights	versus	errors	in	the	

relative	timing	(mean	r	=	0.02,	PP	(r	<	0)	=	0.36,	95%	HDI	=	[-0.09;0.15]).		However,	

when	fitting	the	standard	DDM	to	choices	generated	by	the	tDDM,	the	errors	in	

relative	weight	versus	relative	timing	parameter	recovery	were	negatively	correlated	

(mean	r	=	-0.44,	PP	(r	<	0)	>	0.99995,	95%	HDI	=	[-0.54;-0.35]).  This	pattern	of	biased	

errors	is	expected	because	a	standard	DDM	is	forced	to	account	for	the	difference	in	

attribute	consideration	onset	timing	by	over-estimating	the	difference	in	weights	

between	the	two	attributes.	
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Figure	 S2.	 Parameter	 recovery	 for	 the	 time-varying	 DDM	 with	 separate	
consideration	onset	times	for	tastiness	and	healthiness	attributes.	 	The	plots	 in	the	
first	 column	 show	 the	 distributions	 of	 all	 272	 generating	 and	 recovered	 relative	
weighting	 (a)	 and	 timing	 parameters	 (b).	 	 There	 was	 no	 significant	 difference	
between	generating	and	recovered	relative	weighting	(mean	difference	=	0.01,	95%	
HDI	=	[-0.36,	0.54],	posterior	probability	of	a	difference	>	0	=	0.662)	or	relative	timing	
parameters	(mean	difference	=	-0.01,	95%	HDI	=	[-0.03,	0.01],	posterior	probability	
of	a	difference	>	0	=	0.105).		The	panels	in	the	second	column	show	the	correlations	
between	the	generating	and	recovered	relative	weighting	(c)	and	timing	parameters	
(d).	 	The	red	dotted	line	indicates	the	x	=	y	 identity	 line.	Panel	e)	plots	the	error	 in	
relative	 weight	 recovery	 against	 the	 error	 in	 relative	 timing	 recovery.	 	 This	 plot	
shows	that	there	is	no	significant	correlation	between	the	two	types	of	error	when	
fitting	 the	 model	 (r	 =	 -0.1,	 95%	 HDI	 =	 [-0.215;	 0.018],	 posterior	 probability	 of	
observing	a	negative	correlation	=	0.95).	
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Figure	 S3.	 Parameter	 recovery	 for	 the	 standard	 DDM	 with	 simultaneous	
consideration	 onset	 times	 for	 tastiness	 and	 healthiness	 attributes.	 	 a)	 shows	 the	
distributions	 of	 all	 272	 generating	 and	 recovered	 relative	 weighting	 parameters.		
Recall	 that	 the	 relative	 consideration	 start	 time	 is	 fixed	 at	 zero	 for	 the	 standard	
DDM.	There	was	no	significant	difference	between	generating	and	recovered	relative	
weighting	(mean	difference	=	0.004,	95%	HDI	=	[-0.05,	0.05],	posterior	probability	of	
a	difference	>	0	=	0.58).		b)	shows	the	correlation	between	the	same	generating	and	
recovered	parameters	from	the	histogram	in	panel	a.	The	red	dotted	 line	 indicates	
the	x	=	y	identity	line.	
		
	
In	addition	to	these	parameter	recovery	tests,	we	performed	model	identification	

tests	on	simulated	data.		At	the	model	level,	we	were	able	to	determine	whether	the	

generating	model	was	the	standard	or	a	time-varying	DDM	with	separate	

consideration	onsets	for	taste	and	healthiness	in	each	case.		These	recovery	tests	

were	based	on	out-of-sample	predictive	accuracies.		To	compute	the	out-of-sample	

prediction	accuracy	we	generated	1000	choices	for	150	new	food	pairs	from	272	

real-subject-based	simulated	agents	that	used	either	the	generating	or	recovered	

standard	and	tDDM	parameters.		We	then	quantified	out-of-sample	accuracy	by	

computing	the	squared	error	between	new	choices	(i.e.	the	mean	left/right	outcome	

over	1000	simulated	choices	for	each	food	pair)	made	by	the	original	generating	

parameters	and	recovered	standard	or	tDDM	parameters.		When	the	tDDM	was	the	

generating	model,	the	recovered	tDDM	parameters	had	lower	squared	error	(mean	

=	0.006)	than	the	recovered	standard	DDM	parameters	(mean	=	0.016).		In	contrast,	

when	the	standard	DDM	was	the	generating	model,	the	recovered	tDDM	parameters	

had	higher	squared	error	(mean	=	0.012)	than	the	recovered	standard	DDM	
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parameters	(mean	=	0.008).		Table	S21	shows	the	results	of	a	hierarchical	Bayesian	

regression	on	the	trial-wise	improvement	in	prediction	error	for	the	tDDM	over	the	

standard	DDM	as	a	function	of	the	taste	and	healthiness	differences	in	each	choice	

and	the	simulated	agents’	tDDM	parameters.		Note	that	in	this	regression	on	

simulated	data,	the	included	tDDM	parameters	are	the	ones	known	to	have	

generated	the	choices.		

	

	

1.2	Results	from	control	analyses	in	the	tDCS	study.	

TDCS	effects	in	other	cognitive	domains.	We	assessed	potential	differences	in	

several	cognitive	domains	under	tDCS	using	the	Bayesian	regression	model	specified	

in	Eq.	S1	in	the	supplemental	methods.	We	found	no	effects	of	tDCS	stimulation	over	

left	dlPFC	on	working	memory	(Tables	S9-10),	response	inhibition	(Tables	S11-12),	or	

monetary	inter-temporal	choice	(Tables	S13-14).	The	paradigms	used	to	measure	

these	behaviours	are	described	in	the	supplemental	methods	below.	Note	that	

although	previous	papers	have	reported	effects	of	brain	stimulation	over	the	dlPFC	

in	several	of	these	domains,	our	stimulation	target	and	electrode	placement	is	

different	from	those	previous	studies.			

	

Pre-choice	hunger	levels.	To	assess	the	hunger	level,	we	report	percentages	of	

maximum	hunger	level	as	participants	indicated	it	on	a	visual	analogue	scale	(Table	

S15).	Self-reported	hunger	did	not	differ	between	the	stimulation	groups	(for	results	

of	the	Bayesian	regression	model	specified	in	Eq.	S2	see	Table	S16).	

	

Stability	of	taste	and	health	ratings	before	and	after	stimulation.	In	order	to	test	

the	stability	of	taste	and	health	ratings	after	stimulation,	participants	re-rated	a	

random	subset	of	30	foods	drawn	from	the	original	set	of	180	foods	after	

stimulation.	We	tested	the	stability	of	both	rating	types	with	Bayesian	linear	models	

specified	as	in	Eq.	S3	in	the	supplemental	methods	below.	For	the	health	ratings,	

neither	stimulation	session	(mean	beta	estimate	=	1.11	±	0.75	SD,	95%	credible	

interval:	[-0.34;	2.58]),	nor	stimulation	condition	(estimate	=	-0.43	±	0.82,	CI:	[-

2.05;1.20]),	nor	their	interaction	(estimate	=	-0.13	±	0.34,	CI:	[-0.82;	0.54])	showed	
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significant	differences	at	the	population	level	(Table	S22a).	Taste	ratings	were	

slightly	higher	for	all	groups	after	stimulation	(estimate	=	3.70	±	0.95,	CI:	[1.86;	

5.57]),	and	higher	at	baseline	for	the	anodal	(estimate	=	4.92	±	1.92,	CI:	[1.14;	8.71])	

and	cathodal	groups	(estimate	=	4.18	±	1.92;	CI:	[0.42;	7.91])	compared	to	sham,	but	

the	critical	interaction	test	showed	that	stimulation	groups	did	not	differ	in	their	

taste	rating	increase	between	pre-	and	post-stimulation	measurements	(estimate	of	

the	stimulation	session	X	condition	interaction	=	-0.16	±	1.31,	CI:	[-2.75;	2.41]	for	

cathodal	and	for	anodal	estimate	=	-1.07	±1.31,	CI:	[-3.69;	1.49];	Table	S22b).	Note	

that	the	ratings	were	scaled	to	fall	between	0	and	100,	and	thus	the	coefficients	can	

be	interpreted	as	percentage	of	the	visual	analogue	rating	scale.		

	

No	relationship	between	RST	and	SSRT	and	WM	in	the	baseline	trials	from	the	tDCS	

study.	There	was	no	correlation	between	the	start	time	for	health	relative	to	taste	

(RST)	estimated	during	baseline	(i.e.,	without	stimulation)	choice	trials	and	inhibitory	

control,	measured	as	stop	signal	reaction	time	(mean	r	=	0.05,	PP	(r	>0)	=	0.71,	95%	

HDI	=	[-0.12;	0.233]),	or	RST	and	working	memory	capacity,	measured	as	forward	

digit	span	(mean	r	=	0.02,	PP	(r	>	0)	=	0.61,	95%	HDI	=	[-0.125;	0.17]).	

	

1.3	Testing	the	relationship	between	attribute	rating	response	times	and	relative-

start-times	during	choice	

We	reasoned	that	rating	response	times	might	be	an	index	of	how	readily	taste	and	

healthiness	attributes	come	to	mind	and	play	a	role	in	determining	their	relative	

onset	times.	Therefore,	we	tested	whether	the	time	required	to	report	taste	and	

healthiness	ratings	during	the	separate	rating	sessions	was	associated	with	the	

relative-start-times	for	these	attributes	during	the	decision	process	(see	Eq.	S4	in	

supplementary	methods).	Using	the	data	from	the	baseline	session	in	our	tDCS	

experiment	(i.e.,	the	largest	sample	in	one	homogenous	experimental	setup),	we	

found	that	the	time	it	took	to	report	taste	or	healthiness	ratings	was	not	significantly	

associated	with	relative-start-times	(taste	regression	coef.	=	0.05	±	11	sec,	95%	HDI	=	

[-0.17;	0.28],	health	regression	coef	=	0.07	±	0.12	sec,	95%	HDI	=	[-0.17;	0.31];	Table	

S23).	
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1.4		The	influence	of	attribute	consideration	onset	times	on	choice	outcomes	and	

response	times	

We	also	ran	two	hierarchical	Bayesian	regressions	showing	how	relative-start-times	

(RSTs)	relate	to	both	response	times	and	choices.		The	time-varying	DDM	with	

separate	attribute	consideration	onset	times	predicts	that	the	influence	of	RST	on	a	

given	choice	will	depend	on	the	individual’s	subjective	weights	for	tastiness	and	

healthiness.		Furthermore,	it	also	predicts	that	the	influence	of	RST	on	choice	

outcomes	will	depend	on	whether	or	not	the	tastiness	and	healthiness	attributes	

both	favor	the	same	option	or	they	are	in	conflict	(i.e.	differs	between	health	

challenge	and	non-challenge	trials).		The	regressions	in	Tables	S24	and	S25	show	that	

these	predicted	interactions	are	present	in	our	data.	

	

2.	Supplemental	Discussion	

2.1	DDM	versus	other	sequential	sampling	models	

We	used	the	DDM	as	a	starting	point	for	our	modelling	analysis	because	this	flavour	

of	sequential	sampling	model	is	relatively	simple,	well	established,	and	widely	used	

to	fit	choice	and	response-time	data	across	cognitive	domains.	However,	a	number	

of	different	sequential	sampling	model	formulations	exist,	and	in	specific	cases,	

these	models	make	different	predictions	about	choice	and	reaction-time	

distributions	77-83.	However,	in	our	food	choice	datasets,	most	of	these	sequential	

sampling	models	will	be	nearly	indistinguishable	84-86;	we	therefore	refer	to	our	

current	model	as	a	sequential	sampling	model	to	emphasize	that	we	are	adding	a	

feature	to	one	representative	of	this	larger	class	of	models.	Adding	this	flexibility	for	

attributes	to	enter	into	consideration	at	different	points	is	also	possible	for	many	

other	sequential	sampling	models.	

We	also	note	that	our	results	from	the	tDDM	are	consistent	with	theoretical	and	

empirical	work	showing	that	sequential	sampling	models,	including	drift	diffusion	

models	and	linear	ballistic	accumulators,	can	capture	changes	in	perceptual	decision	

processes	that	result	from	known	changes	in	externally	presented	evidence	over	

time	82,87-90.	However,	in	contrast	to	previous	work	on	perception,	we	tested	for	

asynchronous	attribute	consideration	onsets	in	value-based	choices	for	which	the	
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externally	presented	evidence	is	constant.	In	other	words,	we	examined	timing	

differences	resulting	from	internal	cognitive	and	neural	processes	instead	of	changes	

in	the	stimuli	themselves.	Regardless	of	the	context	(e.g.	perceptual,	value-based)	or	

the	exact	form	of	sequential	sampling,	the	key	feature	that	allows	these	models	to	

explain	the	data	is	the	ability	to	account	for	variability	in	the	strength	of	evidence	

over	time.			

	 Lastly,	we	note	that	an	attribute-specific,	independent	race	model	is	not	a	

parsimonious	explanation	of	our	data.	In	an	independent	race	model,	the	first	

competitor	to	cross	the	threshold	determines	how	the	decision	is	made	91.		

Therefore,	in	a	race	model	that	included	separate	and	independent	accumulators	for	

each	attribute	value	or	difference	in	attribute	values,	the	response	times	will	only	be	

proportional	to	the	value	of	the	winning	attribute	(i.e.	the	one	that	crosses	the	

threshold	first).		This	prediction	of	race	models	does	not	hold	in	our	data.		Regardless	

of	whether	or	not	participants	chose	the	healthier	or	tastier	option,	response	times	

are	significantly	related	to	the	difference	in	both	attributes	(Tables	S26	and	S27).		

Moreover,	response	times	also	depend	on	whether	or	not	the	subjective	value	

derived	from	the	initially	considered	attribute	alone	is	compatible	(i.e.	points	to	the	

same	choice)	with	a	subjective	value	computed	by	integrating	across	both	taste	and	

healthiness	attributes	(see	Table	S28).		Thus,	our	results	are	more	consistent	with	

hierarchical	comparisons	of	attributes	on	one	level	and	integrated	option	values	at	a	

second	level,	as	in	Hunt	and	colleagues’	fMRI	study	of	risky	choices	77.	There	must	be	

integration	across	attributes	at	some	level	in	the	evidence	accumulation	hierarchy	or	

mutual	inhibition	between	attribute-specific	accumulators	to	explain	the	response	

time	results	we	find.	
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3.	Supplemental	Methods		

TDCS	electrode	montage	

	

	
Figure	 S4.	 Left	 dlPFC	 target	 regions	 in	 the	 tDCS	 study.	 (a)	 The	 stimulation	 was	
centred	 over	 two	 previously	 identified	 dlPFC	 regions	 of	 interest	 (MNI	 peak	
coordinates	 =	 [-46	 18	 24]	 and	 [-30	 42	 24])	 based	on	 contrasts	 of	 health	 challenge	
success	>	failure	in	two	previous	fMRI	studies	(Hare,	et	al.	92	and	Maier,	et	al.	93).		
(b)	The	dlPFC	and	vertex	coordinates	were	identified	with	neuronavigation	based	on	
anatomical	 brain	 scans	 for	 each	 participant.	A	 5x7	 cm	 electrode	 (indicated	 by	 the	
white	frame)	was	placed	over	left	dlPFC	to	cover	both	stimulation	targets,	and	a	10	x	
10	 cm	 reference	 electrode	 was	 placed	 over	 the	 vertex	 slightly	 offset	 to	 the	 right	
hemisphere	(so	that	the	centre	of	a	comparable	5x7	cm	area	would	be	centred	over	
the	meeting	point	of	the	two	central	sulci,	see	Methods).		
	
	

TDCS	control	task	descriptions	

Stop	signal	reaction	time	task	(SSRT).	We	used	a	standard	stop-signal-reaction	time	

task	94-97	in	order	to	assess	whether	stimulation	changed	inhibitory	control.	

Participants	had	to	press	a	button	as	quickly	as	they	could	whenever	a	figure	

appeared	on	the	screen	(“go	task”),	but	had	to	stop	the	initiated	movement	if	

another	figure	appeared	above	the	first	with	a	few	milliseconds	delay	(“stop	signal”).	

The	initial	delay	between	the	stop	signal	and	the	go	signal	was	0.25	seconds.	The	

task	was	adaptive	and	added	0.05	seconds	delay	to	the	next	inhibition	trial	

whenever	the	participant’s	rate	of	successful	movement	inhibition	was	greater	than	

50%	over	all	previous	inhibition	trials	(adding	up	to	a	delay	of	maximum	0.95	
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seconds),	and	subtracted	0.05	seconds	whenever	the	participant’s	success	rate	in	

inhibiting	the	button	press	fell	below	50%	over	all	inhibition	trials	completed	up	to	

this	point.	Stimuli	were	presented	on	the	screen	with	a	jittered	duration	between	0.5	

and	1.25	seconds,	and	late	responses	that	were	given	after	the	stimulus	had	

disappeared	from	the	screen	were	not	counted	as	correct.	Trials	with	(25)	and	

without	stop	signal	(75)	were	randomly	mixed	within	the	run.	

The	stop	signal	reaction	times	(calculated	by	subtracting	the	average	presented	

delays	from	the	average	reaction	times)	were	negative	for	a	number	of	participants,	

indicating	that	they	adopted	a	strategy	of	waiting	for	the	stop	signal	to	appear	

before	initiating	a	response.	In	other	words,	they	did	not	follow	the	task	instructions	

to	initiate	a	response	as	soon	as	the	go	signal	appeared	on	the	screen.	We	removed	

participants	showing	this	pattern	from	all	analyses	using	SSRTs.	The	remaining	

sample	included	39	Anodal,	41	Cathodal	and	42	Sham	participants.		

	

Digit	span	task.	In	order	to	test	and,	if	necessary,	account	for	changes	in	working	

memory	capacity	under	tDCS,	participants	completed	a	computerized	digit	span	task	

according	to	the	procedure	of	Wechsler	98.	The	screen	first	showed	a	series	of	5	

numbers,	each	for	1	second,	and	then	prompted	the	participant	to	enter	the	

numbers	as	she	remembered	them.	If	the	participant	entered	a	correct	sequence	in	

ascending	(“forward”)	order	two	times	in	a	row,	the	difficulty	level	increased	by	one	

digit	(up	to	a	maximum	of	12	digits).	If	the	participant	failed	two	times	in	a	row,	or	

alternated	between	correct	and	incorrect	answers	more	than	seven	times	without	

reaching	two	sequential	correct	responses,	the	task	stopped	and	prompted	

participants	to	enter	the	digits	in	reverse	of	the	order	they	were	originally	shown	

(“backward”)	in	the	next	round	of	trials.	Within	the	backwards	digit	span	trials,	

participants	also	needed	two	consecutive	correct	responses	to	reach	the	next	level,	

stopped	at	12	digits,	or	if	they	reached	the	failure	criteria	described	above.	We	

excluded	data	from	two	participants	for	the	following	reasons:	For	one	participant	in	

the	Sham	group,	data	for	the	post-stimulation	control	were	lost	due	to	a	computer	

crash.	One	participant	in	the	Anodal	group	was	detected	to	cheat	by	writing	down	all	

sequences	on	the	instruction	sheet.	We	report	data	from	172	participants	(57	

Anodal,	57	Cathodal	and	58	Sham).	Note	that	due	to	an	oversight	in	the	task	
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programming,	it	was	possible	to	cheat	and	solve	the	backward	digit	span	by	entering	

the	numbers	in	the	forward	direction	(i.e.,	the	program	did	not	force	participants	to	

enter	responses	in	the	requested	order).	We	therefore	only	evaluated	the	forward	

digit	span.	

	

Inter-temporal	choice	task.	To	test	and,	if	necessary,	account	for	possible	effects	of	

tDCS	on	discounting	behaviour,	we	ran	an	inter-temporal	choice	(ITC)	task	based	on	

the	paradigm	of	Cooper,	Kable,	Kim	&	Zauberman	99.	Participants	were	instructed	

that	they	would	earn	part	of	their	total	payment	in	this	task	(60	CHF	were	paid	as	a	

baseline	on	the	day	of	the	study,	and	the	present	discounted	value	of	40	CHF	from	

the	ITC	was	paid	at	the	time	specified	by	the	participant).	They	were	told	that	we	

would	randomly	draw	select	one	trial	from	either	the	baseline	or	stimulation	session	

and	realize	(i.e.,	pay	out)	their	decision	on	that	trial.	In	this	version	of	the	ITC	task,	

participants	participated	in	a	BDM	auction	100		designed	to	elicit	their	indifference	

points	between	a	payoff	on	the	day	of	the	experiment	and	40	CHF	at	various	points	

in	the	future.	Participants	were	asked	to	specify	a	bid	between	1	and	40	CHF	for	

which	they	would	be	indifferent	between	receiving	the	bid	amount	today	versus	40	

CHF	after	the	specified	delay	on	that	trial.	Participants	made	bids	for	immediate	

payoffs	versus	40	CHF	in	14	linearly	spaced	delays	ranging	from	13	to	181	days	from	

the	day	of	the	experiment.		

	 The	rules	of	the	BDM	auction	were	fully	explained	to	participants	and	were	as	

follows.	If	the	participant’s	bid	was	more	than	a	randomly	determined	counter	offer	

that	was	uniformly	drawn	from	the	range	0:40	CHF,	she	would	receive	the	delayed	

payment	of	40	CHF	in	the	indicated	number	of	days.	However,	if	she	had	bid	less	

than	the	counter	offer,	she	was	paid	the	amount	of	the	counter	offer	at	the	day	of	

the	study	instead	of	40	CHF	in	the	future.	If	the	bid	was	equal	to	the	counter	offer,	

then	a	coin	flip	decided	which	payment	was	made.	This	mechanism	ensures	that	it	is	

in	the	participants’	best	interest	to	bid	their	true	value	for	the	present	equivalent	of	

40	CHF	at	the	given	delay.		

We	calculated	a	discounting	score	for	each	participant	as	the	area	under	the	curve	

for	all	bids,	where	higher	bids	indicate	a	greater	willingness	to	wait	for	the	delayed	

outcome.	We	excluded	the	data	from	several	participants	from	analysis	because	
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their	bidding	patterns	indicated	that	they	did	not	understand	the	task	(e.g.,	they	

alternated	between	bidding	high	and	low	amounts	with	increasing	delay,	or	bid	

lower	amounts	for	short	delays	and	increased	their	bids	for	longer	delays,	which	is	

the	opposite	of	the	expected	pattern).	The	ITC	data	analyses	we	report	are	based	on	

N	=	135	participants	(45	Anodal,	45	Cathodal,	and	45	from	the	Sham	group)	who	

showed	a	consistent	pattern	of	temporal	discounting	across	trials.	

	

Regression	models	used	in	the	tDCS	study		

All	regression	models	were	estimated	using	Bayesian	Markov-chain	Monte	Carlo	

(MCMC)	methods	with	R	(“R	Core	Team,”	2015),	in	combination	STAN	101	or	JAGS	102.	

We	used	the	default,	uninformative	priors	specified	by	the	brms	103	or	BEST	104	R-

packages.	

	

We	tested	working	memory,	monetary	intertemporal	choice	and	SSRT	task	

performance	(Tables	S10,	S12,	and	S14)	as	a	function	of	stimulation	session	and	

stimulation	condition	using	linear	regressions	taking	the	form	of	Eq.	S1:	

	

(Eq.	S1)	Score	=	β0	+	β1	stimulationON	+	β2	Cathodal	Baseline	+	β3	Anodal	Baseline	+	

β4	Cathodal*stimulationON	+	β5	Cathodal*stimulationON	+	e	

	

where	Score	denoted	the	respective	working	memory,	intertemporal	choice	or	stop-

signal	reaction	time	performance,	stimulationON	was	a	binary	dummy	variable	

denoting	stimulation	session	(0	=	pre-stimulation,	1	=	concurrent	or	immediately	

after	stimulation),	and	Anodal	and	Cathodal	were	the	active	stimulation	conditions.	

The	Sham	stimulation	condition	served	as	the	baseline	in	this	regression.			

	

Baseline	differences	in	hunger	levels	(Table	S16)	were	modelled	according	to	Eq.	S2:	

	

(Eq.	S2)	hunger	level	=	β0		+		β1	Cathodal	+		β2	Anodal	+	e	
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where	hunger	level	was	given	in	percent	(as	indicated	on	a	visual	analogue	scale	with	

0%	not	at	all	and	100%	=	maximally	hungry).	The	Sham	stimulation	condition	served	

as	the	baseline	in	this	regression.			

	

The	population-level	regressors	for	the	for	taste	and	health	ratings	regressions	

(Table	S22)	are	listed	in	equation	S3	below.	Note	that	the	models	also	included	

intercepts	for	subjects	and	food	items	(i.e.,	each	subject	and	food	item	was	treated	

as	a	random	effect)	as	well	as	subject-	and	food-specific	specific	slopes	for	the	effect	

of	stimulation.	

	

(Eq.	S3)	Rating	=	β0	+	β1	stimulationON	+	β2	Cathodal	+	β3	Anodal	+	β4	

stimulationON*Cathodal	+	β5	stimulationON*Anodal	+	e	

	

where	Rating	was	either	health	or	taste	ratings	for	the	foods	(tested	in	separate	

models),	stimulationON	was	a	factor	for	stimulation	session	(pre-stimulation,	post-

stimulation),	and	Anodal	and	Cathodal	were	the	active	stimulation	conditions.	The	

Sham	condition	was	the	baseline	in	this	regression.			

	

Health	goal	statement	used	in	the	tDCS	study	

The	statement	read:	“In	this	study,	we	want	to	investigate	how	people	make	healthy	

food	choices.	Therefore,	we	ask	you	to	maintain	the	goal	of	eating	as	healthy	as	

possible	during	this	study.	Specifically,	we	ask	you	to	try	and	choose	the	healthier	of	

the	two	food	options	on	each	trial.	However,	these	are	real	decisions,	and	you	are	

required	to	eat	the	food	that	you	chose	in	one	randomly	selected	trial.	We	realize	

this	may	be	more	difficult	for	some	people	than	others,	and	it	is	important	for	us	to	

know	whether	you	agree	to	this	goal	or	not.	Your	participation	and	payment	are	not	

contingent	on	your	response.	However,	this	is	important	for	the	scientific	validity	of	

our	study,	so	please	mark	your	answer	below	honestly.	Please	mark	“yes”	if	you	

agree	to	do	your	best	to	follow	the	health	goal.	Please	mark	“no”	if	you	do	not	want	

to	commit	yourself	to	the	health	goal.”	Participants	made	their	selections,	dated	and	

signed	the	document,	and	handed	it	back	to	the	experimenter.			
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Comparing	response	times	during	rating	sessions	to	relative	start	times	

We	used	response	times	during	the	rating	sessions	as	an	estimate	of	the	

participants’	fluency	in	recalling	or	constructing	taste	and	healthiness	attributes	

(Table	S23).	To	test	whether	the	relative	start	time	(RST)	depended	on	the	speed	of	

ratings	for	either	health	or	taste	aspects,	we	estimated	the	following	model	for	each	

participant:	

	

(Eq.	S4)	RST	=	β0	+	β1	mRTtaste	+	β2	mRThealth	+	β3	nDT	+	e	

	

where	mRT	is	the	mean	reaction	time	over	all	taste	ratings	or	health	ratings	that	the	

participant	made	at	the	beginning	of	the	experiment,	and	nDT	is	the	non-decision	

time	estimated	in	the	tDDM.	We	conducted	this	analysis	using	the	data	from	the	

baseline	session	in	our	tDCS	experiment	(i.e.,	our	largest	set	of	data	from	a	single	

choice	paradigm/context).	

	

Testing	the	influence	of	all	tDDM	parameters	on	the	improvement	in	fit	for	the	

tDDM	relative	to	the	standard	DDM	

We	tested	how	the	improvement	in	fit	for	the	tDDM	relative	to	the	standard	DDM	

(Table	S18)	relates	to	all	the	parameters	of	the	tDDM	by	estimating	the	following	

Bayesian	linear	model:	

	

(Eq.	S5)	diffLL	=	β0	+	β1|ωtaste|	+	β2|ωhealth|	+	β3|RST|+	β4	Thr	+	β5	nDT	+	β6	bias+	e	

	

where	diffLL	is	the	difference	in	Log-Likelihood	between	the	tDDM	and	the	standard	

DDM,		|ωtaste/health|	is	the	absolute	value	of	taste	or	the	health	weights	,	|RST|	is	the	

absolute	value	of	relative-start-time	(to	accommodate	changes	in	any	direction),	Thr	
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is	the	threshold,	and	nDT	is	the	non-decision-time	estimated	by	the	tDDM.	We	

conducted	this	analysis	using	models	fit	to	the	choice	and	reaction	time	distributions	

across	all	participants	(N	=	272).	Note	that	similar	results	are	obtained	when	using	a	

logistic	regression	that	treats	the	difference	in	Log-Likelihood	as	a	binary	outcome.	

	

	

Improvement	of	prediction	accuracy	for	the	tDDM	relative	to	standard	DDM	on	

choices	made	by	a	tDDM	generating	process	and	by	human	participants	

We	tested	how	much	the	out-of-sample	prediction	accuracy	increased	for	a	time-

varying	relative	to	a	standard	DDM	on	choices	made	by	human	participants	(Table	

S19)	as	well	as	on	choices	made	by	simulated	agents	that	used	a	time-varying	DDM	

to	make	decisions	(Table	S21).	We	modeled	this	improvement	as	a	function	of	trial	

and	individual-specific	variables	using	the	following	Bayesian	hierarchical	linear	

regression:	

	

(Eq.	S6)	pERR=	β0	+	β1	|TD|	+	β2	|HD|	+	β3	ωtaste	+	β4	ωhealth	+	β5	|RST|+	β6	Thr	+	β7	

nDT	+	β8	bias+	e	

	

where	pERR	indicates	the	percent	error	reduction	of	the	tDDM	over	the	standard	

DDM	in	predicting	out-of-sample	choices,		|TD	|and	|HD|	are	the	absolute	trial-wise	

health	and	taste	value	differences,	and	ωtaste/health,	Thr,	nDT,	bias,	and	|RST|	indicate	

the	6	tDDM	parameters:	taste	and	health	weighting,	threshold,	non-decision	time,	

bias,	and	the	absolute	value	of	the	relative	start	time	for	health.		

	

Testing	for	differences	in	the	strength	of	association	between	relative	attribute	

weights	and	starting	times	in	generating	versus	recovered	parameters	

We	tested	whether	there	was	a	difference	in	the	strength	of	association	between	

relative	attribute	weights	and	starting	times	in	recovered	relative	to	known	

generating	parameters.	The	recovered	parameters	were	estimated	from	choices	

generated	by	the	best	fitting	tDDM	parameters	across	272	participants	(Table	S20).		

We	conducted	this	analysis	using	the	following	Bayesian	linear	model:	
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(Eq.	S7)	RST	=	β0	+	β1	(ωtaste	–	ωhealth)	+	β2	RecParameters	+	β3	(ωtaste	–	

ωhealth)*RecParameters	+	e	

	

where	RST	refers	to	the	relative	starting	times	across	generating	and	recovered	

parameters,	(ωtaste	–	ωhealth)	are	the	relative	attribute	weights,	and	RecParameters	is	

a	dummy	variable	where	1	or	0	indicates	that	the	parameter	was	recovered	or	

generated,	respectively.		

	

Testing	healthy	food	choices	as	a	function	of	attribute	weighting	and	timing	

parameters	

We	modeled	healthy	food	choices	as	a	function	of	the	estimated	parameters	of	the	

tDDM,	the	difference	in	taste	and	healthiness	ratings,	and	whether	the	participants	

faced	a	challenge	on	the	respective	trial	by	fitting	a	Bayesian	hierarchical	logistic	

regression	(Table	S24).	The	population-level	regressors	are	given	below:	

	

(Eq.	S8)	Hc	=	β0	+	β1	ωtaste	+	β2	ωhealth	+	β3	RST	+	β4	Chall	+	β5	TD	+	β6	HD	+	β7	

ωtaste*RST+	β8	ωhealth*RST	+	β9	ωtaste*Chall+	β10	ωhealth*Chall	+	β11	RST*Chall+	β12	

ωtaste*RST*Chall	+	β13	ωhealth*RST*Chall		+	e	

	

where	Hc	is	a	binary	variable	indicating	whether	a	healthy	food	item	was	chosen,	

ωtaste/health	are	the	estimated	taste	or	health	weighting	parameters	of	the	tDDM,	RST	

is	the	relative	start	time	for	health,	Chall	is	a	dummy	variable	indicating	whether	the	

participants	faced	a	challenge	on	the	respective	trial,	and	TD	and	HD	are	the	

differences	in	taste	and	healthiness	ratings	between	the	two	options,	respectively.	

The	model	included	subject-specific	intercepts	as	well	as	subject-specific	slopes	for	

TD	and	HD	to	capture	individual	differences	in	sensitivity	to	these	two	aspects	when	

making	healthy	choices.	

	

Testing	response	times	in	health	challenge	and	non-challenge	trials	as	a	function	of	

the	tDDM	parameters	

We	used	a	hierarchical	Bayesian	linear	regression	to	model	response	times	in	health	

challenge	and	non-challenge	trials	as	a	function	of	the	tDDM	parameters	pooled	
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across	the	baseline	conditions	of	all	4	studies	(Table	S25).	The	population-level	

regressors	are	indicated	below:	

	

(Eq.	S9)	log(RT)	=	β0	+	β1	Chall	+	β2	ωtaste	+	β3	ωhealth	+	β4	RST	+	β5	HC	+	β6	|TD|	+	β7	

|HD|	+	β8	ωtaste*RST	+	β9	ωhealth*RST	+	β10	ωtaste*HC	+	β11	ωhealth*HC	+	β12	RST*HC	+	β13	

Chall*ωtaste+	β14	Chall*ωhealth	+	β15	Chall*RST+	β16	Chall*HC	+	β17	Chall*|TD|	+	β18	

Chall*|HD|	+	β19	ωtaste*RST*HC	+	β20	ωhealth*RST*HC	+	β21	Chall*ωtaste*RST	+	β22	

Chall*ωhealth*RST	+	β23	Chall*ωtaste*HC	+	β24	Chall*ωhealth*HC	+	β25	Chall*RST*HC	+	β26	

Chall*ωtaste*RST*HC	+	β27	Chall*ωhealth*RST*HC	+	e	

	

where	log(RT)	are	log-transformed	reaction	times,	Chall	is	a	dummy	variable	

indicating	whether	the	participants	faced	a	challenge	on	the	respective	trial,	

ωtaste/health	are	the	estimated	taste	or	health	weighting	parameters	of	the	tDDM,	HC	

is	a	binary	variable	indicating	whether	a	healthy	food	item	was	chosen,	and	|TD|	and	

|HD|	are	the	absolute	value	differences	in	taste	and	healthiness	ratings	between	the	

two	options,	respectively.	The	model	included	subject-specific	intercepts	and	

subject-specific	slopes	for	the	|TD|	and	|HD|	regressors	as	well	as	the	interactions	

of	these	regressors	with	the	challenge	trial	and	healthy	choice	dummy	variables	to	

capture	individual	differences	in	sensitivity	to	taste	and	health	aspects	when	making	

healthy	or	unhealthy	choices	in	challenging	or	non-challenging	settings.	

	

Modeling	response	times	in	cases	where	the	healthier	or	tastier	option	was	chosen	

We	tested	how	response	times	were	affected	by	the	difference	in	attribute	ratings	

and	whether	participants	faced	a	challenge	on	the	respective	trial	separately	for	

cases	where	the	healthier	(Table	S26)	or	tastier	option	was	chosen	(Table	S27)	with	

the	following	regression:	

	

(Eq.	S10)	log(RT)	=	β0	+	β1	|TD|	+	β2	|HD|+	β3	Chall	+	β4|TD|*Chall		+	β5	|HD|*Chall		

+	e	

	

where	log(RT)	are	log-transformed	reaction	times,|TD|	and	|HD|	are	the	absolute	

value	differences	in	taste	and	healthiness	ratings	between	the	two	options,	
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respectively,	and	Chall	is	a	dummy	variable	indicating	whether	the	participants	faced	

a	challenge	on	the	respective	trial.	The	model	included	subject-specific	intercepts	

and	subject-specific	slopes	for	the	|TD|	and	|HD|	regressors	and	their	interaction	

with	the	challenge	trial	dummy	variable	to	capture	individual	differences	in	

sensitivity	to	taste	and	health	aspects	in	challenging	or	non-challenging	settings.	

	

	

	

	

	

	

	

	

	

Modelling	response	times	as	a	function	of	subjective	value	when	one	or	two	

attributes	are	considered	

To	test	whether	response	times	also	depend	on	whether	or	not	the	subjective	value	

derived	from	the	initially	considered	attribute	alone	is	compatible	(i.e.	points	to	the	

same	choice)	with	a	subjective	value	computed	by	integrating	across	both	taste	and	

healthiness	attributes	(Table	S28),	we	modeled	response	times	with	the	following	

regression:	

	

(Eq.	S11)	log(RT)	=	β0	+	β1	Comp	+	β2	|TD|	+	β3	|HD|	+	e	

	

where	log(RT)	are	log-transformed	reaction	times,	Comp	is	a	dummy	variable	

indicating	whether	the	subjective	value	on	the	respective	trial	for	the	initially	

considered	attribute	was	compatible	with	the	subjective	value	of	both	health	and	

taste	attributes	combined,	and	|TD|	and	|HD|	are	the	absolute	value	differences	in	

taste	and	healthiness	ratings	between	the	two	options,	respectively.	The	model	

included	subject-specific	intercepts	as	well	as	subject-specific	slopes	for	|TD|	and	

|HD|	to	capture	individual	differences	in	sensitivity	to	these	two	attributes.			
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Statistics	packages	used	

All	analyses	presented	in	this	paper	were	performed	with	the	R	(“R	Core	Team,”	

2015),	STAN	101	and	JAGS	102	statistical	software	packages.	The	sequential	sampling	

model	was	fit	using	the	Rcpp	toolbox	105.	Bayesian	regression	models	were	run	using	

the	brms	package	103	which	is	an	interface	between	R	and	STAN.	All	correlations		and	

t-tests	were	computed	using	Bayesian	MCMC	sampling	methods	using	R	in	

combination	with	JAGS	104,106.	The	plots	in	Figures	2,3	and	5	were	created	using	the	

yarrr	package	107.	The	packages	pracma	108	and	plyr	109	were	used	for	data	handling	

and	restructuring.	
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4.	Supplemental	Tables	
	
Table	S1.	Bayesian	information	criterion	(BIC)	values	for	alternative	specifications	of	the	DDM.		

DDM	type	 Squared	Error	 Squared	Error	Difference	 BIC	 BIC	difference	
Different	Onsets	 0.204	 -	 280632	 -	

Standard	DDM	 0.218	 0.014	 286493	 5861	

Different	Offsets	 0.215	 0.011	 318724	 38092	

Different	Onsets	&	Offsets	 0.219	 0.015	 289060	 8428	

Starting-point	bias	for	tastier	 0.281	 0.077	 281909	 1277	

	
This	table	lists	the	squared	error	in	out-of-sample	predictions	and	the	Bayesian	information	criterion	
(BIC)	values	for	the	time-varying	DDM	used	throughout	the	main	text,	the	standard	DDM,	and	three	
other	alternative	DDM	formulations.		Column	1	lists	the	squared	error	in	predictions	for	even-
numbered	trial	outcomes	generated	from	parameter	fits	to	participants	odd-numbered	choices.	
Column	2	lists	the	increase	in	error	for	a	given	model	relative	to	the	tDDM	with	separate	
consideration	onset	times	for	taste	and	healthiness	attributes.		Thus,	higher	values	indicate	better	
performance	for	our	primary	tDDM.		Column	3	lists	the	BIC	values	for	each	model	across	all	trials	from	
all	272	participants	in	the	four	data	sets	we	examine	here.		Column	4	lists	the	differences	between	
each	alternative	and	our	primary	tDDM	specification	(i.e.	alternative	BIC	–	primary	BIC).		Here	again,	
higher	values	indicate	better	performance	for	our	primary	tDDM.	
Different	Onsets	=	a	time-varying	DDM	that	includes	a	free	parameter	allowing	for	the	consideration	
onset	time	of	each	attribute	to	differ.	This	is	the	model	we	use	throughout	the	rest	of	the	paper.		
Different	Offsets	=	a	DDM	that	instead	of	different	onsets	allows	for	the	time	at	which	each	attribute	
ceases	to	be	considered	to	differ.	In	other	words,	one	attribute	could	stop	adding	to	the	evidence	
accumulation	process	before	a	threshold	is	reached.		
Different	Onsets	&	Offsets	=	a	DDM	including	both	separate	onset	and	offset	times	for	each	attribute.		
Starting-point-bias	for	tastier	=	a	standard	DDM	with	simultaneous	attribute	on	and	offset	times.	
However,	in	this	case	the	data	have	been	transformed	such	that	tastier	outcomes	are	always	on	the	
upper	boundary	of	the	DDM.	This	allows	the	starting	point	bias	that	formally	measured	left/right	or	
eat/don’t	eat	biases	in	our	other	formulations	of	the	DDM	to	capture	a	bias	in	favour	of	the	tastier	
option.		
Standard	=	a	standard	DDM	with	boundaries	and	starting-point	biases	for	left/right	or	eat/don’t	
outcomes.		
In	every	case,	we	fit	the	DDMs	to	either	all	or	the	odd-numbered	choices	in	one	experimental	
condition	from	all	272	participants.		In	other	words,	there	are	no	repeated	within-subjects	measures	
in	these	comparisons.		All	DDMs	were	fit	using	the	same	procedures	as	those	described	in	the	main-
text	Methods	section.		
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Table	 S2.	 The	 influence	 of	 tastiness	 relative	 to	 healthiness	 before	 and	 after	 the	 average	 initial	
advantage	for	the	attribute	considered	first	has	elapsed.	
	 Mean	beta	±	SD	 95%	Credible	Interval	

(Intercept)	 	-0.04	±	0.05	 	[-0.14;	0.06]	

HFirst	 	0.02	±	0.06	 	[-0.09;	0.13]	

InitAdv		 	-0.09	±	0.13	 	[-0.34;	0.17]	

TD	 	1.34	±	0.06	 	[1.21;	1.47]	

HD	 	0.65	±	0.07	 	[0.52;	0.79]	

HFirst	*	InitAdv	 	-0.35	±	0.17	 	[-0.69;	-0.04]	

HFirst	*	TD	 	-0.57	±	0.07	 	[-0.7;	-0.43]	

HFirst	*	HD	 	0.61	±	0.07	 	[0.47;	0.75]	

InitAdv	*	TD	 	0.78	±	0.14	 	[0.51;	1.05]	

InitAdv	*	HD	 	0.33	±	0.12	 	[0.1;	0.57]	

HFirst	*	InitAdv	*	TD	 	-0.52	±	0.15	 	[-0.81;	-0.25]	

HFirst	*	InitAdv	*	HD	 	0.81	±	0.15	 	[0.52;	1.12]	

Bayesian	R2	 0.4	 	

	
This	table	reports	the	group-level	results	from	the	Bayesian	hierarchical	logistic	regression	described	
in	Eq.	2	for	all	272	participants.	The	outcome	variable	in	this	equation	was	a	binary	indicator	of	the	
choice	outcome	(left/right,	eat/do	not	eat).	HFirst	is	a	dummy	variable	(1	=	healthiness,	0	=	taste)	
indicating	which	attribute	is	considered	first	–	as	determined	by	the	tDDM.	InitAdv	is	a	dummy	
variable	(1	=	before,	0=	after)	indicating	whether	the	response	was	made	before	the	median	value	of	
the	sum	of	relative-starting-time	difference	plus	non-decision	time	across	participants	had	elapsed.	
This	sum	was	equal	to	1	second.	The	abbreviations	TD	and	HD	stand	for	the	differences	in	tastiness	
and	healthiness,	respectively,	on	each	trial.	These	differences	were	computed	as	left	item	–	right	
item,	or	item	to	potentially	eat	–	0.	Subject-specific	coefficients	were	estimated	for	all	regressors	
except	HFirst,	because	each	participant	had	only	one	level	of	that	regressor	in	his	or	her	in	baseline	
condition.	Model	fits	are	given	as	the	population	level	mean	of	the	posterior	distribution	±	standard	
deviation	(SD)	and	the	95%	credible	interval.		
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Table	S3.	Model	comparisons	between	a	Bayesian	hierarchical	logistic	regression	including	response	
time	and	consideration	order	effects	and	two	simplified	models	without	those	features.	
	

Model																																															LOOIC		 SE	

Full	Model	 22873.33	 161.16	

Reduced	Model	1	 23168.74	 161.25	

Reduced	Model	2	 23342.44	 159.83	

Full	–	Reduced	1	 -295.41	 33.46	

Full	–	Reduced	2	 -469.12	 43.48	
	
This	table	shows	the	expected	out-of-sample	prediction	error	(LOOIC)	for	three	Bayesian	hierarchical	
logistic	regressions	that	measure	the	relative	influence	of	health	and	tastiness	attributes	on	choice	
outcomes.		The	LOOIC	values	were	computed	using	Pareto	smoothed	importance-sampling	leave-
one-out	cross-validation	110,111.		Smaller	values	indicate	better	expected	out-of-sample	performance.		
The	standard	errors	(SE)	for	the	LOOIC	or	differences	in	LOOIC	are	shown	in	the	last	column.		
The	full	model	is	given	by	Eq.	(2)	that	we	repeat	here	for	convenience:		
Left	=		β0	+	β1	HFirst	+	β2	InitAdv	+	β3	TD	+	β4	HD	+	β5	HFirst	*	InitAdv	+	β6	HFirst	*	TD	+	β7	HFirst	*	HD	+	
β8	InitAdv	*	TD	+	β9	InitAdv	*	HD	+	β10	HFirst	*	InitAdv	*	TD	+	β11	HFirst	*	InitAdv	*	HD	+	e	
In	this	equation,	Left	is	a	binary	indicator	of	the	choice	outcome.	HFirst	is	a	dummy		variable	(1	=	
healthiness,	0	=	taste)	indicating	which	attribute	is	considered	first	–	as	determined	by	the	tDDM.	
InitAdv	is	a	dummy	variable	(1	=	before,	0=	after)	indicating	whether	the	response	was	made	before	
the	median	value	of	the	sum	of	relative-starting-time	difference	plus	non-decision	time	across	
participants	had	elapsed.	This	sum	was	equal	to	1	second.	The	abbreviations	TD	and	HD	stand	for	the	
differences	in	tastiness	and	healthiness,	respectively,	on	each	trial.		
We	compared	this	full	model	to	two	simpler	models	that	omitted	either,	1)	the	dependency	on	
response	time	(i.e.	InitAdv	dummy	variable)	or	2)	both	the	dependency	on	response	time	and	the	
indicator	for	which	attribute	a	participant	considered	first		(i.e.	InitAdv	and	HFirst	dummy	variables).	
The	full	model	is	better	than	both	reduced	models	and	the	results	from	it	are	given	in	Table	S2.		
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Table	S4.	The	influence	of	taste	relative	to	healthiness	before	and	after	the	average	initial	advantage	
for	the	attribute	considered	first	has	elapsed	in	simulated	choices.	

	 tDDM	simulations	 Empirical	data	 DDM	simulations	

	 Mean	±	SD	 95%	CI	 Mean	±	SD	 95%	CI	 Mean	±	SD	 95%	CI	

(Intercept)	 	0.07	±	0.10	 	[-0.11;	0.27]	 	0.12	±	0.12	 	[-0.12;	0.36]	 	0.12	±	0.09	 	[-0.06;	0.31]	

HFirst	 	-0.22	±	0.13	 	[-0.47;	0.04]	 	-0.29	±	0.16	 	[-0.61;	0.02]	 	-0.24	±	0.13	 	[-0.49;	0.00]	

InitAdv		 	1.67	±	0.77	 	[0.21;	3.24]	 	0.87	±	0.31	 	[0.29;	1.51]	 	1.03	±	0.97	 	[-0.78;	3.07]	

TD	 	1.75	±	0.19	 	[1.38;	2.12]	 	1.33	±	0.14	 	[1.06;	1.60]	 	2.41	±	0.27	 	[1.87;	2.94]	

HD	 	0.45	±	0.25	 	[-0.03;	0.93]	 	0.29	±	0.17	 	[-0.05;	0.63]	 	0.43	±	0.30	 	[-0.15;	1.03]	

HFirst	*	InitAdv	 	-3.62	±	1.01	 	[-5.81;	-1.81]	 	-1.73	±	0.42	 	[-2.59;	-0.95]	 	-2.59	±	1.21	 	[-5.22;	-0.39]	

HFirst	*	TD	 	-0.77	±	0.24	 	[-1.24;	-0.29]	 	-0.50	±	0.18	 	[-0.86;	-0.15]	 	-1.10	±	0.34	 	[-1.76;	-0.44]	

HFirst	*	HD	 	1.28	±	0.33	 	[0.65;	1.95]	 	0.94	±	0.23	 	[0.50;	1.38]	 	2.04	±	0.41	 	[1.27;	2.84]	

InitAdv	*	TD	 	0.37	±	0.36	 	[-0.29;	1.13]	 	1.09	±	0.30	 	[0.56;	1.73]	 	0.69	±	0.67	 	[-0.39;	2.24]	

InitAdv	*	HD	 	-0.62	±	0.31	 	[-1.29;	-0.08]	 	-0.06	±	0.24	 	[-0.53;	0.42]	 	-0.25	±	0.47	 	[-1.20;	0.65]	

HFirst	*	InitAdv	*	TD	 	-1.39	±	0.48	 	[-2.38;	-0.51]	 	-1.31	±	0.33	 	[-2.01;	-0.70]	 	-0.34	±	0.68	 	[-1.87;	0.83]	

HFirst	*	InitAdv	*	HD	 	1.31	±	0.50	 	[0.43;	2.41]	 	1.04	±	0.39	 	[0.37;	1.85]	 	0.74	±	0.78	 	[-0.58;	2.52]	

	
Table	S4	reports	the	results	of	the	same	Bayesian	hierarchical	logistic	regression	used	in	Table	S3	(Eq.	
2),	but	fit	to	simulated	choices	derived	from	the	best-fitting	tDDM	(left	columns)	or	standard	DDM	
(right	columns)	parameters.	The	simulations	were	based	on	parameters	fit	to	choices	from	the	subset	
of	participants	whose	|RST|	duration	fell	in	the	3rd	quantile	across	all	four	studies	(approximately	
0.3-0.5	s).	Thus,	this	subset	includes	participants	whose	RST	is	large	enough	to	produce	clear	effects	
on	simulated	choice	outcomes,	but	not	at	the	extreme	ends	of	the	distribution.	The	regression	
coefficients	from	the	hierarchical	logistic	regression	on	the	actual	choices	made	by	this	subset	of	
participants	are	shown	in	the	centre	columns.		
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Table	S5.	The	variability	in	relative-start-times	is	only	modestly	related	to	other	tDDM	parameters.		
	 Mean	beta	±	SD	 95%	Credible	Interval	

(Intercept)	 0.19	±		0.24	 [-0.29;	0.65]	

ωtaste	 0.15	±	0.04	 [0.07;	0.22]	

ωhealth	 0.01	±	0.04	 [-0.07;	0.08]	

nDT	 0	±	0.19	 [-0.37;	0.38]	

Thr	 -0.04	±	0.11	 [-0.26;	0.18]	

Bias	 -0.27	±	0.82	 	[-1.90;	1.29]	

Study	IAC	 0.07	±	0.10	 [-0.12;	0.27]	

Study	MRT	 -0.10	±	0.11	 [-0.32;	0.11]	

Study	TDCS	 -0.32	±	0.09	 [-0.49;	-0.15]	

Bias	X	Study	IAC	 0.39	±	0.85	 [-1.22;	2.07]	

Bias	X	Study	MRT	 -0.18	±	0.92	 [-1.92;	1.65]	

Bias	X	Study	TDCS	 0.74	±	0.83	 [-0.86;	2.38]	

Bayesian	R2	 0.3	 	

	
This	table	reports	the	results	from	the	Bayesian	linear	regression	described	in	Eq.	3.	We	modelled	the	
relative-start-time	as	a	function	of	all	other	parameters	in	the	tDDM	fits	to	the	“baseline”	choice	
condition	in	each	study.	These	“baseline”	condition	fits	correspond	to	those	shown	in	Figure	3	and	
include	data	from	the	mouse	response	trials	in	Sullivan	et	al	2015,	data	from	the	natural	choice	
condition	in	Hare	et	al	2011,	data	from	the	first	session/day	of	the	gambles	and	food	choices	study,	
and	data	from	the	pre-stimulation	baseline	choices	in	our	tDCS	experiment.	Overall,	the	other	tDDM	
parameters	explained	only	30%	of	the	variability	in	relative-start-times	across	participants.	To	account	
for	the	fact	that	the	bias	measured	different	answers	across	studies,	and	thus,	carries	a	different	
meaning	(e.g.,	left/right,	eat/do	not	eat),	we	included	an	interaction	between	the	Bias	parameter	
from	the	tDDM	with	a	dummy	variable	for	each	Study	to	account	for	the	different	task	designs.	The	
significant	coefficient	for	the	Study	TDCS	dummy	regressor	indicates	that	relative-start-times	
favoured	healthiness	more	in	that	study	relative	to	the	GFC	study	that	served	as	the	baseline	in	this	
regression.	This	fact	can	be	seen	in	Figure	3	as	well.		
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Table	S6.	Shared	variance	between	relative	start-times	and	drift	weights.	
	

ωtaste	 ωhealth	 (ωtaste	-	ωhealth)	 (ωtaste	+	ωhealth)	

RST	versus:	 12	%	(0.351)	 12	%	(-0.348)	 20	%	(0.448)	 <	1%	(-0.030)	
	
The	values	shown	in	this	table	represent	the	amount	of	shared	variance	(Pearson’s	r2	*	100)	between	
the	relative-start-time	parameter	(RST)	and	the	separate,	relative	(ωtaste	–	ωhealth)	or	summed	(ωtaste	+	
ωhealth)	drift	rates	across	all	participants	and	conditions	(n	=	549	parameter	sets).	The	signed	Pearson’s	
r-values	are	shown	in	parenthesis	to	indicate	the	direction	of	each	correlation.	The	estimated	ωtaste	
and	ωhealth	parameters	share	6%	of	their	variance	between	themselves	(r	=	-0.213).	
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Table	S7.	Logistic	regression	testing	whether	stimulation	over	left	dlPFC	causes	changes	in	health	
challenge	success.	
Model	parameter	 Mean	beta	±	SD	 95%	Credible	Interval		

Main	effect	on	health	challenge	success	

(Intercept)	 -0.04	±	0.12	 [-0.28;	0.21]	

TD	 -0.61	±	0.11	 [-0.83;	-0.40]	

HD	 0.72	±	0.11	 [0.51;	0.94]	

stimulationON	 0.03	±	0.11	 [-0.18;	0.24]	

Cathodal	 -0.10	±	0.17	 [-0.44;	0.24]	

Anodal	 -0.02	±	0.18	 [-0.37;	0.32]	

TD	X	stimulationON	 -0.02	±	0.11	 [-0.23;	0.20]	

HD	X	stimulationON	 0.24	±	0.11	 [0.04;	0.45]	

TD	X	Cathodal	 0.08	±	0.16	 [-0.22;	0.39]	

TD	X	Anodal	 0.10	±	0.16	 [-0.20;	0.41]	

HD	X	Cathodal	 -0.01	±	0.14	 [-0.28;	0.27]	

HD	X	Anodal	 0.14	±	0.14	 [-0.15;	0.42]	

stimulationON	X	Cathodal		 -0.32	±	0.15	 [-0.63;	-0.03]	

stimulationON	X	Anodal	 -0.03	±	0.15	 [-0.33;	0.28]	

TD	X	stimulationON	X	Cathodal	 -0.18	±	0.15		 [-0.49;	0.12]	

TD	X	stimulationON	X	Anodal	 -0.06	±	0.15	 [-0.35;	0.23]	

HD	X	stimulationON	X	Cathodal	 0.11	±	0.13	 [-0.15;	0.39]	

HD	X	stimulationON	X	Anodal	 0.00	±	0.14	 [-0.26;	0.27]	

Bayesian	R2	 0.18	 	

	
This	table	reports	the	results	from	a	Bayesian	hierarchical	logistic	regression	model	(Eq.	4)	explaining	
trial-wise	health	challenge	success	as	a	function	of	the	categorical	factor	tDCS	polarity	(Anodal,	
Cathodal,	and	Sham),	a	dummy	variable	for	session	(stimulation=1,	baseline=0),	and	continuous	
regressors	for	the	standardized	(z-score)	absolute	value	of	the	healthiness	difference	(HD)	and	taste	
difference	(TD)	on	each	trial.	The	stimulationON	regressor	itself	measures	the	difference	between	the	
initial	baseline	choice	session	and	the	second	round	of	choices	for	the	sham	stimulation	group	(i.e.	it	
captures	potential	effects	of	time	and/or	experience).		Thus,	the	HD	x	stimulationON	interaction	
indicates	that	the	influence	of	healthiness	on	choice	outcomes	changes	over	time	and/or	experience	
with	the	food	choice	task.		The	effects	of	active	tDCS	are	captured	by	the	interaction	coefficients,	
“stimulationON	X	Cathodal”	and	“stimulation	X	Anodal”.	The	model	included	subject-specific	
intercepts	as	well	as	subject-specific	slopes	for	the	effects	of	stimulation	versus	baseline	
(stimulationON),	HD,	and	TD.	Model	fits	are	given	as	the	population	level	mean	of	the	posterior	
distribution	±	standard	deviation	(SD)	and	the	95%	credible	interval.		
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Table	S8.	Demographics	of	tDCS	stimulation	groups.		
	
Group	 Sham	 Cathodal	 Anodal	
BMI	 22.37	±	2.75	 22.30	±	2.13	 22.74	±	2.92	

Age	(in	years)	 23.54	±	2.90	 23.75	±	3.25	 23.48	±	23.04	

TFEQ	–	Restrained	Eating	 9.94	±	2.21	 9.34	±	2.46	 9.59	±	2.62	

TFEQ	-	Disinhibition	 7.52	±	2.04	 8	±	2.17	 7.70	±	2.35	

TFEQ	–	Hunger	susceptibility	 6.22	±	2.11	 6.43	±	2.20	 6.05	±	2.26	

	
This	table	reports	descriptive	statistics	for	Age,	Body	Mass	Index	(BMI)	and	scores	on	each	subscale	of	
the	Three	Factor	Eating	Questionnaire	(TFEQ,	German	validated	version	by	Pudel	and	Westenhöfer	
112).	All	values	are	given	as	mean	and	SD.	Linear	regression	models	testing	for	differences	in	each	of	
these	measures	across	stimulation	groups	did	not	reveal	significant	differences	for	any	measure.		
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Table	S9.	Mean	and	standard	deviation	for	working	memory	by	tDCS	stimulation	group	(pre	and	post	
stimulation).	

	
Group	 Mean	pre	 SD	pre	 Mean	post	 SD	post	

Anodal	 7.39	 1.45	 7.84	 1.53	

Cathodal	 7.18	 1.23	 7.61	 1.29	

Sham	 7.12	 1.29	 7.38	 1.31	

	
The	values	in	this	table	represent	the	forward	digit	span	that	we	measured	before	and	after	
stimulation	using	a	computerized	task	that	asked	participants	to	remember	sequences	of	5	to	12	
digits.	Sequences	were	pseudo-randomized	so	that	unique	sequences	would	be	presented	before	and	
after	stimulation.	
	
	
Table	S10.	Comparison	of	working	memory	at	baseline	and	after	tDCS	stimulation	across	stimulation	
groups.	

	
	 Mean	beta	±	SD	 95%	Credible	Interval	

	(Intercept)	 7.12	±	0.18	 [6.77;	7.47]	

Main	Effect	of	stimulationON	 0.26	±	0.25	 [-0.23;	0.73]	

Cathodal	Baseline	 0.05	±	0.25	 [-0.45;	0.55]	

Anodal	Baseline	 0.27	±	0.25	 [-0.23;	0.77]	

Cathodal	X	stimulationON	 0.18	±	0.36	 [-0.52;	0.86]	

Anodal	X	stimulationON	 0.19	±	0.36	 [-0.50;	0.91]	

	
This	table	reports	the	results	of	a	Bayesian	regression	model	(given	in	Eq.	S1)	testing	for	differences	in	
working	memory	(forward	digit	span;	measured	as	explained	in	caption	S10)	as	a	function	of	tDCS	
polarity	and	stimulation	session	(0	=	pre-stimulation	and	1	=	concurrent	or	immediately	after	
stimulation).	The	Sham	condition	served	as	the	baseline	for	this	regression.	There	were	no	significant	
main	effects	or	interactions.	All	regression	coefficients	are	reported	as	the	population	level	mean	of	
the	posterior	distribution	±	standard	deviation	(SD)	and	the	95%	credible	interval.		
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Table	S11.	Mean	and	standard	deviation	for	stop-signal-reaction-time	(SSRT)	in	seconds	by	
stimulation	group	(pre	and	post	stimulation).	

	
Group	 Mean	pre	 SD	pre	 Mean	post	 SD	post	

Anodal	 0.20	 0.09	 0.19	 0.08	

Cathodal	 0.20	 0.09	 0.19	 0.08	

Sham	 0.21	 0.08	 0.19	 0.09	

	
The	values	in	this	table	represent	the	stop-signal-reaction-time	(SSRT)	in	seconds	that	we	measured	
before	and	after	stimulation.	A	computerized	task	asked	participants	to	respond	as	quickly	as	possible	
once	a	stimulus	appeared	on	the	screen	but	to	withhold	their	response	movement	if	a	second	“stop”	
stimulus	appeared	as	well.	A	higher	SSRT	indicates	better	ability	to	stop	initiated	movements	even	at	
a	later	stage.	
	
	
Table	S12.	Between-stimulation	group	comparison	of	stop	signal	reaction	time	(SSRT)	at	baseline	and	
after	stimulation.	
	
	 Mean	beta	±	SD	 95%	Credible	Interval	

	(Intercept)	 0.21	±	0.01	 [0.18;	0.24]	

Main	Effect	of	stimulationON	 -0.02	±	0.02	 [-0.06;	0.02]	

Cathodal	Baseline	 -0.01	±	0.02	 [-0.05;	0.03]	

Anodal	Baseline	 -0.01	±	0.02	 [-0.05;	0.03]	

Cathodal	X	stimulationON	 0.01	±	0.03	 [-0.04;	0.06]	

Anodal	X	stimulationON	 0	±	0.03	 [-0.05;	0.06]	

	
This	table	reports	the	results	of	a	Bayesian	regression	model	(given	in	Eq.	S1)	testing	for	differences	in	
SSRT	(measured	as	explained	in	the	caption	of	S12)	as	a	function	of	tDCS	polarity	and	stimulation	
session	(0	=	pre-stimulation	and	1	=	concurrent	or	immediately	after	stimulation).	The	Sham	condition	
served	as	the	baseline	for	this	regression.	There	were	no	significant	main	effects	or	interactions.	All	
regression	coefficients	are	reported	as	the	population	level	mean	of	the	posterior	distribution	±	
standard	deviation	(SD)	and	the	95%	credible	interval.		
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Table	S13.	Mean	and	standard	deviation	of	intertemporal	preference	measures	by	stimulation	group	
(pre	and	post	stimulation).	

	
Group	 Mean	pre	 SD	pre	 Mean	post	 SD	post	

Anodal	 5123	 1361	 5214	 1372	

Cathodal	 4628	 1285	 4583	 1414	

Sham	 5144	 1488	 5123	 1523	

	
The	values	in	this	table	represent	the	area	under	the	curve	(AUC)	for	bids	for	all	14	delays	in	an	
intertemporal	choice	task	that	we	measured	before	and	after	stimulation.	A	computerized	task	asked	
participants	to	bid	in	a	Becker-DeGroot-Marschak	(BDM)	auction	their	true	current	value	of	40	CHF	in	
X	days	(with	X	being	14	linearly	increasing	delays	from	12	to	183	days).	A	higher	AUC	indicates	less	
temporal	discounting	because	bids	in	the	BDM	auction	represented	the	present	discounted	value	of	
the	delayed	rewards.	Table	S12	presents	the	results	of	a	regression	testing	for	significant	differences	
in	temporal	discounting	between	stimulation	groups	and	choice	sessions	(i.e.,	pre	and	post	
stimulation).		
	
	
Table	S14.	Between-stimulation	group	comparison	of	monetary	intertemporal	choice	at	baseline	and	
after	stimulation.	
	
	 Mean	beta	±	SD	 95%	Credible	Interval	

	(Intercept)	 5149.06	±	206.47	 [4747.41;	5563.95]	

Main	Effect	of	stimulationON	 -25.94	±	295.23	 [-620.27;	551.19]	

Cathodal	Baseline	 -519.78	±	292.98	 [-1088.85;	54.17]	

Anodal	Baseline	 -25.23	±	297.86	 [-610.24;	554.62]	

Cathodal	X	stimulationON	 -17.86	±	417.47	 [-847.88;	815.47]	

Anodal	X	stimulationON	 114.77	±	420.16	 [-710.31;	937.52]	

	
This	table	reports	the	results	of	a	Bayesian	regression	model	(given	in	Eq.	S1)	testing	for	differences	in	
temporal	discounting	(measured	as	AUC	for	all	delays,	as	explained	in	the	caption	of	table	S11)	as	a	
function	of	tDCS	polarity	and	stimulation	session	(0	=	pre-stimulation	and	1	=	concurrent	or	
immediately	after	stimulation).		The	Sham	condition	served	as	the	baseline	for	this	regression.	There	
were	no	significant	main	effects	or	interactions.	All	regression	coefficients	are	reported	as	the	
population	level	mean	of	the	posterior	distribution	±	standard	deviation	(SD)	and	the	95%	credible	
interval.		
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Table	S15.	Hunger	levels	by	tDCS	stimulation	group.	
	

Group	 Mean	 SD	

Anodal	 74	%	 20	%	

Cathodal	 76	%	 22	%	

Sham	 75	%	 20	%	

	
The	values	in	this	table	represent	the	subjective	hunger	level	that	we	measured	before	stimulation.	
Participants	reported	their	current	feelings	of	hunger	on	a	computerized	visual	analogue	scale	with	
anchors	from	-5	(“not	at	all”)	to	+5	(“extremely”).	Values	were	transformed	to	percent	of	the	total	
scale	length.	
	
	
	
Table	S16.	Baseline	hunger	level	comparison	between	tDCS	stimulation	groups.	
	
	 Mean	beta	±	SD	 95%	Credible	Interval	

(Intercept)	 74.6	±	2.73	 [69.17;	80.01]	

Cathodal		 1.05	±	3.90	 [-6.86;	8.57]	

Anodal		 -0.56	±	3.93	 [-8.29;	7.1]	

	
This	table	reports	the	results	of	a	Bayesian	regression	model	(given	in	Eq.	S2)	testing	for	differences	in	
baseline	hunger	levels	(measured	as	explained	in	the	caption	of	table	S13)	as	a	function	of	tDCS	
group.	There	were	no	significant	main	effects.	The	Sham	condition	served	as	the	baseline	for	this	
regression.	All	regression	coefficients	are	reported	as	the	population	level	mean	of	the	posterior	
distribution	±	standard	deviation	(SD)	and	the	95%	credible	interval.		Hunger	level	is	reported	as	a	
percentage	(100%	=	maximally	hungry).	
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Table	S17.	Upper	and	lower	bounds	for	each	tDDM	parameter	during	model	fitting.	
	

Parameter	 Lower	bound	 Upper	bound	

ωtaste	 -2	 2	

ωhealth	 -2	 2	

Thr	 0.6	 3	

nDT	 0.01	 1	

RST	 -1	 1	

bias	 -1	 1	

	

!!"#!$:	weighting	factor	determining	how	much	taste	contributes	to	the	evidence	accumulation	rate.		

!!"#$%! :	 weighting	 factor	 determining	 how	 much	 healthiness	 contributes	 to	 the	 evidence	

accumulation	rate.	

Thr:	evidence	threshold	for	responding	(symmetric	around	zero)	

nDT:	non-decision	time	

RST:	 relative-start-time	 for	 health	 (positive	 values	mean	 that	 health	 enters	 the	 process	 after	 taste,	

negative	values	mean	health	enters	before	taste)	

Bias:	starting	point	bias	for	the	evidence	accumulation	process	
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Table	S18.	The	improvement	in	the	fit	for	the	tDDM	relative	to	the	standard	DDM	is	proportional	to	
increases	in	weighting	parameters	and	relative-starting-times.	
	
Model	parameter	 Mean	beta	±	SD	 95%	Credible	Interval		

(Intercept)	 1.02	±	0.59	 [-0.12;	2.14]	

|ωtaste|	 -0.45	±	0.15	 [-0.74;	-0.17]	

|ωhealth|	 -0.62	±	0.13	 [-0.87;	-0.36]	

|RST|	 -1.09	±	0.20	 [-1.49;	-0.69]	

Thr	 -0.27	±	0.30	 [-0.85;	0.31]	

nDT	 0.02	±	0.48	 [-0.94;	0.97]	

bias	 -0.47	±	0.28	 [-1.02;	0.06]	

	
Results	from	a	Bayesian	linear	model	(given	in	Eq.	S5)	explaining	the	difference	in	Log-Likelihood	
between	the	tDDM	and	the	standard	DDM	by	all	parameters	of	the	tDDM.	In	addition	to	threshold	
(Thr),	non-decision	time	(nDT)	and	bias,	absolute	values	of	taste	and	health	weights	as	well	as	
relative-start-time	(RST)	were	used	in	order	to	accommodate	changes	of	these	parameters	in	either	
direction.	The	standard	DDM	was	fit	using	the	same	procedures	as	the	tDDM,	except	that	the	
equation	omitted	the	relative-start-time	parameter,	which	meant	that	both	tastiness	and	healthiness	
entered	into	consideration	at	the	same	time.		Note	that	similar	results	are	obtained	when	using	a	
logistic	regression	that	treats	the	difference	in	Log-Likelihood	as	a	binary	outcome.		
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Table	S19.		Improvement	in	out-of-sample	prediction	accuracy	for	the	time-varying	relative	to	the	
standard	DDM	on	choices	made	by	human	participants.	
	 Mean	beta	±	SD	 95%	Credible	Interval	

(Intercept)	 	0.86	±	0.42	 	[0.01;	1.65]	

|TD|	 	-0.32	±0.18	 	[-0.66;	0.04]	

|HD|	 	-0.87	±	0.17	 	[-1.22;	-0.53]	

ωtaste	 	-0.07	±	0.61	 	[-1.26;	1.1]	

ωhealth	 	-0.69	±	0.6	 	[-1.92;	0.48]	

|RST|	 	0.85	±	1.34	 	[-1.75;	3.43]	

Thr	 	-8.17	±	1.98	 	[-12.07;	-4.27]	

nDT	 	-5.18	±	2.97	 	[-11.05;	0.78]	

bias	 	0.61	±	1.84	 	[-2.87;	4.3]	
	
This	table	reports	the	results	of	a	Bayesian	hierarchical	linear	regression	(Eq.	S6)	testing	how	trial	
(Taste	and	Healthiness	Difference)	and	individual-specific	(tDDM	parameters)	features	relate	to	the	
relative	accuracy	of	out-of-sample	predictions	made	by	the	standard	versus	time-varying	DDM	on	our	
272	human	participants	even-numbered	choices.		The	two	trial-specific	features	and	the	six	tDDM	
parameters	(Taste	weight,	Healthiness	weight,	Relative-start-time	(RST),	threshold	(Thr),	non-decision	
time	(nDT)	and	starting	point	bias)	were	mean	centered	before	being	entered	into	the	regression.		
The	taste	and	healthiness	differences	were	included	as	absolute	rather	than	signed	values	because	
choice	difficulty	was	determined	by	the	absolute	difference	in	those	attributes.		Similarly,	the	
regression	used	the	absolute	value	of	the	RST	parameter	because	the	tDDM	differs	more	strongly	
from	the	standard	DDM	the	further	this	parameter	value	is	from	zero.		The	positive	intercept	
coefficient	indicates	that	the	tDDM	made	more	accurate	out-of-sample	choice	predictions	than	the	
standard	DDM	on	average.		The	relative	accuracy	of	the	tDDM	when	there	was	a	larger	difference	in	
healthiness	ratings	between	the	two	food	items	or	participants	were	estimated	to	have	a	higher	
decision	threshold.	The	difference	in	prediction	accuracy	between	the	two	diffusion	models	was	
computed	as	the	square-root	of	the	squared	error	for	the	standard	minus	the	tDDM	on	each	trial	
multiplied	by	100	to	put	it	in	terms	of	percent	error.		Thus,	positive	values	indicate	higher	prediction	
accuracy	for	the	tDDM.		The	set	of	generating-parameter	agents	used	the	best-fitting	tDDM	
parameters	for	each	of	the	272	human	participants	to	make	food	choices.		The	standard	and	tDDM	
parameters	were	fit	to	the	odd-numbered	trials	for	all	participants	and	then	those	fits	were	used	to	
make	predictions	about	the	most	probable	outcomes	on	even-numbered	trials	(see	Methods	for	
details).		This	regression	included	subject-specific	intercepts.	
Abbreviations:	
	!!"#!$:	weighting	factor	determining	how	much	taste	contributes	to	the	evidence	accumulation	rate.		
!!"#$%!:	weighting	factor	determining	how	much	healthiness	contributes	to	the	evidence	
accumulation	rate.	
RST:	relative-start-time	for	health		
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Table	S20.	A	Bayesian	linear	regression	(Eq.	S7)	testing	for	potential	differences	in	the	strength	of	the	
association	 between	 the	 relative	 attribute	 weights	 and	 starting	 times	 between	 generating	 and	
recovered	parameters.	
	 Mean	beta	±	SD	 95%	Credible	Interval	

(Intercept)	 	0.02	±	0.03	 	[-0.04;	0.07]	

Relative	weight	 	0.15	±	0.02	 	[0.11;	0.19]	

Recovered	parameters		 	-0.03	±	0.04	 	[-0.10;	0.04]	

Rel.	weight*	Rec.	parameters	 	-0.02	±	0.03	 	[-0.07;	0.04]	

Bayesian	R2	 0.17	 	
	
This	table	shows	that	there	is	no	significant	difference	in	the	strength	of	the	association	between	
relative	attribute	weights	(ωtaste	–	ωhealth)	and	the	relative	starting	times	in	recovered	parameters	
estimated	from	choices	generated	by	the	best	fitting	tDDM	parameters.		In	other	words,	the	
coefficient	for	the	Relative	weight*	Recovered	parameters	interaction	term	is	not	different	from	zero.		
These	best	fitting	parameters	were	initially	estimated	for	each	of	our	272	participants	based	on	the	
choices	they	made	during	the	experiments.	We	used	these	estimated	parameters	to	generate	choices	
and	response	times	for	the	same	decisions	each	participant	originally	faced.		We	then	fit	the	tDDM	to	
these	simulated	choices	to	see	how	well	we	could	recover	the	known	generating	parameters	(see	Fig.	
S2).		The	Bayesian	linear	regression	coefficient	estimates	(betas)	are	given	as	the	population	level	
mean	of	the	posterior	distribution	±	standard	deviation	(SD)	and	the	95%	credible	interval.	There	is	a	
significant	main	effect	for	relative	weights,	indicating	a	positive	relationship	between	relative	weights	
and	start	times.	Importantly,	neither	the	main	effect,	Recovered	parameters,	nor	the	interaction,	
Relative	weights	*	Recovered	parameters,	are	significant.	These	results	indicate	that	the	recovered	
values	for	the	relative-start-time	(RST)	parameter	and	the	correlation	between	RST	and	relative	
attribute	weights	do	not	significantly	differ	in	the	recovered	compared	to	the	known	generating	
parameters.	
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Table	 S21.	 	 Improvement	 in	 out-of-sample	 prediction	 accuracy	 for	 the	 time-varying	 relative	 to	 the	
standard	DDM	on	choices	made	by	simulated	agents	using	a	time-varying	DDM	to	make	decisions.	
	 Mean	beta	±	SD	 95%	Credible	Interval	

(Intercept)	 	1.92	±	0.18	 	[1.57;	2.25]	

|TD|	 	-0.04	±	0.02	 	[-0.08;	0.01]	

|HD|	 	-0.05	±	0.03	 	[-0.1;	0]	

ωtaste	 	0.06	±	0.26	 	[-0.47;	0.55]	

ωhealth	 	-0.09	±	0.24	 	[-0.58;	0.38]	

|RST|	 	2.64	±	0.51	 	[1.62;	3.62]	

Threshold	 	-0.57	±	0.76	 	[-2.03;	0.93]	

Non-decision	Time	 	-0.57	±	1.32	 	[-3.03;	2.09]	

Starting	Point	Bias	 	1.55	±	0.76	 	[0.14;	3.08]	
	
This	table	reports	the	results	of	a	Bayesian	hierarchical	linear	regression	(Eq.	S6)	testing	how	trial	
(Taste	and	Healthiness	Difference)	and	individual-specific	(tDDM	parameters)	features	relate	to	the	
relative	accuracy	of	out-of-sample	predictions	made	by	the	standard	versus	time-varying	DDM	when	
the	true	choice	generating	model	was	one	that	included	separate	consideration	onset	times	for	taste	
and	healthiness	attributes	(tDDM).		The	two	trial-specific	features	and	the	six	tDDM	parameters	
(Taste	weight,	Healthiness	weight,	Relative-start-time	(RST),	Threshold,	Non-decision	time,	and	
Starting	point	bias)	were	mean	centered	before	being	entered	into	the	regression.		The	taste	(TD)	and	
healthiness	(HD)	differences	were	included	as	absolute	rather	than	signed	values	because	choice	
difficulty	was	determined	by	the	absolute	difference	in	those	attributes.		Similarly,	the	regression	
used	the	absolute	value	of	the	RST	parameter	because	the	tDDM	differs	more	strongly	from	the	
standard	DDM	the	further	this	parameter	value	is	from	zero.		The	positive	intercept	coefficient	
indicates	that	the	tDDM	made	more	accurate	out-of-sample	choice	predictions	than	the	standard	
DDM	on	average.		The	relative	accuracy	of	the	tDDM	was	also	greater	when	the	generating-
parameter	agent	had	a	bigger	difference	in	consideration	start	times	for	tastiness	versus	healthiness	
(i.e.	larger	absolute	RST).	The	difference	in	prediction	accuracy	between	the	two	diffusion	models	was	
computed	as	the	square-root	of	the	squared	error	for	the	standard	minus	the	tDDM	on	each	trial	
multiplied	by	100	to	put	it	in	terms	of	percent	error.		Thus,	positive	values	indicate	higher	prediction	
accuracy	for	the	tDDM.		The	set	of	generating-parameter	agents	used	the	best-fitting	tDDM	
parameters	for	each	of	the	272	human	participants	to	make	food	choices.		The	standard	and	tDDM	
recovered-parameter	agents	used	the	best	parameters	found	when	each	model	was	fit	to	a	separate	
set	of	choices	made	by	the	generating-parameter	agents	(see	Methods	for	details).		This	regression	
included	agent/subject-specific	intercepts.		
Abbreviations:	
TD:	taste	difference	
HD:	healthiness	difference	
!!"#!$:	weighting	factor	determining	how	much	taste	contributes	to	the	evidence	accumulation	rate.		
!!"#$%!:	weighting	factor	determining	how	much	healthiness	contributes	to	the	evidence	
accumulation	rate.	
RST:	relative-start-time	for	health	
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Table	S22.	Tests	of	differences	in	taste	or	health	ratings	across	stimulation	groups	at	baseline	or	
following	tDCS	
	
	 Mean	beta	±	SD	 95%	Credible	Interval	

A.	Dependent	variable	=	Health	ratings	 	

(Intercept)	 49.73	±	2.03	 [45.61;	53.68]	

stimulationON	 1.03	±	0.49	 [0.07;	2.00]	

Cathodal	 0.74	±	1.29	 [-1.77;	3.16]	

Anodal	 -1.18	±	1.33	 [-3.65;	1.36]	

Cathodal	X	stimulationON	 -0.21	±	0.69	 [-1.58;	1.13]	

Anodal	X	stimulationON	 -0.29	±	0.69	 [-1.67;	1.11]	

B.	Dependent	variable	=	Taste	ratings	 	

(Intercept)	 52.85	±	1.51	 [49.93;	55.80]	

stimulationON	 3.70	±	0.95	 [1.86;	5.57]	

Cathodal	 4.18	±	1.92	 [0.42;	7.91]	

Anodal	 4.92	±	1.92	 [1.14;	8.71]	

Cathodal	X	stimulationON	 -0.16	±	1.31	 [-2.75;	2.41]	

Anodal	X	stimulationON	 -1.07	±	1.31	 [-3.69;	1.49]	

	
This	table	reports	the	results	from	two	hierarchical	Bayesian	regressions	(given	in	Eq.	S3)	testing	for	
differences	in	taste	or	health	ratings	across	stimulation	groups	at	baseline	or	following	tDCS.	Taste	
and	health	ratings	were	coded	as	percent	maximum	tastiness	or	healthiness.	Both	regressions	
included	regressors	for	the	main	effect	of	stimulation	group	(sham,	anodal,	cathodal),stimulation	
session	(baseline,	post-stimulation),	and	their	interaction	as	population-level	effects.	The	models	also	
included	intercepts	for	subjects	and	food	items	(i.e.,	each	subject	and	food	item	was	treated	as	a	
random	effect)	as	well	as	subject-specific	and	food-specific	slopes	for	the	effect	of	stimulation	versus	
baseline.	A)	Health	ratings	increased	at	the	second	rating	during	or	after	stimulation,	but	no	group	
differences	were	observed	at	baseline	or	following	stimulation.	B)	Taste	ratings	were	higher	at	
baseline	for	the	anodal	and	cathodal	groups	compared	to	the	sham	group	and	increased	for	all	groups	
at	the	second	rating.	Critically,	there	was	no	stimulation	group	X	stimulation	session	interaction,	
indicating	that	stimulation	condition	did	not	differentially	influence	the	ratings	at	the	second	
stimulation	session.		
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Table	S23.	Effects	of	the	average	taste	and	health	rating	response	times	on	the	relative-start-time	for	
health.	
	
	 Mean	beta	±	SD	 95%	Credible	Interval	

(Intercept)	 -0.63	±	0.25	 [-1.12;	-0.13]	

Mean	RT	health	 0.05	±	0.11	 [-0.17;	0.28]	

Mean	RT	taste	 0.07	±	0.12	 [-0.17;	0.31]	

nDT	 0.33	±	0.24	 [-0.13;	0.80]	

	

This	table	reports	the	results	from	a	Bayesian	regression	(see	Eq.	S4)	of	the	tDDM-estimated	relative-
start-time	for	health	in	baseline	choices	on	the	rating	speed	for	taste	and	health,	in	the	sample	of	
participants	from	the	TDCS	study.	Model	fits	are	given	as	the	population	level	mean	of	the	posterior	
distribution	±	standard	deviation	(SD)	and	the	95%	credible	interval.	There	was	no	significant	relation	
between	the	mean	reaction	time	(RT)	for	health	and	taste	ratings	(in	seconds)	and	the	relative-start-
time	for	health	in	the	individual	choice	process.		
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Table	S24.		Bayesian	logistic	regression	for	healthy	choice	outcomes	as	a	function	of	attribute	
weighting	and	timing	parameters.	
	
	

Mean	beta	±	SD	 95%	Credible	Interval	
(Intercept)	 -0.17	±	0.26	 [-0.68;	0.35]	

ωtaste	 0.52	±	0.17	 [0.18;	0.85]	

ωhealth	 1.43	±	0.21	 [1.02;	1.87]	

RST	 0.72	±	0.36	 [0.01;	1.43]	

Challenge	 -0.73	±	0.25	 [-1.22;	-0.25]	

Taste	Difference	(TD)	 0.19	±	0.03	 [0.14;	0.24]	

Health	Difference	(HD)	 0.69	±	0.08	 [0.54;	0.84]	

ωtaste	X	RST	 -0.29	±	0.27	 [-0.81;	0.23]	

ωhealth	X	RST	 -1.34	±	0.26	 [-1.86;	-0.85]	

ωtaste	X	Challenge	 -1.60	±	0.18	 [-1.95;	-1.26]	

ωhealth	X	Challenge	 -0.07	±	0.21	 [-0.50;	0.34]	

RST	X	Challenge	 -0.23	±	0.38	 [-0.96;	0.49]	

ωtaste	X	RST	X	Challenge	 -0.28	±	0.27	 [-0.83;	0.24]	

ωhealth	X	RST	X	Challenge	 0.22	±	0.27	 [-0.26;	0.78]	

	
This	table	reports	results	from	a	Bayesian	logistic	regression	(given	in	Eq.	S8)	modelling	healthy	food	
choices	as	a	function	of	the	estimated	taste	and	health	weighting	parameters	of	the	tDDM	as	well	as	
the	relative	start	time	for	health	(RST).		The	model	also	included	the	signed	difference	in	taste	(TD)	
and	healthiness	(HD)	ratings	between	the	healthier	and	less	healthy	option	(i.e.	healthier	–	less	
healthy),	and	a	dummy	variable	(Challenge)	indicating	whether	participants	faced	a	challenge	on	the	
respective	trial.	The	model	included	subject-specific	intercepts	as	well	as	subject-specific	slopes	for	
the	TD,	HD	and	Challenge	regressors.	Data	were	pooled	across	the	baseline	conditions	of	all	4	studies.	
Model	fits	are	given	as	the	population	level	mean	of	the	posterior	distribution	±	standard	deviation	
(SD)	and	the	95%	credible	interval.	Abbreviations:	
	!!"#!$:	weighting	factor	determining	how	much	taste	contributes	to	the	evidence	accumulation	rate.		
!!"#$%!:	weighting	factor	determining	how	much	healthiness	contributes	to	the	evidence	
accumulation	rate.	
RST:	relative-start-time	for	health		
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Table	S25.		Bayesian	linear	regression	for	response	times	in	health	challenge	and	non-challenge	trials	
as	a	function	of	tDDM	parameters.	
 
	

Mean	beta	±	SD	 95%	Credible	Interval	
(Intercept)	 0.55	±	0.04	 [0.47;	0.63]	
Challenge	 -0.12	±	0.04	 [-0.19;	-0.05]	
ωtaste	 -0.04	±	0.03	 [-0.11;	0.02]	
ωhealth	 -0.09	±	0.04	 [-0.16;	-0.02]	
RST	 -0.07	±	0.07	 [-0.21;	0.06]	
Healthy	choice	(HC)	 -0.07	±	0.03	 [-0.14;	-0.01]	
|	Taste	Difference	(TD)	|	 -0.06	±	0.01	 [-0.07;	-0.04]	
|	Health	Difference	(HD)	|	 -0.02	±	0.01	 [-0.03;	-0.01]	
ωtaste	X	RST	 0.08	±	0.05	 [-0.03;	0.18]	
ωhealth	X	RST	 0.07	±	0.05	 [-0.03;	0.15]	
ωtaste	X	HC	 0.02	±	0.03	 [-0.03;	0.08]	
ωhealth	X	HC	 -0.01	±	0.03	 [-0.07;	0.05]	
RST	X	HC	 0.03	±	0.05		 [-0.07;	0.13]	
Challenge	X	ωtaste		 0.03	±	0.03		 [-0.03;	0.09]	
Challenge	X	ωhealth		 0.08	±	0.03	 [0.01;	0.14]	
Challenge	X	RST	 0.06	±	0.06	 [-0.06;	0.18]	
Challenge	X	HC	 0.07	±	0.04	 [0;	0.13]	
Challenge	X	|TD|	 0.05	±	0.01	 [0.03;	0.06]	
Challenge	X	|HD|	 0	±	0.01	 [-0.01;	0.02]	
ωtaste	X	RST	X	HC	 -0.07	±	0.04	 [-0.16;	0.01]	
ωhealth	X	RST	X	HC	 0.05	±	0.04	 [-0.03;	0.12]	
Challenge	X	ωtaste	X	RST	 -0.11	±	0.05	 [-0.21;	-0.02]	
Challenge	X	ωhealth	X	RST	 -0.06	±	0.04	 [-0.14;	0.02]	
Challenge	X	ωtaste	X	HC	 0	±	0.03	 [-0.06;	0.07]	
Challenge	X	ωhealth	X	HC	 -0.04	±	0.03	 [-0.11;	0.02]	
Challenge	X	RST	X	HC	 -0.04	±	0.06	 [-0.15;	0.08]	
Challenge	X	ωtaste	X	RST	X	HC	 0.17	±	0.05	 [0.07;	0.26]	
Challenge	X	ωhealth	X	RST	X	HC	 0.04	±	0.04	 [-0.05;	0.12]	
	
This	table	reports	results	from	a	Bayesian	hierarchical	linear	regression	(given	in	Eq.	S9)	modelling	
response	times	in	food	choices	as	a	function	of	the	estimated	taste	and	health	weighting	parameters	
of	the	tDDM	as	well	as	the	relative	start	time	for	health	(RST),	and	the	absolute	distance	in	taste	
(|TD|)	and	health	(|HD|)	ratings	between	the	two	options.	Dummy	variables	indicated	whether	
participants	faced	a	challenge	on	the	respective	trial	and	whether	they	chose	the	healthier	food	(HC).	
The	model	included	subject-specific		intercepts	and	subject-specific	slopes	for	the	|TD|	and	|HD|	
regressors	as	well	as	the	interactions	of	these	regressors	with	the	challenge	trial	and	healthy	choice	
dummy	variables	to	capture	individual	differences	in	sensitivity	to	taste	and	health	aspects	when	
making	healthy	or	unhealthy	choices	in	challenging	or	non-challenging	settings.	Data	were	pooled	
across	the	baseline	conditions	of	all	4	studies.	Model	fits	are	given	as	the	population	level	mean	of	the	
posterior	distribution	±	standard	deviation	(SD)	and	the	95%	credible	interval.		
Abbreviations:	
	!!"#!$:	weighting	factor	determining	how	much	taste	contributes	to	the	evidence	accumulation	rate.		
!!"#$%!:	weighting	factor	determining	how	much	healthiness	contributes	to	the	evidence	
accumulation	rate.	
RST:	relative-start-time	for	health		
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Table	S26.		Bayesian	linear	regression	for	response	times	in	cases	where	the	healthier	option	was	
chosen.	
	
	 Mean	beta	±	SD	 95%	Credible	Interval	

(Intercept)	 0.41	±	0.02	 [0.37;	0.46]	

|	Taste	Difference	(TD)	|	 -0.09	±	0.01	 [-0.11;	-0.06]	

|	Health	Difference	(TD)	|	 -0.02	±	0.01	 [-0.04;	0.00]	

Challenge	 -0.03	±	0.02	 [-0.07;	0.02]	

|TD|	X	Challenge	 0.12	±	0.01	 [0.10;	0.15]	

|HD|	X	Challenge	 -0.04	±	0.01	 [-0.07;	-0.02]	

	
This	table	reports	results	from	a	Bayesian	linear	regression	(given	in	Eq.	S10)	modelling	response	
times	in	trials	where	participants	selected	the	healthier	option	as	a	function	the	absolute	difference	in	
taste	(|TD|)	and	health	(|HD|)	ratings	between	the	two	options.	A	dummy	variable	(challenge)	
indicated	whether	participants	faced	a	health	challenge	on	the	respective	trial	because	the	healthier	
option	was	not	the	more	tasty	option.	The	model	included	subject-specific	intercepts	and	subject-
specific	slopes	for	the	|TD|	and	|HD|	regressors	and	their	interaction	with	the	challenge	trial	dummy	
variable	to	capture	individual	differences	in	sensitivity	to	taste	and	health	aspects	in	challenging	or	
non-challenging	settings.	Data	were	pooled	across	the	baseline	conditions	of	all	4	studies.	Model	fits	
are	given	as	the	population	level	mean	of	the	posterior	distribution	±	standard	deviation	(SD)	and	the	
95%	credible	interval.		Participants’	response	times	were	associated	with	the	differences	in	taste	
between	the	two	options	when	they	chose	the	healthier	option	in	both	health	challenge	and	non-
challenge	trials.	
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Table	S27.		Bayesian	linear	regression	for	response	times	in	cases	where	the	tastier	option	was	
chosen.	
	
	 Mean	beta	±	SD	 95%	Credible	Interval	

(Intercept)	 0.45	±	0.02	 [0.41;	0.49]	

|	Taste	Difference	(TD)	|	 -0.08	±	0.01	 [-0.10;	-0.06]	

|	Health	Difference	(TD)	|	 -0.02	±	0.01	 [-0.03;	-0.00]	

Challenge	 -0.06	±	0.02	 [-0.09;	-0.02]	

|TD|	X	Challenge	 0.04	±	0.01	 [0.02;	0.06]	

|HD|	X	Challenge	 0.05	±	0.01	 [0.03;	0.07]	

		
This	table	reports	results	from	a	Bayesian	linear	regression	(given	in	Eq.	S10)	modelling	response	
times	in	trials	where	participants	selected	the	tastier	option	as	a	function	the	absolute	difference	in	
taste	(|TD|)	and	health	(|HD|)	ratings	between	the	two	options.	A	dummy	variable	(challenge)	
indicated	whether	participants	faced	a	health	challenge	on	the	respective	trial	because	the	healthier	
option	was	not	the	more	tasty	option.	The	model	included	subject-specific	intercepts	and	subject-
specific	slopes	for	the	|TD|	and	|HD|	regressors	and	their	interaction	with	the	challenge	trial	dummy	
variable	to	capture	individual	differences	in	sensitivity	to	taste	and	health	aspects	in	challenging	or	
non-challenging	settings.	Data	were	pooled	across	the	baseline	conditions	of	all	4	studies.	Model	fits	
are	given	as	the	population	level	mean	of	the	posterior	distribution	±	standard	deviation	(SD)	and	the	
95%	credible	interval.		Participants’	response	times	were	associated	with	the	differences	in	
healthiness	between	the	two	options	when	they	chose	the	tastier	option	in	both	health	challenge	and	
non-challenge	trials.	
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Table	S28.	Response	times	as	a	function	of	whether	a	subjective	value	based	on	the	initially	
considered	attribute	alone	favours	the	same	choice	as	a	subjective	value	derived	from	both	tastiness	
and	healthiness.	
	

Mean	beta	±	SD	 95%	Credible	Interval	

(Intercept)	 	0.36	±	0.01	 	[0.34;	0.39]	

Compatible	Trials	 	-0.03	±	0.01	 	[-0.05;	-0.02]	

|TD|	 	-0.02	±	0	 	[-0.03;	-0.01]	

|HD|	 	-0.02	±	0	 	[-0.03;	-0.02]	
	
This	table	reports	the	results	of	a	Bayesian	hierarchical	linear	regression	(given	in	Eq.	S11)	testing	for	
differences	in	response	times	on	compatible	and	incompatible	trials.	Compatible	trials	were	defined	
as	those	in	which	a	subjective	value	based	on	the	initially	considered	attribute	alone	favours	the	same	
choice	as	a	subjective	value	derived	from	both	tastiness	and	healthiness.		Incompatible	trials	were	
those	in	which	a	subjective	value	based	on	the	initially	considered	attribute	alone	favours	the	
opposite	choice	as	a	subjective	value	derived	from	both	tastiness	and	healthiness.		Consistent	with	
the	predictions	of	a	tDDM	with	separate	consideration	onset	times	for	taste	and	healthiness,	
compatible	trials	were	faster	than	incompatible	trials.		The	model	included	subject-specific	intercepts	
as	well	as	subject-specific	slopes	for	|TD|	and	|HD|	to	capture	individual	differences	in	sensitivity	to	
these	two	attributes.		The	abbreviations	|TD|	and	|HD|	stand	for	the	absolute	value	of	the	taste	and	
healthiness	differences,	respectively.		
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