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Abstract 

Although three-dimensional (3D) fluorescence microscopy is an essential tool for life science 

research, the fundamentally-limited optical throughput, as reflected in the compromise between 

speed and resolution, so far prevents further movement towards faster, clearer, and higher-

throughput applications. We herein report a dual-stage mutual-feedback deep-learning 

approach that allows gradual reversion of microscopy degradation from high-resolution targets 

to low-resolution images. Using a single blurred-and-pixelated 3D image as input, our trained 

network infers a 3D output with notably higher resolution and improved contrast. The 

performance is better than conventional 1-stage network approaches. It pushes the throughput 

limit of current 3D fluorescence microscopy in three ways: notably reducing the acquisition 

time for accurate mapping of large organs, breaking the diffraction limit for imaging subcellular 

events with faster lower-toxicity measurement, and improving temporal resolution for 

capturing instantaneous biological processes. Combining our network approach with light-

sheet fluorescence microscopy, we demonstrate the imaging of vessels and neurons in the 

mouse brain at single-cell resolution and with a throughput of 6 minutes for a whole brain. We 
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also image cell organelles beyond the diffraction limit at a 2-Hz volume rate, and map neuronal 

activities of freely-moving C. elegans at single-cell resolution and 30-Hz volume rate.  

1. INTRODUCTION 

A recurring trend in biology is the attempt to extract ever more spatial information from 3D 

biological specimens in an ever shorter time. Many millisecond-duration dynamic cellular 

processes, such as functional activities occurring in live animals, require high-speed capture of 

transient spatial patterns at high resolution. Massive cellular details distributed across very 

large three-dimensional tissue volumes also need to be obtained within an acceptable time. 

These quests pose substantial challenges to current 3D light microscopy[1-3]. In conventional 

epifluorescence microscopy such as confocal[4] and two-photon excitation microscopy[2, 5], 

and in the newly-emerged light-sheet fluorescence microscopy (LSFM)[3, 6-11], the optical 

information that these imaging techniques can provide within a certain time, known as the 

optical throughput, remains unsatisfactory. For example, these microscopy techniques are still 

incapable of offering subcellular lateral resolution of mesoscale tissues in a single acquisition 

across a large field-of-view (FOV), nor can they break the diffraction limit for resolving 

organelles within a single cell. Axially scanned light-sheet microscopy (ASLM) scanned along 

the propagation direction can extend the imaging FOV while maintaining a thin light-sheet, 

thereby greatly improving the axial resolution[12, 13]; however, it still requires the recording 

of many planes to create a 3D image with high-axial resolution, and transient temporal profiles 

may be lost because of the extended acquisition time. To improve the temporal resolution for 

capturing highly dynamic biological processes with light field microscopy (LFM), it is possible 

to retrieve the transient 3D signal distribution through post-processing of a 2D light field image 

recorded by a single camera snapshot, but this inevitably suffers from compromised spatial 

resolution and the presence of reconstruction artefacts. Other approaches include various 

spatial resolution enhancement techniques such as Fourier ptychographic microscopy[14, 15], 

structured illumination microscopy (SIM)[16, 17], and single molecular localization 

microscopy[18-20], which have been developed over the past decade and become widely used 

in life science research. At the expense of increased acquisition time, these methods can 

computationally reconstruct a super-resolved 3D image based on a number of low-resolution 

measurements that contain correlations in the space, frequency, or spectrum domain. However, 

as these techniques either more quickly capture 3D dynamics in one snapshot, or achieve higher 

resolution by computing multiple image stacks, the optical throughput of these 3D microscopy 

methods remains fundamentally limited and has so far prevented more their more widespread 

application. 
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Unlike the abovementioned multi-frame super-resolution techniques, single-image-based 

super-resolution (SISR) methods can improve resolution without necessarily increasing 

imaging time, thereby improving throughput. However, these methods suffer from either poor 

enhancement effect[21-23] or restriction of the signal characteristics[24, 25]. The recent 

development of image enhancement and super-resolution based on neural networks has 

provided a paradigm shift in light microscopy[26-31] by directly deducing a higher-resolution 

image from a single input. However, despite its advances in strengthening the SISR capability 

and providing a high end-to-end reconstruction speed, the lack of super-resolution in three 

dimensions yet prevents its application to the capture of cellular events in 3D tissues at the 

desired high throughput. Furthermore, the quest for ever-better super-resolution effects 

intrinsically drives current network-based super-resolution methods towards newer structures 

and logic designs, to enable applications that nowadays require increasingly higher 

spatiotemporal performance. 

In this study, we propose a novel imaging strategy based on a dual-stage-processing neural 

network, termed DSP-Net, which can efficiently recover a 3D fluorescence image stack with 

improved resolution and high signal-to-noise ratio (SNR). Unlike conventional one-stage 

network approaches, our DSP-Net contains two mutual-feedback sub-nets that manage the de-

blurring and de-pixelization of the 3D image separately, fundamentally reversing the 

microscopy imaging process that transforms a high-resolution (HR) target into a blurred-and-

pixelated image. Using this hierarchical architecture, the network allows progressive recovery 

from low-resolution blurred and pixelated images to middle-resolution aliased images, and 

finally to HR images of the targets. By this means, a properly-trained DSP-Net can restore 

abundant signal details that might be lost in conventional one-stage network approaches (Fig. 

1b, Supplementary Fig. S3, S5, and S6), leading to a stronger resolution-enhancing capability. 

Furthermore, the end-to-end non-iterative inference by the network enables ultra-high 

processing throughput suitable for large-scale 3D reconstruction or 4D video processing. To 

demonstrate the abilities of the DSP-Net when combined with different imaging methods such 

as confocal microscopy, LSFM, and SIM, and to push the throughput limits of 3D fluorescence 

microscopy, we imaged neuron activities in freely-moving C. elegans across a large 3300 × 

830 × 55-µm FOV at single-neuron resolution, extracting the spatiotemporal patterns of 

neuronal calcium signaling and tracking the correlated worm activity at a volume rate of 30 Hz, 

which is notably faster than achievable with conventional Bessel LSFM. We also demonstrate 

the 3D imaging of organelles in a single cultured U2OS cell at a 2-Hz volume rate and 100-nm 

spatial resolution, which cannot be met by conventional N-SIM, and show 3D anatomical 

mapping of neurons and vessels in a whole mouse brain at single-cell resolution with an ultra-
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high throughput of 6 minutes per brain, which is over two-orders-of-magnitude higher than 

achievable with conventional organ 3D imaging methods.  

2. RESULTS 

2.1 DSP-Net for 3D high-resolution imaging. 

An end-to-end deep neural network is able to accommodate complex mapping functions if it 

possesses sufficient parameters. However, in practice, owing to the high nonlinearity of the ill-

posed SISR problem, it is often difficult to perfectly map a single low-resolution (LR) input 

directly to its HR target, especially when they have a significant quality gap, or in other words, 

when a notable quality improvement is desired. We mitigate this network limitation by logically 

solving the SISR problem in two steps: extracting rich details from the badly deteriorated LR 

input while suppressing noise and background, and enhancing the true signals. These two steps 

also fundamentally correspond to the restoration of signal from the optical blurring caused by 

an objective with a limited numerical aperture (NA) and the recovery from digital signal 

aliasing caused by camera pixelization. Accordingly, we created both resolver (Supplementary 

Fig. S1, Methods) and interpolator (Supplementary Fig. S2, Methods) modules in our DSP-Net, 

with each containing an independent training target corresponding to the solution of the two 

sub-issues. Similar to standard deep learning strategies, our DSP-Net comprises a training and 

an inference phase (Fig. 1a). In the training phase, the neural network establishes its resolution-

enhancing ability from scratch by learning from a bunch of examples (i.e., the training dataset). 

HR 3D images regarded as ground truths were acquired using scanned Bessel light microscopes 

with high-magnification/high-NA objectives, or in the example breaking the diffraction limit, 

by a Bessel light-sheet microscope combined with 3D super-resolution radial fluctuations 

(SRRF) techniques[32]. We then applied an image degradation model (Supplementary Note S2) 

including optical blurring, down-sampling, and noise addition to the ground truths to generate 

synthetic LR images (Fig. 1a, step 1), which corresponded to our LR measurements under low-

magnification/low-NA setups. Meanwhile, a directly down-scaled version of the ground truths, 

termed mid-resolution (MR) data, was also generated to bridge the two-stage training (Fig. 1a, 

step 2). With these synthetic training pairs prepared, the LR images were first fed to the resolver 

to clear the noise and background while retaining the potential high-frequency structures. (Fig. 

1a, step 3). The mean square error (MSE) between the MR and output of the resolver, termed 

MR', was defined as the resolving loss, and was used to evaluate the output quality of the 

resolver (Fig. 1a, step 4). The MR' was then sent to the interpolator to be up-sampled (4 times 

in each dimension) into the superior-resolution (SR) results, with its high-frequency features 
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being extracted and further enhanced (Fig. 1a, step 5). We defined the MSE between the HR 

ground truths and the SRs as the interpolating loss (Fig. 1a, step 6). In the first stage, the 

parameters of the resolver were iteratively optimized via minimization of the resolving error 

(step 4). In the second stage, both the interpolator and the resolver respond to the interpolating 

loss so that its minimization results in the optimization of both sub-nets (steps 4, and 6). By 

iteratively minimizing the two loss functions using a gradient descent approach, the parameters 

of both sub-nets can be optimized gradually, empowering the whole DSP-Net with the ability 

to recover SR outputs that are close to the HR ground truths corresponding to the LR inputs. 

Once the training of the DSP-Net converged to an optimal state, the blurred noisy pixelated 3D 

images captured by low-magnification/low NA (or diffraction-limited) setups could be input 

into the trained DSP-Net, to allow them to be directly recovered as higher-resolution, higher-

contrast, de-pixelated outputs without requiring iterative computation (Fig. 1a, step 7). By 

substantially increasing the spatial resolution without repetitive imaging and stitching, the 

DSP-Net efficiently improves the imaging throughput (defined as the spatial information 

provided per unit acquisition time) of 3D fluorescence microscopy, which was originally 

limited by the system optics, regardless of the magnification factor or NA employed.  

 We first demonstrate the DSP-Net enabled light-sheet imaging of fluorescence-labeled 

neurons in the mouse brain. The raw 3D image stack, acquired using a Bessel light-sheet 

microscope with 3.2×/0.27 detection combined with ~2.7-μm thickness plane illumination, 

encompassed 2 billion voxels across a 4 × 4 × 2-mm FOV (Fig. 1b, left). The magnified view 

(Fig. 1b, LR) shows obvious inadequate resolution due to the relatively low NA and large voxel 

size in comparison with the HR reference acquired using 12.6×/0.5 detection combined with 

~1.3-μm plane illumination (Fig. 1b, HR). The DSP-Net recovered a 3D image with an 

improved resolution that was very close to that of the HR reference, and also with a relatively 

high reconstruction fidelity (Fig. 1b, DSP-Net). Furthermore, we compared the performance of 

the DSP-Net with several existing one-stage pixel super-resolution / image enhancement 

networks[28, 33, 34]. It’s shown that the DSP-Net successfully yielded 3D images with higher 

resolution and fewer artefacts than one-stage networks (Fig. 1b, Supplementary Fig. S5 and 

S6).  
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Fig. 1. DSP-Net and its performance. a, The pipeline of DSP-Net. First, HR image 

volumes are acquired using 3D microscopy with high-magnification, high NA optics (or 

with 3D SRRF computation). Several number of noised, blurred, and down-sampled LR 

volumes are generated from these HR volumes by using a microscope degradation model 

(step 1). The corresponding MR volumes are simply 4-times down-sampled version of 

HRs (step 2), which are used as the targets in the first stage of DSP-Net, termed resolver, 

to restore the blurred information and reduce the noises for LR inputs (step 3). The outputs 

of resolver, termed MR’, are the intermediate results for computing the resolving error 

with the MR targets. The parameters of the resolver are iteratively optimized via 

minimizing the resolving error (step 4). The MR’ are further input to the second stage of 

the DSP-Net, termed interpolator, to recover the decimated details for MR’ (step 5). The 

outputs of interpolator, termed SR, are the final results for computing the interpolating 

error with the HR targets. At the second stage, both the interpolator (SR-HR) and the 

resolver (MR-MR’) are responsible for the interpolating loss, thus minimizing it would 

result in the optimization of both sub-nets (step 4, 6). After the DSP-Net being trained, LR 

images experimentally obtained by 3D microscopy with low-NA, low-magnification 

optics are input to the trained DSP-Net, to instantly reconstruct deblurred, denoised, and 

depixelated image volumes with notable quality improvement. b, DSP-Net enabled LSFM 

results of the fluorescence-labelled neurons in the mouse brain. The raw LSFM image 

stack (2 × 2 × 4 μm voxel) was acquired using a scanned Bessel light-sheet microscope 

with 3.2× magnification plus 2.7-μm thick laser-sheet illumination. The right panel shows 

the xz maximum intensity projection (1-mm projection depth) of the LR input, the HR 
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ground truth, the SR inference by RDN, the SR inference by U-Net , and the SR inference 

by our DSP-Net. The line profiles of the resolved structures by each mode are plotted to 

indicate the achieved resolution. The normalized root mean square error (NRMSE) 

between each mode and the HR ground truth is calculated to evaluate the reconstruction error. 

c, The spatiotemporal map showing the DSP-Net can push the limit of conventional 3D 

fluorescence microscopy via enabling faster imaging speed for capturing dynamic process, 

higher spatial resolution for observing subcellular details beyond the diffraction limit, and 

higher throughput for rapidly mapping whole tissues/organs. 

 

2.2 3D imaging of a whole mouse brain at a single-neuron resolution and time-scale 

of minutes.  

We imaged GFP-tagged neurons in a whole mouse brain (Thy1-GFP-M) at high throughput. 

The cleared whole brain had a large size of about 10 × 8 × 5 mm, with diverse neuronal 

structures distributed across many brain sub-regions. Even with the use of our self-built Bessel 

light-sheet microscope, which has a relatively high acquisition speed (Supplementary Table 

S2), single-cell-resolution volumetric mapping of the whole brain remains highly challenging 

because of the limited system throughput, and thereby requires long-duration tile imaging, e.g., 

the acquisition of around 100 tiles in tens of hours under a high-magnification setup of 12.6× 

detection combined with 1.3-μm thin plane illumination (Methods). Furthermore, the 

degradation of image quality resulting from the bleaching of fluorescence and deep tissue 

scattering is inevitable (see both the 1st and 3rd columns of Figs. 2b2, b3, and b4).  

In our DSP-Net Bessel light-sheet implementation (Fig. 2a), we first chose high-resolution 

high-SNR Bessel images of a few neurons (12.6× setup, 0.4 ms exposure, 5 fps) in the isocortex 

and cerebellum regions to construct a training dataset for the DSP-Net, and then used the trained 

network to restore low-resolution low-SNR images of various types of neurons across the 

whole brain (3.2× setup, 0.1 ms exposure, 20 fps). In Fig. 2b, we show that the DSP-Net 

recovered 3D neurons from isocortical (b2, middle column), striatum (b3, middle column), and 

cerebellum (b4, middle column) regions of the reconstructed whole brain (b1), and compare 

the results with raw 3.2× inputs (left columns) and HR reference images using the same 12.6× 

setup used to acquire the training data (right columns). We notice that in comparison with the 

ambiguous LR inputs of the 3.2× Bessel sheet, the images recovered by DSP-Net show not 

only higher SNR, but also sharper details of the neuron fibers, providing near-isotropic 3D 

resolution as high as that of the reference HR 12.6× Bessel sheet. The line-cuts through 

individual neuronal fibers (Fig. 2b) using each method further confirm the narrower axial and 
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lateral full width at half maximum for the 3.2× DSP-Net mode in comparison with the raw 3.2× 

Bessel sheet (plots in Fig. 2b). Therefore, the DSP-Net enabled Bessel light-sheet microscopy 

to perform rapid whole-brain imaging, typically acquiring the data within a few minutes under 

3.2× acquisition at a single-neuron resolution close to that achieved by the 12.6× HR setup 

(Supplementary Video S1). The high throughput shown by the rapid achievement of high-

resolution images across a large FOV could be over two-orders-of-magnitude higher than that 

achievable using conventional Bessel light-sheet microscopy (Fig. 2c, Methods). Furthermore, 

we demonstrate that the extra robustness of the neural network allows the recovery of various 

types of neurons in the whole brain while only requiring a small amount of HR neuron data for 

the training process. The high-throughput high-resolution mapping of the whole brain means 

that the DSP-Net can obviously visualize more neuron fibers (dendrites) in a pyramidal neuron 

than can possibly be imaged on a raw 3.2× image, thereby enabling image-based segmentation 

and tracing of neurons to be performed at the system level and in three dimensions (Fig. 2d). 
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Fig. 2. DSP-Net for 3D single-cell-resolution imaging of whole mouse brain at minutes 

time-scale throughput. a, Workflow of whole-brain data acquisition and DSP-Net processing, 

which includes (ⅰ) HR imaging of neurons in a few regions of the brain by 12.6× Bessel sheet 

(0.5 × 0.5 × 1 μm voxel, 0.1 ms exposure, 5 fps). (ⅱ) Network training based on these HR 

label data. (ⅲ) rapid imaging of neurons in the whole brain by 3.2× Bessel sheet (2 × 2 × 4 μm 

voxel, 0.4 ms exposure, 20 fps), with 6 tiles acquired in ~6 minutes. (ⅳ) DSP-Net inference to 

recover a digital whole brain with improved resolution (0.5 × 0.5 × 1 μm voxel) and SNR. b, 

Comparison of three ~200 × 200 × 200 μm3 region-of-interests (ROIs) in isocortex (b2), 
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striatum (b3), and cerebellum (b4), selected from the 3.2× DSP-Net reconstructed whole brain 

(b1, ~10 × 8 × 5 mm3). The magnified views of transverse (xy) and coronal (xz) planes are 

shown to compare the detailed neuronal fibers resolved by raw 3.2× Bessel sheet (left), 3.2× 

DSP-Net (middle), and 12.6× HR Bessel sheet (right). The line profiles of the same neuron 

fibers indicate the axial and lateral FWHMs by 3.2× DSP-Net (orange), which are narrower 

than 3.2× LR inputs (blue), and close to 12.6× HR ground truths (green). Besides the resolution 

improvement, the low SNR caused by 20 fps acquisition rate at 3.2× (6.71 in b4, left) are also 

notably increased to a level (10.45 in b4, middle) higher than the SNR of 12.6× HR image with 

5 fps acquisition rate (7.07 in b4, right). c, The throughput plot comparing the acquisition speed, 

and volumetric resolution of 3.2× (LR), 6.4×, 12.6× (HR) and DSP-Net enabled 3.2× (SR) 

Bessel sheet modes. The dash line connecting the data points of Bessel sheets represents the 

throughput limit in conventional light-sheet microscopes. d, Improvement for single-neuron 

tracing brought by DSP-Net. An identical pyramidal neuron in the isocortex region resolved by 

3.2×, 3.2× DSP-Net, and 12.6× was segmented and traced using Imaris. 

 

2.3 Rapid 3D super-resolution imaging of a single cell with low phototoxicity. 

A key concern in super-resolution fluorescence microscopy is the photon consumption required 

for reconstructing SR images. We demonstrate the ability of the DSP-Net by imaging Alexa 

Fluor 488-labelled microtubules, which are beyond the diffraction limit, in single U2OS cells. 

We do this with an improved acquisition rate as well as a reduced photon budget. We first 

obtained an SR 3D image of microtubules based on the 3D-SRRF[32] computation of thirty 

diffraction-limited image stacks consecutively acquired on our custom high-magnification 

Bessel light-sheet microscope (Methods). Because of the noticeable photo-bleaching caused by 

repetitive fluorescence emission, the last (30th) image stack of the time series obviously shows 

the lowest SNR and diffraction-limited resolution, and is similar to an image stack acquired 

using lower-intensity laser illumination. We then used the reconstructed 3D-SRRF image (HR), 

its corresponding down-sampled version (MR), and a diffraction-limited measurement (LR) to 

construct a training dataset for the DSP-Net, and then applied the trained network to the SR 

reconstruction of microtubules in another U2OS cell (Methods, Fig. 3a). We demonstrate that 

for low-resolution low-SNR input data of microtubules obtained by diffraction-limited optics 

and low-dose excitation (emission from a low number of photons), the DSP-Net enables a 

notable improvement in both spatial resolution and SNR (Fig. 3c, Supplementary Fig. S8, 

Supplementary Video S2). We also demonstrate that the network is highly robust, being capable 

of recovering a high-fidelity super-resolution image stack from either the 1st or 30th stack of 
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the time-series (Fig. 3c, Supplementary Fig. S6). The line profiles of the microtubules resolved 

by the low-SNR inputs, high-SNR inputs, their corresponding DSP-Net outputs, and the SRRF 

result are plotted in Fig. 3d, allowing comparison of the resolution achieved by each method. 

The quality of the DSP-Net recovered results is similar to that of the SRRF results (Fig. 3d). 

We then repetitively imaged a cell 200 times using low-intensity plane illumination (0.3 mW 

at the back pupil plane) and compared its photo-bleaching rate with that occurring with the 

regular-intensity plane illumination used for SRRF imaging (2.1 mW at the back pupil plane). 

The low-intensity illumination demonstrated an obviously lower bleaching rate, which is of 

substantial benefit when imaging a living cell (Fig. 3e). At the same time, our DSP-Net still 

provided high-quality SR images based on single low-resolution low-SNR measurements (t=1, 

200, respectively; Fig. 3f), while only needing around 0.5% of the photons of the SRRF 

imaging (Fig. 3g). We thereby demonstrate that our DSP-Net combined with rapid Bessel-sheet 

microscopy permits the sustained 3D imaging of cells beyond the diffraction limit at a high 

volume rate of about two volumes s-1 (camera rate 200 fps, Fig. 3h).  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2020. ; https://doi.org/10.1101/435040doi: bioRxiv preprint 

https://doi.org/10.1101/435040


12 

 

 

Fig. 3. DSP-Net for 3D super-resolution imaging of antibody-labeled microtubules (Alexa-

488) in single cell with high volume rate and low photon budget/toxicity. a, Work flow of 

DSP-Net 3D super-resolution imaging including: (i) SRRF reconstruction of microtubules in 

single cell (Alexa-488) based on 30 diffraction-limited LSFM image stacks consecutively 

acquired by a high-magnification Bessel light-sheet microscope (60×/1.1 detection objective 

plus 700 nm thickness Bessel sheet). (ii) DSP network training based on SRRF reconstructed 

images (HR), down-sampled SRRF images (MR), and the 30th measurement with lowest SNR 

due to photobleaching (LR). (iii) Rapid 3D imaging of microtubules (108 × 108 × 300 nm 

voxel), at 2 Hz volume rate. The obtained diffraction-limited, low-SNR image stack is super-

resolved by trained DSP-Net instantly. b, The reconstructed volume rendering 

of microtubules in a fixed U2OS cell, comparing the overall visual effects by diffraction-

limited Bessel sheet, DSP-Net outputs and SRRF. c, Magnified views in xy and yz planes of the 

red box region in b. Shown from the left to right are: LR (diffraction-limited), low-SNR 
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microtubules (30th measurement); DSP-Net reconstruction of LR, Low-SNR data; LR, high-

SNR microtubules (1st measurement); DSP-Net reconstruction of LR, high-SNR data; and 

SRRF reconstruction. d, Line profiles of resolved microtubules by each methods, indicating 

their achieved lateral and axial resolutions, which are ~110 and 270 nm for DSP-Net, 

respectively (FWHMs). e, Comparison of photo-bleaching rate of microtubules over 200 

volumes acquired with different excitation intensity of 0.3 and 2.1 mW. The x-axis is the 

imaging times. f, LR measurement at t = 1 and t = 200 and the corresponding DSP-Net results. 

g, Comparison of the photon consumptions of different method for reconstructing super-

resolution images. h, The spatial-temporal map showing the unwilling trade-off between 

temporal resolution, spatial resolution, and phototoxicity (triangle and square data points). 

DSP-Net breaks this spatial-temporal limit (circular data point). 
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2.4 Instantaneous volumetric imaging of neural activities in freely moving C. elegans. 

We demonstrate that DSP-Net-enabled 3D microscopy is capable of capturing dynamic 

processes in live model organisms by performing the imaging of neuronal activity in freely 

moving C. elegans (Fig. 4). A microfluidic chip was used to permit C. elegans (L4-stage) to 

move freely inside a large micro-chamber (3300 × 830 × 55 µm, Fig. 4b). A 4×/0.28 objective 

combined with a fast-scanning Gaussian light sheet (Fig. 4a, Supplementary Fig. S14) was used 

to rapidly image the activities of motor neurons labeled with GCaMP (strain ZM9128 

hpIs595[Pacr-2(s)::GCaMP6(f)::wCherry]) at a 30-Hz volume-acquisition rate across a 3300 × 

830 × 55 µm field-of-view, yielding a total of 900 volumes over a 30-second observation 

(Methods). Because of the use of a large-FOV objective together with a sparse scanning step 

(4 μm) to achieve a high recording volume rate, the raw images inevitably suffered from 

ambiguous cellular resolution (Fig. 4c, left), with signals from adjacent neurons remaining 

indiscernible. The DSP-Net then provided enhanced resolution that allowed the visualization 

of neuron calcium signaling during fast body movement (Fig. 4c, right, Supplementary Fig. 

S10). The voxel rate of the conventional 4× light-sheet was thus expanded ~60 times by the 

DSP-Net (Fig. 4d), thereby achieving single-neuron resolution across the mesoscale FOV at a 

30-Hz volume rate. Furthermore, the non-iterative inference of the network could sequentially 

enhance the 3D images at a high rate, making it suitable for processing sustained biological 

dynamics, which is computationally challenging using conventional methods. Based on the 

four-dimensional imaging results with a sufficiently high spatiotemporal resolution, we 

identified single specific A- and B- motor neurons that were associated with motor-program 

selection, and mapped their calcium activities over time (Fig. 4e, Supplementary Video S3). 

Meanwhile, by applying automatic segmentation of the worm body contours based on the 

location and morphology of neuron signals[35], we calculated the worm’s curvatures related to 

its locomotion and behavior, thereby allowing classification of the worm’s motion into forward, 

backward, or irregular crawling (Fig. 4g). The traces of transient Ca2+ signaling were found to 

be relevant to switches from forward to backward crawling of the worm, consistent with 

previous findings[36, 37] (Fig. 4e, f). 
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Fig. 4. Whole-animal Ca2+   imaging of freely moving C. elegans using DSP-Net. a, 

Geometry combining fast light-sheet microscopy with microfluidic technique for 3D imaging 

of motor neuron activities (hpls595) of live C. elegans freely moving in a micro-chamber (3300 

× 830× 55 µm). The acquisition rate is 30 volumes/second. b, The 3D trajectory of the C. 

elegans movement during a 30-seconds observation. c, Four neurons at one instantaneous 

volume (red box in b) by raw 4×-LSFM and after DSP-Net reconstruction, respectively. It’ 

obvious that DSP-Net restores single-cell resolution and reduces motion artefacts, making 

possible the quantitative analysis of activities from single neurons. Scale bars, 10 µm. d, The 

equivalent imaging throughput of conventional 4× light-sheet and DSP-Net-enabled 4× light-

sheet. e, Activity of 15 identified motor neurons from the acting worm (left) by tracing the Ca2+ 

transients of individual neuron after being super-resolved by DSP-Net. Each trace indicates the 

fluorescence intensity change of a single neuron (∆�/�� ) during two time series of worm 

moving towards the right of FOV and moving back towards the left. f, Kymograms showing 

the curvature change of 14 sample points along the body of acting worm. Among them, traces 

of curvatures of 3 sample points are plotted on the top. The body contours of the worm are 

automatically obtained based on a U-net segmentation. g, An ethogram (top panel) based on 

analysis of curvature change over the entire imaging period classifies the worm behavior (lower 
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panel) into backward (left), irregular (middle) and forward (right) statuses. Three selected 

volumes with time-coded traces in accordance to the ethogram visualize the forward (left, 300 

ms), irregular (middle, 560 ms), and backward (right, 165 ms) crawling tendency of the worm. 

Scale bars, 50 μm. 

 

2.5 Cross-mode 3D restoration and super-resolution by DSP-Net. 

We directly used a DSP-Net trained on Bessel light-sheet images of brain neurons to restore 

low-resolution confocal microscope images of neurons, and a DSP-Net trained on SRRF Bessel 

light-sheet images of microtubules in cells to restore diffraction-limited wide-field SIM 

microscope images of microtubules. As shown in Fig. 5a, 3D image stacks of a 100-μm thick 

mouse brain slice were captured by a confocal microscope (Nikon Ni-E, CFI LWD 16×/0.8 W 

objective). The degraded version of this confocal image stack, considered as 3.2× LR input 

(Fig. 5b, LR), was then input into the abovementioned DSP-Net trained on Bessel light-sheet 

data for cross-mode (CM) restoration. The results of this model, which we termed the CM-

DSP-Net in Fig. 5b, were further compared with the recovered results of another DSP-Net that 

was regularly trained with confocal data (DSP-Net), and with the 12.6× (down-sampled from 

16×) confocal stack (Fig. 5b, HR). For the super-resolution 3D imaging of microtubules in a 

U2OS cell (Fig. 5e), the LR input was a diffraction-limited 3D wide-field image obtained by 

simply averaging the fifteen SIM exposures at each z-plane (Nikon N-SIM, CFI Apo TIRF 

100×/1.49 oil, Fig. 5f, input). The above-mentioned DSP-Net trained using Bessel light-sheet 

data was then applied to this wide-field image to recover 3D microtubules beyond the 

diffraction limit (Fig. 5f, CM-DSP-Net). The result was finally compared with the super-

resolution image obtained by the 3D-SIM reconstruction using the 15 patterned exposures (Fig. 

5f, 3D-SIM). In both cases, the cross-mode DSP-Net provided extraordinary enhancement of 

the heterogeneous inputs. Qualitative analysis of the reconstruction quality reveals the CM-

DSP-Net results to show spatial resolutions similar to those of the regular DSP-Net. At the 

same time, the high-resolution-scaled Pearson coefficient (RSP) and low-resolution-scaled 

error (RSE) also indicate the sufficient accuracy of the CM-DSP-Net recovery.  
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Fig. 5. Cross-mode 3D restoration and super-resolution by DSP-Net. a, 3D confocal 

image stack of neurons (GFP) in 100-μm thick mouse brain slice recovered by cross-mode 

DSP-Net (CM-DSP-Net), which is trained with image data obtained by light-sheet 

microscope. b, xz projections of the synthetic 3.2× confocal image (blue), 12.6× confocal 

image (green), super-resolution of 3.2× confocal image by standard DSP-Net (yellow), and 

CM-DSP-Net (red), respectively. c, Normalized intensity plots of the linecuts through 

neuronal fibers along lateral (x) and axial (z) directions in b. d, Comparison of RSP and 

RSE values of the DSP-Net, CM-DSP-Net and 12.6× HR results calculated with respect 

to the 3.2× LR images. e, CM-DSP-Net reconstruction of the diffraction-limited 3D wide-

field images of antibody-labelled microtubules in U2OS cell (Alexa-488, 100×/1.49 NA 

objective). The network was trained with super-resolution images by 3D-SRRF enabled 

Bessel light-sheet microscopy. f, xz projections of the raw measurement (blue), 3D-SIM 

reconstruction (green) and the CM-DSP-Net reconstruction (red), respectively. g, 

Normalized intensity plots of the linecuts through microtubules along lateral (x) and axial 

(z) directions in f. h, Comparison of RSP and RSE values of the CM-DSP-Net and 3D-
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SIM results calculated with respect to the diffraction-limited microtubule images. 

2.6 Cross-sample 3D restoration and super-resolution by DSP-Net.  

In addition to its cross-mode capability, we further demonstrate that the DSP-Net can also 

perform cross-sample (CS) restoration. We did this using a network trained on brain neurons at 

single-cell resolution to restore brain vessels, and a microtubule-trained network to perform 

super-resolution imaging of endoplasmic reticulum beyond the diffraction limit. In both cases, 

our network showed remarkable improvements for new types of signals (Fig. 6a, b, e, f, 

Supplementary Fig. S11). Furthermore, quantitative analyses of the achieved resolution and 

reconstruction errors both verify the reliability of the cross-sample recovery by DSP-Net. We 

note that the robust cross-mode and cross-sample capabilities shown by our 3D DSP-Net are 

also consistent with previous findings on 2D network super-resolution[27]. It should be noted 

that the CM/CS-DSP-Net can achieve resolution improvement even better than of the regular 

DSP-Net if the CM/CS-DSP-Net receives higher-quality training. However, the CM/CS-DSP-

Net fails to generate reasonable outputs when the new data are completely different with the 

original data (Supplementary Fig. S11, DSP-ER recovered neurons and nuclei). In such cases, 

further tuning techniques such as transfer learning should be engaged.  
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Fig. 6. Cross-sample 3D restoration and super-resolution by DSP-Net. a, 3D Bessel 

sheet image stack of blood vessels (Alexa-647) in mouse brain recovered by cross-sample 

DSP-Net (CS-DSP-Net), which is trained with 3D neuron images by the same Bessel light-

sheet microscope. b, xz projections of the 3.2× Bessel sheet image (blue),12.6× Bessel 

sheet image (green), restoration of 3.2× image by standard DSP-Net (yellow), and CS-

DSP-Net (red), respectively. c, Normalized intensity plots of the linecuts through vessels 

along lateral (x) and axial (z) directions in b. d, Comparison of RSP and RSE values of the 

DSP-Net, CS-DSP-Net and 12.6× HR results calculated with respect to the 3.2× LR images. 

e, CS-DSP-Net super-resolution reconstruction of the diffraction-limited 3D wide-field 

images of antibody-labelled endoplasmic reticulum (the antibody labeled EGFP) in U2OS 

cell (100×/1.49 NA objective). The network was trained by microtubule images. f, xz 

projections of the raw diffraction-limited image of endoplasmic reticulum (blue), SRRF 
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reconstruction (green), DSP-Net reconstruction (yellow) and CS-DSP-Net reconstruction 

(red), respectively. g, Normalized intensity plots of the linecuts through endoplasmic 

reticulum along lateral (x) and axial (z) directions in f. h, Comparison of RSP and RSE 

values of the DSP-Net, CS-DSP-Net and 3D-SRRF results calculated with respect to the 

diffraction-limited endoplasmic reticulum images.   

 

3. Methods 

3.1 Light-sheet microscopy setups  

High-magnification Bessel-sheet microscope. Our high-magnification Bessel-sheet 

microscope for single-cell imaging was built based on an upright microscope (BX51, Olympus). 

Fiber-coupled lasers with four excitation wavelengths (405, 488, 589, 637 nm) were first 

collimated by a collimator (Thorlabs, F280FC-A) and then sent to an acousto-optic tunable 

filter (AOTF) to control their intensities. The 1st-order diffraction beam after AOTF was 

selected and expanded (Thorlabs, CBE05-A) to 10 mm diameter and then sent to an axicon 

(Thorlabs, AX252-A) to generate annular Bessel beam at the front focal plane of the achromatic 

lens (Thorlabs, AC254-075-A-ML). The interference pattern was focused onto a galvanometer 

(Thorlabs, GVS112), which was combined with a scan lens (Thorlabs, CLS-SL) to scan the 

Bessel beam into a sheet. Finally, the Bessel sheet was compressed for 20 folds through a 4-f 

system containing a tube lens (Thorlabs, TTL200) and an objective lens (Thorlabs, MY20×-

803) to obtain the final illuminating Bessel-sheet with FWHM thickness of ~700 nm. In the 

detection path of upright microscope, a water dipping objective (Olympus, LUMFLN 60XW 

60×, 1.1 NA) was used to collect the fluorescence emission from the fluorophore-tagged U2OS 

cell. To eliminate the emission excited by the side lobes of the Bessel beam, the rolling shutter 

of the detection sCMOS camera (Hamamatsu, ORCA Flash 4.0 V3) was synchronized with the 

beam scanning to form an electronic confocal slit so that only the fluorescence excited by the 

central maximum of the Bessel beam could be detected. Finally, we obtained a high-quality 

Bessel sheet illumination with ~700 nm uniform thickness covering the entire illuminated range 

of the U2OS cell. For 3D imaging, the cells attached to the cover glass was mounted onto a 

customized holder and vertically (z) scanned by a piezoelectric stage (P-737, Physik 

Instrumente). The synchronized imaging process was controlled by a self-built LabVIEW 

(National Instruments) program. Supplementary Fig. S13 shows the optical layout and 

photographs of the system. 
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Macro-view Bessel-sheet microscope. Our custom macro-view Bessel-sheet microscope for 

mouse brain imaging was based on a tunable dual-side plane illumination and a zoomable 

detection. With splitting the collimated beam into 2 paths by a 50/50 beam splitter (CCM1-

BS013/M, Thorlabs), two synchronized scanning Bessel sheets were generated at both sides of 

the sample using the similar way described above. A pair of long working distance objectives 

(Mitutoyo, 10×/0.28 or 5×/0.14) combined with tube lenses (ITL200, Nikon) were used to 

generate final dual-side Bessel sheets with illumination range of 1 or 4 mm (~1.3 or 2.7 μm 

thickness) adapted to the detection FOV of 12.6× or 3.2× (1 or 4 μm lateral resolution) from a 

zoomable upright microscope (MVX10, Olympus). During image acquisition, the Bessel sheets 

were synchronized with the rolling shutter of sCMOS camera (Hamamatsu ORCA-Flash4.0 

V2) at 20 fps for recording 3.2× LR images, or alternatively at 5 fps for recording 12.6× HR 

images. A motorized xyz stage (Z825B, Thorlabs combined with SST59D3306, Huatian) 

moved the sample in three dimensions to enable image stitching for the entire brain. A 

LabVIEW program was developed to synchronize the parts to automatically implement the 

beam scanning, image acquisition and tile-stitching in the proper order. Supplementary Fig. 

S12 shows the optical layout and photographs of the system. 

Gaussian light-sheet microscope. Besides the Bessel-sheets, a SPIM path was also built for 

high-speed imaging of live C. elegans acting in microfluidic chamber. The 3.3 mm collimated 

lasers were first sent to a pair of cylindrical lenses (Thorlabs, LJ1695RM-A and LJ1567RM-

A ) to expand the beam height to ~4 mm, which is sufficient to cover the length the chamber (3 

mm). Then through another focusing cylindrical lens (Thorlabs, LJ1703RM-A), a Gaussian 

light-sheet with FWHM thickness of ~10 μm and confocal range of ~900 μm matched to the 

width of the chamber (0.8 mm) was finally generate to illuminate the C. elegans. The sample 

together with the microfluidic chip were moved by a motorized stage along z direction (Z825B, 

Thorlabs) for enabling fast 3D imaging. 

3.2 Dual-stage-processed network (DSP-Net) 

Network architecture. Our DSP-Net consists of a resolver that enhances the details and 

reduces noises for the low-quality LR images, and an interpolator that de-pixelates the 

intermediate output of the resolver by further extracting and permuting features. We adopted 

the deep back-projection network (DBPN)[34] as the resolver (Supplementary Fig. S1), for its 

outstanding feature extracting ability brought by alternating up-sampling and down-sampling 

operations. We modified all the layers to allow the processing of 3D input, and removed the 

last deconvolution layer to keep the image size of output unchanged. For the interpolator 

(Supplementary Fig. S2), residual dense network (RDN)[33] was used with structures also 
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modified for 3D computation. To up-sample the 3D images in RDN interpolator, we further 

introduced a sub-voxel convolution layer (Supplementary Fig. S2), which was derived from 

previously reported efficient ESPCNN[38]. The DSP-Net implemented in Python using 

Tensorflow and Tensorlayer[39].  

Network training and inference procedure. The DSP-Net training was based on semi-

synthetic dataset. For mouse brain, the HR images of mouse brain were first experimentally 

obtained by 12.6× Bessel-sheet setup while the synthetic LR images were artificially generated 

by degrading the HR images using a model which simulates the optical blurring of microscope 

and pixelization of camera (details see Supplementary Note S2). For single-cell, the LR images 

were simply the diffraction-limited measurements under 60× Bessel-sheet. The corresponding 

HR images were generated by 3D-SRRF computation based on 30 stacks of diffraction-limited 

measurements. For live C. elegans, the synthetic HR and LR 3D images of microbeads were 

generated to represent the point-like neuronal signals. All abovementioned experiment used a 

directly down-sampled version of the HR data as the MR data, which still contains aliased high-

resolution details that might be completely lost in the LR data. At the training stage, LR data 

were imported into the resolver of the DSP-Net, and sequentially convolved with the filters of 

each convolutional layer. The pixel-wise mean-square-errors (MSE) between the resolver’s 

outputs and the MR data, termed as the resolving loss, works as cost function of the parameters 

in each filter. A gradient descent method was used to efficiently minimize the resolving loss by 

optimizing the distribution of these parameters. The converged outputs of the resolver continue 

to flow into the interpolator, where the image size increases via extending and re-arranging 

feature maps extracted by the filters in the convolutional layers, and the following sub-voxel 

convolutional layers (Supplementary Fig. S2). At the 2nd stage, the dual sub-nets are mutual-

feedback. The minimization of MSE between the converged outputs of interpolator and the HR 

ground truths could lead to the optimization of the parameters not only in the 2nd-stage 

interpolator, but also those in the 1st-stage resolver. Finally, the well-trained DSP-Net with 

optimized parameters in both sub-nets was used to deduce superior-resolution 3D image stacks 

from the LR 3D inputs. 

At the inference stage, the entire LR image stack were automatically subdivided into 

multiple blocks for being processed block by block (typically 100 × 100 × 100 voxels)), owing 

to the memory limit of the GPUs. The super-resolved patches were automatically stitched 

together into a complete SR image stack automatically. Using a single RTX 2080 Ti GPU for 

computation, the reconstruction voxel rate was ~10 megavoxels per second. The data 

implementation details were elucidated in Supplementary Table S1 and Supplementary Note 
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S1. 

3.3 Mouse brain experiment 

Imaging. Neuron-tagged transgenetic whole mouse brain (Thy1-GFP-M) and vessel-labelled 

whole mouse brain (Alexa-647) were imaged using our custom macro-view Bessel-sheet 

microscope (Supplementary Fig. S12). For obtaining adequate HR image stacks for network 

training, we first imaged several brain sub-regions, such as isocortex, striatum, hippocampus, 

and cerebellum, using 12.6× detection combined with 1.3 μm-thickness Bessel-sheet 

illumination. The acquired 3D image of each sub-region encompassed 2048 × 2048 × 500 

voxels across a 1.1 × 1.1 × 0.5 mm3 volume size. The total imaging time is ~30 minutes for 20 

regions with 5-fps acquisition rate and 200-ms exposure time. 10 patches of HR image (2048 

× 2048 × 500 for each) were pre-processed to generate the HR-MR-LR pairs for network 

training.  

Then the whole-brain imaging was implemented using 3.2× detection plus 2.7 μm-

thickness Bessel-sheet illumination. We sequentially imaged 6 blocks (2 × 3) of the brain with 

each one containing 2048 × 2048 × 1250 voxels across a 4 × 4 × 5 mm3 volume size. With such 

a low-magnification setup, the total imaging time for a whole brain is down to ~6 minutes with 

20 fps acquisition rate. The 6 blocks were then stitched into an LR whole brain using 

Grid/collection stitching plugin of ImageJ. The stitched LR whole brain was taken as input for 

in-parallel restoration by the trained DSP-Net. Finally, a super-resolved whole brain output 

encompassing 3.2 teravoxels across 10 × 8 × 5 mm3 volume size was obtained. The 12.6× HR 

images to be compared at the validation stage were also acquired at 20 fps with an exposure 

time of 50 ms.  

Speed and throughput calculation. The speed and throughput for imaging whole mouse brain 

is calculated by: 

 ������� ����� =  
��

���

 (���/������) (1) 

 ������� �ℎ����ℎ��� =  
��

���  ×  ��

 (������/������) (2) 

Where VI is the imaging volume (mm3), Tac is the acquisition time (second) and Rv is the 

volumetric resolution (μm3/voxel). We compared the achieved optical throughput for imaging 

a whole mouse brain by 3.2×, 6.4×, 12.6×, and DSP-Net-enabled 3.2× Bessel-sheets. To 

maintain an SNR high enough for distinguishing fine neuronal details, such as apical dendrites, 
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the acquisition rate was 20 fps for 3.2× imaging, 10 fps for 6.4×, and 5 fps for 12.6× imaging. 

Under 3.2× setup, 6 tiles (2 × 3) with each one containing 2048 × 2048 × 1250 voxels across a 

4 × 4 × 5 mm3 volume size were stitched together to form a whole brain dataset which finally 

encompassed 3891 × 5734 × 1250 voxels across 10 × 8 × 5 mm3 volume size. The total imaging 

time was around 6 minutes. For 6.4× and 12.6×, we stitched 20 (4 × 5) and 96 (8 × 12) tiles, 

respectively, with each one containing 7577 × 9420 × 2500 and 14950 × 22323 × 5000 voxels, 

respectively. The total imaging time was around 167 minutes for 6.4× acquisition and 1600 

minutes for 12.6× acquisition. After the 4× resolution enhancement applied to 3.2× Bessel sheet, 

the achieved volumetric resolution was around 64 times higher than that from regular 3.2× 

Bessel-sheet, finally yielding ~5 gigavoxels/s throughput which is over 200-times higher than 

that by 12.6× Bessel-sheet. 

Neuron tracing. We chose a 0.5 × 0.4 × 0.2 mm3 volume in isocortex region to demonstrate 

the resolution enhancement from our DSP-Net can substantially benefit the neuron 

identification/tracing with improved accuracy. The data was converted and opened in Imaris 

software (Bitplane, USA). The Autopath mode of the Filament module was used to trace the 

same single neuron in LR, SR and HR images semi-automatically. We first assigned one point 

on the neuron to initiate the tracing. Then Imaris automatically calculated the pathway in 

accordance with the image data, reconstructed the 3D morphology and linked it with the 

previous part. This automatic procedure would repeat several times with manual adjustment 

involved until the neuron was finally correctly traced. Because the performance of the tracing 

highly relies on the resolution and SNR of the source image, the DSP-Net result allows 

obviously more accurate neuron tracing with finer fibers identified, as shown in Fig. 2d.  

3.4 U2OS cell experiment 

Imaging. The antibody-labeled microtubules and antibody-labeled endoplasmic reticulum in 

fixed U2OS cells were imaged by our custom high-magnification Bessel-sheet microscope. A 

thin Bessel-sheet provided high-axial-resolution optical sectioning (~700 nm) of the cell, while 

a 60×/1.1 water dipping objective collected the fluorescence signals with a lateral resolution of 

~270 nm (pixel size 108 nm). During image acquisition, we repetitively scanned the cell using 

a piezo actuator (step size 300 nm) with excitation intensity ~2 mW at the pupil plane of 

illuminating objective, obtaining 30 consecutive image stacks (2048 × 512 × 70 voxels for each 

stack) to reconstruct a super-resolution 3D image with a 3D SRRF computation procedure[32]. 

Then we used the SRRF results, the 2-time down-sampled SRRF results, and the diffraction-

limited images of the 30th acquisition as the HR, MR and LR data, respectively, for network 

training. 686 groups of such HR-MR-LR patch pairs with size 96 × 96 × 32 for each were 
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included. For network validation, the same 60× Bessel sheet was applied to another U2OS cell 

with imposing regular-intensity excitation (~2 mW), and low-intensity excitation (~0.3 mW), 

to obtain LR, high-SNR and LR, low-SNR cell images, respectively. 

Quantifications of spatiotemporal resolution and photon consumption. The fixed cell were 

imaged with a step size of 0.3 μm. Typically, when imaging adherent cells by a light-sheet 

fluorescence microscope, over 100 planes need to be recorded to form a 3D stack encompassing 

the entire cell. Limited by the response time of piezo stage, the volume acquisition rate was up 

to 2 Hz in this case, resulting in a total acquisition time of over 15 seconds for obtaining at least 

30 volumes for 3D-SRRF of the cell. At the same time, the repetitive imaging also inevitably 

imposed increased photon burden to the sample. Using our DSP-Net, over 2-fold higher spatial 

resolution was achieved in all three dimensions, as compared to the diffraction-limited Bessel 

sheet imaging, with merely 1 volume of the cell quickly acquired in less than 1 seconds. From 

another point of view, it could surpass the diffraction limit with realizing 30-times higher 

temporal resolution, as compared to time series 3D-SRRF.  

To ensure the reconstruction quality of 3D-SRRF, relatively high-intensity excitation was 

always required during the acquisition of the 30 image stacks. By contrast, DSP-Net permits 

significantly lower-dose excitation to the cell, owing to its strong capability for recovering very 

low-SNR image, which is obtained with an ~7 fold lower-intensity excitation. Combined with 

the super resolution capability based on single measurement, the total photon consumption 

from DSP-Net can be over 2-orders-of-magnitude lower than that from the time series 3D-

SRRF. 

3.5 C. elegans experiment 

Imaging. C. elegans were cultured on standard Nematode Growth Medium (NGM) plates 

seeded with OP50 and maintained at 22 °C incubators. The strain ZM9128 hpIs595[Pacr-

2(s)::GCaMP6(f)::wCherry] of C. elegans, which expressed the calcium indicators to A-and B- 

class motor neurons, was used to detect the ��2+ signaling in moving animals. For imaging 

neural activities, late L4 stage worms were loaded into a microfluidic chip with size of 3300 × 

830 × 55 µm, allowing the worm to freely move within the FOV of a 4× objective (Olympus, 

XLFluor 4×/340, 0.28 NA, WD = 29.5 mm). During image acquisition, a 10 µm-thick Gaussian 

light-sheet illuminated the worm in the chamber from the side of the chip. The chip was 

mounted to a z-piezo stage, for being scanned at high speed. The sCMOS camera captured the 

plane images at a high speed of 400 fps (2048 × 512 pixel) and with a step size of 4.5 µm. The 

system as such permitted large-scale volumetric imaging (2048 × 512 × 13 voxel) at 30 

volumes per second (VPS) acquisition rate across 3300 × 830 × 55 µm FOV. Due to the low 
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phototoxicity provided by light-sheet illumination, we could continuously image the moving 

C. elegans for 30 seconds, recording the various worm behaviors such as forward, irregular and 

backward crawling, in the obtained 900 consecutive image stacks. The sequential 3D image 

stacks were then sent to the trained DSP-Net for be processed at high processing rate of 10-

mega voxels per second by using a single RTX 2080 Ti graphic card.   

Quantitative Analysis of Ca2+ dynamics and behavior of acting C. elegans. 

Following the previously reported method[40] we applied Ca2+ signal tracking to the 4D DSP-

Net output. After the individual neurons were segmented in each image stack and automatically 

tracked throughout the entire 4D dataset, a manual correction was further applied to improve 

the accuracy of tracing. To extract the fluctuation of Ca2+ signals ∆F/F0, we calculated ∆F/F0 

= (F(t)-F0)/F0 with F(t) being the fluorescence intensity of certain neuron at one time point, 

and F0 being the mean value of F(t) over the entire period. To analyze the worm behaviors in 

response to the neural activities, we first extracted the dynamic worm profiles using a U-Net 

based image segmentation[41]. Then the center lines of the worm were further extracted to 

calculate the time-varying curvatures of the worm[42], which were finally used to classify the 

worm behaviors as forward, backward and irregular crawling. 

3.6 Cross sample experiments 

A vessel-labelled whole mouse brain (Alexa-647) was imaged with the macro-view Bessel 

light-sheet microscope using the same 3.2× illumination and detection configurations 

mentioned above. Then the obtained image stack of vessels was recovered by the DSP-Nets 

trained with homogeneous vessel data and heterogeneous neuron data (Thy1-GFP-M). 

Following the same logic, we also imaged the antibody-labeled endoplasmic reticulum in 

fixed U2OS cells (the antibody labeled EGFP) using the same conditions for imaging the 

microtubules. The diffraction-limited image stack of endoplasmic reticulum was super-

resolved by DSP-Nets trained with endoplasmic reticulum data and microtubule data (Thy1-

GFP-M). 

3.7 Cross mode experiments 

Coronal slices (100-μm thick) of a transgenetic mouse brain (Thy1-GFP-M) were imaged by a 

confocal microscope (Nikon Ni-E) using a 16×/0.8 water-dipping objective (CFI LWD 

16×/0.8W). The voxel resolution was 0.31 × 0.31 × 1 μm in each acquired 3D image stack. For 

conducting a DSP-Net training based on confocal data, we then re-sampled the confocal stacks 

with matching their voxel resolution to those of 3.2× (2 × 2 × 4 μm voxel) and 12.6× (0.5 × 0.5 
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× 1 μm voxel) Bessel-sheet image stacks, generating synthetic 3.2× and 12.6× confocal images. 

The re-sampled 12.6× confocal image stacks were used as HR images for DSP-Net training. 

The LR images were the blurred, noised and down-sampled version of 12.6× images, while the 

MR images were directly down-sampled from 12.6× images. At validation stage, the 3.2× 

synthetic confocal image stack (down-sampled, blurred and noise-added) was recovered by 

both DSP-Nets trained with confocal and Bessel-sheet data. 

We imaged antibody-labeled microtubules in fixed U2OS cells with a Nikon N-SIM 

microscope using an apochromatic oil immersion objective (Nikon, CFI Apo TIRF 100×/1.49 

oil). The raw wide-field images were acquired under conditions of five pattern phases spaced 

by 2π/5, three pattern orientations spaced 60 degree apart, and a step size of 200 nm. Then the 

3D SIM images were reconstructed based on the acquired wide-field images using a 

commercial software (NIS-Elements), and the diffraction-limited wide-field images were 

obtained simply by an average of the fifteen measurements at each plane. 

3.8 Image quality evaluation 

The normalized root mean square error (NRMSE) was used to indicate the pixel-wise 

difference between the SR image and the HR ground truth. These two images were first 

normalized to about the same intensity range [0, 1] by a percentile normalization, which 

ensured the difference of background wouldn’t affect the quantification. Then the NRMSE was 

computed as 

 ����� = �
1

�
�(�� − ��)

�

�

���

× 255 (3) 

where N is the pixel number of the image (i.e. width × height), �� and �� are the ith pixel 

intensity of the SR and HR, respectively. 

The signal-to-noise ratio (SNR) is computed as 

 ��� =
����

���

 (4) 

 

where ���� being the average intensity of the signal and ��� being the standard deviation of 

the background. 

The resolution-scaled error (RSE) and resolution-scaled Pearson (RSP)[43] between the SR (or 
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HR) images and the LR inputs were used to quantify the reliability of reconstruction. We 

obtained the averaged values based on the analysis of 30 randomly-selected regions using the 

Nanoj Squirrel ImageJ plugin. 

3.9 Code availability 

Code for DSP-Net and the examples are available at https://github.com/xinDW/DVSR. 

4. DISCUSSION 

In summary, the marriage of DSP-Net with cutting-edge 3D microscopy enables high 

spatiotemporal resolution volumetric imaging of various types of specimens far beyond the 

optical throughput limit. While LSFM is a powerful tool that can image samples in three 

dimensions at high speed and low phototoxicity, its throughput remains limited by the system 

optics, which are subject to limited NA, and it also affected by a certain degree of pixelization. 

In this study, the combination of our all-3D DSP-Net greatly pushes the limits of LSFM to 

achieve an ultra-high optical throughput that was previously unmet. Unlike current one-stage 

methods that directly map severely degraded LR measurements to HR targets, our DSP-Net 

divides the SISR problem into two sub-issues of de-blurring and de-pixelization that are solved 

successively, in effect fundamentally inverting the microscopy imaging processes that 

transform a high-resolution target into a blurred and pixelated image. This step-by-step strategy 

permits the network to extract more abundant features to create strong correlations between HR 

targets, MR aliased images, and degraded LR measurements, enabling a more accurate 

mapping of LR measurements to HR targets, which might be degraded in conventional one-

stage deep learning networks. The experimental results verify that our DSP-Net can recover a 

3D fluorescence image, with the DSP-Net super-resolving more details than other state-of-the-

art super-resolution networks. The image resolution improvement achieved by the current DSP-

Net is about four times in each dimension. It is possible to achieve a larger resolution-

enhancement factor by combining progressive growing methods, provided that the equally 

accumulated artefacts can be suppressed at the same time. To implement this training strategy, 

a large number of 3D images captured at various magnifications are necessary to establish 

reliable targets for every growth stage of the progressive training. 

The increased spatiotemporal information provided by the DSP-Net LSFM, together with its 

non-iterative rapid image reconstruction, are crucial for high-throughput imaging of large-size 

samples or the sustained recording of biological dynamics at high resolution. The advances 

made by the DSP-Net LSFM are demonstrated by the notably increased throughput for 3D 

high-resolution mapping of clarified large organs, the breaking of the diffraction limit for 
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imaging of intracellular organelles with faster and lower phototoxicity measurements, and the 

improved temporal resolution for capturing instantaneous biological processes. Besides its 

combination with the LSFM, the DSP-Net has also shown its ability for appropriate cross-mode 

and cross-sample recovery, indicating extra flexibility allowing a network pre-trained on a 

relatively small amount of desired HR data from a relatively specialized system (e.g., fine 

neurons imaged by Bessel light-sheet) to be extensively applied to various types of samples 

showing similar structural characteristics (e.g., line-like vessels and microtubules) that were 

obtained using other imaging methods such as commercial confocal and wide-field 

microscopes, which may be more readily accessible. Therefore, we believe that DSP-Net is 

transformative, and that it could potentially bring new insights for wider application of the 

current computation-based imaging methods in biomedical research, which unceasingly 

requires ever-higher spatiotemporal performance. 
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