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Abstract  

Embryonic stem cells (ESCs) are pluripotent in nature, meaning that they have the 

capacity to differentiate into any cell in the body. However, to do so they must transition 

through a series of intermediate cell states before becoming terminally differentiated. A 

lot is known about how ESCs maintain their pluripotent state but comparatively less 

about how they exit this state and begin the transition towards differentiated cells. Here 

we investigated the earliest events in this transition by determining the changes in the 

open chromatin landscape as naïve mouse ESCs transition to epiblast-like cells (EpiLCs). 

Motif enrichment analysis of the newly opening regions coupled with expression analysis 

identified ZIC3 as a potential regulator of this cell fate transition. Chromatin binding and 

genome-wide transcriptional profiling confirmed ZIC3 as an important regulatory 

transcription factor and among its targets are genes encoding a number of transcription 

factors. Among these is GRHL2 which acts through enhancer switching to maintain the 

expression of a subset of genes from the ESC state.  Our data therefore place ZIC3 at the 

top of a cascade of transcriptional regulators and provide an important advance in our 

understanding of the regulatory factors governing the earliest steps in ESC 

differentiation.  
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Highlights 

 The transcription factor ZIC3 drives gene expression changes in the ESC to 

EpiLC transition. 

 Extensive changes occur in the open chromatin landscape as ESCs progress to 

EpiLCs. 

 ZIC3 activates the expression of a network of transcription factors. 

 ZIC3 activated genes in EpiLCs are upregulated in the post-implantation epiblast. 
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Introduction 

 Early embryonic development involves the transition of pluripotent embryonic 

stem cells through intermediate cell states into the cell lineages that initiate subsequent 

development events. Using defined in vitro conditions, several different states have been 

identified for mouse ESCs, starting from the naïve ground state, progressing through 

EpiLCs to establish an epiblast stem cell (EpiSC) state (Hayashi et al., 2011; reviewed in 

Kalkan and Smith, 2012). Subsequently, EpiSCs can differentiate to the three germ 

layers, mesoderm, ectoderm and endoderm. Mouse ESCs can be maintained in the naïve 

ground state in defined media which includes two kinase inhibitors (known as ‘2i’) to 

block the MEK/ERK and GSK3 signalling pathways (Ying et al., 2008; reviewed in 

Wray et al., 2010). Withdrawal of 2i, allows the cells to progress to either EpiLCs or 

EpiSCs by altering culture conditions (Betschinger et al., 2013; Hayashi et al., 2011). The 

naïve ESCs are thought to represent a model for the pre-implantation epiblast (E3.5-4.5) 

whereas EpiLCs or EpiSCs cells are models for the post-implantation epiblast (E5.5) 

(Kalkan et al., 2017).   

 As ESCs progress from the naïve ground state, large changes are observed in their 

chromatin landscapes and underlying gene expression programmes (Marks et al., 2012; 

Factor et al., 2014; reviewed in Habibi and Stunnenberg, 2017). The pluripotent state is 

maintained through the action of a core set of transcription factors and chromatin 

regulators that include the well-studied NANOG, KLF4, SOX2, and OCT4, (reviewed in 

Young, 2011). However, comparatively less is known about the regulators controlling the 

transition to EpiLCs and EpiSCs. Recently OTX2 was identified as a key transcription 

factor driving this transition, partly through cooperative interactions with OCT4/POU5F1 
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(Acampora et al., 2013; Buecker et al., 2014; Yang et al., 2014). Proteomics analysis also 

identified ZIC2/3 and OCT6/POU3F1 as interacting proteins for OCT4 specifically in 

EpiLCs (Buecker et al., 2014), suggesting a potential co-regulatory role for these 

transcription factors in this context. Additional changes occur during the transition to 

EpiLCs, and in addition to transcriptional regulators, other proteins have been shown to 

play an important role during this transition such as the extracellular signalling protein, 

Cripto which controls metabolic reprogramming (Fiorenzano et al., 2016).  

 To further our understanding of the regulatory networks controlling the transition 

from the naïve ESC state to EpiLCs, we examined the chromatin accessibility changes 

accompanying this early transition in mouse ESCs. We focused on areas of dynamic 

chromatin opening and through DNA binding motif enrichment and associated gene 

expression data analysis, we identified the transcription factor ZIC3 as an important 

regulatory transcription factor in this context. ZIC3 controls the expression of EpiLC 

marker genes such as Fgf5  and many of the ZIC3 target genes encode transcriptional 

regulators such as GRHL2 which has an important role in enhancer formation in the 

transition to EpiLCs.  ZIC3 therefore sits at the top of a cascade of regulators that work 

together to establish and maintain the EpiLC state.  
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Results 

 

Identification of transcription factors involved in the transition to EpiLCs through 

open chromatin profiling.  

 Cell state transitions are accompanied by changes to the underlying regulatory 

chromatin landscape (Stergachis et al., 2013). These changes can then be used to infer the 

potential roles of upstream transcription factors (Sung et al., 2014). To begin to 

understand the regulatory events occurring during the conversion of naïve mouse ESCs to 

EpiLCs, we therefore profiled the accessible chromatin landscape of mouse ESCs as they 

transition to EpiLCs over a 2 day period (Fig. 1A) using ATAC-seq. Gene expression 

changes at matched time points were also profiled using single cell (sc) RNA-seq from 

816 cells. Open chromatin regions were identified at each time point and the resulting 

peaks consolidated into a single reference dataset (238,236 peaks in total). These peaks 

were then partitioned between promoter proximal (-2 kb to +0.5 kb), intragenic and 

intergenic regions to examine whether genomic location affected the overall changes in 

chromatin accessibility. We then identified regions that showed differential accessibility 

between any two conditions, giving 3,041 (promoter), 16,510 (intragenic) and 17,306 

(intergenic) differentially accessible regions. These regions were then clustered into four 

broad patterns based on their chromatin opening dynamics (Fig. 1B; Supplementary Fig. 

S1A and B); regions that increased accessibility at day 1 and became further accessible at 

day 2 (cluster 1), regions that decreased accessibility at day 1 and became even more 

inaccessible at day 2 (cluster 2), or regions that transiently opened or closed at day 1 

(cluster 3 and 4).  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2018. ; https://doi.org/10.1101/435131doi: bioRxiv preprint 

https://doi.org/10.1101/435131
http://creativecommons.org/licenses/by-nc/4.0/


 7

We next recovered the genes associated with each promoter and matched 

intergenic peaks to their likely associated genes by using the nearest gene model. Then 

we compared the changes in expression relative to the changes in open chromatin 

associated with each gene. By focussing on the differentially changing ATAC-seq peaks 

and gene expression changes, we observed a good concordance between chromatin 

opening and gene expression changes (Supplementary Fig. S1C and D). These changes 

become more marked after 2 days as cells acquire the EpiLC state. The changes we 

observed in chromatin accessibility profiling therefore generally report on the activity 

status of associated genes. To further examine whether these accessibility profiles 

reflected the underlying changes in gene expression, we took the open chromatin peaks in 

each cluster, and associated them with all genes located at different peak-to-gene 

distances and calculated the enrichment of resulting set of genes among the equivalent 

clusters derived from scRNA-seq data. Overall, there was an excellent correlation 

between the two datasets, with the best matches occurring between similar cluster 

patterns (Supplementary Fig. S1E and F). Furthermore, each of the ATAC-seq clusters 

was associated with groups of genes exhibiting a unique set of GO terms (Supplementary 

Fig. S2A-D). For example, cluster 1 and cluster 2 regions are associated with various 

developmental terms as might be expected by their sequential changes in the transition to 

EpiLCs. The regulatory regions of genes encoding transcription factors associated with 

the two cell states show expected changes during the transition to EpiLCs; several peaks 

within the Pou3f1 locus (EpiLC transcription factor) show sequential opening and are 

found in cluster 1 (Fig. 1C). Conversely, peaks in the Essrb locus (ESC transcription 

factor) shows progressive closing and are found in cluster 2 (Fig. 1D). In contrast, cluster 
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4 genes are associated with various stem cell processes, consistent with transient 

regulatory region closing as illustrated by the Nodal locus (Supplementary Fig. S2F). 

 Having established the relevance of open chromatin profiling to gene expression 

changes, we next wanted to identify the relevant regulators. To that end, we searched the 

differentially accessible regions for over-represented transcription factor binding motifs. 

Each of the accessibility clusters has a different repertoire of motifs (Fig. 1E and F; 

Supplementary Fig. S3A-F) with ZEB1, KLF4, ZIC3 and TCF3 being the most enriched 

binding motifs for clusters 1-4, respectively. Interestingly, OTX2 binding motifs were 

identified in cluster 1 regions, which is consistent with the fact that these regions become 

sequentially more open in the transition to EpiLCs and the known role for OTX2 in 

driving early ESC fate decisions (Yang et al., 2014; Buecker et al., 2014). We were 

particularly interested in cluster 3, as these regions are characterised by transient opening 

at day 1, suggesting an important role in the transition towards EpiLCs. To further 

interrogate the underlying transcription factor networks in this cluster, we used BaGFoot 

(Baek et al., 2017) to identify transcription factor motifs that exhibit increased footprint 

depth (and hence occupancy) and/or local DNA accessibility. Numerous motifs were 

identified including those for several homeodomain and ZIC proteins (Fig . 1G; 

Supplementary Fig. S4A). ZIC binding motifs had previously been associated with 

OCT4/POU5F1 binding regions in EpiLCs (Buecker et al. 2014), therefore we focussed 

on this binding site, and more closely examined the chromatin accessibility surrounding 

this motif at the three differentiation time points. Clear footprints were observed in open 

chromatin clusters 1 and 3 around this motif in day 1 (d1) EpiLCs and the depth and local 

accessibility mirrored the general accessibility profiles of these clusters across different 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2018. ; https://doi.org/10.1101/435131doi: bioRxiv preprint 

https://doi.org/10.1101/435131
http://creativecommons.org/licenses/by-nc/4.0/


 9

time points (Fig. 1H; Supplementary Fig. S4B). We also compared the open chromatin of 

day 2 (d2) EpiLCs to ESCs and applied a similar analysis. Multiple motifs were again 

identified as becoming more accessible and potentially more occupied including those for 

OTX2 and the ZIC transcription factors (Supplementary Fig. S5).  

 Together these results establish the dynamics of chromatin accessibility changes 

accompanying the transition from ESCs to EpiLCs and identify ZIC transcription factors 

as likely important players in controlling gene regulation during this transition. 

 

ZIC3 is transiently upregulated during the transition to EpiLCs. 

 There are multiple members of the ZIC transcription factor family; therefore we 

determined their relative expression levels during the transition to EpiLCs. Zic1 and Zic4 

are not expressed to appreciable levels, whereas Zic2 and Zic5 show progressively 

increased expression at day 1 and day 2 of the differentiation timecourse (Fig. 2A). 

However, Zic3 shows a transient increase in expression at day 1, which is even more 

pronounced at the protein level (Fig. 2B). These findings are supported by single cell 

RNA-seq analysis, where Zic3 expression is enriched in the d1EpiLCs (Fig. 2C). In 

contrast, OTX2 expression shows fewer dynamic changes and is increased at day 1 and 

remains at a stable level in day 2 EpiLCs (Fig. 2A-C). The ZIC transcription factors 

therefore show dynamic changes in their expression that accompanies the transition to 

EpiLCs, and the transient expression kinetics of ZIC3 in particular indicates that this is a 

likely candidate for controlling the transition phase.  

 

Determination of the ZIC3 cistrome. 
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 Next, we focussed on ZIC3 and, as a first step in determining its regulatory 

potential, we identified its genome-wide binding profile using ChIP-seq. Initially we 

focussed on the transition state on day 1 and identified 4,724 high confidence ZIC3 

bound regions (Fig. 3A; Supplementary Table S1). The majority of these are located in 

inter- and intra-genic regions and the ZIC3 binding regions are associated with 5,216 

target genes based on the nearest neighbour model. Consistent with a role for ZIC3 in cell 

fate changes, these target genes are enriched in GO terms for many differentiation 

processes, and signalling pathways such as the BMP and STAT pathways (Fig. 3B). As 

expected, the ZIC binding motif is highly enriched in these regions along with more 

moderate enrichment for several other transcription factors, including ESSRB and SOX 

proteins, which have previously been implicated in regulatory activities in stem cells 

(Fig. 3C).  

 To uncover ZIC3 binding dynamics and link these to the changing chromatin 

accessibility profiles, we performed additional ChIP-seq experiments for ZIC3 in ESCs 

and day 2 EpiLCs. Replicate experiments showed good concordance (Supplementary Fig. 

S6A) and clustered together in PCA analysis (Supplementary Fig. S6B). Overall, the 

binding dynamics showed transiently increased occupancy of ZIC3 at day 1 which was 

reduced back to a lower level, at day 2 (Supplementary Fig. S6C and D). These 

occupancy changes were accompanied by a transient increase in chromatin opening 

across the binding regions at day 1 (Supplementary Fig. S6C and D). This transient 

opening could be observed in more detail when analysing the cut frequencies around the 

ZIC3 binding motifs (Supplementary Fig. S6E). This was particularly marked when 

considering the ZIC3 binding regions, which were not already occupied in ESCs (d1 
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unique peaks; Supplementary Fig. S6E, right). To gain further insight into the 

relationship between binding and chromatin accessibility dynamics, we focussed on the 

chromatin regions showing changes in accessibility between any two cell conditions (Fig. 

1B; Supplementary Fig. S1A and B). ZIC3 binding across these regions generally mirrors 

the changes in chromatin accessibility (Fig. 3D and E). For example, in cluster c3, ZIC3 

binding is strongly enhanced at day 1 as chromatin accessibility increases, and is lost 

again at day 2 as chromatin accessibility decreases again. However, in cluster c1, ZIC3 

binding becomes reduced at day 2 (consistent with its decreased expression) but 

chromatin accessibility increases, indicating a disconnection between ZIC3 binding 

kinetics and chromatin accessibility in these regions. This may reflect other factors acting 

to maintain or enhance the chromatin accessibility status at these regions. The changes in 

chromatin accessibility were also revealed by focussing on the cleavage events around 

the ZIC3 motifs located in the ZIC binding regions (Fig. 3F; Supplementary Fig. S6F and 

G). When considering all ZIC3 binding regions both the depth and local accessibility is 

transiently enhanced in day 1 EpiLCs (Supplementary Fig. S6F). By focussing on 

different subclusters, different patterns could be discerned (Fig. 3F Supplementary Fig. 

S6G). For example, footprint depth and local accessibility in regions belonging to cluster 

3 show highest levels in day 1 EpiLCs as expected from the increased ChIP-seq signals in 

these regions. This behaviour is exemplified by the Grhl2 locus where several ZIC3 

peaks are maximally present in d1EpiLCs, and this transient increase is accompanied by 

chromatin opening at the same loci (Fig. 3G; Supplementary Fig. S6H). 
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 Collectively these data reveal a dynamically changing ZIC3 cistrome during the 

transition from ESCs to EpiLCs. These dynamic changes are accompanied by underlying 

changes to the open chromatin landscape surrounding their sites.  

 

ZIC3-dependent gene regulatory events 

 Having established the ZIC3 cistrome and its dynamic changes, we next asked 

whether ZIC3 influences gene expression through these binding events. We depleted Zic3 

(Supplementary Fig. S7 A and B) and determined the changes in transcriptome at the day 

1 EpiLC transition state. 452 genes changed expression (>1.2 fold), with 53% showing 

reduced expression following Zic3 depletion, which is consistent with a potential 

activator role for ZIC3 (Fig. 4A; Supplementary table S2). GO term analysis of the ZIC3 

regulated genes, revealed enrichment of categories including cell adhesion alongside 

several developmental terms, various signalling pathways and “regulation of 

transcription” (Fig. 4B; Supplementary Fig. S7C). Indeed, among these genes, there are 

numerous transcription factors and signalling pathway components (Fig. 4A) indicating 

large changes in the regulatory systems in the cells. Two additional notable examples are 

the genes encoding the cell surface proteins, EPCAM and PECAM1, which show 

reciprocal changes in expression following Zic3 depletion (Fig. 4A, highlighted in 

purple)  and are usually expressed at distinct times during the differentiation process, 

with PECAM1 being an ESC marker and EPCAM an EpiLC marker (Fig. 4C and D). We 

next examined the expression of the ZIC3 activated genes across single cells that had 

been ordered by pseudo time analysis (Trapnell et al. 2014) of scRNAseq data. Each cell 

was scored for expression of each target gene in a binary manner and the overall fraction 
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of genes expressed per cell determined. There is a clear increase in expression of the 

ZIC3 regulon as cells progress towards d1EpiLCs and beyond (Fig. 4E). However, this is 

not apparent in cells that do not co-express Zic3 (Fig. 4F).  This association is further 

reflected by the increases in co-expression levels of the ZIC3 activated genes in d1 and 

d2EpliCs, which is not observed in cells with low Zic3 expression (Fig. 4G).  

Finally, we asked whether the ZIC3-regulated genes are relevant in the context of 

early mouse embryonic development. We analysed the clusters of genes that exhibit peak 

expression levels at each stage of embryonic development (Boroviak et al. 2015) and first 

compared the data to our own RNA-seq data from aggregated single cell analysis of 

ESCs, d1EpiLCs and d2EpiLCs. Overall, there is good concordance between the datasets 

with ESCs being most similar to the ICM, d2EpiLCs resembling the post-implantation 

epiblast and d1EpiLCs representing an intermediate state (Fig. 4H). Next, we asked 

whether ZIC3 is involved in regulating the expression of any of these genes that act as 

markers of early embryonic development. Importantly, when we superimposed our Zic3 

depletion dataset on top of these clusters, there was a sequential increase in the number of 

ZIC3-activated genes among the marker genes expressed maximally at each stage of 

embryonic development (Fig. 4H, right; Fig. 4I). Among these genes are known markers 

and regulators of differentiation in the pre-epiblast and post-epiblast stages such as Foxd3 

and Fgf5 (Fig. 4J)(Hanna et al., 2002; Khoa et al., 2016). Thus ZIC3 activates the 

expression of a large number of marker genes that are characteristic of the mouse pre- 

and post-implantation epiblast. 

 Next, we identified the direct target genes for ZIC3. To achieve this, and gain 

further insight into the likely direct roles of ZIC3, we took our ChIP-seq data and 
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associated ZIC3 ChIP peaks with nearby genes.  By intersecting this with our RNA-seq 

data we uncovered a total of 207 directly regulated target genes for ZIC3 (Supplementary 

table S2). The majority of these are activated by ZIC3 (65%) (Supplementary Fig. S7D) 

suggesting a role for ZIC3 in upregulating gene expression during the transition to 

EpiLCs. Indeed, the directly activated ZIC3 target genes show an overall increase in 

expression during the transition to EpiLCs and this is particularly marked in d1EpiLCs, 

with over 70% of these genes showing upregulation (Fig. 5A, left). One notable directly 

activated target gene is Wt1, which encodes a bifunctional splicing factor and sequence-

specific transcription factor which is known to function post-transcriptionally to regulate 

developmental RNAs in mouse ESCs (Bharathavikru et al., 2017) (Fig. 5B). 

Reciprocally, we observe the opposite for the “directly repressed” genes, albeit to a lower 

level of significance (Fig. 5A, right), leaving open the possibility that ZIC3 may be a 

bifunctional transcription factor. We also examined co-expression of ZIC3 directly 

activated genes using AUCell analysis, which is specifically designed to identify co-

expression across single cells (Aibar et al., 2017). More frequent expression of the ZIC3 

regulon was observed in the d1EpiLCs (Fig. 5D), consistent with a role for ZIC3 in 

controlling gene expression at this transition point. Finally, we asked whether the ZIC3 

regulon has predictive potential in determining cell types from scRNA-seq data and 

showed that the 135 directly activated ZIC3 target genes are not only able to separate 

ESCs from EpiLCs (Fig. 5E) but are also are able segregate cells from different 

embryonic stages using scRNA-seq data derived from mouse embryos (Mohammed et 

al., 2017), with E4.5 epiblast cells forming a distinct compact cluster (Supplementary 

Fig. S7E). 
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 ZIC3 is therefore involved in directly controlling the expression of a set of target 

genes that are generally upregulated in the transition from ESCs to EpiLCs and in the 

pre- and post-epiblast stages in the developing embryo.  

 

ZIC3 triggers a complex downstream transcriptional regulatory network 

 To further understand the mechanisms through which ZIC3 affects downstream 

transcriptional programmes that result in the EpiLC phenotype, we examined the 

functions of several of its target genes. Many of the ZIC3-regulated genes encode 

transcription factors, suggesting that ZIC3 acts mechanistically to trigger subsequent 

waves of changes in the transcriptome, mediated by these intermediary transcription 

factors. A large number of these are direct targets including Wt1, Lef1, Grhl2 and Pou3f1. 

Further analysis of the single cell RNA-seq data demonstrates that a subset of these 

transcription factors is strongly co-expressed in d1EpiLCs (Fig. 6A and Supplementary 

Fig. S8A and B). This transcription factor network is largely absent in ESCs but 

maintained in d2EpiLCs. To begin to understand the impact of these transcription factors 

on downstream gene expression patterns, we asked whether we could find evidence for 

their DNA binding motifs in open chromatin regions associated with genes that show 

elevated expression in d2EpiLCs. We focussed on regions that show increases in 

accessibility during the transition to EpiLCs (ie clusters 1 and 4 in Fig. 1B) and found 

that a number of motifs are over-represented in these regions, including those for ZIC3 

and OTX2 (Fig. 6B). Importantly, motifs are also over-represented for a number of 

transcription factors encoded by ZIC3-activated genes, such as TCF15, WT1, LEF1, 

GRHL2 and POU3F1 (Fig. 6B) consistent with a potential role for these transcription 
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factors in enhancing the expression of these genes in EpiLCs. As an alternative approach, 

we used BaGFoot on all of the open regions that are associated with the genes showing 

enhanced expression in the transition from d1EpiLCs to d2EpiLCs and found that 

GRHL2 and POU3F1 binding motifs were among the motifs showing strong evidence for 

increased footprint depth and localised chromatin opening in EpiLCs (Fig. 6C). Given the 

strong presence of binding motifs in the regulatory regions of potential target genes, we 

next sought evidence for regulatory activity of the corresponding transcription factors. 

We focussed on GRHL2 as this has recently been shown to play an important role in 

switching enhancer usage during the transition of ESCs to EpiLCs (Chen et al., 2018). 

GRHL2 is encoded by a direct ZIC3 target gene (see Fig. 3G), suggesting a potential 

functional hierarchy with ZIC3 acting upstream from GRHL2 in a transcriptional 

cascade. This hierarchy predicts that ZIC3 depletion should have a similar effect on 

downstream gene expression profiles as depletion of GRHL2. We therefore focussed on a 

set of directly activated GRHL2 target genes (ie bound by GRHL2) which showed the 

largest decreases in expression in EpiLCs following loss of GRHL2 expression (Chen et 

al., 2018). Importantly, the majority of these were downregulated upon depletion of ZIC3 

in d1EPiLCs and/or d2EpiLCs (Fig. 6D), consistent with a transcription factor relay 

network whereby ZIC3 controls GRHL2 expression to subsequently influence 

downstream gene expression. More generally, ZIC3 controls the expression of a set of 

transcription factors that are able to generate a cascade effect on gene expression at later 

stages of ESC differentiation.   
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Discussion 

The transcription factor networks controlling maintenance of the pluripotent state 

in ESCs are relatively well understood. However, it is less clear how naïve ESCs begin 

differentiation by transitioning through the EpiLC state. The transcription factor OTX2 

was previously shown to control enhancer activation during the transition from naïve 

ESCs towards EpiLCs (Acampora et al., 2013; Yang et al., 2014; Buecker et al., 2014). 

Here we took an unbiased approach using ATAC-seq to uncover novel transcriptional 

regulators of this transition. We focused on ZIC3 which exhibits transient expression 

kinetics and chromatin binding as cells change fate to EpiLCs. ZIC3 plays a key role in 

controlling gene expression during differentiation to EpiLCs, and in particular a large 

number of genes encoding signaling molecules and transcription factors. Through 

activating the expression of transcription factor encoding genes, ZIC3 acts at a pivotal 

point in a transcriptional cascade which determines the EpiLC phenotype (Fig. 6E). For 

example, the ZIC3 regulated transcription factor, GRHL2 has been shown to play an 

important role in maintaining a stem cell-specific gene expression programme as cells 

progress to the EpiLC state through an enhancer switching mechanism (Chen et al., 

2018). Other ZIC3 regulated transcription factors play a role in controlling other gene 

expression programmes during differentiation such as TCF15 which has previously been 

shown to be important in priming EpiSCs for differentiation (Davies et al., 2013).  

Previous studies suggested that ZIC transcription factors are likely involved in 

early developmental decisions in naïve ESCs. ZIC2 and 3 were identified as interactors of 

OCT4 in EpiLCs, suggesting a role in cooperative transcriptional regulation as the OCT4 

cistrome is remodeled in the transition from ESCs (Buecker et al., 2014). Indeed, we 
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provide further support for this model as we identified an enrichment of OCT4-like 

binding motifs in ZIC3 binding regions (Fig. 3C). However, other motifs are enriched in 

the ZIC3 bound regions, suggesting a broader cooperativity with a wide range of 

transcription factors. Interestingly, ZIC3 has also been implicated in the maintenance of 

pluripotency in ESCs (Lim et al., 2007). However in the latter study, the ESCs were 

maintained in the presence of serum and LIF, conditions which mimic the EpiSC state 

rather than naïve ESCs. Our data are therefore generally consistent with a role for ZIC3 

in ESCs, but point to ZIC3 acting at an early stage during the transition from naïve ESCs. 

ZIC3 knockout mice exhibit early embryonic developmental defects prior to gastrulation, 

leading to defects in left-right patterning (Ware et al., 2006). Moreover, mutation of ZIC3 

in humans causes a syndrome known as X-linked heterotaxy, where similar patterning 

defects are observed (reviewed in Bellchambers and Ware, 2018). It is possible that these 

developmental defects arise due to the changes we observe at the earliest cell fate 

transitions from naïve ESCs. Indeed, consistent with this early role, many of the ZIC3 

regulated target genes show peak expression during the transition from the ICM through 

to the pre-and post-implantation epiblast in the embryo (see Fig. 4H).  

ZIC transcription factors can bind similar DNA binding motifs (Badis et al., 2009; 

reviewed in Hatayama and Aruga, 2018) and hence there is the potential for further cross 

talk between these factors at the level of chromatin binding. As ZIC3 exhibits transient 

activation kinetics, and ZIC2/5 expression is maintained at later stages, it is possible that 

some of the functions of ZIC3 are maintained and/or expanded by these factors as 

EpiLCs differentiate further. ZIC2 was previously shown to act in concert with the 

Mbd3/NuRD complex in ESCs to cause transcriptional repression and loss of ZIC2 
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affected subsequent ESC differentiation (Luo et al., 2015). However, the ESCs in this 

study were cultured under conditions that create the EpiSC state. Further work in this cell 

type also implicated ZIC2 as an important player in the transcriptional regulatory circuits 

in these cells (Matsuda et al., 2017). Moreover ZIC1 and ZIC2 have been shown to play a 

role much later in development in the context of the neuronal gene expression 

programme in cerebellar granule neurones (Frank et al., 2015). Future studies will be 

needed to unravel whether ZIC3 function in the early ESC transitions are modified by 

other ZIC family members later in the differentiation and development programme.  

It is unclear whether ZIC transcription factors are transcriptional activator or 

repressor proteins. Work on ZIC2 suggests a repressive role (Luo at el. 2015). In contrast, 

the majority of the directly regulated ZIC3 target genes (65%) are activated by ZIC3, 

although a substantive proportion are repressed. It is possible that like many transcription 

factors, ZIC3 can adopt different roles at different regulatory regions, and in this context 

may poise genes in the transition state for subsequent activation in EpiLCs. Nevertheless, 

through its transcriptional regulatory activities, ZIC3 plays an important role in 

controlling the transition from naïve ESCs to the more advanced EpiLC state. Through 

activating genes encoding transcription factors such as GRHL2 it contributes to 

maintaining a plastic state which retains stem-cell properties but is poised for subsequent 

differentiation. It is highly likely that other ZIC3 regulated transcription factors play 

equally important roles in creating this flexible regulatory environment.  
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Materials and Methods 

Tissue culture, RNA interference and RT-PCR.  

Mouse Rex1GFPd2 ES cells were maintained as described previously in NDiff 

227 media (Takara Bio Europe SAS, Y40002) containing 2i inhibitors (CHIR99021 and 

PD0325901; Miltenyi Biotec, 130-106-539 and 130-106-549) on dishes coated with 

gelatin (Millipore, ES-006-B) (Yang et al., 2012). The d1EpiLCs were created by plating 

2.5x104 cells/cm2 on dishes coated with bovine plasma fibronectin (5 μg/ml; Sigma, 

F1141) and then growing for 1 day in NDiff N2B27 media containing bFGF (12ng/ml; 

R&D system, 233-FB-025), activin A (20 ng/ml; Peprotech,120-14E-10), and KnockOut 

Serum Replacement (1%; ThermoFisher, 10828010) (Hayashi et al., 2011). For 

d2EpiLCs, the half volume of medium was removed and replenished with freshly 

prepared medium, and growth continued for a further day. RNAi was performed as 

described previously (Yang et al., 2012). 

Real time RT-qPCR was carried out as described previously (O'Donnell et al. 

2008). Data were normalised for the geometric mean expression of the control genes 

hmbs and ppia. The primer-pairs used for RT-PCR are listed in Supplementary Table S3. 

  

Western blot analysis 

Western blotting was carried out with the primary antibodies; Erk2 (137F5; Cell 

Signalling, 4695), Otx2 (ProteinTech., 13497-1-AP) and ZIC3 (Abcam, ab222124). All 

experiments were carried out in 12-well plates. The lysates were directly harvested in 

2xSDS sample buffer (100 mM Tris.Cl pH 6.8, 4% SDS, 20% glycerol, 200 mM DTT 

and 0.2% bromophenol blue) followed by sonication (Bioruptor, Diagenode). The 
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proteins were detected using a LI-COR Odyssey Infrared Imager as described previously 

(Yang et al., 2012). 

 

ATAC-seq assays 

The cells were dissociated from the plates with Accutase (Sigma, A6964) for 3 

minutes at 37ºC. ATAC-seq samples and libraries were generated as described previously 

(Buenrostro et al., 2015) except the nuclei were prepared using 100 l of ice cold Nuclei 

EZ lysis buffer (Sigma, N3408). The nuclei pellets were resuspended in 10 l H2O and 

nuclei were counted. The tagmentation reaction was performed with 50 thousand nuclei 

and 2.5 l of Tn5 transposase (0.5 M) in 25 l reaction volumes for 30 mins at 750 rpm 

at 37ºC. The tagmented genomic DNA was purified by using miniElute Reaction 

Cleanup kits (Qiagen, 28204) and eluted in 10.5 l. The libraries were generated by 9 

cycles of PCR reaction using adaptor primers (Nextera Index kit; Illumina, FC-121-1012) 

and NEBNext high fidelity 2x PCR master mix (NEB, M0541), followed by two-sided 

size selection by Ampure XP beads purification (0.4x reaction volume then 1.2x reaction 

volume; Beckman Coulter Agencourt, A63881). The typical yield is between 150-300 ng. 

The sequencing was performed on an Illumina Next-seq genome analyser according to 

the manufacturer’s protocols. ATAC-seq data have been deposited in the ArrayExpress 

repository (http://www.ebi.ac.uk/arrayexpress/) under accession number: E-MTAB-7207. 

 

ChIPmentation assays 

For ChIP-seq using the ChIPmentation method (Schmidl et al. 2015), the cells 

(1.4-2 x 107 cells sufficient for 5 ChIPmentation experiments) were dissociated with 
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Accutase (Sigma, A6964) for 3 mins at 37ºC and fixed in 1% formaldehyde in 

0.03%BSA/F12 for 10 min at room temperature. After quenching with 0.125 M glycine, 

cells were pelleted and the pellets were washed with 0.03%BSA/PBS. The nuclei were 

lysed in lysis buffer (10 mM Tris-Cl pH 8.0, 10 mM NaCl, 0.2% NP40 and 1 tablet of 

Complete protease inhibitor cocktail (Thermo Scientific) per 50 ml for 20 mins at 4ºC. 

The nuclei were counted, snap frozen in liquid N2 and stored at -80ºC. Prior to 

ChIPmentaion, nuclei pellets were resuspended in H2O and topped up with 0.25% SDS 

(25x106 cells/ml; 130 l/aliquot). The nuclei solution was then sonicated 3 times, 10 

cycles (30s on/off) at 4ºC (Bioruptor, Diagenode). The IP solution was prepared through 

sequential dilution by adding 1.5 volumes of equilibration buffer (10 mM Tris.Cl pH8.0, 

140 mM NaCl, 0.6 mM EDTA, 1% triton X-100, 0.1% Na-deoxycholate and 0.1% SDS) 

and 0.92 volumes of TopUp buffer (10 mM Tris-Cl pH8.0, 140 mM NaCl, 1 mM EDTA, 

1% triton X-100, 0.1% Na-deoxycholate and 0.05% SDS). 

ChIPmentation assays were performed essentially as described previously 

(Schmidl et al. 2015). Briefly, 100 l of ZIC3 antibody solution (1 g; Abcam, 

ab222124) was cross-linked to the protein A beads were incubated with 100 l IP 

solution (1.2x106 nuclei) at 4ºC overnight. The beads were sequentially washed twice 

with 250 l of low salt buffer, high salt buffer, LiCl wash buffer and once in 150 l of 

10mM Tris-Cl pH 8.0. Next, the tagmentation reactions (25 l) were performed with 1 l 

of Nextera Tn5 transposase (Nextera kit; Illumina, FC-121-1030) in tagmentation buffer 

(33 mM Tris-OAc pH 7.8, 66 mM potassium-OAc, 10 mM Mg-OAc and 16% DMF) at 

1200 rpm at 37ºC for 10 mins. Ice cold low salt buffer (150 l) was immediately added to 

stop the enzymatic reaction on ice for 5 mins. The beads were then washed twice with 
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150 l of low salt buffer and TE.  The tagmented ChIPed samples were then resuspended 

in 48 l of ChIPmentation elution buffer (10 mM Tris.Cl pH8.0, 300 mM NaCl, 5 mM 

EDTA and 0.4% SDS) and incubated with 2 l of proteinase K (20 mg/ml; Ambion, 

AM2546) at 55ºC for 1 hr and then at 65ºC overnight. The beads were further incubated 

for 1hr at 55ºC with proteinase K (1 l 20 g/ml)/ChIPmentation elution buffer (19 l). 

The combined eluates were topped up with 300 l of ERC and ChIPed DNA purified by 

a mini Elute kit (Qiagen). ChIPed DNA was eluted in 10.5 l of EB buffer. The 

sequencing libraries were generated by 12 cycles of PCR reaction using adaptor primers 

(Nextera Index kit; Illumina, FC-121-1012) and NEBNext high fidelity 2x PCR master 

mix (NEB, M0541), followed by two-sided size selection by Ampure XP beads 

purification (0.65x reaction volume then 1.2x reaction volume; Beckman Coulter 

Agencourt, A63881). The typical yield is between 150-300 ng. The sequencing was 

performed on an Illumina Hi-seq 4000 genome analyser according to the manufacturer’s 

protocols. ZIC3 ChIPmentation-seq has been deposited in the ArrayExpress repository 

(http://www.ebi.ac.uk/arrayexpress/) under accession number: E-MTAB-7208. 

 

RNA-seq assays 

Total RNA was prepared using RNAeasy Plus Mini kit (RNase-free DNase set; 

Qiagen, 74134) according to the manufacturer’s protocols except extra “in column” 

DNase digestion was performed (Qiagen, 79254). Libraries for RNA-seq were generated 

using the Illumina TruSeq RNA library prep kit v2 (Illumina, RS-122-2001) and 

sequencing was performed on an Illumina Hi-seq 4000 genome analyser according to the 

manufacturer’s protocols (ArrayExpress accession: E-MTAB-7206).  
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Single cell (sc) RNA-seq assays 

 Single cell RNA-seq was performed on the ICELL8 single-cell RNA-seq system 

as described previously (Goldstein et al., 2017) except that cryogenically frozen cells 

were used (ArrayExpress accession: E-MTAB-7211).  

 

Bioinformatics and statistical analysis. 

All software was run with default settings, unless otherwise indicated. Raw 

sequencing reads (76-nt length; paired end) were trimmed and filtered using 

Trimmomatic v0.32 with paired-end mode to remove adapters, truncated reads (3') and 

reads with <25 nucleotides (TRAILING:5 SLIDINGWINDOW:4:15 MINLEN:25; 

Bolger et al., 2014). Filtered reads were mapped against National Center for 

Biotechnology Information build 37/mm9 of mouse genome using Bowtie2 v2.3.0 (allow 

up to two mismatches, -X 2000 and –dovetail; Langmead et al. 2009). Unmapped pairs (-

F 4) were discarded using SAMtools v1.3.1 (Li et al., 2009). Reads were then de-

duplicated using the MarkDuplicates function of the Picard tools 

(http://broadinstitute.github.io/picard/). Only reads that were uniquely mapped to the 

genome were preserved (MAPQ ≥ 30). The reads mapped to the mitochondrial genome 

(sed ‘/chrM/d’) and overlapping with mm9 blacklist regions (intersectBed –v) were 

removed. The normalised tag density profiles were generated using HOMER 

(annotatePeak.pl; Heinz et al., 2010) and were plotted using a customised R script. 

Heatmaps were generated using Java treeview (Eisen et al. 1998). The UCSC tracks were 

generated by genomeCoverageBed for ATAC-seq normalised to total reads in peaks 
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(RIPs) (BEDtools; Quinlan & Hall, 2010), MACS2 for ChIPmentation normalised to 

total tags (Zhang et al., 2008) or RSeQC for RNA-seq (Wang et al., 2012). 

 

ATAC-seq data analysis,  

ATAC-seq peaks (open-chromatin regions) were called using MACS2 (Zhang et 

al., 2008) on individual replicates with the following parameters: -q 0.01 --nomodel --

shift -75 --extsize 150. The high confidence peak sets were selected from biological 

replicates using the intersectBed function from BEDTools (Quinlan & Hall, 2010) with 

parameters -f 0.50, -r. This ensures a reciprocal overlap of >50% between the two peaks 

being selected. To get a union set of peaks from all three conditions (ESC, d1EpiLC and 

d2EpiLC), high confidence MACS peaks from each condition were merged using 

mergePeaks module from HOMER (d=100; Heinz et al., 2010) so only a single peak was 

retained when two or more peaks from different conditions had peak to peak distance 

<100 bp). All downstream analysis was based on this union set of 238,236 peaks. 

For identifying differentially accessible regions and fuzzy cMeans clustering, the 

union set of peaks was divided into promoter (-2 kb to +0.5 kb), intragenic- (defined by 

peaks located within mm9 protein coding regions) and intergenic-regions (all remaining 

peaks). Read counts for all peaks in the union set were obtained using the annotatePeaks 

module of HOMER package (Heinz et al., 2010) and were quantified using edgeR 

(Robinson et al., 2010). Fuzzy cMeans clustering using the R Mfuzz package (Kumar et 

al., 2007) was then performed on each set of ATAC-accessible peaks identified in the 

Promoter, Intergenic and Intragenic regions, respectively. Initially, the Fuzzy cMeans 

clustering was performed to classify peaks into 12 clusters, which were subsequently 
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merged into 4 clusters upon manual inspection. The final differentially accessible peaks 

were filtered based on EdgeR analysis (minimal CPM ≥ 4 in any of the three conditions), 

q < 0.05 and fold change ≥ 2 (promoter peaks) ≥ 2.5 (intergenic- and intragenic-peaks) 

(on at least one pairwise comparison between conditions).   

To determine motif enrichment in clustered regions, over represented 

transcription factor motifs in each of the four clusters were identified using 

findMotifsGenome module of the HOMER package (Heinz et al., 2010). Motifs were 

then clustered using Fuzzy cMeans clustering and were also assigned to their respective 

families using the STAMP tool (Mahony et al., 2007). The relative enrichment scores of 

the clustered motifs were then transformed to Z-scores and plotted as heatmaps using the 

R pheatmap package. 

To identify the transcription factors undergoing substantial changes in occupancy 

levels and chromatin accessibility around their binding sites between the transition states 

we used BaGFoot (Baek et al., 2017) software on the clustered ATAC-seq peaks. ATAC-

seq peaks from all 4 clusters were merged for a reliable detection of footprint depth with 

robust statistical significance. We collected transcription factors from the JASPAR (Khan 

et al., 2018) database, which were manually curated to exclude transcription factors from 

non-vertebrate species, giving us 872 transcription factor motifs. The mouse genome 

(mm9) was scanned for motif occurrences of these transcription factors using Find 

Individual Motif Occurrences (FIMO) (Grant et al., 2011) as recommended by the 

software (1.5 M motif threshold count). We performed pairwise comparisons for the 

transition states (d1EpiLC vs ESC and d2EpiLC vs ESC) and calculated the changes in 

accessibility and footprint-depth. Results are displayed as bagplots. 
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ChIPmentation data analysis. 

ChIPmentation data was compared to input chromatin and peaks were called on 

each replicate using MACS2 v2.1.1 using parameters: --keep-dup all -q 0.01 -g mm -f 

BAMPE -B --SPMR --call-summits (Zhang et al., 2008). The high confident peak set 

(peaks identified in both biological replicates) was selected using mergePeaks module 

from HOMER (d=400, peak summit distance=400; Heinz et al., 2010). Similarly, the 

mergePeaks (d=250, peak summit distance=250) was used to subset peaks that 

overlapped with differential accessible ATAC-peaks.  

Motif discovery and the significance of discovered motifs was performed by 

HOMER (findMotifsGenome.pl; Heinz et al., 2010) using the sequences within ± 100 bp 

around the binding region summits, using the default background setting i.e., sequences 

randomly selected from the genome with the same GC content as the target sequences.  

 Nearest genes were assigned to peaks and the Gene Ontologies (GO) were analysed 

using GREAT (McLean et al. 2010). Genomic distributions were determined using 

HOMER (Heinz et al., 2010).  

 

RNA-seq data analysis 

A manually curated gtf file was built for expression quantification of all datasets. 

Briefly, the gtf (vM1) file for mm9 from the GENCODE website was downloaded and 

genes specified by transcript_type (protein_coding, lincRNA and antisense) were 

retained. In addition, genes missing from the GENCODE gtf file but in ENSEMBL gtf 
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file were added to our list. After manual filtering and inspection, the gtf file comprises of 

25,875 unique ensembl id’s and 25,753 unique gene symbols. 

Filtered paired-end reads were mapped to the mouse genome (mm9 assembly) 

using STAR v2.5.3a (Dobin et al., 2013) with the manually curated mm9-gtf file and 

default parameters. Ribosomal RNA (rRNA) reads were removed from the mapped files. 

Read counts for each sample were quantified using HTSeq v0.9.1 (Anders et al., 2015), 

which estimates number of reads mapped to each gene. The raw read counts from the 

HTSeq were subsequently used to quantify the differential expression levels for genes 

using DESeq2 v1.18.1 (Anders et al., 2010). Data were taken as significant if a fold 

change of >1.2 and p-value <0.05 was obtained. Additional genes were included in our 

analysis above this p-value threshold if they changed expression in a consistent direction 

in paired samples and also exhibited a mean fold change >1.2. For volcano plots, log2 

fold changes (FC) of differentially expressed genes were plotted against their log10 p-

values using the inbuilt function of the R statistical package. The Gene Ontology (GO) 

analyses were performed using DAVID (Huang et al., 2009). 

 

Single cell transcriptomics. 

Single cells from three samples (ECS, d1EpiLCs and d2EpiLCs) were captured 

and isolated using the ICELL8 single cell system. A custom script was used to perform 

assignment and error correction of cell barcodes/UMIs, low quality reads trimming and to 

run a cross species contamination checking. After the QCs, reads were aligned to a 

customized mouse reference genome of mm9 using STAR aligner (v2.4.2a). Reads 

aligning to genes were counted using HTSeq (v0.6.1.p1) with setting the stranded option 
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to “yes”. This count matrix was then used for the downstream analysis of the dataset 

using statistical computing programming language R. 

We implemented two measures of cell quality control (cell QC) based on library 

size and number of expressed genes. If the total read count of a cell is below 3x median 

absolute deviation (MAD) of the dataset then the cell was filtered out. Similarly, if the 

total number of genes expressed by a cell is lower than 3x MAD those cells were also 

filtered out. A further QC was done to filter out any cells that are outliers in terms of 

library size on the higher end as this could indicate doublets of cells. After all these 

filtering steps, a total of 816 cells (from 869) were left for downstream analysis. 

Subsequently, the lowly expressed genes were filtered out if their average counts 

are less than 0.05 (raw counts) meaning a gene has to be expressed in at least 5% of cells 

with 1 read count or higher counts in smaller number of cells still accounting for 5% 

equivalent cells, which gave us 12,695 genes for downstream analysis. The normalised 

count data is represented as counts per million where the size factors are used to calculate 

the effective library size. These size factors were defined from the actual library size after 

centering to unity. We used the calculateCPM function from the scater package 

(McCarthy et al., 2017) to perform this normalisation. 

To identify the highly variable genes (HVGs) we first estimated the total variance 

in expression of each gene which is then decomposed into technical and biological 

components. We fitted a mean-variance trend to the expression of endogenous genes and 

then took those genes that have a larger biological variance component with an FDR 

value less than 0.05 as our HVGs. 283 genes were identified as HVGs for this dataset. 

These HVGs were then used to construct dimensionality reduction processes using PCA. 
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For the t-SNE plot (van der Maaten et al., 2008), 10 principal components from this PCA 

are given as input and the perplexity is set to 60. In addition, the theta (a parameter for 

speed/accuracy tradeoff ) is set to 0.01 to increase the accuracy of the plot. For generating 

the Uniform Manifold Approximation and Projection (UMAP) plots (McInnes et al., 

2018), 10 PCs are taken as input.  

We used the monocole (v2) package to perform the pseudotime estimation 

(Trapnell et al. 2014). As we know the three stages of cells in our samples we use this 

information to identify the order of the genes. Genes that are differentially expressed 

between ESCs, d1EpiLCs and d2EpiLCs with a q-value less than 7.5e-08 were identified 

and subsequently used to order cells. We then apply DDRTree method to reduce the 

dimension of the dataset (Qiu et al., 2017). The pseudotime trajectory is visualized in the 

reduced dimension.  

Co-expression scores across single cell RNA-seq data were calculated by first 

giving a binary score to the expression of each gene in each cell. These binary scores 

were summed for each cell, and then z transformed. The data are shown as box plots for 

ESCs, d1EpiLCs and d2EpiLCs in Fig. 4G after correcting for the numbers of cells at 

each condition. 

To examine the Jaccard Similarity Index (JSI), Jaccard’s distance was computed 

for the binary co-expression matrix of all ZIC3 activated TFs in each cell type (ESC, 

d1EpiLC and d2EpiLC2) using the R package ade4 (Dray and Dufour, 2007). The 

dissimilarity matrix was then converted to a similarity matrix by using the expression 

JSI= 1- (JD)2 (where JD= Jaccard’s distance) and the JSI based data were plotted as 

heatmaps. First, the d1EpiLC data was clustered on both row and columns using 
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hierarchical clustering using heatmap.2 from R gplots package. The heatmaps generated 

for ESC and d2EpiLC data were plotted using the same gene ordering that was obtained 

from clustering of the d1EpiLC data.  

The Matthew’s Correlation Coefficient (MCC) for the co-expression data of ZIC3 

activated genes that encode transcription factors, were computed using a custom R script. 

The correlation matrix for d1EpiLC was then ordered for the first principal component 

using R package corrplot (Wei and Simko, 2017) and plotted as a heatmap after 

clustering the rows and columns. As in the JSI plots, the gene order from the d1EpiLC 

heatmap was retained and the heatmaps for ESC and d2EpiLC data were plotted without 

further clustering.  

Beeswarm plots for Jaccard Similarity Indices of Zic3 activated target genes in 

each cell type were plotted using R package Beeswarm (Elkund, 2016; 

https://rdrr.io/cran/beeswarm). 

To interrogate the co-expression of genes in the ZIC3 regulon (ZIC3 targets) in 

our scRNA-seq data, the AUCell module from SCENIC R package was used (Aibar et 

al., 2017). AUCell calculates the enrichment of gene-sets (regulon) as area under the 

recovery curve (AUC) based on the rankings of all genes expressed in a particular cell. 

The AUC threshold was then determined and subsequently used to mark whether the 

cells contained an active- or inactive-regulon. This binary data was then visualised by 

superimposing onto t-SNE plots. 

To verify the importance of the ZIC3 regulon during mouse embryogenesis, a 

scRNA-seq dataset generated during early mouse gastrulation was used (Mohammed et 

al., 2017). The raw reads were mapped to the same custom mm9 gft file and analysed as 
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described above. HVGs were used to generate the PCAs and 14 PCs were used as input 

for the t-SNE plot. For the t-SNE plot, the perplexity was set to 60 and theta to 0.01. In 

addition, 135 direct ZIC3-activated genes were selected as input to cluster cells using the 

t-SNE plot with the same perplexity and theta value. As a control, 135 randomly selected 

genes were used.  

To generate pseudo-bulk RNA datasets from single cell data, the aggregated 

counts of each gene from each cell of the scRNA-seq were generated and quantified 

using the edgeR (Robinson et al., 2010). The Fuzzy cMeans clustering was performed to 

generate 4 broad expression clusters as described above. 8659 genes were selected for 

further downstream analysis (CMP ≥ 2, fold change > 1.5 at any pairwise comparison).   

To correlate Fuzzy cMeans-generated clusters of ATAC-seq and RNA-seq data 

(supplemental figure S1E and F), we first identified genes whose TSSs lie within a given 

genomic distance constraint from any peak within a given cluster of ATAC-seq peaks 

(Ai). Next we take the RNA-seq based gene clusters (Rj), and calculate the intersection of 

Rj with Ai (observed set). The expected set of genes was defined as all genes within a 

given genomic distance of an ATAC-seq cluster from a randomly selected number 

(according to comparator expression cluster size) of genes extracted from the background 

population (all mm9 genes). The p-values for the enrichment were subsequently 

calculated using a hypergeometric test between the observed and expected datasets. This 

calculation is repeated for all to all combinations between ATAC-seq peak clusters and 

gene expression clusters, and for each of pre-defined set of genomic distances relative to 

the TSS (8 bins within the range of +/-10 kb to +/-250 kb from the centre of the peak). 
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The resulting p-values are log-transformed (-log10(p-values)) and shown as heatmaps in 

figures. 
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Figure legends 

Figure 1. Identification of transcriptional regulators of the ESC to EpiLC transition 

by open chromatin profiling. (A) Schematic of the experimental time course of the 

naïve ESC to EpiLC transition. (B) Heat map of the ATAC-seq profiles across a 10 kb 

window of intergenic regions showing >2.5 fold change in accessibility between any two 

conditions (right). Average tag densities of each of four identified clusters (middle; 

blue=ESC, orange=d1EpiLCs, red=d2EpilCs) and average tag density profiles (z scored) 

are shown across the time course (left). Medians [red] and data for individual peaks 

[grey] are indicated. (C and D) UCSC genome browser views of the ATAC-seq profiles 

around the Pou3f1 and Esrrb loci. Dynamically changing peaks are boxed. (E and F) 

Heat map showing the enrichment of transcription factor binding motifs across each of 

the open chromatin cluster profiles (z-normalised p-values) for motifs enriched in cluster 

1 (E) or cluster 3 (F). (G) BaGFoot analysis of the open chromatin regions in ESCs and 

d1EpiLCs (using all dynamic intergenic peaks from clusters 1-4 in B). The top right 

quadrant from the whole plot (see Supplementary Fig. S4) is shown. Motifs showing 

significant increases in either local accessibility and/or footprint depth are labelled. Non-

significant regions are shown in the dark (bag) or light (fence) blue shaded regions. (H) 

Average tag densities in a 100 bp window surrounding the ZIC3 binding motif (bottom) 

in ESCs (blue), d1EpiLCs (orange) or d2EpilCs (red) are shown for ATAC-seq peaks 

from cluster 3.  

  

Figure 2. Expression profiles of Zic transcription factors in ESCs and EpiLCs. (A) 

RT-qPCR analysis of Zic2, Zic3, Zic5 and Otx2 expression in the indicated cell states 
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(n=3). (B) Western blot analysis of ZIC3, OTX2 and ERK2 expression. The asterisk 

marks a non-specific band. (C) Single cell RNA-seq analysis of Zic2, Zic3, Zic5 and Otx2 

expression. t-SNE analysis of the entire scRNA-seq dataset is shown on the right, with 

the originating cell types colour coded. d1EpiLCs are circled.  

 

Figure 3. ChIP-seq analysis of ZIC3 genomic binding. (A) Genome-wide distribution 

of ZIC3 binding sites in d1EpiLCs. Promoter is defined as -2.5 to + 0.5 kb. (B) Gene 

ontology analysis of ZIC3-associated genes (biological process). (C) Top 5 enriched 

motifs found in the ZIC3 binding regions. (D) Heat map of the ZIC3 ChIP-seq profiles 

across a 5 kb window of all inducible ATAC-seq peaks (>2.5 fold change for intra-/inter-

genic peaks and >2 fold change for promoter peaks) (left). The corresponding ATAC-seq 

signals at each ZIC3 binding region is shown on the right. Data are clustered (clusters c1-

c4) according to ATAC-seq signals. (E) Average tag densities of ZIC3 binding peaks 

from each of four identified clusters in each cell population (blue=ESC, 

orange=d1EpiLCs, red=d2EpilCs) for ZIC3 ChIP-seq signal (top) or ATAC-seq signal 

(bottom). (F) Average ATAC-seq tag densities in an 80 bp window surrounding the ZIC3 

motif (bottom) in cluster c1 (left), or cluster c3 (right). Data from ESCs (blue), d1EpiLCs 

(orange) or d2EpilCs (red) are shown. (G) UCSC genome browser views of the ATAC-

seq (top) and ZIC3 ChIP-seq (bottom) profiles around the Grhl2 locus. Dynamically 

changing ZIC3 binding peaks are boxed. 

 

Figure 4. Identification of Zic3-regulated genes. (A) Volcano plot showing changes in 

gene expression in d1EpiLCs following Zic3 knockdown by siRNA. Gene names are 
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colour coded for transcription factors (red for direct and blue for indirect targets) and 

signaling molecules (green). Pecam1 and Epcam are shown in purple. (B) Gene ontology 

analysis of all ZIC3 regulated genes for the biological process (BP) category. (C) 

Expression of Pecam1 and Epcam at single cell level. Data are plotted as log10 counts per 

cell, and superimposed on t-SNE analysis of the entire RNA-seq dataset for three time 

points (right). (D) Expression of Epcam and Pecam1 from aggregated single cell RNA-

seq analysis in the indicated cell populations and shown as log2 counts per million base 

pairs (cpm). (E and F) Pseudotime analysis of ESCs, d1EpiLCs and d2EpilCs based on 

the entire scRNA-seq dataset (bottom). The binarised expression (transformed z-score) of 

the ZIC3 activated genes (n=240) is plotted on top of these profiles (top) in cells that 

either show Zic3 expression (E) or lack the expression of Zic3 and Otx2 (F). Pseudotime 

analysis was initially performed with all cells but in each case only cells exhibiting the 

Zic3 expression characteristics are shown. (G) Boxplot showing the co-expression scores 

for the ZIC3 activated genes in ESCs, d1EPiLCs and d2EpilCs. Cells are split according 

to whether Zic3 is expressed or not. Horizontal lines represent median score, and dotted 

green line is the median score in ESCs. (H) Heatmaps showing the expression levels of 

genes categorised as uniquely expressed in ICM, pre-epiblast or post-epiblast (right; 

Boroviak et al., 2015) and the corresponding expression levels in the aggregated single 

cell RNA-seq from ESCs, d1EPiLCs and d2EpilCs (left). The heatmap is sorted based on 

the scRNAseq data from the ESC-derived cells at each of the expression clusters from 

mouse embryos.  Data are row z-normalized for each dataset. The pie charts show the 

proportions of each of the stage-specific gene sets that are activated by ZIC3. (I) Pie chart 

showing the proportions of ZIC3-activated lineage-specific genes from each stage of 
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embryonic development. (J) Heatmap showing the effect of Zic3 depletion on the pre- 

and post-epiblast stage-specific genes in d1EpiLCs (right) and the heatmaps for the 

corresponding gene expression levels in early embryonic developmental stages (left) or 

ESCs, d1EpiLCs and d2EpilCs (centre). Genes shown are from the red quadrants of the 

bottom two pie charts in part H. All heatmaps are individually z-normalised. 

 

Figure 5. The direct ZIC3 target gene network. (A) Boxplots of the expression of 

directly regulated ZIC3 target genes (ie bound by ZIC3) in ESCs, d1EpiLCs and 

d2EpilCs for activated (top) or repressed (bottom) genes. The proportions of direct ZIC3 

target genes increasing and decreasing expression in d1EpiLCs upon differentiation from 

ESCs are shown in the pie charts on the right. (B) UCSC genome browser views of the 

ZIC3 ChIP-seq (top) and RNA-seq (bottom) profiles around the Wt1 locus. The major 

ZIC3 binding peak is boxed. (C) AUCell analysis of the expression of the directly 

activated ZIC3 target gene regulon in ESCs, d1EPiLCs and d2EpilCs. The percentage of 

cells is shown from each stage of differentiation that exhibit co-expression of the ZIC3 

regulon. (D) Single cell RNA-seq analysis of the ZIC3 regulon expression. Data are 

mapped (blue marked cells; top) on top of tSNE analysis of the entire RNA-seq dataset 

(bottom), with the originating cell types colour coded. d1EpiLCs are circled. Only Zic3 

positive cells are shown. (E) uMAP analysis of the single cell RNA-seq ESCs, d1EPiLCs 

and d2EpilCs using either the 135 ZIC3-activated direct target genes in the ZIC3 regulon 

(top) or 135 randomly selected genes (bottom) to drive the clustering.  Cells are colour 

coded according to their known origins (blue=ESCs, orange=d1EpiLCs, red=d2EpiLCs).  
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Figure 6. ZIC3 regulated transcription factors control downstream gene expression 

programmes. (A) Jaccard’s similarity plots of the co-expression of the indicated 

transcription factor-encoding ZIC3 activated genes in ESCs (left), d1EPiLCs (middle) 

and d2EpilCs (right). Direct ZIC3 targets are shown in red and the location of Zic3 is 

highlighted with an arrow. (B) Enrichment of DNA motifs within open chromatin regions 

associated with genes that change expression >2 fold from d1EpiLCs to d2EpiLCs. Only 

dynamically opening inter- and intra-genic ATAC-seq peaks (ie from clusters 1 and 4, 

Fig. 1B and Supplementary Fig. S1B) were analysed (n=1,445). The percentage of each 

motif present in each set of peaks (blue) and the genomic background (grey) is indicated, 

and the p-value is shown next to each of the columns. (C) BaGFoot analysis of all of the 

open chromatin regions in d2EpiLCs which are associated (125 kb to +125 kb; n=16,529) 

with genes which increase in expression (>2 fold) in going from d1EpiLCs to d2EpiLCs. 

Motifs corresponding to binding sites for transcription factors encoded by ZIC3-activated 

genes are labelled. (D) The expression of the indicated direct GRHL2 target genes (Chen 

et al., 2018) following depletion of Grhl2 (grey bars) or Zic3 in d1EpiLCs (orange bars) 

and d2EpiLCs (red bars). Data are shown based on the fold changes seen in RNA-seq 

data. Asterisks show significantly changing expression levels (p-value <0.05) and 

standard deviations are indicated (n≥3). (E) Model showing the transcriptional events 

centred on ZIC3 during the transition from ESCs to EpiLCs. GRHL2 maintains the ESC 

transcriptome (Chen et al., 2018) whereas other ZIC3-regulated transcription factors 

likely contribute to the newly established EpiLC transcriptome. 
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