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Abstract 

1. Spatiotemporal forecasts of ecological phenomena are highly useful and significant in 

scientific and socio-economic applications. Nevertheless, developing the correlative models 

to make these forecasts is often stalled by the inadequate availability of the ecological time-

series data. On the contrary, considerable amounts of temporally discrete biological records 

are being stored in public databases, and often include the sites and dates of the observation. 

While these data are reasonably suitable for the development of spatiotemporal forecast 

models, this possibility remains mostly untested. 

2. In this paper, we test an approach to develop spatiotemporal forecasts based on the 

dates and locations found in species occurrence records. This approach is based on ‘time-

series classification’, a field of machine learning, and involves the application of a machine-

learning algorithm to classify between time-series representing the environmental conditions 

that precede the occurrence records and time-series representing other environmental 

conditions, such as those that generally occur in the sites of the records. We employed this 

framework to predict the timing of emergence of fruiting bodies of two mushroom species 

(Boletus edulis and Macrolepiota procera) in countries of Europe, from 2009 to 2015. We 

compared the predictions from this approach with those from a ‘null’ model, based on the 

calendar dates of the records. 

3. Forecasts made from the environmental-based approach were consistently superior to 

those drawn from the date-based approach, averaging an area under the receiver operating 

characteristic curve (AUC) of 0.9 for B. edulis and 0.88 for M. procera, compared to an 

average AUC of 0.83 achieved by the null models for both species. Prediction errors were 

distributed across the study area and along the years, lending support to the spatiotemporal 

representativeness of the values of accuracy measured. 
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4. Our approach, based on species occurrence records, was able to provide useful 

forecasts of the timing of emergence of two mushroom species across Europe. Given the 

increased availability and information contained in this type of records, particularly those 

supplemented with photographs, the range of events that could be possible to forecast is vast. 

Key-words: citizen science, GBIF, mushroom emergence, phenology, spatiotemporal 

forecasting, species occurrence records 

 

Introduction 

Spatiotemporal predictions of ecological phenomena such as phenology, population dynamics 

and species interactions are fundamental to investigate the impact of climate change on future 

biodiversity (Urban et al., 2016) and to forewarn about risks for conservation (Franklin, 

2010), human-health (Prank et al., 2013) and economy (Moriondo, Maselli & Bindi 2007). 

These predictions require the use of process-based or correlative models (Chuine & Regnier, 

2017; Dietze, 2017). Process-based models involve experimental measurements under 

controlled settings but are too expensive to implement for many phenomena (Chuine & 

Regnier, 2017). Correlative models, however, relate non-manipulative ecological 

observations to putative environmental drivers, and ecologists generally find these more 

accessible. This approach underlies several recent examples of ecological forecasting (e.g. 

Scales et al., 2017), and has received significant methodological and conceptual 

advancements in recent years (e.g. Dietze, 2017). 

 

The use of statistical models for spatiotemporal prediction in ecology remains strongly 

constrained by the availability of observational data. These data need to be spatially and 

temporally explicit, ideally consisting of long time-series recorded for various locations in the 

area under investigation (Jeanneret & Rutishauser, 2010). Data possessing such ‘ideal’ 
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characteristics can be obtained via systematic field sampling or remote sensing (e.g. Jeanneret 

& Rutishauser, 2010; Moriondo et al., 2007; White, Thornton & Running 1997). However, 

the range of ecological events represented by these approaches remains limited. In light of 

this fact, it is perhaps relevant to consider the use of alternative data in model development.  

 

One type of data that could suit this purpose is species’ occurrence records. These records 

provide the locations where organisms were observed and are now available in large numbers 

from formal (e.g. museum-records) and informal sources (e.g. geo-tagged photographs or 

video-based observations), for a wide range of taxa and across expansive geographical 

extents (Barve, 2014; García‐Roselló et al., 2015). Unsurprisingly, these data play a key role 

in mapping and predicting the distribution of many species (e.g. ElQadi et al., 2017). A 

frequently more overlooked feature of these data is that it also often includes the dates of 

when the observations were made. Recent studies reveal that dates in the occurrence records 

can in fact describe the timing of the ecological events, such as pollinator species activity 

(Balfour, Ollerton, Castellanos & Ratnieks 2018; Bishop et al., 2013), mushroom fruiting 

phenology (Andrew et al., 2018) or plant flowering (Chapman, Bell, Helfer & Roy, 2015). 

Accordingly, correlative models fitting the temporal variation in species observation records 

across space may be useful for predicting the spatiotemporal dynamics of ecological 

phenomena. 

 

In this work, we describe a framework to build temporal predictions of ecological phenomena 

across space using dates of species occurrence records. Our approach is framed within the 

context of ‘time-series classification’ (Geurts, 2001), a field of machine learning whose goal 

is to classify time-series into two or more classes. In simple terms, the approach aims to 

distinguish between time-series of environmental drivers that are related to the observation of 
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the phenomenon and those that are not. We demonstrate the application of this approach 

using occurrence records for two mushroom species, Boletus edulis (‘the Cep’) and 

Macrolepiota procera (‘the Parasol’), and test if temporal variation in temperature and 

precipitation can predict the observation of their fruiting bodies across Europe. We used 

observations collected from conventional (e.g. museum records) and less conventional (e.g. 

geo- and time-tagged photographs) types of occurrence data, illustrating the potential of 

application to events captured by both types of sources. We observed that this approach 

consistently outperforms the predictive accuracy that other models have achieved using 

calendar dates and geographical coordinates, a standard ‘null’ model in spatiotemporal 

ecological prediction. We discuss further potential applications of the modelling approach 

and possible ways of improving it in the future. 

 

Materials and Methods 

Time-series classification for temporal prediction of ecological events 

Time series classification uses machine-learning algorithms to classify time series into 

predefined category sets. Among several applications, the time-series classification has been 

used to detect ‘normal’ or ‘abnormal’ heart rhythms in ElectroCardioGrams (Kampouraki, 

Manis & Nikou, 2009) and to identify insect species from the frequencies of their wing-beats 

(Potamitis, Rigakis, & Fysarakis 2015).  The classification can be done using the ‘raw’ time 

series or a set of predictors which summarise their properties (i.e., the ‘features’, in machine 

learning parlance) (Schäfer & Leser, 2017). The ‘raw’ series approaches calculate a point-by-

point similarity with the time series of known classes. However, this approach is not very 

accurate when long or noisy time series are used (Fulcher & Jones, 2014; Schäfer, 2015) and 

thus they may be limited in their use in ecology (Hsieh, Anderson & Sugihara, 2007). 

Feature-based approaches, on the contrary, work by summarising the time-series into 
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features. The objective of these features is to decrease the dimensionality of the raw data 

while retaining the information pertinent for classifying the data. The workflow of the 

feature-based approaches include: 1) collecting the time-series from the distinct classes; 2) 

transforming the time-series into features; 3) fitting a classification algorithm using the 

features as predictors; 4) evaluating the predictive accuracy of the model, and checking 

whether adequate accuracy levels are achieved and, 5) utilising the model to classify a new 

time-series. 

 

This workflow bears similarity to many other prediction exercises in ecology. The only step 

that should be slightly unfamiliar to most modellers is the transformation of the time-series 

into features. Here two, non-mutually exclusive options are available – either to use a fully 

automated transformation such as discrete wavelet transform or discrete Fourier transform 

(e.g. Mörchen, 2003), or to extract the properties based on ‘expert knowledge’; Bagnall, 

Lines, Bostrom, Large & Keogh, 2017). One well-known example of a transformation based 

on expert knowledge involves the calculation of growing degree-days (i.e., the ‘feature’) 

from time-series of temperature, in order to achieve a more proximal representation of the 

effect of the accumulated heat on the plant and animal development (e.g. Neuheimer & 

Taggart, 2007). 

  

Spatial time series classification 

By definition, time-series classification is concerned with temporal data. However, predicting 

the timing of the ecological phenomena is often a necessity for multiple locations. 

Importantly, different locations can imply different ecological responses to the same drivers, 

due to the influence exerted by the temporally invariant factors (like soil and land-use types) 

or to local adaptations of species and communities (Almeida‐Neto & Lewinsohn, 2004; 
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Chuine & Regnier, 2017). Suitably, the time-series classification can be extended across 

space merely by including features representing the spatial dimension into the model. One 

example of the way this can be achieved is by using the x and y coordinates of the 

observations as features. Another approach, perhaps more inclusive, is to use eigenvectors 

from spatial connectivity matrices (see Griffith & Peres-Neto, 2006 for a description of the 

method). 

 

Case study 

In this work we demonstrate the use of spatial time-series classification to predict the 

occurrence of the fruiting bodies of two mushroom species, Boletus edulis and Macrolepiota 

procera, in the countries in Europe. These species are collected and consumed by humans 

and are also a dietary component for wild fauna (Mazurkiewicz & Podlasińska, 2014).  

Spatially and temporally-explicit predictions of the occurrence of fruiting bodies of these 

mushrooms are thus arguably useful in managing their seasonal supply.   

 

Occurrence data 

Records of the occurrence of the fruiting bodies of these species were collected from online 

sources. For practical purposes, these sources are distinguishable into those based on 

photographic records and those lacking such data. Photography-based records were collected 

from Flickr (https://www.flickr.com/), Mushroom Observer (https://mushroomobserver.org/), 

Observation.org (https://observation.org/) and Project Noah (https://www.projectnoah.org). 

Only photographs revealing the typical morphological traits of the species were considered. 

These traits for M. procera included a large white- to cream-coloured cap with brown scales 

and snakeskin markings on the stem, while for B. edulis it included a stem with an enlarged 

base and netted pattern. The photographic records also needed to include the day, month and 
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year of its observation and location. Location could imply geographical coordinates or the 

name of a locality or region. The names provided were identified using Google Earth Pro 

(https://www.google.com/earth/index.html) and converted into geographical coordinates. 

Records with location names that were unidentifiable or having less than 10-km spatial 

accuracy were not considered.  

 

We also collected occurrence records from the Global Biodiversity Information Facility 

(GBIF) (downloads https://doi.org/10.15468/dl.t39jw0 and https://doi.org/10.15468/dl.8juvkr 

for Boletus edulis and Macrolepita procera, respectively). From these we retained only those 

having complete date and geographical coordinates. As these records were not supplemented 

with photographs, some could refer to the non-fruiting forms of the species, such as its 

mycelium. To assess the possibility of this happening, we investigated the months in which 

the observations were made. We found that virtually all the observations had been done in 

months typical of the fruiting season of the species (Supporting Information Figure S1) – i.e., 

late summer and autumn, and less frequently in the spring. This result suggests that, if 

observations of the non-fruiting bodies are also included in the data, these should be limited 

in number and thus unlikely to affect the models. 

 

Due to the meagre availability of records in many regions prior to 2009 and to allow time for 

observations to be added to the data sources, our analysis included a seven-year period, from 

2009 to 2015. The data showed strong spatial bias, with most of the records coming from 

Scandinavia, Germany or Great Britain (Supporting Information Figure S2). For the other 

regions, mostly in the south fewer records were available, and were particularly ones that 

chiefly originated from photography-based data-sources (Supporting Information Figure S2). 

To minimise the spatial bias present in the data, which could overshadow the conditions 
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sampled for regions with lesser number of records (Zadrozny, 2004), we down-sampled the 

number of records in some regions. The down-sampling was done by initially covering the 

study area with a grid of 200 × 200 km squares and counting the number of records in each 

square. The squares identified as upper outliers (i.e., number of records > Q3 + 1.5 × IQR), 

were down-sampled by randomly selecting a number of observations equal to the Q3 + 1.5 × 

IQR, where Q1 is the lower 25% quantile, Q3 is the upper 25% quantile and IQR = Q3 − Q1. 

We finally obtained a total of 2,441 observation records for B. edulis and 1,169 for M. 

procera. While these records were relatively well distributed over the years (Supporting 

Information Figure S3), both the species had fewer records in 2009 and a greater number in 

2014. 

 

Temporal drivers and feature extraction 

The potential occurrence of fruiting bodies of each species was classified using time-series of 

temperature and precipitation. While other factors, such as soil and habitat type could also 

affect mushroom fruiting, the temporal variability variabilities in temperature and water 

availability are strong predictors of mushroom fruiting (Diez, James, McMunn & Ibáñez 

2013) and should allow capturing much of their temporal regularities. The meteorological 

data from Agri4Cast (http://agri4cast.jrc.ec.europa.eu/) were collected, which are available 

for European countries on a daily basis at 25x25 km resolution. The mean air temperature 

(ºC) grids, as well as those of the accumulated precipitation (mm) were collected for every 

single day from 2009 to 2015. The two variables were temporally ordered and stacked into 

raster time-series. 

 

We calculated a comprehensive set of features (n = 40; Supporting Information Table S1) to 

characterise each of the occurrence records in terms of the preceding values of temperature 
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and precipitation. These features included, among others, the means of temperature and sums 

of precipitation for a diverse range of time windows. The length and limits of the time 

windows were adjusted to capture the detailed short-term meteorological variations (e.g. 

preceding weeks) and the more general variations in the mid- to long-term (e.g. preceding 

trimesters, semesters and the entire year). We observed that, as mentioned above, other 

approaches to transform the time series into features could have been employed. For a 

comprehensive review of automated transformations refer to Fulcher and Jones (2014). 

 

To account for possible location‐dependent responses to meteorological variation, we also 

included the geographical coordinates (latitude and longitude) as features in the models. As 

mentioned earlier, more sophisticated means could have been used (e.g. Griffith & Peres-

Neto, 2006), but this would have added an unnecessary layer of complexity to our illustrative 

aim. 

 

Time series classification is generally done using data for two or more classes− but see Ma 

and Perkins (2003) for a one-class implementation. For our case study, the classes intuitively 

correspond to the ‘presence’ or ‘absence’ of fruiting bodies. However, no data is available on 

the ‘temporal absence’ of fruiting bodies of the species. Therefore, we contrasted the 

conditions represented by the occurrences with the range of conditions available to the 

species. More specifically, the models attempted to identify the subset of meteorological 

combinations related to the occurrence of mushroom fruiting from the entire set of 

combinations under which the species occurs. Sampling of the available conditions was done 

by randomly selecting a number of dates (in the 2009 to 2015 time range) for each occurrence 

record. These random records, tentatively termed ‘temporal pseudo-absences’ were then used 

to extract an equivalent set of features, referring to the location of the originating occurrence 
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record. To accomplish this, we used 15 temporal pseudo-absences for each occurrence 

record. In preliminary models, this number provided a good balance between the 

comprehensiveness of the sampling and computation time required to run the models. For 

new data, this number is worth investigating. 

 

Processing of the raster time-series and feature extraction was made in R, mainly utilising the 

functions from the raster package (v. 2.6-7). 

 

Implementations of the spatial time series classification model 

We used boosted regression trees (BRT; Elith, Leathwick & Hastie, 2008) to classify 

between the occurrence of fruiting bodies and temporal pseudo-absences. Boosted regression 

trees are ensembles of individual regression trees, in which the trees are added in sequence – 

each fitting the residuals of the earlier ones. This modelling technique also includes a 

stochasticity component, which aims at minimising the effect of spurious patterns, and 

improving the generality of the model fittings. 

 

The BRTs were implemented using the routine ‘gbm.step’ of ‘dismo’ (v. 1.1-4) package for 

R. Three parameters are relevant for fine-tuning BRT models: learning rate, tree complexity 

and number of trees. The learning rate (lc) refers to the contribution (weight) of each tree in 

the ensemble, tree complexity (tc) controls the interaction order on the response being 

modelled and the number of trees (nt) determines the total number of trees to be included in 

the ensemble. Besides, it is also necessary to define the stochasticity component (or bag-

fraction), which refers to the proportion of data that is made available to grow the trees at 

each step. 
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Following the recommendations of Elith et al., (2008) here we used a fixed bag-fraction of 

0.5, meaning that 50% of the data were randomly drawn at each step. The optimal settings for 

the other three parameters were determined iteratively by measuring model performance for 

all the combinations of tc values of 1, 3 and 5, and lr values of 0.01 and 0.005. For each 

combination of values of tc and lr tested, the optimal number of trees (nt) was automatically 

determined by ‘gbm.step’. Model performance was evaluated using a 5-fold cross-validation 

procedure and the measure used was the area under a receiver operating characteristic curve 

(AUC) (Bradley, 1997). The use of AUC is of specific relevance because this metric is 

insensitive to differences of prevalence (i.e. the ratio between the classes), and our data is 

strongly imbalanced towards pseudo-absences (15 for each occurrence).  

 

Comparison to a null model 

Useful predictions are those that can recommend favourable changes from the usual patterns 

of activity (Lowe et al., 2015), which in the case of the present study, are based on the 

‘normal’ fruiting season of each mushroom species. For instance, mushroom pickers often 

used the harvest dates of the previous years as an indicator of the potential dates for future 

harvests (e.g. Lincoff, 2015). In this context, to assess the practical worth of the predictions 

from our framework, we compared its predictive accuracy to the one provided by a model 

fitting the dates of the records. 

 

This ‘null’, date-based model uses four features to describe the occurrence and pseudo-

absence records: the sine and cosine transforms of the dates plus the latitude and longitude of 

the records. Using two-dimension transforms enabled the appropriate expression of the 

circular nature of the dates, which cannot be represented using only a single dimension, such 
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as Julian days. The addition of the geographical position is also essential to account for the 

regional differences in the fruiting seasons. 

 

The predictive performances of the ‘full’ and ‘null’ models were compared using a k-fold 

cross-validation, where k corresponded to each of the years in the data (i.e. 2009 to 2015). 

This procedure corresponded to 1) the utilisation of data for all the years, except for one, to 

identify the combination of the model parameters providing the higher AUC (see the previous 

section), 2) employment of the model with optimal parameters to make predictions for the 

‘out-of-sample’ year and 3) measurement of the agreement between the values predicted and 

those observed. Testing was done for each of the years and, to account for the stochastic 

nature of the BRT which might produce slight differences in the predictive accuracy of the 

models using the same data, the model training-testing cycle was repeated five times for each 

year. The agreement level achieved between the predictions and left-out observations was 

measured using the AUC.  

 

To ensure that the measurements of accuracy represented the entire study area and time 

periods, the distribution of deviations between predicted and observed values were mapped. 

The deviations corresponded to the difference between the averages of the predictions of the 

five replicate models and the values of the observations of the test year.  

 

We also evaluated the temporal ‘behaviour’ of the predictions from the ‘full’ and ‘null’ 

models by visualising the way the predicted probabilities of the occurrence changed over 

time. This was done by making the predictions once in every five days, from 2009 to 2015 

for three locations in the area under study (Supporting Information Figure S4). These 

predictions were made using the BRT models trained with the data from all the years and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2018. ; https://doi.org/10.1101/435289doi: bioRxiv preprint 

https://doi.org/10.1101/435289
http://creativecommons.org/licenses/by-nc-nd/4.0/


using the combination of the parameters most often identified during cross-validation as 

optimal (Supporting Information Figure, Table S2).  

 

Results 

Models based on the temperature and precipitation time-series (i.e., ‘full’ models) consistently 

outperformed the date-based (‘null’) models in predicting the occurrences and pseudo-absences 

of the fruiting bodies for the two mushroom species (Table 1). Considerable improvement in 

accuracy is evident in some years, with the AUC values showing 10% (or higher) improvement. 

This improvement occurs even when the null models generally provide what may be regarded 

as a good predictive accuracy (i.e., AUC > 0.8), suggesting their ability to precisely capture the 

‘average’ season of the mushroom emergence. Both large and small deviations between 

predicted and observed values are observed across the study area and for all the years of study 

(Supporting Information Figures S5-S8), supporting the spatial and temporal 

representativeness of the AUC values obtained.  

 

Table 1.  Accuracy of the boosted regression tree models (BRT) in predicting the occurrence 

of fruiting bodies of the mushrooms Boletus edulis and Macrolepiota procera. Two types of 

models are compared. In the ‘full’ models the occurrence and temporal pseudo-absence 

records are characterised in terms of the preceding environmental variations, while in the 

‘null’ models the records are characterised using the calendar dates. Accuracy is measured 

using the area under the receiver operating characteristic curve (AUC) and refers to the 

ability of the models in predicting the observations for a year that is ‘left out’ of the model 

training. The testing is done for all the years, one year at a time. 
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  Boletus edulis   Macrolepiota procera 

Year Null   Full  Null   Full 

2009 0.81 (0.001)  0.9 (0.001)  0.79 (0.004)  0.85 (0.003) 

2010 0.82 (0.001)  0.91 (<0.001)  0.84 (0.005)  0.89 (<0.001) 

2011 0.88 (<0.001)  0.89 (0.001)  0.83 (0.001)  0.85 (0.001) 

2012 0.85 (0.001)  0.89 (0.001)  0.86 (0.003)  0.91 (0.001) 

2013 0.81 (0.001)  0.91 (0.001)  0.83 (0.007)  0.89 (0.001) 

2014 0.8 (0.002)  0.91 (0.001)  0.81 (0.004)  0.87 (0.001) 

2015 0.81 (0.001)   0.89 (0.001)   0.83 (0.001)   0.91 (<0.001) 

 

 

Plots of the predictions made every five days compare the ‘average’ season of the mushroom 

emergence captured by the null models (Figure 1, Supporting Information Figure S9, grey 

area), with the environmental-driven responses of the full models (Figure 1, Supporting 

Information Figures S9, black line). These plots show substantial agreement between the two 

types of predictions, although for some years important differences can be observed. These 

differences include distinctly higher or lower ‘in-season’ probabilities of occurrence. For 

instance, in 2010, for a site in England (Supporting Information Figure S4), both species 

showed distinctly higher probabilities of occurrence from the environmental-based models 

than from the null models, while the inverse was true for 2011 (Figure 1). Seasonal lengths 

too showed differences. For instance, the environmental-based models predicted a shorter 

season for both species in 2012 and a longer season for M. procera in 2015 than did the 

‘average’ calendar-based season (Figure 1). 
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Figure 1. Predictions of the probability of occurrence of fruiting bodies for Boletus edulis (a) 

and Macrolepiota procera from 2009 to 2015, for a site near Cambridge, England. 

Predictions are made at 5 days-intervals from 2009 to 2015 and compare a model trained with 

features that describe meteorological variation (black line; ‘full model’) and a model trained 

with features that describe the dates of the records (grey area; ‘null model’). A slight 

modification in the null model-predicted response after 2012 reflects a one-day date change 

caused by the leap year. 

 

Discussion 

In this paper, we have described a machine learning approach to model the spatial and 

temporal information found in species occurrence records. We used the approach to model 

the timing of emergence of two mushroom species across Europe and found support for its 

use in forecasting emergence patterns in the future. We expect that this approach may be 

applied to forecast other phenomena represented by occurrence records.  
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Occurrence records that are supported by photographs or videos are specifically relevant to 

the application of the approach that we have demonstrated. The ecological phenomena that 

these records are able to capture are vast (e.g. leaf greenness, fruit ripening, adult insect 

activity, colour pelage in mammals etc.) and their availability in the public repositories 

continues to rapidly and extensively increase (e.g. Loarie, 2017). For instance, at the time of 

writing the present work, a search on Flickr using the expression ‘bee OR pollination’ 

retrieves more than one-and-a-half million records. This number will further escalate if 

additional data sources are considered, such as iNaturalist, Facebook and other social media 

sites and citizen-science projects. It is thus plausible to expect that the information drawn 

from these sources may prove adequate for the identification of relevant relationships 

between the spatiotemporal dynamics of many ecological factors and their drivers.  

 

Our approach, as presented here, includes a basic set of conceptual and methodological 

guidelines, which could be expanded and improved upon in the future. A few methodological 

changes, in particular, may allow improving the predictive accuracy. One of these concerns 

the transformation of the environmental time-series into features. The transformation we 

employed was user-defined, aiming for simplification; however, there is strong support for 

the use of automated methods (e.g. Bagnall, Davis, Hills & Lines 2012), particularly for those 

that iteratively adapt the transformations to losses or gains in predictive performance 

(Flaxman, Chirico, Pereira & Loeffler 2018). Another possibility involves the mitigation of 

spatial and temporal bias in the data. These biases are a highly recognised pervasive 

characteristic of most data sets of biological records (Isaac & Pocock, 2015; Tiago, Ceia-

Hasse, Marques, Capinha & Pereira 2017). In this study, we mitigated the impact of spatial 

bias by down-sampling the number of records in certain regions and avoiding rectification for 

temporal bias because the records were relatively well distributed through the years. 
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However, several suggestions of data treatment are presented in the literature that are worth 

considering to further minimise the potential negative impact of the temporal and spatial 

biases (e.g. Bird et al., 2014; Chapman et al., 2015, Ruiz‐Gutierrez, Hooten, & Grant 2016). 

Potential improvements in the predictive performance of our approach could also result from 

the use of ensembles of distinct algorithms over the employment of a single algorithm (BRT, 

in our case), as observed for the exercises of machine learning classification in other areas 

(Araújo & New, 2007).  

 

Accompanying the forecasts with measurements of uncertainty adds support to their use for 

decision-making. In data-driven models the multiple sources of uncertainty and the methods 

used to measure the magnitude of each have been discussed thoroughly elsewhere (e.g. 

Buisson, Thuiller, Casajus, Lek & Grenouillet 2010; Ruiz‐Gutierrez et al., 2016). Of specific 

significance to our work is the extent to which the conditions sampled by the occurrences and 

temporal pseudo-absences represent the environmental combinations being predicted. Given 

the potentially high-dimensionality of the environmental space, this assessment may not be 

trivial to evaluate and report. One likely method of overcoming this limitation, as suggested 

by Kuhn and Johnson (2013), is to first identify and isolate the most important features, and 

then reduce their dimensionality using techniques such as principal components analysis or 

multidimensional scaling and finally measure the overlap between the environmental 

conditions sampled and those predicted in the dimensionally-reduced space. Forecasts made 

for conditions that either do not overlap with the sample (i.e., extrapolation) or are only 

sparsely sampled, have higher uncertainty. Besides being useful in the assessment of the 

reliability of the forecast, the results from this or an equivalent technique, are also relevant in 

identifying the environmental conditions that will benefit from more intense sampling in 

future versions of the model. 
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Our approach would also certainly benefit from being integrated into an ‘iterative ecological 

forecasting’ framework. Iterative ecological forecasting refers to the continuous updating of 

the models as new data becomes available (Dietze, 2017; Urban et al., 2016). With the 

rapidly growing rates at which photographic and non-photographic occurrence records are 

becoming available, the regular updating of models with the new data may produce a 

considerable drop in the uncertainty. Notably, such updating would also reduce the 

uncertainty regarding possible changes in the mechanisms that drive the ecological responses. 

Changes in the driving mechanisms of the ecological processes can happen even during short 

time periods (Oliver & Roy, 2015); hence, the use of up-to-date data in the models facilitates 

lowering the risk of misrepresenting the drivers of the ecological phenomena being 

forecasted. 

 

The approach we presented in this work does not aim to replace process-based models or 

correlative models based on large-scale databases of ecological time series. Instead, it aims at 

being applied to ecological phenomena that cannot be forecasted using these approaches. The 

employment of occurrence data for spatiotemporal modelling has several conceptual and 

methodological contingencies, but we have demonstrated that its use for a judicious training 

of spatial time-series classification models may allow achieving useful forecasts. The 

approach presented here could be improved in several ways in the future. We expect that 

investigation on these topics, allied to the continuous increase in the numbers of occurrence 

records, will help pave the way for a de facto contribution towards the forecasting of 

ecological phenomena.  
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