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Abstract  

The effectiveness of a particular drug has predominantly been analysed in isolation and             
there lacks data-driven approaches to consider the full response pattern between multiple            
drugs to study biomarkers at the same time. To reveal subpopulations where the             
pharmacological response between compounds agree and diverge, we applied a novel           
population segmentation algorithm, POET, to compare 344 drug pairs targeting the MAPK            
and PI3K-AKT pathways across >800 genomically-diverse cancer cell lines. We show that            
POET was capable of integrating multiple measures of drug response to identify            
subpopulations that differentiate response to inhibitors of the same or different targets. MEK,             
BRAF and PI3K inhibitors with different sensitive subpopulations were shown to be effective             
as combined therapies, particularly when stratified for BRAF mutations. This data-driven           
approach paves a new way for patient stratification to identify novel cancer subpopulations,             
their genetic biomarkers, and effective drug combinations. 
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Introduction  
 
Drug developers face a conundrum in predicting the efficacy of their investigational 
compound compared to existing drugs used as the standard of care treatment. Systematic 
screening of drug compounds across a variety of genomic backgrounds in cancer cell lines 
can improve clinical trial design and personalize treatments 1. Following the pioneering 
NCI-60 screen comprised of 59 unique cell lines 2, modern high-throughput screens such as 
the Genomics of Drug Sensitivity in Cancer (GDSC) 3,4, the Cancer Cell Line Encyclopedia 
(CCLE) 5 and the Cancer Therapeutics Response Portal (CTRP) 6–8 have characterised 
>1,000 cancer cell lines with the goal of establishing the genetic landscape of cancer. The 
deep molecular characterisation of these large cell line panels is complemented with 
high-throughput drug screens, which enables the discovery of drug response biomarkers. 
For example, analysis of the drug PLX4720, SB590885 and CI-1040 reproduced drug 
sensitivity association with the BRAF mutation in melanoma, or afatinib with ERBB2 
amplifications in breast cancer 3,4,9. These associations between genetic variants and 
treatment response have helped identify specific patient subpopulations who are most likely 
to benefit from treatment. In Phase III clinical trials, however, for new drugs to be successful, 
they must demonstrate a significant improvement over the existing standard of care. 
Accurately defining in which subpopulations a new drug demonstrates improved differential 
efficacy over other drugs targeting the same disease could lead to both better clinical 
outcomes as well as new targeted therapies.  
 
While several methods have been proposed to identify drug response biomarkers in cell 
lines 4,510,11, there is a lack of systematic, data driven approaches to assess and compare 
monotherapy responses across multiple drugs and consecutively gain mechanistic insights 
from biomarkers. Prioritizing drugs that are more likely to succeed in clinical trials in the 
absence of well-established clinical biomarkers, therefore, becomes more challenging. Here, 
we comprehensively assess the differences in responses of a population of pan-cancer cell 
lines to multiple drugs, with the goal of discovering subpopulations in which cell lines 
possess a similar pattern of response across drugs, and from which, biomarkers 
distinguishing subpopulations can be derived. Accurately identifying distinct subpopulations 
of cell lines based on their joint pharmacological pattern of response and evaluating which 
subpopulations describe the independent action of single drugs could identify drug 
combinations 12. 
  
We present results from experiments involving two or more drugs that successively highlight 
how an unsupervised machine learning technique identifies distinct pharmacological patterns 
of response and therapeutic biomarkers. Addressing the challenges in comparing the 
response of two drugs, the initial experiment assesses two gold standards with established 
clinical biomarkers, namely the differential response of a BRAF inhibitor and MEK inhibitor 
with anticipated BRAF and KRAS mutations, and an EGFR inhibitor and MEK inhibitor with 
expected biomarkers of EGFR, ERBB2  and KRAS mutations. Next, we systematically 
investigated how multiple drugs targeting the MAPK and PI3K-AKT pathway yields different 
patterns of response within subpopulations and biomarker context. We test a previous 
study’s hypothesis suggesting the benefit of drug combinations can be explained through 
independent action rather than probable synergy by examining subpopulations uniquely 
sensitive to a single drug 12. Finally, we demonstrate how the discovery and analysis of 
subpopulations can guide the design of clinical trials by revealing which indications may 
respond best to a particular drug and what biomarkers identify target patient subpopulations. 
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Results 
 
We used a novel unsupervised machine learning technique, POET (Population Outcome 
Enrichment Technique), to discover subpopulations of cell lines in which two or more 
compounds, possibly addressing the same disease state or even targeting the same genetic 
alteration, have a common pharmacological pattern of response. By further associating 
enriched genetic alterations in subpopulations with specific patterns of response, we also 
gain a deeper understanding of molecular mechanisms responsible for patient 
subpopulations that respond differently to two drugs.  
 
Identifying subpopulations of differential drug response 
 
To identify unique drug sensitive or resistant subpopulations for a portfolio of cancer 
therapies, we focused on agents targeting ERK or PI3K-AKT signaling, exploring up to 1,000 
cancer cells derived from the GDSC database. Drug responses were quantified with the drug 
concentration required to reduce cell viability by half (IC50) and the area under the 
dose-response curve (AUC; Fig. 1a ). We applied POET, an unsupervised machine learning 
approach, to both drug response summary metrics. POET employs a multivariate similarity 
measures to compare the patterns of response for each distinct pair of cell lines, while 
requiring no a priori assumptions on the number or distribution of the subpopulations. The 
result is a diverse cell line population segmented into distinct subpopulations having 
homogeneous patterns of drug response (Fig. 1b). Here exemplified, we compare the drug 
response of 802 cell lines treated with either SB590885 (BRAF inhibitor) or CI-1040 (MEK 
inhibitor; Fig. 1c ). Segmentation by POET resulted in 7 distinct subpopulations with a 
median size of 40 cell lines. The subpopulation sensitive to both inhibitors was significantly 
enriched for BRAF mutants (P=3.87e-14; Fig. 1c ), while another subpopulation was 
exclusively sensitive to the MEK inhibitor and significantly enriched for KRAS mutations 
(P=0.00589).  
 
In another example, we compared selumetinib (MEK inhibitor) with afatinib (EGFR and 
ERBB2 dual inhibitor) across 812 overlapping cell lines (Fig. 1d). Strong sensitivity markers 
for selumetinib are subpopulations carrying KRAS, NRAS and BRAF mutations 4,5,13 (Fig. 
1e,d). A less anticipated association is APC loss-of-function sensitivity to selumetinib, albeit 
concordant results are found with trametinib (another MEK inhibitor) in APC deficient mice 14. 
We reproduced the well-established associations of afatinib with either EGFR and ERBB2 
amplifications 4,15, and surprisingly our unsupervised segmentation returned two 
subpopulations enriched for EGFR amplifications. The more sensitive subpopulation is solely 
enriched for EGFR amplifications, whilst the less sensitive subpopulations additional 
includes activating PIK3CA mutations. In concordance with recent literature, PI3K-AKT 
signaling drives acquired drug resistance to EGFR inhibitors in lung cancer 16. 
 
Segmentation by POET resulted in 14 subpopulations with a median size of 38 (Fig. 1d). 
The subpopulation enriched for EGFR, ERBB2  and PI3KCA variants, has an average 
log(IC50) of 0.9486µM for selumetinib and -0.596µM for afatinib. In contrast, the BRAF 
mutation was enriched in a subpopulation where the average log(IC50) for selumetinib was 
-1.061µM and 0.593µM for afatinib. The difference in response between afatinib and 
selumetinib was significantly greater (t-test P<0.01) between the subpopulations identified by 
POET and the total population of PIK3CA or BRAF mutant cell lines (Fig. 1f, g). 
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Distribution of subpopulations highlight distinct drug-drug relationships 
  
We extracted 37 compounds from the GDSC database, which are either putatively targeting 
PI3K-AKT or ERK signalling (Fig. 2a ), and systematically compared each drug pair targeting 
both key cancer pathways (Fig 2b). In total, we performed 342 pairwise comparisons of 18 
PI3K-AKT and 19 MAPK pathway inhibitors. Each drug pair was classified into five 
categories based on the distribution of subpopulation drug responses: (i) no differential 
response, (ii) sensitive to both MAPK and PI3K-AKT pathway inhibitors (i.e. correlated 
response), (iii) preferential MAPK pathway sensitivity, (iv) preferential PI3K-AKT pathway 
sensitivity, (v) sensitive to either a MAPK pathway or a PI3K-AKT pathway inhibitor, i.e. 
anti-symmetric response (Supplementary Figure 2 ).  
 
Subpopulations that have sensitivity to both, PI3K-AKT and MAPK pathway inhibitors, was 
observed in 29 instances. This phenotype was significantly enriched when comparing a 
CRAF inhibitor (TL-2-105) to PI3K-AKT signaling inhibitors (P=1.85e-6). The same trend was 
observed in inhibiting ERK (FR-180204) or RSK (FMK) in combination with any PI3K-AKT 
signaling agent (P=1.85e-6 and P=1.078e-7 respectively), but interestingly never 
encountered when combining with either BRAF or MEK inhibitors. 
 
There were 71 drug pairs with a significantly high proportion of subpopulations (P < 0.05) 
exhibiting greater sensitivity to MAPK pathway inhibition. This phenotype is strongly 
pronounced in pairs with BRAF, ERK (FR-180204) and RSK (FMK) inhibitors (P=0.00344, 
P=0.00437 and P=0.000882, respectively; hypergeometric test). In contrast, 28 drug pairs 
were found with significantly high proportions of preferential PI3K-AKT pathway inhibition. In 
total, 28 drug pairs showed this phenotype, with an enrichment of 19 MEK inhibitors 
(hypergeometric test P=0.000114). MEK inhibitors were particularly enriched when paired 
with PI3K or PDK1 inhibitor (hypergeometric test P=0.000221). 
 
In 55 cases, we observed drug pairs with sensitivity to either a MAPK pathway or a 
PI3K-AKT pathway inhibitor, i.e. anti-symmetric response. This response type was enriched 
for pairs of any PI3K-AKT pathway inhibitors and EGFR (erlotinib), BRAF (PLX4720-1 and 
PLX4720-2), or MEK inhibitors (P=9.57e-6, P=0.000384 and P=0.0297, respectively; 
hypergeometric test), while even more significant when focusing on AKT inhibitors in pair 
with either EGFR (erlotinib), BRAF (PLX4720-1 and PLX4720-2), or MEK inhibitors 
(P=0.0141, P=0.000292 and P=0.000379, respectively; hypergeometric test). Response 
patterns for all drug pairs are viewable from our portal (https://szen95.github.io/supp_poet/). 
 
 
Anti-symmetric pattern of response predicts drug combination efficacy 
 
Tumour heterogeneity among patients cloaks specific subpopulations that might show drug 
sensitivity, exhibiting the need to systematically stratify them and thereby enable the 
identification of suitable drug combinations. Previous studies have hypothesised that the 
efficacy of many approved drug combinations can be explained by the independent action of 
single agents on different patient subpopulations 12. This suggests that revealing more 
specific patient subpopulations and designing drug combinations by optimizing their 
independent action can potentially improve drug combination efficacy.  
 
Using POET, we show a category of joint pharmacological response that occurs when the 
sensitivity of cell lines to two drugs (where one may be the existing standard-of-care) is 
strongly divergent, or anti-symmetric. Two drugs are deemed to have anti-symmetric 
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response when there is a high proportion of subpopulations sensitive for either drug, but not 
both. We observed this phenomenon in 55 drug pair comparisons, including a MEK inhibitor 
(RDEA119-2) showing anti-symmetric responses to four PI3K inhibitors (PI-103, 
GSK2126458, ZSTK474, and PIK-93; Supplementary Figure 3 ). Drug pairs with 
anti-symmetric response are also observed in cell lines treated with PLX4720-1 (BRAF 
inhibitor) and PI-103 (MEK inhibitor) after undergoing segmentation by POET (Fig. 3a ). Two 
subpopulations identified with greater sensitivity to PI-103 contained a high proportion of 
cells with the BRAF mutation (Fig. 3b).  
 
Collectively, our results suggest that drug pairs exhibiting anti-symmetric response in a 
specific subpopulation may be efficacious in treating tumors when given in combination. We 
tested our hypothesis in cell lines and patient-derived tumor xenograft models (PDXs) from 
two independent studies (Methods ) to investigate whether the drug pairs with anti-symmetric 
response exhibited any efficacy as a combination treatment. Based on our observations of 
anti-symmetric response in subpopulations, we tested whether pairs of drugs with 
anti-symmetric response, given in combination, are efficacious in cancer cell lines 17 as well 
as patient-derived tumor xenograft (PDX) models 18 (Fig. 3c ).  
 
Our results in both cell lines and PDXs confirm subpopulations with anti-symmetric behavior 
for a specific drug combination lead to greater efficacy. Using the synergy score as a 
measurement of efficacy in cell lines, the MEK/PI3K inhibitor combination yielded a greater 
synergistic effect compared to all other drug combinations (t-test P=2.8e-9, Fig. 3d, 
Supplementary Figure 4 ). The synergistic effect is more pronounced in cell lines with the 
BRAF mutation compared to all cell lines (t-test P=0.0102). Similarly in PDXs, we observed a 
smaller increase in tumour volume of the BRAF/PI3K inhibitor combination compared to all 
other combinations (t-test P=1.93e-8; Fig. 3e , Supplementary Figure 4 ). BRAF mutant 
tumours experience an even smaller increase in tumour volume when treated with the 
BRAF/PI3K inhibitor combination compared to all tumours (t-test P=0.00201). 
  

Discussion 
 
The ability to identify enriched mutations in distinct subpopulations is the basis for 
therapeutic biomarkers, which ultimately may increase the likelihood of successful clinical 
trials 19,20. First, we investigated gold standards with well-established clinical biomarkers by 
comparing the response patterns for BRAF (SB590885) and MEK (CI-1040) inhibition, which 
expectedly reproduced subpopulations sensitive to both enriched for BRAF mutants (Fig. 
1c ) 21–23. In another example, when comparing EGFR/ERBB2 dual (afatinib) and MEK 
(selumetinib) inhibition (Fig. 1d,e ), we found the expected biomarkers such as BRAF, KRAS 
and NRAS mutations for selumetinib 24–27, and afatinib associated with EGFR and ERBB2 
amplifications 28,29; however, interestingly, we observe two subpopulations enriched for 
EGFR  and ERBB2 amplifications, whilst the more afatinib resistant population had enriched 
an additional PI3KCA activating mutation, which may cause acquired resistance (Fig. 1d,e ) 
16.  
 
After analysing gold standards, consecutively we systematically compared 19 and 18 drugs 
targeting the MAPK and PI3K pathway respectively (Fig. 2a ). We identified five different 
response patterns; these are (i) no differential response, (ii) subpopulations that are 
concordantly sensitive, (iii, iv) subpopulations exclusively sensitive to one drug, and (v) an 
anti-symmetric response type (Fig. 2b). Surprisingly, we observed concordant sensitivity 
when inhibiting CRAF, ERK or RSK across all levels of the PI3K-AKT pathway, but not 
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enriched for any other kinase in the MAPK signalling which are either up- or downstream of 
CRAF, ERK  or RSK 30. Intuitively BRAF inhibitors are enriched for MAPK pathway sensitivity 
which is strongly driven by BRAF mutations 21, while unexpected MEK inhibition has a 
preference for PI3K-AKT signalling sensitivity 25. EGFR, BRAF and MEK inhibitors show an 
enrichment for anti-symmetric response, particularly when targeting downstream of the 
PI3K-AKT pathway. Investigating the MAPK and PI3K-AKT pathway based on drug 
response profiles highlights how intertwined those two pathways are in pharmacology space 
30.  
 
Arguably, the anti-symmetric response type is the most exciting, since it may explain 
independent drug action in effective drug combinations 12. Here exemplified, we showed that 
PI3K inhibitors combined with either BRAF or MEK inhibitors increase in vitro synergy and 
reduce tumour volume of PDX models 31,32. Furthermore, we were able to show that this 
synergy and tumour shrinkage can be further enhanced by the correct biomarker indication, 
in this instance, BRAF mutant subpopulations 33,34, which were systematically identified with 
our segmentation and biomarker pipeline 12. 
 
A “bottom up” approach of hierarchical clustering has been utilized routinely to attribute 
molecular markers to differences in subpopulation drug response and outcomes 35,36.  Yet, 
continuing concern about the sensitivity and inherent suboptimality of clustering techniques 
37,38, have motivated alternative techniques to identify intrinsic subpopulations.  Because of 
their success in other industries 39,40 and their natural amenability to matrix decomposition 
techniques, network-based approaches have emerged as viable alternatives for discovering 
distinct subpopulations 41–43.   Deeper interpretations of matrix subspaces may provide 
further insight into the linkage between subpopulations of cancer cell lines and drugs. 
 
Our work demonstrates several important insights about the pharmacological pattern of 
response of different cancer drugs by applying a new machine learning platform, POET, to 
segment populations from a large pan-cancer in vitro pharmacology data set. By organizing 
cell lines by similar pharmacological patterns of response, we identified distinct, intrinsic 
subpopulations sensitive to one drug but resistant to others, and in some cases identified 
genetic alterations that are biomarkers for those subpopulations. In the context of analytical 
frameworks for increasing drug R&D productivity by sharpening the focus of drugs 44, our 
work demonstrates the value of advanced analytical methods in combination with pre-clinical 
data to enable decision making that is more data-driven and less ambiguous. Moreover, by 
analyzing pharmacological responses with POET and interpreting its outputs in the context 
of the underlying genetics and molecular pathways, we have created a multi-faceted 
landscape for developing and assessing new cancer therapies.  
 
 

Methods 
 
Pharmacology data 
The discovery pharmacology dataset was extracted from the The Genomics of Drug 
Sensitivity in Cancer (GDSC) database 3,4, while leads from the analysis were validated with 
the Cancer Cell Line Encyclopedia (CCLE) 5 and the Cancer Therapeutics Response Portal 
(CTRP) 6–8. Furthermore, suggested drug combinations were validated with cell line 
responses from the AstraZeneca-DREAM challenge dataset 17 and patient derived xenograft 
(PDX) models from Gao et al. 18. 
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For a given cell line in GDSC, the drug response was fitted with a sigmoid curve 45 and 
consecutively quantified as area under the curve (AUC) or the concentration required to 
reduce cell viability by half (IC50). GDSC contains 265 compounds tested in 990 cell lines, 
whilst we focus on a subset of 38 drugs targeting either the PI3K-AKT or ERK signalling, 
which leads to 344 experiments considered for evaluation.  
 
Deep molecular characterisation of the cancer cell lines 
The GDSC resource provides the characterisation of >1,000 cell lines including whole 
exome sequencing and SNP6.0 arrays, which enabled to quantify gene-level mutational and 
copy number variation status. Additional, 10 key fusion genes were included in this analysis, 
which is summarized in the binary event matrix (BEM) from Iorio et al. 4. 
 
POET – workflow from AUC/IC50 values to cell subpopulations 
Cell lines pharmacology measurements were analyzed using a new population segmentation 
framework, POET 46, based upon network models that recursively segment a population 
whose members are described by multiple, possibly heterogeneous variables, into distinct 
subpopulations by identifying optimal cuts for graph bisection. Traditional approaches, such 
as agglomerative, “bottoms-up” hierarchical clustering and iterative K-Means clustering are 
greedy algorithms that are inherently sub-optimal in constructing clusters and consequently 
may not identify the most distinct clusters. Moreover, these approaches frequently require a 
priori estimates of the number of sub-populations for which many heuristics exist but in 
practice is commonly estimated using trial and error.  
 
POET builds network models by calculating a similarity value between two compounds using 
two important measurements extrapolated from the cell line pharmacology screens: the IC50 
value and the AUC of the dose-response curve (Supplementary Table 1 ) observed when 
one compound is applied in vitro to a single cell line sample at successively greater 
concentrations. When two compounds are compared, the inputs to POET comprise a 
length-4 dose-response profile (DRP) for that cell line. The similarity between any two DRPs 
is calculated on a range between 0 and 1 by a multivariate quasi-Gaussian comparison that 
differences the elements of the DRPs but also weighs the differences by a combination of 
local and global network statistics. The framework is generalizable to include more variables 
and different measures of similarity. 
 
Recursive segmentation of a local population is terminated when the similarity between the 
resulting sub-populations does not meet the criteria of a significance test, but other practical 
constraints such as sub-population size and tree depth can modulate segmentation. When 
employed recursively, POET segments a population, P, consisting of N members, each 

described by M variables, into K sub-populations, where .,P , k , .., Kk  = 1 .   P =∪
 

k=1
P k  

Successive segmentation results in increasingly homogeneous sub-populations in which the 
input variables span narrower ranges of values than the overall population, and the cell lines 
consequently demonstrate a common pattern of response across compounds. Successive 
segmentation of subpopulations can be halted by one or more criteria. In our experiments 
we required subpopulations to have at least 40 members in order to be segmented. Further, 
we required that both resulting subpopulations have 20 or more members in order to be 
retained. 
 
Because genetic alterations in each cell lines are known, each subpopulation can be 
evaluated by significance tests to identify enriched alterations that may be attributed to 
patterns of sensitivity or resistance in that subpopulation to an individual compound. 
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To visualize output from POET, we first calculated the average log(IC50) values for 
subpopulations generated based on their response to the tested drug pairs (Supplementary 
Table 2 ). We then plotted the values on a scatter plot using an open-source Python library 
called Matplotlib. Dashed lines indicative of 20th percentile of log(IC50) values for each drug 
were also plotted on the scatter plot.  
 
Tree visualization of segmentations 
We utilized tree diagrams to visualize the data generated by our algorithm. The tree 
diagrams illustrate how the algorithm segments the cancer cell lines into different 
subpopulations, based on whether they are sensitive or resistant to the drugs that are being 
tested. The tree diagrams were generated through an open-source Python library called 
Graphviz. The style of each component of the tree diagram was first initialized through a 
class. This included the colours, shapes, and fonts of the edges and nodes of the tree 
diagram. A method was created to handle the creation of the tree diagrams. It took 
parameters that included the number of vertices and leaves, the labels for the leaves, and 
the tree diagram filename. The tree diagram is finally generated and saved by calling the 
method.  
 
Enrichment of features to nominate biomarkers  
For each subpopulation, we measured the number of cell lines in the subpopulation with a 
particular gene mutation, and the number of cell lines outside of the subpopulation with the 
mutation. A 2X2 contingency table was generated from the cell line counts of with/without 
mutation and inside/outside of subpopulation. Significance of observed enrichment of 
mutations within subpopulations were calculated using the Fisher’s exact test. The resulting 
p-values were corrected for multiple testing using the Benjamini and Hochberg (BH) 
procedure (Supplementary Table 3 ). 
 
Classification of pair-wise drug responses 
POET made 342 pairwise comparisons of drugs targeting the MAPK and PI3K-AKT 
pathways. Based on the distribution of log(IC50) values across all cell lines tested with both 
drugs, we determined the 20th-percentile of log(IC50) values for each drug. The 20th 
percentile cutoffs P20 for drugs A and B was used to categorise the  average log(IC50) y  of 
each subpopulation i into four categories: 
 y i < P 20, A   and yi < P 20, B  = sensitive to drugs A and B 
 y i < P 20, A   and yi  P 20, B  = more sensitive to drug A≥  
 y i  P 20, A   and yi < P 20, B  = more sensitive to drug B≥  
 y i  P 20, A   and yi  P 20, B  = resistant to drugs A and B≥ ≥  
The number of subpopulations in each category were recorded in an 2X2 contingency matrix 
and normalised by the number of cell lines in each subpopulation. For each drug pair, a 
binomial test was performed to test whether the number of subpopulations in each category 
is greater than what would be expected. 
 
After classification of pair-wise drug responses, we assessed whether a drug was 
significantly enriched for one category in comparisons with all other drugs. Testing was 
carried out using the hypergeometric test (phyper R package).  
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Figures 

 
Figure 1: Segmentation of a population based on pharmacological patterns of 
response discovers subpopulations with differential sensitivity. a Dose 
response curves of two or more drugs are measured across a population of up to 
1,000 cancer cell lines. b The population is segmented into distinct and 
homogeneous subpopulations based on their response to multiple drugs. When 
comparing two drugs, subpopulations can be categorised based on their mean 
log(IC50s): sensitive to both drugs (orange), sensitive to drug A but not drug B 
(green), sensitive to drug B but not drug A (blue), resistant to both drugs (grey). c 
Segmentation results for a BRAF inhibitor (SB590885) and a MEK inhibitor (CI-1040) 
using POET. Tree nodes contain the number of cell lines and are colored based 
upon their category of response. Significance testing reveals subpopulations 
enriched for BRAF and KRAS mutations. d Scatter plot showing POET-derived 
subpopulations based on their pharmacological responses for afatinib and 
selumetinib. Dashed lines indicate 20th percentile of log(IC50) values for each drug. 
PIK3CA, EGFR, ERBB2, KRAS, NRAS, BRAF, APC, TCF4 and RB1 mutations were 
found enriched in the associated subpopulations. e OncoPrint visualizing the 
percentage of mutations of selected genes in cell line panel treated with either 
afatinib (EGFR inhibitor) or selumetinib (MEK inhibitor). The waterfall plots compare 
response of the cell lines to afatinib and to selumetinib. f Boxplot of difference in 
log(IC50) values between afatinib and selumetinib response for wild-type cell lines, all 
cell lines with PI3KCA mutation and cell lines in POET-derived subpopulations with 
enriched PI3KCA mutation. g Same as panel f, but for BRAF mutations. 
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Figure 2: Distinct drug response types after unsupervised segmentation of 
pharmacological response pattern for targeting ERK or PI3K-AKT signaling. a 
MAPK and PI3K-AKT pathways illustrating drugs in purple boxes which were 
assessed by POET, and their different gene targets in the pathway. Genes in the 
green boxes are involved in the PI3K-AKT pathway while genes in the blue boxes are 
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involved in the MAPK pathway. b Heatmap illustrating pairwise comparison of 
responses for 19 different inhibitors targeting the MAPK pathway and 18 different 
inhibitors targeting the PI3K-AKT pathway. It illustrates five possible classes of 
differential response when comparing two drugs: (i) no differential response (black), 
(ii) subpopulations sensitive to both MAPK and PI3K-AKT pathway inhibitors (pink), 
(iii) preferential MAPK pathway sensitivity (yellow), (iv) preferential PI3K-AKT 
pathway sensitivity (green) or (v) sensitive to either a MAPK pathway inhibitor or a 
PI3K-AKT pathway inhibitor and vice versa (anti-symmetric response, blue). 

 
 

 
Figure 3: Anti-symmetric response exemplified with PI3K inhibition in 
comparison to MEK and BRAF inhibitors. a  Scatter plot showing POET-derived 
subpopulations that exhibit anti-symmetric pharmacological response to PLX4720-1 
(BRAF inhibitor) and PI-103 (PI3K inhibitor). Dashed lines indicate 20th percentile of 
log(IC50) values for each drug. BRAF mutations were found enriched in the 
associated subpopulations. b Same as panel a , but showing individual cell lines and 
those in gold are cell lines with the BRAF mutation. c  Workflow illustrating cell lines 
being tested with individual inhibitors and their joint pharmacological patterns of 
response analysed by POET. Drug pairs with anti-symmetric response  suggest 
suitable drug combination therapies, which are validated in cell lines 17 and 
patient-derived tumor xenograft (PDX) models 18. d In vitro  synergistic effect of 
combining the MEK and PI3K inhibitors over all drug combinations (t-test P=2.8e-9), 
and combining the MEK and PI3K inhibitors in BRAF mutant cell lines over all cell 
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lines (t-test P=0.0102). e  In vivo effect of combining BRAF and PI3K inhibitors over 
all drug combinations in preventing tumour growth (t-test P=1.93e-8), and combining 
BRAF and PI3K inhibitors in BRAF mutant tumours over all tumours (P=0.00201, 
t-test). 
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