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Abstract

Understanding the genetic basis of dynamic plant phenotypes has largely been limited due

to lack of space and labor resources needed to record dynamic traits, often destructively, for

a large number of genotypes. However, the recent advent of image-based phenotyping plat-

forms has provided the plant science researchers with an effective means to non-destructively

evaluate morphological, developmental, and physiological processes at regular, frequent in-

tervals for a large number of plants throughout development. The statistical frameworks

typically used for genetic analyses (e.g. genome-wide association mapping, linkage map-

ping, and genomic prediction) in plant breeding and genetics are not particularly amenable

for repeated measurements. Random regression (RR) models are routinely used in animal

breeding for the genetic analysis of longitudinal traits, and provide a robust framework for

modeling traits trajectories and performing genetic analysis simultaneously. We recently

used a RR approach for genomic prediction of shoot growth trajectories in rice. Here, we

have extended this approach for genetic inference by leveraging genomic breeding values

derived from RR models for rice shoot growth during early vegetative development. This

approach provides improvements over a conventional single time point analyses for discover-

ing loci associated with shoot growth trajectories. This RR approach uncovers persistent, as

well as time-specific, transient quantitative trait loci. This methodology can be widely ap-

plied to understand the genetic architecture of other complex polygenic traits with repeated

measurements.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/435685doi: bioRxiv preprint 

https://doi.org/10.1101/435685
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

A plant’s phenotype at any given time is the manifestation of numerous biological processes

that have occurred prior to the capture of the phenotype. In most genetic mapping studies,

plants are phenotyped at one or few discrete time points. While this may be sufficient for

end point traits, such as yield or grain quality, other agronomically important traits such as

plant height or vigor are not static and vary continuously throughout development. Given

the dynamic nature of these traits, it is likely that some genes will have a time-dependent

contribution to the phenotype. Approaches that consider such infinite-dimensional traits as

static, fail to fully capture the dynamic processes that have led to the phenotype and may

not uncover contribution of time-specific loci.

Recording phenotypic measurements across development in genetic mapping populations

is typically limited due to high space and labor demands to record a trait, often destruc-

tively, for a large number of genotypes. However, with the advent of image-based phenotyp-

ing platforms, researchers can now capture morphological, developmental, and physiological

processes non-destructively with higher temporal resolution for a large number of plants

(Fraas and Lüthen, 2015; Simko et al., 2016; Shakoor et al., 2017; Tardieu et al., 2017; Araus

et al., 2018). Moreover, the growth of the unmanned aerial vehicle industry in recent years

has provided many low-cost hardware options that can be outfitted with cameras, facilitat-

ing the collection of temporal phenotypes in field settings (Yang et al., 2017). While the

use of these platforms is becoming more routine in plant genetics, the statistical frameworks

typically used for genetic analyses (e.g. genome-wide association mapping, linkage mapping,

and genomic prediction) in plant breeding and genetics are not amenable for longitudinal

traits.

Several studies in recent years have sought to elucidate the genetic basis of longitudinal

traits through genome-wide association studies (GWAS) or linkage mapping. For instance,
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Moore et al. (2013) and Würschum et al. (2014) utilized linkage mapping at discrete time

points to identify time-specific quantitative trait loci (QTL) associated with root gravit-

ropism and plant height, respectively. While these approaches may be effective, by consid-

ering the phenotype at only a single time point they do not leverage the covariance among

time points and may have reduced statistical power compared to approaches that consider

the entire trait trajectory in regression modeling. Several studies have leveraged a "two-

step" approach for functional association mapping (Bac-Molenaar et al., 2015; Campbell

et al., 2017). Here, a function is fit to phenotypic records for each genotype, and summa-

rizes the trait trajectories using few parameters. These parameters are then used as derived

phenotypes in subsequent GWAS analyses. However, with these "two-step" approaches in-

formation is lost between the curve fitting and genetic analysis steps. The residuals from

the first curve fitting step likely contains important information regarding persistent envi-

ronmental effects which are not considered in subsequent genetic analysis. We hypothesize

that an approach that unifies the curve fitting and genetic analysis into a single framework

is likely to be better than the single time point or a "two-step" longitudinal approach.

Random regression (RR) models provide a robust framework for modeling trait trajecto-

ries and performing genetic analysis simultaneously (Schaeffer, 1994; Huisman et al., 2002;

Schaeffer, 2004). Covariance functions, such as spline or polynomial functions, are used to

model trait trajectories for each line and sufficiently capture the covariance across time points

while estimating fewer parameters (Kirkpatrick et al., 1990; Meyer, 1998; White et al., 1999;

Strabel and Misztal, 1999; Pool et al., 2000; Huisman et al., 2002; Schaeffer, 2004; Misztal,

2006). Regression coefficients are treated as random effects, and therefore allow values to

vary between individuals. Genomic estimated breeding values (GEBVs) for regression coeffi-

cients are obtained using a mixed model, and using simple algebra, GEBVs can be obtained

for any time throughout the continuous trait trajectory (Mrode, 2014)

GEBVs represent the summation of all additive genetic effects across the genome for a
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given individual. Goddard (2009) showed that GEBVs predicted using genomic relationships

(e.g. genomic best linear unbiased prediction (gBLUP)) are equivalent to those predicted

from regression on markers. Given this equivalence, marker effects can be easily calculated

from GEBVs, thus genetic inference (e.g. GWAS) can be performed. While this approach

is different compared to conventional single marker regression GWAS (SMR-GWAS) ap-

proaches, it offers several advantages. First, 100,000s of statistical tests are typically run for

SMR-GWAS, and as a result, a stringent p-value threshold must be used to limit false dis-

coveries (Hayes, 2013). Thus, loci recovered using SMR-GWAS approaches typically account

for only a fraction of the total genetic variance for a trait (Yang et al., 2010). Whole-genome

BLUP approaches (i.e. SNP-BLUP or GBLUP) assume an infinitesimal model in which all

loci have some, albeit small, contribution to the phenotype (Hayes, 2013). Thus, by consid-

ering all markers simultaneously small-effect QTL are recovered and more genetic variation

can be captured compared to SMR-GWAS (Yang et al., 2010). BLUP approaches shrink

marker effects towards zero, and thus may not be appropriate for simple traits that are regu-

lated by few loci with large effects. However, for complex polygenic traits these assumptions

are reasonable, and should yield biologically meaningful results. In the case of RR, GEBVs

can be calculated at each time point and can be leveraged to examine the contribution of

loci across a trait trajectory or the time axis.

In a recent study, we used a RR approach for genomic prediction of shoot growth trajec-

tories in rice (Campbell et al., 2018). The utilization of longitudinal phenotypes with RR

captured greater genetic variation compared to single time point approach, and significantly

improved prediction accuracies. Here, we have leveraged GEBV derived from RR models

to examine the genetic architecture of shoot growth through a 20-day period during early

vegetative development. Here, we show that this approach can be used for genetic inference

of shoot growth trajectories, and uncovers persistent, as well as time-specific QTL. Further-

more, we show that the RR approach uncovers considerably more associations compared to
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a conventional single time point analysis.
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2 Materials and Methods

2.1 High-throughput phenotyping

Phenotypic data was collected for 357 diverse rice accessions from the Rice Diversity Panel 1

(RDP1) (Zhao et al., 2011). The plant materials, experimental design, and image processing

are described in detail in Campbell et al. (2018). Briefly, 378 lines were phenotyped at the

Plant Accelerator, Australian Plant Phenomics Facility, at the University of Adelaide, SA,

Australia from February to April 2016. In this period three experiments were conducted

where experiment consisted of a partially replicated design with 54 randomly selected lines

having two replicates in each experiment. The plants were grown on greenhouses benches

for 10 days after transplanting (DAT) and were loaded on the imaging system and watered

to 90% field capacity at 11 DAT.

The plants were imaged daily from 13 to 33 DAT using a visible (red–green–blue camera;

Basler Pilot piA2400–12 gc, Ahrensburg, Germany) from two side-view angles separated by

90� and a single top view. The LemnaGrid software was used to extract "plant pixels" from

the RGB images using a color classification strategy, and noise (i.e. small areas of non-plant

pixels) in the image were removed using a series of erosion and dilation steps. Projected shoot

area (PSA) was calculated as the sum of the "plant pixels" from the three RGB images, and

was used as a measure of shoot biomass. Outlier plants at each time point were detected

at each time point using the 1.5(IQR) rule. Outliers were plotted and those that exhibited

abnormal growth patterns were removed. A total of 2,604 plants remained for downstream

analyses.
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2.2 Predicting genomic breeding values

2.2.1 Random regression

Trajectories for PSA across the 20 time points was modeled using a RR model with Legendre

polynomials. The model is the same that was used for genomic prediction in Campbell et al.

(2018). The model is described below using the notation of Mrode (2014)

PSAtjk = µ+
2X

k=0

�(t)jk�k +
2X

k=0

�(t)jkujk +
1X

k=0

�(t)jksjk + etjk (1)

Here �k is the fixed second-order Legendre polynomial to model the mean PSA trajectory

for all lines, ujk and sjk are the kth random regression coefficients for additive genetic effect

and random experiment of line j, and etjk is the random residual. The order of � was selected

based on visual inspection of the PSA over the 20 days. The random additive genetic effects

(u) are modeled using a second-order Legendre polynomial, and the experiment effects (s)

are modeled using a first-order Legendre polynomial.

In matrix notation, the model is

y = Zu+Qs+ e, (2)

Here, y is PSA over the 20 days; Z and Q are incidence matrices corresponding to the

random additive genetic effect (u), and random experimental effect (s), respectively; and e

is the random residual error. Note that u and s are vectors of random regression coefficients

for the additive genetic and experimental effects, respectively.

For the random terms we assume u ⇠ N(0,G⌦⌦), s ⇠ N(0, I⌦P), and e ⇠ N(0, I⌦D).

Here, ⌦ is a 3 ⇥ 3 covariance matrix of random regression coefficients for additive genetic

effects; P is a 2⇥2 covariance matrix of random regression coefficients for experiment effect;
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and D is a diagonal matrix that allows for heterogeneous variances over the 20 time points.

Z and Q are covariable matrices where the ith row contains the orthogonal polynomials for

the ith day of imaging. Thus, Z is the covariable matrix for the additive genetic effects with

a dimension of t⇥ nk where nk is the order of Legendre polynomial for the additive genetic

effect multiplied by the number of individuals with phenotypic records and t refers to 20

days of records. Similarly, Q is a t ⇥ ns covariable matrix for the experiment effect, where

ns is the the order of the Legendre polynomial for the experiment effect (e.g. 1) times the

number of experiments (e.g. 3).

A genomic relationship matrix (G) was calculated using VanRaden (2008).

G =
WscW0

sc

m
(3)

Here, Wsc is a centered and scaled n ⇥ m matrix, where m is 33,674 single nucleotide

polymorphism (SNPs) and n is the 357 genotyped rice lines. Variance components and

gBLUPs were obtained using ASREML (Release 4.0) (Gilmour et al., 2015).

GEBVs at each time point can be obtained following to Mrode (2014). For line j at time

t, the GEBVs can be obtained by gBLUPjt = �tûj; where �t is the row vector of the matrix

of Legendre polynomials of order 2.

2.2.2 Single time point

The following mixed model approach was used to fit gBLUPs at each time point

y = Zu+Qs+ e, (4)

with all vectors and matrices defined as above. However note that u and s are vectors of

GEBV and experiment effects. Moreover, here we assume the random terms are as follows
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u ⇠ N(0,G�2
g), s ⇠ N(0, I�2

s), and e ⇠ N(0, I�2
e). A genomic relationship matrix (G) was

calculated as above and used for prediction.

2.3 Genome-wide association analyses

2.3.1 Estimating marker effects from GEBVs

GEBVs (ĝ) can be parameterized as ĝ = �̂Wsc, where Wsc is a matrix of marker genotypes,

as defined above, and �̂ is a vector of allele substitution effects. �̂ can be obtained using

BLUP

BLUP (�) = W0
sc(WscW

0
sc)

�1


I+G�1�

2
e

�2
g

��1

y. (5)

where �2
g and �2

e are genetic and residual variances, respectively.

Given BLUP of GEBVs is

BLUP (g) =


I+G�1�

2
e

�2
g

��1

y, (6)

BLUP of marker effects can be obtained using the following linear transformation

BLUP (�) = W0
sc(WscW

0
sc)

�1BLUP (g). (7)

This relationship was leveraged to solve for marker effects from breeding values for both

RR and single time point (TP) analyses.

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/435685doi: bioRxiv preprint 

https://doi.org/10.1101/435685
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3.2 Variance of SNP effects

The variance of marker effects at each time point obtained through TP or RR approaches

was calculated following the methods outlined by Duarte et al. (2014). Since we solve for

RR-derived GEBVs at each time point, the models for the TP and RR approaches can both

be parameterized as

y = Xb+ Zu+Qs+ e, (8)

where all vectors and matrices are defined as above except b, which is the average PSA at

each time point and X is an incidence matrix that relates the mean PSA to the observations.

The variance of SNP effects is obtained using

Var(�̂) = Var(W0
scG

�1ĝ) = W0
scG

�1Var(ĝ)G�1Wsc, (9)

and Var(ĝ) can be obtained using

Var(ĝ) = Var(g)�Caa = G�2
g �Caa. (10)

Substituting the expression above into the expression for Var(�̂) we obtain

Var(�̂) = W0
scG

�1(G�2
g �Caa)G�1Wsc (11)

= W0
scG

�1Wsc�
2
g �W0

scG
�1CaaG�1Wsc. (12)
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Here, Caa is obtained by inverting the coefficient matrix of the mixed model equation

outlined by Henderson (1984), and is provided below.

Caa = �2
e(I�X(X0X)�1X0 +G�1�)�1,� =

�2
e

�2
g

. (13)

2.3.3 Obtaining p-values for marker effects

SNP effects for SNPj at time t were divided by their corresponding Var(�̂) using

SNPjt =
�̂q

Var(�̂)
(14)

The p-values for marker effects were calculated as 1 minus the cumulative probability

density of the absolute value of SNPjt, and this number was subsequently multiplied by two.

This is summarized as follows.

p-valueSNPjt = 2(1� �(|SNPjt|)). (15)

Following Zhao et al. (2011) a threshold of 1⇥ 10�4 was used to declare significant loci.
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3 Results and Discussion

To identify loci associated with shoot growth trajectories in rice, we utilized a novel RR

approach that allows for trait trajectories to be modeled across time points. Shoot growth

trajectories were recorded for 357 diverse rice accessions over a period of twenty days during

early vegetative growth (13 - 33 DAT). A RR model was fitted to the shoot growth tra-

jectories, which included a fixed second-order Legendre polynomial, a random second-order

Legendre polynomial for the additive genetic effect, a first-order Legendre polynomial for the

environmental effect, and heterogeneous residual variances. GEBVs were predicted for each

accession at each of the 20 time points as described in Campbell et al. (2018), and was used

to estimate marker effects at each time point. Results from the RR were compared with a

conventional single time point approach in which GEBVs were predicted at each time point

using a conventional mixed model and were used to estimate marker effects.

3.1 RR-GWAS recovers more significant associations and increases

predicted marker effect sizes

With RR models, the incorporation of the covariance structure of multiple measurements

should lead to a more accurate partitioning of phenotypic variation into genetic and envi-

ronmental components, and improve genetic inference. To demonstrate the advantages of a

longitudinal genetic inference approach over a conventional TP approach, significant marker

effects were compared between the RR and TP approaches. A 89% increase in the number

of significant associations (p < 10�4) were observed with the RR approach compared to the

conventional TP model. A total of 717 non-redundant SNPs were found to be significantly

associated with shoot growth trajectories at one or more time points using the RR approach,

while 379 were found using the TP approach. Correlations in SNP effects estimated using

the two approaches showed a very high agreement (r = 0.847), however predicted marker ef-
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fects (�̂) obtained using the RR were considerably larger than the single time point analysis

(Fig 1). For instance, �̂ for the RR approach ranged from -309.6 to 366.3 across all days,

while for the TP approach �̂ ranged from -106.0 to 114.3. These differences are evident in

the Manhattan plots on days 1 and 20 pictured in Fig 2. Manhattan plots for each of the

20 time points is provided as supplemental Figures S1, S2, S3, S4. These results indicate

that the utilization of information across all time points with the RR improves the ability to

detect significant associations as well as increases the predicted marker effect sizes compared

to a model that utilizes information at only a single time point.

Figure 1: Correlation and distribution of SNP effects from random regression (RR) and

single time point (TP) analysis. (A) Correlation between SNP effects for the random regres-

sion (�RR) and single time point analyses (�TP ). SNPs highlighted in red are those that were

statistically significant in the RR approach (p < 1⇥ 10�4). The grey broken lines depicts a

one-to-one relationship between �RR and �TP . Distribution of SNP effects across all twenty

time points from the TP analyses (B) and RR analysis (C).

Figure 2: Manhattan plots for RR and TP approaches on days 1 and 20. (A,B) Manhat-

tan plots for RR approach on days 1 and 20, respectively. (C,D) Manhattan plots for TP

approach on days 1 and 20, respectively. |�| is shown on the y-axis. Statistically significant

SNPs are highlighted in red (p < 1⇥ 10�4).

These results suggest that the inclusion of time axis for genetic inference improve the

ability to recover significant associations. Several other studies have showed similar im-

provements in the estimation of variance components and genetic inference using different

approaches for longitudinal traits. For instance, De Andrade et al. (2002) showed a lon-

gitudinal approach that leveraged pedigree data and systolic blood pressure measurements
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collected at three time points improved heritability estimates compared with a single time

point approach. While in the context of GWAS, Das et al. (2011) used a novel functional

GWAS (f GWAS) approach and identified several new variants associated with body mass

index collected at four time points in humans. Moreover, using simulated data the authors

show that the statistical power exceeds 0.8 with a false positive rate of less than 0.1 for

sample sizes greater than 1,000. Similar gains for GWAS have been demonstrated in both

plants, animals, and humans (Xu et al., 2014; Campbell et al., 2015; Yi et al., 2015; Lund

et al., 2008).

3.2 RR-GWAS reveals the dynamic genetic architecture of shoot

growth responses in rice

For many traits, such as growth, genetic effects are expected to vary across time. These

temporal genetic effects can be effectively captured using a RR approach. To examine the

dynamic genetic architecture of shoot growth trajectories, significant SNPs from the RR

approach were selected and those within a 200 kb window were merged to a single QTL.

The 200 kb window that we used, corresponds to the average linkage disequilibrium in rice

(Zhao et al., 2011). For the RR approach, a total of 342 significant QTL were detected at

one or more time points, while for the TP approach only 142 significant QTL were detected.

To dissect the dynamic genetic architecture of shoot growth in rice, significant QTLs

were classified into four categories: persistent QTL (QTL detected at all 20 time points),

long-duration QTL (those with significant associations at more than 12, but less than 20

time points), mid-duration (QTL with associations at 6 - 12 time points), and short-duration

QTL (those with associations at fewer than 6 time points). Of these categories, far more

persistent QTLs were detected, with a total of 128 observed at all 20 time points. Short

duration QTL also showed a large number of significant QTL (127), while relatively few were
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detected for long and mid-duration QTL (32 and 55 QTL, respectively). The frequency of

significant QTL for each category were calculated at each time point and plotted as a func-

tion of time (Fig S5). For all classes, a large number of QTL were detected on the first and

last days (day 1 and day 20, respectively). For instance, all long-duration QTL were present

on days 1, 7 and 17-20. While for mid-duration QTL, 94% were detected on the first day of

imaging, 93% on the fifth day, and 87% on the last day of imaging. Interestingly, for both

short and mid-duration QTLs, less than 10% were detected from day 9-16. The p-values

across all 20 time points for a subset of highly significant QTL are provided in Figure 3.

Collectively, these results indicate that the shoot growth is regulated by numerous loci that

have both transient and persistent effects throughout early vegetative growth.

Figure 3: Heatmap showing time-specific QTL. A subset of significant QTL identified with

RR approach are pictured. The x-axis indicates the days of imaging and the y-axis shows the

chromosome and intervals for the QTL. For each QTL, the most significant SNP within the

interval at each time point were selected. The grey color scale indicates a non-significant asso-

ciation, while the red color scale indicates a statistically significant association (p < 1⇥10�4).

The importance of time-specific QTL has been demonstrated in both plants and animals

(Moore et al., 2013; Bac-Molenaar et al., 2015; Campbell et al., 2017, 2015). For instance,

using a single time point linkage mapping approach, Moore et al. (2013) showed several time-

specific QTL associated with root gravitropic responses in Arabidopsis. Moreover, many of

these QTL harbored candidate genes known to influence root growth, root gravitropism,

or hormone transport and signaling. Bac-Molenaar et al. (2015) collected rosette growth

trajectories over a period of 20 days for a diverse panel of 324 Arabidopsis accessions. A

growth function was fit for each accession, and model parameters were used for GWAS. The

authors showed that many associations detected for model parameters were also detected at
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a few time points using a single time point GWAS approach. While few longitudinal studies

have been performed in rice, our previous studies have identified time-specific QTL for shoot

growth and salt stress responses (Campbell et al., 2015, 2017).
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4 Conclusion

New phenotyping platforms has provided the plant science community with a suite of tools

to collect high-dimensional temporal phenotypic data. With these temporal dataset, quan-

titative genetic approaches that can leverage the covariance across time points must be fully

utilized to realize the potential of these data for genomic prediction and genetic inference.

Here, we show that the RR framework that has been extensively developed in animal breed-

ing can be extended to genetic inference in plants. This approach can effectively be used

to identify QTL with time-specific effects. To date, this is the first application of random

regression models for genetic inference of a longitudinal trait in a major crop.
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Figure 1: Correlation and distribution of SNP effects from random regression (RR) and single
time point (TP) analysis. (A) Correlation between SNP effects for the random regression
(�RR) and single time point analyses (�TP ). SNPs highlighted in red are those that were
statistically significant in the RR approach (p < 1⇥ 10�4). The grey broken lines depicts a
one-to-one relationship between �RR and �TP . Distribution of SNP effects across all twenty
time points from the TP analyses (B) and RR analysis (C).
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Figure 2: Manhattan plots for RR and TP approaches on days 1 and 20. (A,B) Manhattan
plots for RR approach on days 1 and 20, respectively. (C,D) Manhattan plots for TP
approach on days 1 and 20, respectively. |�| is shown on the y-axis. Statistically significant
SNPs are highlighted in red (p < 1⇥ 10�4).
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Figure 3: Heatmap showing time-specific QTL. A subset of significant QTL identified with
RR approach are pictured. The x-axis indicates the days of imaging and the y-axis shows
the chromosome and intervals for the QTL. For each QTL, the most significant SNP within
the interval at each time point were selected. The grey color scale indicates a non-significant
association, while the red color scale indicates a statistically significant association (p <
1⇥ 10�4).
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