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Abstract23

Drawing biological inferences from large data generated to dissect the genetic basis of com-24

plex traits remains a challenge. Since multiple phenotypes likely share mutual relationships,25

elucidating the interdependencies among economically important traits can accelerate the26

genetic improvement of plants and animals. A Bayesian network depicts a probabilistic di-27

rected acyclic graph representing conditional dependencies among variables. This study aims28

to characterize various phenotypes in rice (Oryza sativa) via confirmatory factor analysis and29

Bayesian network. Confirmatory factor analysis under the Bayesian treatment hypothesized30

that 48 observed phenotypes resulted from six latent variables including grain morphology,31

morphology, flowering time, physiology (e.g., ion content), yield, and morphological salt re-32

sponse. This was followed by studying the genetics of each latent variable. Bayesian network33

structures involving the genomic component of six latent variables were established by fitting34

four different algorithms. Negative genomic correlations were obtained between salt response35

and yield, salt response and grain morphology, salt response and physiology, and morphology36

and yield, whereas a positive correlation was obtained between yield and grain morphology.37

There were four common directed edges across the different Bayesian networks. Physiolog-38

ical components influenced the flowering time and grain morphology, and morphology and39

grain morphology influenced yield. This work suggests that the Bayesian network coupled40

with factor analysis can provide an effective approach to understand the interdependence41

patterns among phenotypes and to predict the potential influence of external interventions or42

selection related to target traits in the high-dimensional interrelated complex traits systems.43
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Introduction44

Genetic correlation constitutes a major aspect of quantitative genetics (Lush, 1948; Falconer45

and Mackay, 1996). In its simplest form, a single gene or mutation may affect several bio-46

logical pathways leading to correlated phenotypes. This phenomenon, known as pleiotropy,47

induces genetic correlations among multiple traits at the population level. In plant and48

animal breeding, more than one phenotype is generally assessed to account for the overall49

performance of individuals. Because multiple phenotypes may exhibit mutual relationships,50

knowledge of the interdependence among economically important traits can bring more ef-51

fective selection and genetic improvement in systems with complex traits. In a standard52

quantitative genetic analysis, multivariate phenotypes can be modeled through multi-trait53

models (MTM) of Henderson and Quaas (1976) or some genomic counterparts (e.g., Calus54

and Veerkamp, 2011; Jia and Jannink, 2012) by leveraging genetic or environmental corre-55

lations among traits. In particular, MTM has been useful in deriving genetic correlations56

and enhancing the prediction accuracy of breeding values for traits with low heritablity via57

joint modeling with one or more genetically correlated, highly heritable traits (Mrode, 2014).58

However, genetic selection for breeding requires causal assumptions, as the effects of exter-59

nal interventions on interrelated complex traits cannot be predicted on the basis of these60

associations (Pearl, 2009). This modeling step is essential to verify that predictors consid-61

ered for selection accurately reflect genetic causal effects (Valente et al., 2015). Although62

Bayesian network (BN) analysis or causal structure inference from observational data has63

been an active research area in plant and animal breeding (Valente et al., 2010; Töpner et al.,64

2017), the primary challenge associated with multivariate analysis is that computation can be65

untenable. This is because the number of estimated parameters within the model increases66

with the increasing number of phenotypes and the difficulty of interpreting interrelationships67

among multiple phenotypes. This is a particularly persistent challenge in plant breeding,68

owing to the availability of high-dimensional and diverse phenotypes currently being gener-69
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ated via high-throughput, image-based phenomics platforms in addition to the conventional,70

non-image phenotypes (Awada et al., 2018).71

One approach to characterize high-dimensional phenotypes is by using factor analysis,72

which facilitates modeling correlated responses through underlying unobserved latent vari-73

ables, which are also known as factors or modules (de los Campos and Gianola, 2007).74

Confirmatory factor analysis, a variant of factor analysis, hypothesizes that observed pheno-75

types result from lower-dimensional latent variables specified by prior biological knowledge76

(Jöreskog, 1969). These latent variables underlie observed phenotypes and can be evalu-77

ated for how well the data support the hypothesis. For instance, Peñagaricano et al. (2015)78

performed confirmatory factor analysis in swine to derive five latent variables from 19 pheno-79

typic traits and inferred BN structures among those latent variables, thereby demonstrating80

the potential of this approach.81

This study aimed to obtain a first glimpse of the utility of graphical modeling to char-82

acterize a wide range of phenotypes in rice by studying the genetics of each latent variable.83

First, we constructed latent variables, using prior biological knowledge obtained from the84

literature. Then we connected the observed high-dimensional phenotypes with these to85

establish latent variables via Bayesian confirmatory factor analysis (BCFA) to reduce the86

dimensions of the dataset. Further, factor scores computed from BCFA were considered87

new phenotypes for a Bayesian multivariate analysis to separate breeding values from noise.88

This was followed by adjustment of breeding values via Cholesky decomposition to eliminate89

the dependencies introduced by genomic relationships. Finally, the adjusted breeding values90

were considered inputs to assess the causal network structure between latent variables by91

conducting a Gaussian BN analysis. This study is the first, to our knowledge, in rice to92

characterize various phenotypes with graphical modeling such as BCFA and BN.93
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Materials and Methods94

Sources of phenotypic and genotypic data95

The rice dataset comprised n = 413 accessions sampled from six subpopulations: temperate96

japonica (92), tropical japonica (85), indica (77), aus (52), aromatic (12), and admixture97

of japonica and indica (56). We used t = 48 phenotypes and data regarding 44,000 single-98

nucleotide polymorphisms (SNP). Of those, 34 phenotypic records were reported in Zhao99

et al. (2011). The remaining phenotypes were assessed from the abiotic stress experiments100

conducted in Campbell et al. (2017a). The detailed descriptions of the phenotypes used101

can be found in Zhao et al. (2011) and Campbell et al. (2017a), and are summarized in102

Supplementary Table S1. After removing SNP markers with minor allele frequency less than103

0.05, 374 accessions and 33,584 markers were used for further analysis.104

Bayesian confirmatory factor analysis105

A confirmatory factor analysis under the Bayesian framework was performed to model 48

phenotypes. The number of factors and the pattern of phenotype-factor relationships need

to be specified in BCFA prior to model fitting. We constructed six latent variables (q = 6)

from previous reports (Acquaah, 2009; Zhao et al., 2011; Campbell et al., 2017a). The

six latent variables derived from our analysis represent the grain morphology, morphology,

flowering time, physiology, yield, and salt response (Table S1). Each latent variable captures

common signals spanning genetic and environmental effects across all its phenotypes. The

latent variables, which determine the observed phenotypes can be modeled as

T = ΛF + s,
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where T is the t × n matrix of observed phenotypes, Λ is the t × q factor loading matrix,

F is the q × n latent variables matrix, and s is the t × n matrix of specific effects. Here,

Λ maps latent variables to the observed variables and can be interpreted as the extent of

contribution each latent variable to phenotype. This can be derived by solving the following

variance-covariance model.

var(T) = ΛΦΛ′ + Ψ,

where Φ is the variance of latent variables, and Ψ is the variance of specific effects (Brown,106

2014). Six latent variables were assumed to account for the covariance in the observed107

phenotypes. Moreover, latent variables were assumed to be correlated with each other. Prior108

distributions were assigned to all unknown parameters. The non-zero coefficient within factor109

loading matrix Λ was assumed to follow a Gaussian distribution with mean of 0 and variance110

of 0.01. The variance-covariance matrix Φ was assigned an inverse Wishart distribution111

with a 6 × 6 identity scale matrix I66 and a degree freedom of 7, Φ ∼ W−1(I66, 7) and an112

inverse Gamma distribution with scale parameter 1 and shape parameter 0.5 was assigned113

to Ψ ∼ Γ−1(1, 0.5).114

We employed the blavaan R package (Merkle and Rosseel, 2018) jointly with JAGS115

(Hornik et al., 2003) to fit the above BCFA. The blavaan runs the runjags R package (Den-116

wood, 2016) to summarize the Markov chain Monte Carlo (MCMC) and samples unknown117

parameters from the posterior distributions. Three MCMC chains, each of 5,000 samples118

with 2,000 burn-in, were used to infer the unknown model parameters. The convergence of119

the parameters was investigated with trace plots and potential scale reduction factor (PSRF;120

Gelman and Rubin, 1992). The PSRF computes the difference between estimated variances121

among multiple Markov chains and estimated variances within the chain. A large difference122

indicates non-convergence and may require additional Gibbs sampling.123

Subsequently, the posterior means of factor scores (F), which reflect the contribution of124
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latent variables to each accession were estimated. Within each draw of Gibbs sampling, F125

was sampled from the conditional distribution of p(F|θ,T), where θ refers to the unknown126

parameters in Λ, Φ, and Ψ. This conditional distribution was derived with data augmenta-127

tion (Tanner and Wong, 1987) assuming F as missing data (Lee and Song, 2012).128

Multivariate genomic best linear unbiased prediction129

We fitted a Bayesian multivariate genomic best linear unbiased prediction to separate breed-

ing values from population structure and noise in the six factor scores computed previously.

F = µ + Xb + Zu + ε,

where µ is the vector of intercept, X is the incidence matrix of covariates, b is the vector of130

covariate effects, Z is the incidence matrix relating accessions with additive genetic effects, u131

is the vector of additive genetic effects, and ε is the vector of residuals. The incident matrix132

X included subpopulation information (temperate japonica, tropical japonica, indica, aus,133

aromatic, and admixture), as the rice diversity panel used herein shows a clear substructure134

(Zhao et al., 2011).135

A flat prior was assigned to µ and b, and the joint distribution of u and ε follows

multivariate normal u

ε

 ∼ N


0

0

 ,

Σu ⊗G 0

0 Σε ⊗ I


 ,

where G represents the second genomic relationship matrix of VanRaden (2008), I is the136

identity matrix, Σu and Σε refer to 6×6 dimensional genetic and residual variance-covariance137

matrices, respectively. An inverse Wishart distribution with a 6×6 identity scale matrix of I66138

and a degree of freedom 6 was assigned as prior for Σu,Σe ∼ W−1(I66, 6). These parameters139

were selected so that relatively uninformative priors were used. The Bayesian multivariate140
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genomic best linear unbiased prediction model was implemented using the MTM R pack-141

age (https://github.com/QuantGen/MTM). Posterior mean estimates of genetic correlation142

between latent variables and predicted breeding values (û) were then obtained.143

Sample independence in the Bayesian network144

Theoretically, BN learning algorithms assume sample independence. In the multivariate

genomic best linear unbiased prediction, the residuals between phenotypes were assumed

independent through I374x374. However, phenotypic dependencies were introduced by the G

matrix for the additive genetic effects, thereby potentially serving as a confounder. Thus, a

transformation of û was carried out to derive an adjusted û∗ by eliminating the dependencies

in G. For a single trait model, the adjusted û∗ can be computed by premultiplying û by

L−1, where L is a lower triangular matrix derived from the Choleskey decompostion of G

matrix (G = LL
′
). Since u ∼ N (0,Gσ2

u), the distribution of û∗ follows N (0, Iσ2
u) (Vazquez

et al., 2010)

V ar(u∗) = V ar(L−1u)

= L−1V ar(u)(L−1)
′

= L−1G(L−1)
′
σ2
u

= L−1LL
′
(L′)−1σ2

u

= Iσ2
u.

This transformation can be extended to a multi-traits model by defining u∗ = M−1u, where145

M−1 = Iqq ⊗ L−1 (Töpner et al., 2017). Under the multivariate framework, u follows146

N (0,Σu ⊗G) and the variance of u∗ is147
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V ar(u∗) = V ar(M−1u)

= (Itt ⊗ L−1)(Σu ⊗G)(Iqq ⊗ L−1)
′

= (Iqq ⊗ L−1)(Σu ⊗ LL
′
)(Iqq ⊗ L−1)

′

= Σu ⊗ Inn,

where L−1LL
′
(L−1)

′
= Inn. This adjusted û∗ was used to learn BN structures between148

predicted breeding values.149

Bayesian network150

A BN depicts the joint distribution of random variables regarding their probabilistic condi-

tional dependencies (Scutari and Denis, 2014)

BN = (G,XV ),

where G represents a directed acyclic graph (DAG) = (V , E ) with nodes (V ) connected by

one or more edges (E ) conveying the probabilistic relationships and the random vector XV =

(X1, ..., XK) is K random variables. The joint probability distribution can be factorized as

P (XV ) = P (X1, ..., XK) =
K∏
v=1

P (Xv|Pa(Xv)),

where Pa(Xv) denotes a set of parent nodes of child node Xv. The DAG and joint prob-151

ability distribution are governed by the Markov condition, which states that every random152

variable is independent of its non-descendants conditioned on its parents. A BN is known153

as a Gaussian BN, when all variables or phenotypes are defined as marginal or conditional154

Gaussian distribution as in the present study.155
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The adjusted breeding values û∗ were used to infer a genomic network structure among156

the aforementioned six latent variables. There are three types of structure-learning algo-157

rithms for BN: constraint-based algorithms, score-based algorithms, and a hybrid of these158

two (Scutari and Denis, 2014). The constraint-based algorithms can be originally traced159

to the inductive causation algorithm (Verma and Pearl, 1991), which uses conditional in-160

dependence tests for network inference. Briefly, the first step is to identify a d-separation161

set for each pair of nodes and confer an undirected edge between the two if they are not162

d-separated. The second step is to identify a v-structure for each pair of non-adjacent nodes,163

where a common neighbor is the outcome of two non-adjacent nodes. In the last step, com-164

pelled edges were identified and oriented, where neither cyclic graph nor new v-structures165

are permitted. The score-based algorithms are based on heuristic approaches, which first166

assign a goodness-of-fit score for an initial graph structure and then maximize this score by167

updating the structure (i.e., add, delete, or reverse the edges of initial graph). The hybrid168

algorithm includes two steps, restrict and maximize, which harness both constrain-based and169

score-based algorithms to construct a reliable network. In this study, the two score-based170

(Hill Climbing and Tabu) and two hybrid algorithms (Max-Min Hill Climbing and General171

2-Phase Restricted Maximization) were used to perform structure learning.172

We quantified the strength of edges and uncertainty regarding the direction of networks,173

using 500 bootstrapping replicates with a size equal to the number of accessions and per-174

formed structure learning for each replicate in accordance with Scutari and Denis (2014).175

Non-parametric bootstrap resampling aimed at reducing the impact of the local optimal176

structures by computing the probability of the arcs and directions. Subsequently, 500 learned177

structures were averaged with a strength threshold of 85% or higher to produce a more robust178

network structure. This process, known as model averaging, returns the final network with179

arcs present in at least 85% among all 500 networks. Candidate networks were compared180

on the basis of the Bayesian information criterion (BIC) and Bayesian Gaussian equivalent181

score (BGe). The BIC accounts for the goodness-of-fit and model complexity, and BGe aims182
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at maximizing the posterior probability of networks per the data. All BN were learned via183

the bnlearn R package (Scutari, 2010). In bnlearn, the BIC score is rescaled by -2, which184

indicates that the larger BIC refers to a preferred model.185

Data availability186

Genotypic data regarding the rice accessions can be downloaded from the rice diversity panel187

website (http://www.ricediversity.org/). Phenotypic data used herein are available in188

Zhao et al. (2011) and Campbell et al. (2017b).189
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Results190

Latent variable modeling191

The BCFA model grouped the observed phenotypes into the underlying latent variables192

on the basis of prior biological knowledge, assuming these latent variables determine the193

observed phenotypes. This allowed us to study the genetics of each latent variable. A194

measurement model derived from BCFA evaluating the six latent variables is shown in Figure195

1. Forty-eight observed phenotypes were hypothesized to result from the six latent variables:196

7 for flowering time, 14 for morphology, 5 for yield, 11 for grain morphology, 6 for physiology,197

and 5 for salt response. The convergence of the parameters was confirmed graphically with198

the trace plots and a PSRF value less than 1.2 (Merkle and Rosseel, 2018).199

The six latent factors showed strong contributions to the 48 observed phenotypes, with200

standardized regression coefficients ranging from -0.668 to 0.980 for flowering time, -0.112 to201

0.903 for morphology, -0.113 to 0.977 for yield, -0.501 to 0.986 for grain morphology, -0.016202

to 0.829 for physiology, and 0.011 to 0.929 for salt response. The latent factor flowering time203

showed a strong positive contribution to flowering time in Arkansas (Fla) and Flowering204

time in Arkansas in 2007 (Fla7), indicating that larger values for the latent factor can be205

interpreted as a greater number of days from sowing to emergence of the inflorescence.206

The latent factor morphology showed the largest positive contributions to traits describing207

height during the vegetative stage (e.g. height to newest ligule in salt (Hls), height to208

newest ligule in control (Hlc), height to the tip of first fully expanded leaf in salt (Hfs), and209

height to tip of first fully expanded leaf in control (Hfc)), suggesting that this latent factor210

is an overall representation of plant size. Yield showed large positive contributions to the211

observed phenotypes primary panicle branch number (Ppn) and seed number per panicle212

(Snpp), suggesting that larger values for yield indicate a higher degree of branching and seed213

number. Observed phenotypes describing seed size (e.g. seed volume (Sv) and brown rice214
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volume (Bvl)) were most strongly associated with grain morphology. The latent factor ionic215

components of salt stress showed strong positive contributions to two observed phenotypes216

that quantify the ionic components of salt stress (shoot Na+:K+ (Kslm) and shoot Na+
217

(Nas)), indicating that higher values for the latent factor result in greater shoot Na+ and218

Na+:K+. Finally, the latent factor describing morphological salt response showed strong219

positive contributions to the observed phenotype describing the effect of salt treatment on220

plant height (ratio of height to tip of newest fully expanded leaf in salt to that of control221

plants (Hfr)), thus larger values for the latent factor may indicate a more tolerant growth222

response to salinity.223

Genomic correlation among latent variables224

To understand the genetic relationships between latent variables, genomic correlation analy-225

sis was performed. Genomic correlation is due to pleiotropy or linkage disequilibrium between226

quantitative trait locus (QTL). The genomic correlations among latent variables are shown227

in Figure 2. Negative correlations were observed between salt response (Slr) and all other228

five latent variables. In particular, flowering time (-0.5), yield (-0.54), and grain morphology229

(-0.74) were moderately correlated with morphological salt response. These results suggest230

that accessions that harbor alleles for more tolerant morphological salt responses may also231

have alleles associated with longer flowering times, smaller seeds, and low yield. Similarly,232

a moderate negative correlation was observed between morphology and yield (-0.56) and233

between morphology and grain morphology (-0.31). Thus, accessions with alleles associated234

with large plant size may also have alleles that result in low yield, small grain volume, and235

lower shoot Na+ and Na+:K+. In contrast, a positive moderate correlation was observed236

between grain morphology and yield (0.49) and between grain morphology and ionic com-237

ponents of salt stress (0.4). Thus, selection for large grain may result in improved yield, and238

higher shoot Na+ and Na+:K+.239

14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/435792doi: bioRxiv preprint 

https://doi.org/10.1101/435792
http://creativecommons.org/licenses/by-nd/4.0/


Bayesian network240

To infer the possible causal structure between latent variables, BN was performed. Prior241

to BN, the normality of latent variables was assessed using histogram plots combined with242

density curves as shown in Figure S1. Overall, all the six latent variables approximately243

followed a Gaussian distribution.244

The Bayesian networks learned with the score-based and hybrid algorithms are shown245

in Figures 3, 4, 5, and 6. The structures of BN were refined by model averaging with 500246

networks from bootstrap resampling to reduce the impact of local optimal structures. The247

labels of the arcs measure the uncertainty of the arcs, corresponding to strength and direc-248

tion (in parenthesis). The former measures the frequency of the arc presented among all 500249

networks from the bootstrapping replicates and the latter is the frequency of the direction250

shown conditional on the presence of the arc. We observed minor differences in the structures251

presented within and across the two types of algorithms used. In general, small differences252

were observed within algorithm types compared to those across algorithms. The two score-253

based algorithms produced a greater number of edges than two hybrid algorithms. In Figure254

3, the Hill Climbing algorithm produced seven directed connections among the six latent255

variables. Three connections were indicated towards flowering time from morphological salt256

response, ionic components of salt stress, and morphology, and two edges to yield from mor-257

phology and from grain morphology. Other two edges were observed from ionic components258

of salt stress to grain morphology and from grain morphology to morphological salt response.259

A similar structure was generated by the Tabu algorithm, except that the connection be-260

tween salt response and grain morphology presented an opposite direction (Figure 4). The261

Max-Min Hill Climbing hybrid algorithm yielded six directed edges from morphological salt262

response to grain morphology, from ionic components of salt stress to grain morphology, from263

ionic components of salt stress to flowering time, from flowering time to morphology, from264

morphology to yield, and from grain morphology to yield (Figure 5). An analogous structure265

15

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/435792doi: bioRxiv preprint 

https://doi.org/10.1101/435792
http://creativecommons.org/licenses/by-nd/4.0/


with the only difference observed in the directed edge from morphology to flowering time was266

inferred with the General 2-Phase Restricted Maximization algorithm as shown in Figure 6.267

Across all four algorithms, there were four common directed edges: from ionic components268

of salt stress to flowering time and to grain morphology, and from morphology and grain269

morphology to yield. The most favorable network was considered the one from the Tabu270

algorithm, which returned the largest network score in terms of BIC (1086.61) and BGe271

(1080.88). Collectively, these results suggest that there may be a direct genetic influence of272

morphology and grain morphology on yield, and physiological components of salt tolerance273

on grain morphology and flowering time.274
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Discussion275

This study is based on the premise that most phenotypes interact to greater or lesser de-276

grees with each other through underlying physiological and molecular pathways. While these277

physiological pathways are important for the development of agronomically important char-278

acteristics, they are often unknown or difficult to assess in large populations. The approach279

utilized here leverages phenotypes that can be readily assessed in large populations to quan-280

tify these underlying unobserved phenotypes, and elucidates the relationships between these281

variables.282

Understanding the behaviors among phenotypes in the complex traits is critical for genetic283

improvement of agricultural species (Hickey et al., 2017). Graphical modeling offers an av-284

enue to decipher bi-directional associations or probabilistic dependencies among variables of285

interest in plant and animal breeding. For instance, BN and L1-regularized undirected net-286

work can be used to model interrelationships of linkage disequilibrium (LD) (Morota et al.,287

2012; Morota and Gianola, 2013) or phenotypic, genetic, and environmental interactions288

(Xavier et al., 2017) in a systematic manner. Importantly, MTM elucidates both direct and289

indirect relationships among phenotypes. Inaccurate interpretation of these relationships290

may substantially bias selection decisions (Valente et al., 2015; Gianola et al., 2015). Thus,291

we applied BCFA to reduce the dimension of the responses by hypothesizing 48 manifest292

phenotypes originated from the underlying six constructed latent variables as shown in Fig-293

ure 1 assuming that these latent traits are most important, followed by application of BN to294

infer the structures among the six biologically relevant latent variables (Figures 3,4, 5, and295

6). The BN represents the conditional dependencies between variables. Care must be taken296

in interpreting these relationships as a causal effect. Although a good BN is expected to297

describe the underlying causal structure per the data, when the structure is learned solely298

on the basis of the observed data, it may return multiple equivalent networks that describe299

the data well. In practice, searching such a causal structure with observed data needs three300
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additional assumptions (Scutari and Denis, 2014): 1) each variable is independent of its301

non-effects (i.e., direct and indirect) conditioned on its direct causes, 2) the probability dis-302

tribution of variables is supported by a DAG, where the d-separation in DAG provides all303

dependencies in the probability distribution, and 3) no additional variables influence the304

variables within the network. Although it may be difficult to meet these assumptions in the305

observed data, a BN is equipped with suggesting potential causal relationships among la-306

tent variables, which can assist in exploring data, making breeding decisions, and improving307

management strategies in breeding programs (Rosa et al., 2011).308

Biological meaning of latent variables and their relation-309

ships310

We performed BCFA to summarize the original 48 phenotypes with the six latent variables.311

The number of latent variables and which latent variables load onto phenotypes were deter-312

mined from the literature. The latent variable morphological salt response (Slr) contributed313

strongly to salt indices for shoot biomass, root biomass, and two indices for plant height.314

Thus, morphological salt response can be interpreted as the morphological responses to315

salinity stress, with higher values indicating a more tolerant growth response. The latent316

variable yield is a representation of overall grain productivity, and contributed strongly to317

the observed phenotypes primary panicle branch number, seed number per panicle, and pan-318

icle length. The positive loading scores on these observable phenotypes indicates that more319

highly branched, productive panicles will have higher values for yield. Seed width, seed vol-320

ume, and seed surface area contributed significantly to the latent variable grain morphology321

(Grm). Therefore, these results indicate that the grain morphology is a summary of the322

overall shape of the grain, where high values represent large, round grains, while low values323

represent small, slender grains. Considering the grain characteristics of rice subpopulations,324

temperate japonica accessions are expected to have high values for grain morphology, while325
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indica accessions have lower values for grain morphology. Latent variable morphology (Mrp)326

is a representation of plant biomass during the vegetative stage (28-day-old plants). Shoot327

biomass, root biomass, and two metrics for plant height contributed largely to morphol-328

ogy, suggesting that accessions with high values for morphology are tall plants with a large329

biomass.330

Genomic correlation analysis among the six latent variables showed moderate correlations331

among several pairs. These genetic correlations can either be caused by linkage or pleitropy.332

The former is likely to prevail in species with high LD, which is the case in rice where333

LD ranges from 100 to 200kb (Huang et al., 2010). A strong negative relationship was334

observed between morphological salt response and three other latent variables. For instance,335

a negative correlation between morphological salt response and yield indicates that accessions336

of samples harboring alleles for superior morphological salt responses (e.g. those that are337

more tolerant) tend to also harbor alleles for poor yield. The rice diversity panel we used338

is a representative sample of the total genetic diversity within cultivated rice and contains339

many unimproved traditional varieties and modern breeding lines (Eizenga et al., 2014).340

While traditional varieties exhibit superior adaptation to abiotic stresses, they often have341

very poor agronomic characteristics including low yield, late flowering, and high photoperiod342

sensitivity (Thomson et al., 2009, 2010). Moreover, the indica and japonica subspecies have343

contrasting salt responses and very different grain morphology. Japonica accessions tend to344

have short, round seeds and are more sensitive to salt stress, while indica accessions have345

long, slender grains and often are more salt tolerant (Zhao et al., 2011; Campbell et al.,346

2017a). The negative relationship observed between salt response and grain morphology347

suggests that lines that harbor alleles for high grain morphology (e.g., large, round grains)348

tend to also harbor alleles for a tolerant growth response to salt stress. However, no studies349

have yet reported an association between alleles for grain morphology and morphological350

salt response. Therefore, it remains to be addressed whether this relationship is due to LD351

or pleitropy.352
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Genetic correlations observed between other latent variables may suggest a pleiotropic353

effect among loci. For instance, a moderate negative relationship was observed between354

morphological salt response and ionic components of salt stress, indicating that accessions355

harboring alleles associated with superior morphological salt response also tend to harbor356

alleles for reduced ion content under salt stress. The relationship between salt tolerance,357

measured in terms of growth or yield, and Na+ and Na+:K+ has been a documented for358

decades (reviewed by Munns and Tester (2008)). Moreover, natural variation for Na+ trans-359

porters has been utilized to improve growth and yield under saline conditions in rice and360

other cereals (Ren et al., 2005; Byrt et al., 2007; Horie et al., 2009; Munns et al., 2012;361

Campbell et al., 2017a). Therefore, the negative genetic relationships observed between362

morphological salt response and ion content may be due to the pleiotropic effects of some363

loci.364

The genomic relationships among latent variables including morphology, yield, and grain365

morphology may have resulted from the selection of alleles associated with good agronomic366

characteristics. A moderate positive relationship was observed between yield and grain mor-367

phology, suggesting that alleles that positively contribute to productive panicles also may368

contribute to large, round grains. Furthermore, the negative genomic correlation observed be-369

tween morphology and yield indicates that alleles negatively influencing total plant biomass370

also have a positive contribution to traits for productive panicles. This genomic relationship371

may reflect the genetics of harvest index, which is defined as the ratio of grain yield to total372

biomass. Over the past 50 years, rice breeders have selected high harvest index, resulting373

in plants with short compact morphology and many highly productive panicles (Hay, 1995;374

Peng et al., 2008).375

Although BCFA may yield biologically meaningful results, a potential limitation of BCFA376

is that we assumed each phenotype does not measure more than one latent variable. This377

assumption may not always strictly concur with the observational data. Therefore, further378

studies are required to allow each phenotype to potentially load onto multiple factors in the379
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BCFA framework. An alternative approach is to derive the number of latent variables and380

determine which latent variables load onto phenotypes directly from observed data, using381

exploratory factor analysis. This approach was not pursued here because accurate estimation382

of unknown parameters in the exploratory factor analysis requires a large sample size, which383

was not the case herein (Brown, 2014).384

Bayesian network of latent variables385

The BN is a probabilistic DAG, which represents the conditional dependencies among phe-386

notypes. The genomic correlation among latent variables described in Figure 2 does not387

inform the flow of genetic signals nor distinguish direct and indirect associations, whereas388

BN displays directions between latent variables and separate direct and indirect associations.389

Therefore, the BN describes the possibility that other phenotypes will change if one pheno-390

type is intervened (i.e., selection). However, caution is required to interpret this network as391

a causal effect, as the causal BN requires more assumptions, which are usually difficult to392

meet in observational data (Pearl, 2009).393

Four common edges or consensus subnetworks across the four BN may be the most394

reliable substructure of latent variables and may describe the dependence between agronomic395

traits (Figures 3, 4, 5, and 6). For example, edges from grain morphology to yield and396

morphology to yield can be interpreted as final grain productivity is dependant on specific397

vegetative characteristics as well grain traits. This is because yield, which represents the398

overall grain productivity of a plant, depends on morphological characteristics such as the399

degree of tillering, an architecture that allows the plant to efficiently capture light and400

carbon, and a stature that is resistant to lodging, the degree of panicle branching, as well401

as specific grain characteristics such as seed volume and shape. Moreover, there is a direct402

biological linkage between specific vegetative architectural traits such as tillering and plant403

height, and yield related traits such as panicle branching and number of seeds per panicle.404

The degree of branching during both vegetative and reproductive development is dependant405
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on the development and initiation of auxiliary meristems. Several genes have been identified406

in this pathway and have shown to have pleiotropic effects on tillering and panicle branching407

(reviewed by Liang et al. (2014)). For instance, OsSPL14 has been shown to be an important408

regulator of auxiliary branching in both vegetative and reproductive stages in rice (Jiao409

et al., 2010; Miura et al., 2010). Moreover, other genes such as OsGhd8 have been reported410

to regulate other morphological traits such as plant height and yield through increase panicle411

branching (Yan et al., 2011). The biological importance of these dependencies can also be412

illustrated by viewing them in the context of genetic improvement, as selection for specific413

architectural traits (represented by the latent variable morphology) and grain characteristics414

have traditionally been used as traits to improve rice productivity in many conventional415

breeding programs (Redona and Mackill, 1998; Huang et al., 2013).416

While the above example provides a plausible network structure between latent variables,417

edges from ionic components of salt stress to flowering time and to grain morphology are an418

example of instances where caution should be used to infer causation. As mentioned above,419

there is an inherent difference in salt tolerance and grain morphological traits between the420

indica and japonica subspecies. The edges observed for these two latent variables (ionic421

components of salt stress and grain morphology) in BN may be driven by LD between alleles422

associated with grain morphology and alleles for salt tolerance rather than pleitropy. Thus,423

given the current data set, genetic effects for grain morphology may still be conditionally424

dependant on ionic components of salt stress and the BN may be true, even if there is no425

direct overlap in the genetic mechanisms for the two traits.426

We found that there are some uncertain edges among BN. For instance, direction from427

salt response to grain morphology is supported by 65% (Figure 4), 58% (Figure 5 ), and 58%428

(Figure 6) bootstrap sampling, whereas the opposite direction is supported by 56% bootstrap429

sampling (Figure 3). An analogous uncertainty was also observed between morphology and430

flowering time, i.e., the path from morphology to flowering time was supported 60% (Figure431

3), 51% (Figure 4), and 52% (Figure 6), while the reverse direction was supported 51%432
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(Figure 6) upon bootstrapping. In addition, the two score-based algorithms captured edges433

between morphological salt response and flowering time with 70% and 76% bootstrapping434

evidence. However, this connection was not detected in the two hybrid algorithms. In435

general, inferring the direction of edges was harder than inferring the presence or absence of436

undirected edges. Finally, the whole structures of BN were evaluated in terms of the BIC437

score and BGe. Ranking of the networks was consistent across BIC and BGe and the two438

score-based algorithms produced networks with greater goodness-of-fit than the two hybrid439

algorithms. The optimal network was produced by the Tabu algorithm. This is consistent440

with the previous study reporting that the score-based algorithm produced a better fit of441

networks in data on maize (Töpner et al., 2017).442

In conclusion, the present results show the utility of factor analysis and network analysis443

to characterize various phenotypes in rice. We showed that the joint use of BCFA and444

BN can be applied to predict the potential influence of external interventions or selection445

associated with target traits such as yield in the high-dimensional interrelated complex traits446

system. We contend that the approaches used herein provide greater insights than pairwise-447

association measures of multiple phenotypes and can be used to analyze the massive amount448

of diverse image-based phenomics dataset being generated by the automated plant phenomics449

platforms (e.g., Furbank and Tester, 2011). With a large volume of complex traits being450

collected through phenomics, numerous opportunities to forge new research directions are451

generated by using network analysis for the growing number of phenotypes.452
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Tables589

Table 1: Standardized factor loadings obtained from the Bayesian confirmatory factor anal-
ysis.

Latent variable Observed phenotype Loading
Flowering time Flowering time at Arkansas (Fla) 0.990
Flowering time Flowering time at Faridpur (Flf) 0.500
Flowering time Flowering time at Aberdeen (Flb) 0.578
Flowering time FT ratio of Arkansas/Aberdeen (Flaa) -0.212
Flowering time FT ratio of Faridpur/Aberdeen (Flfa) -0.549
Flowering time Year07 Flowering time at Arkansas (Fla7) 0.926
Flowering time Year06 Flowering time at Arkansas (Fla6) 0.886
Morphology Culm habit (Cuh) 0.227
Morphology Flag leaf length (Fll) 0.116
Morphology Flag leaf width (Flw) -0.044
Morphology Plant height (Plh) 0.440
Morphology Shoot BM Control (Sbc) 0.534
Morphology Shoot BM Salt (Sbs) 0.456
Morphology Root BM Control (Rbc) 0.418
Morphology Root BM Salt (Rbs) 0.280
Morphology Tiller No Salt (Tns) -0.349
Morphology Tiller No Control (Tbc) -0.318
Morphology Ht Lig Salt (Hls) 0.920
Morphology Ht Lig Control (Hlc) 0.899
Morphology Ht FE Salt (Hfs) 0.907
Morphology Ht FE Control (Hfc) 0.925
Yield Panicle number per plant (Pnu) 0.190
Yield Panicle length (Pal) 0.455
Yield Primary panicle branch number (Ppn) 0.790
Yield Seed number per panicle (Snpp) 0.780
Yield Panicle fertility (Paf) -0.085
Grain Morphology Seed length (Sl) 0.251
Grain Morphology Seed width (Sw) 0.876
Grain Morphology Seed volume (Sv) 0.990
Grain Morphology Seed surface area (Ssa) 0.901
Grain Morphology Brown rice seed length (Bsl) 0.158
Grain Morphology Brown rice seed width (Bsw) 0.837
Grain Morphology Brown rice surface area (Bsa) 0.902
Grain Morphology Brown rice volume (Bvl) 0.986
Grain Morphology Seed length/width ratio (Slwr) -0.476
Grain Morphology Brown rice length/width ratio (Blwr) -0.432
Grain Morphology Grain length McCouch2016 (Glmc) 0.047
Ionic components of salt stress Na K Shoot (Ks) 0.983
Ionic components of salt stress Na Shoot (Nas) 0.975
Ionic components of salt stress K Shoot Salt (Kss) -0.265
Ionic components of salt stress Na K Root (Kr) 0.061
Ionic components of salt stress Na Root (Nar) 0.000
Ionic components of salt stress K Root Salt (Krs) -0.095
Morphological salt response Shoot BM Ratio (Sbr) 0.410
Morphological salt response Root BM Ratio (Rbr) 0.395
Morphological salt response Tiller No Ratio (Tbr) -0.022
Morphological salt response Ht Lig Ratio (Hlr) 0.665
Morphological salt response Ht FE Ratio (Hfr) 0.939
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Figure 1: Relationship between six latent variables and observed phenotypes. Msr: mor-
phological salt response; Iss: ionic components of salt stress; Grm: grain morphology; Yid:
yield; Mrp: morphology; Flt: flowering time. Abbreviations of observed phenotypes are
shown in Table S1.
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Figure 2: Genomic correlation of six latent variables. The size of each circle, degree of
shading, and value reported correspond to the correlation between each pair of latent vari-
ables. Msr: morphological salt response; Iss: ionic components of salt stress; Grm: grain
morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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Figure 3: Bayesian network between six latent variables based on the Hill Climbing al-
gorithm. The quality of the structure was evaluated by bootstrap resampling and model
averaging across 500 replications. Labels of the edges refer to the strength and direction
(parenthesis) which measure the confidence of the directed edge. The strength indicates
the frequency of the edge is present and the direction measures the frequency of the direc-
tion conditioned on the presence of edge. BIC: Bayesian information criterion score. BGe:
Bayesian Gaussian equivalent score. Msr: morphological salt response; Iss: ionic components
of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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Figure 4: Bayesian network between six latent variables based on the Tabu algorithm. The
quality of the structure was evaluated by bootstrap resampling and model averaging across
500 replications. Labels of the edges refer to the strength and direction (parenthesis) which
measure the confidence of the directed edge. The strength indicates the frequency of the
edge is present and the direction measures the frequency of the direction conditioned on
the presence of edge. BIC: Bayesian information criterion score. BGe: Bayesian Gaussian
equivalent score. Msr: morphological salt response; Iss: ionic components of salt stress;
Grm: grain morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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Figure 5: Bayesian network between six latent variables based on the Max-Min Hill Climbing
algorithm. The quality of the structure was evaluated by bootstrap resampling and model
averaging across 500 replications. Labels of the edges refer to the strength and direction
(parenthesis) which measure the confidence of the directed edge. The strength indicates
the frequency of the edge is present and the direction measures the frequency of the direc-
tion conditioned on the presence of edge. BIC: Bayesian information criterion score. BGe:
Bayesian Gaussian equivalent score. Msr: morphological salt response; Iss: ionic components
of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology; Flt: flowering time.

35

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/435792doi: bioRxiv preprint 

https://doi.org/10.1101/435792
http://creativecommons.org/licenses/by-nd/4.0/


Mrp

Flt

Msr

Grm

Iss

Yid

BIC = 1068.23
BGe = 1062.04

100%(52%)

100%(55%) 100%(74%)

100%(61%)

100%(72%)

100%(58%)

Figure 6: Bayesian network between six latent variables based on the General 2-Phase Re-
stricted Maximization algorithm. The quality of the structure was evaluated by bootstrap
resampling and model averaging across 500 replications. Labels of the edges refer to the
strength and direction (parenthesis) which measure the confidence of the directed edge.
The strength indicates the frequency of the edge is present and the direction measures the
frequency of the direction conditioned on the presence of edge. BIC: Bayesian information
criterion score. BGe: Bayesian Gaussian equivalent score. Msr: morphological salt response;
Iss: ionic components of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology;
Flt: flowering time.
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