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 25 

Abstract 26 

Microbial activity plays a major role in the processes that support life on Earth. 27 

Nevertheless, across diverse ecosystems many microbes are in a state of dormancy, 28 

characterized by strongly reduced metabolic rates. Of the methods used to assess 29 

microbial activity-dormancy dynamics, 16S rRNA: rDNA amplicons (“16S ratios”) and 30 

active cell staining with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) are two of the 31 

most common, yet each method has its own limitations. To better understand the 32 

applicability and potential complementarity of these two methods, we conducted two 33 

experiments investigating microbial activity in the rhizosphere. In the first experiment, 34 

we treated corn rhizosphere soil with common phytohormones to simulate plant-soil 35 

signaling during plant stress, and in the second experiment, we used bean exposed to 36 

drought or nutrient enrichment to more directly assess the impacts of plant stress on soil 37 

microbial activity. Overall, 16S ratios revealed numerous taxa with detectable RNA but 38 

no detectable DNA. However, overarching patterns in percent activity across treatments 39 

were unaffected by the method used to account for active taxa, or by the threshold 16S 40 

ratio used for taxa to be classified as active. 16S ratio distributions were highly similar 41 

across microbial phyla and were only weakly correlated with ribosomal operon number. 42 

Lastly, over relatively short time courses, 16S ratios are responsive earlier than CTC 43 

staining, a finding potentially related to the temporal sensitivity of activity changes 44 

detectable by the two methods. Our results suggest that 16S ratios and CTC staining 45 

provide robust and complementary estimates of bulk community activity. 46 
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 47 

Importance 48 

Although the majority of microorganisms in natural ecosystems are dormant, 49 

relatively little is known about the dynamics of the active and dormant microbial pools 50 

through both space and time. The limited knowledge of microbial activity-dormancy 51 

dynamics is in part due to uncertainty in the methods currently used to quantify active 52 

taxa. Here, we directly compared two of the most common methods (16S ratios and 53 

active cell staining) for estimating microbial activity in rhizosphere soil, and found that 54 

they were largely in agreement in the overarching patterns, suggesting that either 55 

method is robust for assessing comparative activity dynamics. Thus, our results suggest 56 

that 16S ratios and active cell staining provide robust and complementary information 57 

for measuring and interpreting microbial activity-dormancy dynamics in soils.  They also 58 

support that 16S rRNA:rDNA ratios have comparative value and offer a high-throughput, 59 

sequencing-based option for understanding relative changes in microbiome activity.  60 

 61 

Keywords: 16S rRNA, 5-cyano-2,3-ditolyl tetrazolium chloride, dormancy, phantom 62 
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 74 

Introduction 75 

Microbial activity plays a fundamental role in the processes that support life on 76 

Earth (1), influencing global carbon and nutrient cycling (2, 3), atmospheric composition 77 

(4), and ecosystem productivity (5). Given these essential global-scale functions, it is 78 

perhaps surprising that active microbes (those that are growing or reproducing, or those 79 

that respond relatively quickly to substrate input) represent a very small proportion of 80 

total microbial community (reviewed in (6)). Across diverse ecosystems, the majority of 81 

the total microbial community is in a state of dormancy, characterized by strongly 82 

reduced metabolic rates and a slow response to substrate input (6, 7). Dormancy is a 83 

key contributor to the maintenance of microbial diversity by allowing microorganisms to 84 

persist during unfavorable environmental conditions (8). Although dormancy initiation 85 

and resuscitation to an active state have ecological and evolutionary consequences (7–86 

9) with implications for ecosystem function (10, 11), we know little about the dynamics 87 

of the active and dormant microbial pools through both space and time. Investigations of 88 

the causes and consequences of microbial activity-dormancy dynamics are needed to 89 

better understand microbial community structural and functional resilience, and to 90 

advance goals to predict microbial responses to global change (12).  91 
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The limited knowledge of microbial activity-dormancy dynamics is in part due to 92 

uncertainty in the methods currently used to quantify active taxa (6). One of the most 93 

common approaches is the use of 16S ribosomal rRNA sequencing. Given the relatively 94 

short half-life of ribosomal RNA, the presence of 16S ribosomal transcripts (hereafter 95 

“rRNA) is generally assumed to indicate recent metabolic activity, and numerous studies 96 

have used rRNA to characterize growing or active communities (reviewed in (13)). In 97 

particular, pairing both 16S ribosomal transcripts (rRNA) as well as the 16S ribosomal 98 

gene (rDNA) sequencing allows for calculation of 16S rRNA:rDNA ratios, which 99 

attempts to normalize rRNA levels by the abundance of that taxon in the community and 100 

quantify its relative level of activity (8, 11, 14, 15). Taxa with 16S ratios greater than a 101 

specified threshold are considered ‘active’, and most studies report using a threshold of 102 

1.0, which indicates more rRNA reads than rDNA reads for those taxa (6, 8, 16). One 103 

limitation to this approach is that using an arbitrary threshold to distinguish active from 104 

dormant taxa may be problematic in diverse communities (13, 17), given that rRNA 105 

production and growth rate are not necessarily always correlated (24–29). Another 106 

challenge in assessing 16S ratios is the occurrence of ‘phantom taxa’: taxa that are 107 

detected in rRNA but not rDNA sequences (18) which leads to a zero-denominator (and 108 

thus undefined) 16S ratio. Phantom taxa are unexpected in sequencing datasets, since 109 

the presence of rRNA necessitates the presence of the template rDNA from which it 110 

was transcribed; yet nearly 30% of the OTUs detected in a recent study of atmospheric 111 

samples were phantoms (18). The authors of that study concluded that the prevalence 112 

of phantom taxa were driven largely by rare taxa (i.e. those with low abundance in rDNA 113 

sequences) exhibiting disproportionately high activity compared to more abundant taxa; 114 
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thus phantom taxa arise largely due to sampling stochasticity (18), or alternatively, by 115 

in-process transitions from rarity to prevalence (i.e., conditionally rare taxa, (19)). 116 

Although these considerations have led researchers to suggest that 16S ratios may be 117 

best interpreted as ‘potential microbial activity’, 16S ratios have nevertheless been used 118 

to inform microbial activity-dormancy dynamics in a broad range of ecosystems (11, 14, 119 

15, 18). 120 

In addition to 16S RNA/DNA sequencing, a variety of other methods are currently 121 

used for distinguishing active microbes. These include staining with tetrazolium salts, 122 

which are reduced by dehydrogenases in active cells to fluorescent products which can 123 

be visualized and measured ((20) and references therein), stable isotope probing to 124 

quantify uptake of substrates or water (21), and meta-transcriptomics to determine 125 

changes in functional gene transcripts following experimental perturbation (22). Of these 126 

methods, active cell staining, primarily with the activity stain 5-cyano-2,3-ditolyl 127 

tetrazolium chloride (CTC), is a common approach because it is economical and 128 

executable without specialized equipment. Actively respiring cells convert CTC to an 129 

insoluble red fluorescent formazan product, which can be visualized by fluorescence 130 

microscopy (23). In addition, CTC staining can be coupled with a general DNA stain to 131 

compare active and total cell counts in a microbial community, allowing for 132 

determination of percent activity (15, 24). As with the 16S ratio method for determining 133 

microbial activity, the CTC staining method has several limitations which can affect its 134 

interpretation. For example, CTC staining can be toxic to some bacterial species (20, 135 

25), and not all actively respiring strains are able to take up the stain efficiently (20, 24), 136 

potentially leading CTC staining to underestimate the true proportion of active cells in 137 
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the community (26). Despite these potential caveats, CTC staining remains a popular 138 

method for analyses of microbial activity in a broad range of environmental samples (7, 139 

15, 24).  140 

Although the 16S ratio method and the CTC staining method are both commonly 141 

used in investigations of microbial activity, little comparative work has been done to 142 

assess the level of agreement between the two methods. One of the few studies to use 143 

both methods to assess microbial activity found that the active portion of the community 144 

was between 1.5- and 5-fold higher when using 16S ratios versus CTC staining in 145 

microcosms of estuarine water samples (15). One potential reason for the disagreement 146 

between the 16S ratio method and the CTC staining method is not only that the two 147 

methods present different biases as described above, but that they measure two 148 

different things: the 16S ratio method is used to assess whether a particular taxon is 149 

active, while the CTC staining method is used to assess whether a given cell is active. 150 

Importantly, there are situations in which we might expect the proportion of active taxa 151 

and the proportion of active cells in a community to be very different, such as in 152 

communities in which rare taxa are disproportionately active compared to abundant taxa 153 

(15, 18, 27). Therefore, although the two methods may not always produce similar 154 

estimates of microbial activity-dormancy dynamics, both inform on fundamental aspects 155 

of microbial communities. Additional studies directly comparing 16S ratio and CTC 156 

staining is needed in order to better understand the level of agreement, and the 157 

potential complementarity, of the two methods in assessing microbial activity. 158 

Here, our objectives were to explore factors underlying the calculation and 159 

interpretation of 16S ratios, and to directly compare estimates of activity of microbial 160 
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communities using 16S ratios and CTC-based cell staining. We conducted two separate 161 

experiments analyzing microbial activity in plant rhizosphere soil. Given that the 162 

rhizosphere is a highly dynamic microbial system in which plants can influence both 163 

microbial community structure and function (28, 29), we considered rhizosphere soil to 164 

be particularly relevant for analyses of microbial activity and foundationally important for 165 

understanding plant-microbe-soil feedbacks. First, we conducted a laboratory 166 

microcosm experiment using soil collected from the rhizosphere of corn, and treated the 167 

soil with several plant phytohormones to assess the impacts of common plant stress 168 

signals on soil microbial activity. Second, we grew bean plants under either drought or 169 

nutrient-enriched conditions to more directly assess the impacts of plant stress on soil 170 

microbial activity. Specifically, we asked the following questions: 1) for 16S ratio-based 171 

studies, what is the extent of phantom taxa, and how does the handling of these taxa 172 

influence estimates of microbial activity and patterns across treatments? 2) How does 173 

the threshold for quantifying ‘active’ taxa influence patterns across treatments? 3) How 174 

do divergent traits such as 16S rRNA operon copy number impact the distribution of 175 

16S ratios within and across phyla? 4) Do 16S ratio and CTC-based staining methods 176 

produce similar estimates and/or patterns of microbial activity across diverse soil 177 

treatments?  178 

  179 

Results and Discussion 180 

We conducted two separate experiments in rhizosphere soils under a variety of 181 

treatment conditions in order to explore the generality of our findings. In the first 182 

experiment, we collected soil from a long-term agricultural research field in which corn 183 
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(Zea mays L.) had been planted for eight consecutive years. In the laboratory, we 184 

exposed the soil to several pre-treatments: ‘pre-dry’ (soil was sampled before any 185 

treatments were initiated), ‘post-dry’ (soil was dried for three days and then sampled), 186 

and ‘post-water’ (soil was partially re-wetted, allowed to acclimate for six days, and then 187 

sampled). Next, soil replicates were treated with either abscisic acid (ABA), indole-3-188 

acetic acid (IAA), jasmonic acid (JA), or salicylic acid (SA), or water as a control, and 189 

sampled after 24 hours. Thus, the corn experiment was designed to assess the impacts 190 

of several different abiotic/biotic stresses on rhizosphere soil, including soil drying and 191 

re-wetting, as well as the application of common plant stress phytohormones, which can 192 

be exuded by plant roots under a variety of stress conditions (30). In the second 193 

experiment, we grew common bean (Phaseolus vulgaris L. cv. Red Hawk) in agricultural 194 

field soil in a controlled-environment growth chamber. Replicate plants were exposed to 195 

either drought (water-withholding) or nutrient enrichment (additional fertilizer) treatments 196 

compared to control plants, then rhizosphere soils were sampled after five weeks of 197 

plant growth. Thus, this experiment was designed to more directly assess the impacts of 198 

plant stress on analyses of soil microbial activity in the rhizosphere. Overall, we 199 

anticipated that the differential treatment conditions within and across the corn and bean 200 

soil experiments, as well as the presence of actively growing plants continuously 201 

providing labile carbon to the soil microbial communities in the bean but not the corn soil 202 

study, would inform on the broad applicability of the 16S and CTC staining methods for 203 

assessing microbial activity in diverse study systems. 204 

 205 

‘Phantom taxa’ are common and persistent in diverse soil treatments 206 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/435925doi: bioRxiv preprint 

https://doi.org/10.1101/435925
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

 A prerequisite for assessing microbial activity from 16S ratios is determining how 207 

to handle ‘phantom taxa’: OTUs that are detected in the RNA community but not in the 208 

DNA community of a given sample (18). Such taxa produce undefined 16S RNA:DNA 209 

ratios due to a denominator of zero, eliminating those taxa from the dataset. Therefore, 210 

we assessed the prevalence of phantom taxa (taxa with RNA reads > 0 and DNA reads 211 

= 0 in a given sample) in both the corn and bean rhizosphere soil datasets. We also 212 

assessed the prevalence of ‘singleton’ phantom taxa (taxa with RNA reads = 1 and DNA 213 

reads = 0 in a given sample), given that such taxa are particularly ambiguous in terms of 214 

activity. We repeated these analyses across a range of sequencing depths per sample, 215 

given that a recent study reported that sampling stochasticity was a key factor driving 216 

the occurrence of phantom taxa (18). Across a range of subsampling levels (using a 217 

step-size of 5000 reads per sample), we found that phantom taxa comprised between 218 

5% and 60% of the total OTUs across both the corn and the bean rhizosphere soil 219 

datasets (Fig. 1A and B, Fig. S1A and B). Similarly, ‘singleton’ phantom taxa were fairly 220 

common (1-35% and 2-25% of the total OTUs in the corn and bean soil datasets, 221 

respectively) (Fig. 1C and D, Fig. S1C and D). The reader should note that the sample 222 

size for each treatment generally decreased as sequencing depth increased because 223 

samples are excluded when their total read count is less than a given sequencing depth 224 

(Fig. S2). The relatively high prevalence of phantom taxa is in agreement with a recent 225 

study of atmospheric samples (18), and suggests that rare taxa are relatively more 226 

active than abundant taxa, resulting in their presence in RNA but not DNA sequences. 227 

This conclusion is supported by the relatively small influence of increasing sequencing 228 
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depth on the occurrence of phantom taxa (i.e. increased sequencing only minimally 229 

increases the detection of extremely rare taxa). 230 

 231 

Distinct methods for handling phantom taxa lead to similar ecological patterns of 232 

microbial activity 233 

 Given the prevalence and persistence (i.e., their occurrence regardless of 234 

sampling depth) of phantom taxa in our sequencing datasets, our next aim was to 235 

establish how to handle phantom taxa for calculation of 16S ratios. We compared four 236 

different methods for calculating 16S ratios in the presence of phantom taxa, which we 237 

refer to here as Methods 1, 2, 3, and 4 for simplicity (Fig. 2). In both the corn and the 238 

bean rhizosphere soil datasets, all four methods for calculating 16S ratios produced 239 

similar patterns across treatments (Fig. 3A and B). In corn soil, percent activity sharply 240 

decreased from the pre-dry to the post-dry treatment, then sharply increased from the 241 

post-dry to the post-water treatment (Fig. 3A). In addition, although increasing the 242 

threshold 16S ratio for defining taxa as ‘active’ generally reduced the magnitude of 243 

treatment effects on microbial activity, the large impact of the post-water treatment on 244 

microbial activity was apparent even at a threshold ratio of five. Similar analyses of ratio 245 

thresholds have been performed in in other studies (7, 8), which collectively suggest 246 

that even conservative ratio thresholds provide robust ecological patterns. On the other 247 

hand, although percent activity in the bean experiment was generally higher in the 248 

control than in the drought or nutrient treatments across Methods 1-4, the magnitude of 249 

this difference decreased as threshold 16S ratio increased (Fig. 3B). Differences among 250 

treatments disappeared when compared at a threshold 16S ratio of five, indicating a 251 
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relatively narrow window for capturing differences in microbial activity in the bean 252 

experiment. Nevertheless, a recent review suggests that most studies use a threshold 253 

16S ratio between 0.5-2 to determine active taxa (6), indicating that a threshold of five 254 

may simply provide an overly-conservative view of activity in microbial communities. 255 

 256 

Diverse microbial taxa exhibit similar 16S RNA:DNA distributions  257 

One consideration of using 16S ratios for activity estimations is that different taxa 258 

may have different thresholds of 16S ratios to qualify as ‘active’ (13). Choosing an 259 

arbitrary threshold 16S ratio for distinguishing ‘active’ from ‘inactive’ taxa therefore may 260 

be biased against taxa that have naturally low 16S ratios yet are truly active (and vice 261 

versa). To explore this possibility, we plotted the distributions of 16S ratios of the most 262 

abundant phyla, and pooled all less abundant phyla, in the corn and bean soil datasets. 263 

We found that in both soil types, all phyla exhibited a log-normal distribution of 16S 264 

ratios that were centered around a value of 1 (Fig. 4A and B). The finding that all phyla 265 

exhibited a similar distribution of 16s ratios suggests that altering the threshold 16S ratio 266 

for activity does not particularly impact specific taxa, at least at the phylum level. 267 

Therefore, our results support the use of a single threshold for 16S ratio activity 268 

analyses, even in diverse microbial communities.  269 

An additional potential issue with using 16S ratios to estimate the proportion of 270 

active taxa community is the variability in copy numbers of the 16S rRNA operon across 271 

genomes of different taxa. 16S rRNA operon copy numbers can affect patterns of beta 272 

diversity in community structure (32) and can vary substantially between lineages (31). 273 

For example, lineages with many 16S operons (e.g. Firmicutes) may have lower 16S 274 
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ratios because their abundance is overestimated by redundant OTUs in 16S rDNA data. 275 

To address this, we examined the relationship between the 16S ratio and the average 276 

number of ribosomal operons within phyla for all detected OTUs (Fig. 5). Although 16S 277 

ratios and average 16S rRNA operon count at the phylum level were correlated in both 278 

corn (r = -0.068, p < 0.0001) (Fig. 5A) and bean (r = -0.010, p = 0.0016) (Fig. 5B) 279 

rhizosphere soil, these correlations were extremely weak. In addition, across all operon 280 

counts, 16S ratios had similar ranges (Fig. 5). Recent work has advised against 281 

correcting for 16S rRNA operon counts in 16S rRNA gene surveys of microbial 282 

community structure, especially in taxa that are divergent from cultured representatives 283 

(32). Our results additionally suggest that accounting for 16S operon number likely has 284 

little effect on activity estimates in 16S ratio analyses. 285 

 286 

CTC staining and 16S RNA:DNA capture complementary patterns of activity across 287 

treatments  288 

Our final aim was to assess the level of agreement between two of the most 289 

common methods used for determination of microbial activity: the 16S ratio method and 290 

the CTC staining method. Across all treatments and between both methods, estimates 291 

of percent activity (i.e., between 10 and 60% of cells/taxa active) are similar to values 292 

reported in the literature for soil, as recently synthesized by (7). Though the two 293 

methods did not always agree in the level of percent activity detected, their overarching 294 

patterns across treatments were consistent with one exception. 295 

 In corn rhizosphere soil, the CTC staining method consistently resulted in higher 296 

estimates of proportional activity compared to the 16S ratio method. Using the CTC 297 
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staining method, between 50-60% of the community was active for most treatments (all 298 

except the ‘post-dry’ treatment; Fig. 6A), while the 16S ratio method produced estimates 299 

in the range of 20-30% (Fig. 6C). Using both methods, percent activity sharply declined 300 

from the ‘pre-dry’ to the ‘post-dry’ treatment, and sharply increased in response to the 301 

‘post-water’ treatment. This increase in response to watering was especially 302 

pronounced using the 16S ratio method, in which percent activity rebounded to a level 303 

which exceeded that of the pre-dried soil (Fig. 6C). After the ‘post-water’ treatment, 304 

percent activity increased in response to ABA, IAA, JA, and SA application using the 305 

CTC staining method, but did not change in response to the ‘control’ treatment (i.e., 306 

water alone) (Fig. 6A). In contrast, after the ‘post-water’ treatment, percent activity 307 

decreased in response to all four phytohormones, as well as in response to water-alone 308 

controls, using the 16S ratio method (Fig. 6C). In bean rhizosphere soil, the CTC 309 

staining method and the 16S ratio method produced more similar estimates of percent 310 

activity than for corn soil, and both methods produced identical patterns of percent 311 

activity across treatments (Fig. 6B and D) Using both methods, the drought and the 312 

nutrient addition treatments exhibited significantly lower percent activity compared to the 313 

control treatment, although the magnitude of this difference was lower using the 16S 314 

ratio method. 315 

  The extent of agreement between the 16S ratio method and the CTC staining 316 

method across the corn and bean soil experiments may be related to the duration of the 317 

experimental treatments in the two studies. In the corn soil experiment, the drying and 318 

re-wetting treatments lasts three and six days, respectively, while the phytohormone 319 

treatments lasted only 24 hours, and in the bean soil experiment, treatments were 320 
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continuously applied for the approximately five weeks of the experiment. Given that 321 

differential transcription of RNA can occur within 30 seconds after an environmental 322 

stimulus (33) but cell doubling takes considerably longer (~10 minutes for only the very 323 

fastest-growing strains under optimal laboratory conditions (34), and many hours for 324 

others especially in natural environmental conditions (35 and references therein)), the 325 

16S ratio method may be more sensitive in short time-frames than the CTC staining 326 

method. This may explain why the relatively short (24-hour) phytohormone treatments in 327 

corn soil resulted in relatively large decreases in percent activity using 16S ratios 328 

(average difference of 17.8% activity compared to ‘post-water’), but much smaller (albeit 329 

significant) increases in percent activity using CTC staining (average difference of 5.1% 330 

activity compared to ‘post-water’) (Fig. 6A and C). CTC staining, on the other hand, may 331 

perhaps give greater resolution in longer time-frames than 16S ratios. For example, the 332 

CTC staining method detected larger shifts in percent activity than the 16S ratio method 333 

in response to the three-day drying (46.1% decrease versus 9.1% decrease, 334 

respectively) and six-day re-wetting treatments (43.8% increase versus 27.1% increase, 335 

respectively) in corn rhizosphere soil (Fig. 6A and C), and in response to the five-week 336 

drought (23.1% decrease versus 6.3% decrease, respectively) and nutrient addition 337 

treatments (27.6% decrease versus 5.3% decrease, respectively) in bean soil (Fig. 6B 338 

and D). Despite differing in actual estimates of percent activity, both methods revealed 339 

very similar ecological patterns when considering treatments conducted over relatively 340 

long (≥ 3 days) periods, suggesting both methods provide robust metrics of whole 341 

community activity in experiments involving longer treatment exposures.  342 
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 It is worth noting that the cell staining protocol used in our study (staining with 343 

both CTC and Syto24) allows for investigation of how both active and total cell counts 344 

varied across treatments and potentially influenced estimates of percent activity. In corn 345 

rhizosphere soil, both CTC counts (i.e., the number of active cells) and Syto24 counts 346 

(i.e., the total number of cells regardless of activity) sharply declined from the ‘pre-dry’ 347 

to the ‘post-dry’ treatment, and sharply increased in response to the ‘post-water’ 348 

treatment (Fig. S3A and C). After the ‘post-water’ treatment, both active and total cell 349 

counts decreased in response to ABA, IAA, JA, and SA application, as well as in 350 

response to the ‘control’ treatment (i.e., water alone). However, total cell counts were 351 

also significantly lower in the phytohormone treatments compared to the controls. This 352 

indicates that the increase in percent activity in response to phytohormones as revealed 353 

by cell activity staining (Fig. 6A) is due to a decrease in total cell counts coupled with an 354 

unchanging number of active cells. This may suggest potential toxicity of specific taxa in 355 

response to phytohormone application; either through direct phytohormone effects or 356 

indirect effects on soil pH. This is supported by the reduction in percent active OTUs in 357 

response to phytohormone application detected by the 16S method (Fig. 6C). In 358 

contrast, in bean rhizosphere soil, the decrease in percent activity reported by CTC 359 

staining due to drought and additional nutrients was due to a decrease in the number of 360 

active cells, as total cell counts were constant across treatments (Fig. S3B and D). This 361 

suggests an increase in microbial dormancy in response to water-limitation and ionic 362 

stress, potentially as a strategy to remain viable during sub-optimal environmental 363 

conditions. 364 

 365 
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Considerations of the 16S ratio and CTC staining methods 366 

         An important consideration of the present work is that both the 16S ratio method 367 

and the CTC staining method have distinct biases that can influence percent activity 368 

estimates. A number of issues have been highlighted for analysis of bacterial activity 369 

with 16S ratios (13, 17, 36, 37), including the presence of dead cells and extracellular 370 

DNA, variations in the threshold ratio for bacterial activity, variations in sequencing 371 

depth, and molecular methodology (PCR biases). Although CTC staining avoids many 372 

assumptions of the 16S ratio method, it presents its own unique biases. For example, 373 

CTC staining in the present study excluded obligate anaerobes, potentially 374 

underestimating percent activity. In addition, CTC staining assumes that all (or at least a 375 

representative subsample) of the cells are extracted from the soil matrix, an assumption 376 

which may or may not be true, as reported for other studies performing cell counts from 377 

soil samples (21, 22). Finally, because CTC staining requires that the cells are extracted 378 

from the soil matrix prior to conducting the assay, it may introduce artefacts during the 379 

cell extraction process (i.e., cell death). Nevertheless, the finding of robust ecological 380 

patterns across long-term (≥ 3 days) treatments for the two methods, despite the 381 

different biases of each method, supports the conclusion that either method can provide 382 

a comparative assessment of community activity. 383 

Another consideration of our analysis is the inability of the methods used here to 384 

account for both extracellular DNA and dead cells in the rhizosphere. Extracellular DNA 385 

(38, 39) and dead bacteria or necromass (40) are common across soils, and both can 386 

cause 16S ratios to underestimate percent activity (36). Similarly, although our CTC 387 

flow cytometry size gating likely excludes extracellular DNA by removing particles < 1 388 
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µm, intact dead cells would be included in the ‘total cell count’ calculated by Syto24 389 

staining, thereby underestimating percent activity. Although our study was not designed 390 

to allow determination of extracellular DNA or dead cell abundance, we note that the 391 

rhizosphere is generally assumed to be an area of high metabolic activity. Thus, we 392 

might expect relic nucleic acids or dead cells to turn over relatively quickly, limiting their 393 

confounding effects in the present study. Our data support the rapid turnover of dead 394 

cells, given that the phytohormone treatments in the corn soil experiment, which lasted 395 

only 24 hours, led to significant and substantial decreases in total cell counts (Fig. S3C). 396 

It should also be noted that, in the corn soil experiment, soils were frozen prior to 397 

activity analyses, potentially increasing the number of dead cells and artificially reducing 398 

percent activity. We suggest this impact was minimal, given that percent activity 399 

estimates in the present study are relatively high compared to previous estimates in soil 400 

(7). Nevertheless, we suggest that combining our 16S ratio and CTC/Syto24 approach 401 

with a stain specific to extracellular DNA and dead/dying cells, such as propidium 402 

monoazide, would clarify the impact of these nucleic acid pools in assessments of 403 

microbial activity (41). 404 

Finally, our study was conducted in rhizosphere soil, a very distinct environment 405 

relative to bulk soils and other natural environments due to the continual inputs of labile 406 

carbon by the plant host and high rates of metabolic activity. Expanding the 407 

environments where 16S ratios and activity staining are paired will inform on the general 408 

utility of the two methods for estimating microbial activity.  409 

 410 

Conclusions 411 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/435925doi: bioRxiv preprint 

https://doi.org/10.1101/435925
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Overall, our results provide insight into the estimation of microbial activity using 412 

two of the most commonly reported methods: 16S ratios and CTC staining. Although we 413 

found a high prevalence of phantom taxa in our sequencing datasets, patterns in 414 

percent activity across treatments were largely unaffected by the method used to 415 

account for these taxa. We also examined the potential for phylum-specific biases in 416 

16S ratios, and found that 16S ratio distributions were highly similar across microbial 417 

phyla and were only weakly correlated with ribosomal operon number, suggesting that 418 

the use of a single 16S threshold does not introduce bias across broad phylogenetic 419 

groups. Lastly, we found that 16S ratios and CTC staining capture complementary 420 

patterns of activity across treatments. While the two methods revealed identical 421 

ecological patterns across longer-term (≥ 3 days) treatments, they produced an 422 

opposite pattern in response to shorter-term (24 hours) treatments; a finding likely 423 

related to the temporal resolution of the two methods. Our results suggest that 16S 424 

ratios and CTC staining provide robust and complementary estimates of bacterial and 425 

archaeal community activity in rhizosphere soils. 426 

 427 

Materials and Methods 428 

We conducted two separate experiments (‘corn rhizosphere soil’ and ‘bean 429 

rhizosphere soil’), with varying stress treatments in each experiment. For clarity, we first 430 

present the methods specific to each experiment, and then present the methods shared 431 

between experiments. 432 

 433 
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Corn rhizosphere soil:  experimental design, sample collection, and preparation for 434 

sequencing 435 

In the first experiment, topsoil was collected on August 21, 2017 from the AGR-436 

Corn treatment of the Great Lakes Bioenergy Resource Center Scale-Up Experiment 437 

located near the Kellogg Biological Station, Hickory Corners, MI. Corn has been planted 438 

annually at that site since 2010. Replicate soil cores (to a depth of 10 cm) were 439 

collected using a 2.5 cm diameter steel corer, transported to the laboratory on ice, 440 

sieved and homogenized. Three replicate soil aliquots were weighed, dried for 72 hours 441 

at 70oC, then re-weighed to determine soil percent moisture (mean 8.6% ± 0.3% 442 

standard deviation), and the remaining soil was stored at 4oC until use.  443 

Broadly, the experimental design consisted of several pre-treatments: ‘pre-dry’ 444 

(soil was sampled before any treatments were initiated), ‘post-dry’ (soil was dried and 445 

then sampled), and ‘post-water’ (soil was partially re-wetted and then sampled), before 446 

exposing soils to one of five treatments: application of the phytohormones abscisic acid 447 

(ABA), indole-3-acetic acid (IAA), jasmonic acid (JA) or salicylic acid (SA), or water 448 

control. On April 2, 2018, five replicates (30 g each) of the sieved and homogenized soil 449 

was retrieved from 4oC storage and frozen at -80oC for DNA/RNA extractions (i.e., the 450 

‘pre-dry’ treatment). The remaining soil was dried for 72 hours at 45oC, at which point 451 

another five replicates (30 g each) were stored at -80oC (i.e., the ‘post-dry’ treatment). 452 

The remaining dried soil was split into 50 mL conical tubes (30 g of dry soil each), and 453 

each tube received water to achieve 4.3% percent soil moisture (half of the initial 8.6% 454 

percent soil moisture). This initial wetting step was included to isolate potential 455 

responses to phytohormones from the known response to moisture ((10) and references 456 
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therein). Tubes were vigorously mixed and any clumps broken up with a sterile pipet. 457 

Tubes were incubated at room temperature for six days, then five replicates were frozen 458 

at -80oC (i.e., the ‘post-water’ treatment). The remaining tubes were then randomly 459 

assigned to one of five treatments: IAA, JA, ABA, SA, or water control. Five replicate 460 

tubes received 1.12 mL of the appropriate 0.22 µm filter-sterilized phytohormone 461 

dissolved in water at a concentration of 1 mM, while the control tubes received filter-462 

sterilized water alone. Thus, these treatments restored all tubes to the initial 8.6% 463 

percent soil moisture. Tubes were vigorously mixed and clumps broken up with a sterile 464 

pipet. After 24 hours, the soil samples were frozen at -80oC. 465 

DNA was extracted from ~0.23 g soil samples using the Qiagen PowerSoil kit 466 

following the manufacturers recommendations, while RNA was extracted from a 467 

protocol modified from (11, 42). Briefly, up to 0.5 g of soil was added to 200 µL of 468 

autoclaved PBL buffer (5 mM Na2-EDTA, 0.1% w/v sodium docecyl sulfate, and 5 mM 469 

Tris-HCl, pH ~3), vortexed for 1 minute, then 1 mL of phenol:chloroform:isoamyl alcohol 470 

(25:24:1 v/v/v, pH 8) was added. Samples were vortexed for 15 min, then centrifuged 471 

for 5 min at 20,000 x g. The upper (i.e., aqueous) layer was collected, added to 1 mL 472 

isopropanol, and vortexed. Samples were centrifuged for 15 min at 20,000 x g, and the 473 

supernatant was carefully removed. Tubes were air dried for 15 minutes, then 474 

resuspended in 50 µL of sterile water. Resuspended RNA extracts were cleaned using 475 

the OneStep PCR Inhibitor Removal kit (Zymo Research, Irvine, CA).  476 

 477 

Bean rhizosphere soil:  experimental design, sample collection, and preparation for 478 

sequencing 479 
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In the second experiment, we planted 24 one-gallon pots with the common bean, 480 

Phaseolus vulgaris L. (var. Red Hawk), in local Michigan field soil in a controlled-481 

environment growth chamber (BioChambers FXC-19). Plants received 16 h light and 8 482 

h dark photoperiod, with a daytime temperature of 29°C and a nighttime temperature of 483 

20°C. Eight replicate plants received ample water throughout the course of the 484 

experiment and served as controls. Eight additional replicates received ample water 485 

with the addition of nutrients (half-strength Hoagland solution; (43)) and an additional 486 

eight replicates were subjected to continuous drought, receiving 66% less water than 487 

control pots throughout the experiment. Plants were grown to the R8 stage (~5 weeks) 488 

before harvesting rhizosphere soils. Rhizosphere soil was collected in sterile Whirl-Pak 489 

bags by uprooting the plants and shaking loose soil from the root system. Any 490 

remaining soil adhering to the roots was considered rhizosphere soil. Two rhizosphere 491 

soil samples (5 g each) per plant were collected and immediately processed for active 492 

and total cell counts (see further detail below), while the remaining rhizosphere soil was 493 

frozen at -80oC for RNA/DNA extraction. For each plant, DNA was extracted from ~0.3 g 494 

of rhizosphere soil using the DNeasy Powersoil kit (Qiagen, Carlsbad, CA, USA, while 495 

RNA was extracted from ~2.3 g of rhizosphere soil using the RNeasy Powersoil kit, 496 

following manufacturer’s instructions.  497 

 498 

Corn and bean rhizosphere soil: microbial cell extraction and active and total cell counts 499 

For both corn and bean rhizosphere soils, microbial cells were extracted 500 

following a protocol adapted from (44), and stained for determination of active and total 501 

cell counts. Briefly, rhizosphere soil (10 g per sample in the corn soil experiment, and 502 
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two technical replicates of 5 g each in the bean soil experiment) was mixed with 100 ml 503 

of chilled sterile phosphate buffered saline containing 0.5% Tween-20 (PBST). Soil 504 

samples were homogenized in a Waring blender (Conair Corporation, East Windsor 505 

Township, NJ, USA) three times for one minute and kept on ice between each blending 506 

cycle. Soil slurries were centrifuged at 1,000 x g for 15 minutes and the supernatant 507 

was set aside. The pelleted soil was resuspended in 100 ml PBST and blended for an 508 

additional minute and re-centrifuged. The supernatants were pooled and centrifuged at 509 

10,000 x g for 30 min. The supernatant was aspirated and the pellet was resuspended 510 

in sterile Milli-Q water (20 mL in the corn soil experiment, and 10 mL in the bean soil 511 

experiment). Cells were stained for percent activity determination using the BacLight 512 

RedoxSensor CTC Vitality kit (ThermoFisher Scientific, Waltham, MA, USA). Briefly, 513 

one milliliter of cells was stained with 0.38 µl of the DNA stain Syto24 and 5 mM of the 514 

activity stain 5-cyano-2,3-ditolyl tetrazolium chloride (CTC; active community) for 24 515 

hours. Stained cells were fixed with 100 µl of 37% formaldehyde and cell counts were 516 

measured on a BD C6 Accuri Flow Cytometer (Franklin Lakes, NJ, USA), defining a cell 517 

as events which fluoresce above 103 on a 490/515 nm filter for Syto24 and 450/630 nm 518 

filter for CTC. Following recommendations by the Michigan State University Flow 519 

Cytometry Core, we gated measurements by side scatter values <500 which removed 520 

particles <1 µm from our measurements.  521 

We calculated the percentage of active cells by dividing CTC counts by Syto24 522 

counts. For each sample in the corn soil experiment, we used a single 10 g sample of 523 

rhizosphere soil for microbial cell extraction that was then split into two technical 524 

replicates for staining: these two replicates per sample were averaged prior to 525 
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subsequent analyses to avoid pseudoreplication. For each plant in the bean experiment, 526 

we used two replicate 5 g soil samples to give two technical replicate microbial cell 527 

extractions. Each of these was then split into three technical replicates for staining. 528 

These six replicates per plant were averaged prior to subsequent analyses to avoid 529 

pseudoreplication. 530 

 531 

Corn and bean rhizosphere soil: 16S rRNA gene amplicon sequencing 532 

 For both the corn and bean rhizosphere soil experiments, we first verified no 533 

DNA contamination in the RNA samples using PCR with 16S primers (45, 46) followed 534 

by gel electrophoresis. Next, 3 µl of RNA from each RNA sample was reverse 535 

transcribed using the SuperScript RT III kit (Invitrogen) following the protocol for random 536 

hexamers. Nucleic acid concentrations were measured with the Qubit broad-range DNA 537 

assay kit (ThermoFisher, Waltham, MA, USA). DNA and cDNA from the bean 538 

experiment were diluted to 5ng ul-1 (but were left undiluted in the corn soil experiment) 539 

prior to submitting for sequencing at the Michigan State Genomics Core. cDNA and 540 

DNA from both the corn and bean rhizosphere soil experiments were sequenced by the 541 

Michigan State University Genomics Core using the dual-indexed primer pair 515F and 542 

806R (46). Samples were prepared for sequencing by the MSU Genomics Core 543 

including PCR amplification and library preparation using the Illumina TruSeq Nano 544 

DNA Library Preparation Kit. Paired-end, 250bp reads were generated on an Illumina 545 

MiSeq and the Genomics Core provided standard Illumina quality control, adaptor and 546 

barcode trimming, and sample demultiplexing.  547 

 548 
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Corn and bean soil: bioinformatic and statistical analyses 549 

The corn and bean rhizosphere soil sequencing datasets were analyzed 550 

separately. For each dataset, raw reads were merged, quality filtered, dereplicated, and 551 

clustered into 97% identity operational taxonomic units (OTUs) using the UPARSE 552 

pipeline (47). Taxonomic annotations for OTU representative sequences were assigned 553 

in the mothur (48) environment using the SILVA rRNA database release 132 (49). OTUs 554 

annotated as mitochondria or chloroplasts were removed, and OTU representative 555 

sequences were aligned using MUSCLE (version 3.8.31 (50)). Aligned sequences were 556 

used to build a phylogeny using FastTree (version 2.1.7 (51, 52)). The resulting tree 557 

was imported into R (version 3.3.2 (53)) using ‘ape’ (version 3.0.11 (54)) and was 558 

rooted at the midpoint using ‘phangorn’ (version 2.4.0 (55)). All subsequent analyses 559 

were performed in R (version 3.5.0), with ecological statistics performed using phyloseq 560 

(version 1.24.0 (56)). Data were visualized using a combination of the R packages 561 

ggplot2 (version 2.2.1; (57)), reshape2 (version 1.4.3; (58)), and gridExtra (version 2.3; 562 

(59)), and dplyr (version 0.7.5; (60)) was used for data summaries.  563 

First, we examined the prevalence of ‘phantom taxa’ (i.e. OTUs with detectable 564 

RNA reads but no detectable DNA reads; (18)) in the corn and bean rhizosphere 565 

datasets. We calculated the average percent of OTUs that are phantom taxa in each 566 

treatment, as well as the average percent of OTUs with a single RNA read and no 567 

detectable DNA reads in each treatment. We conducted these analyses across a range 568 

of subsampling levels (using a step-size of 5000 reads per sample) in order to examine 569 

the influence of sequencing depth on the prevalence of phantom taxa, and used the 570 

loess smoothing function (61) to generate best fit lines and confidence intervals. Given 571 
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the relatively low impact of subsampling level on the occurrence of phantom taxa, all 572 

subsequent analyses were conducted on samples rarefied to the minimum sampling 573 

depth in each dataset (22,589 reads per sample for corn soil, and 38,021 reads per 574 

sample for bean soil). 575 

 Given the prevalence and persistence (i.e., their high collective contributions 576 

regardless of sampling effort) of phantom taxa in our sequencing datasets, we next 577 

compared four different methods for calculating 16S ratios in the presence of phantom 578 

taxa. See Fig. 2 for a detailed illustration of the four methods, which we refer to as 579 

Methods 1, 2, 3, and 4 for simplicity. In Method 1, each phantom taxon in each sample 580 

is set to a 16S ratio of 100 in order to designate such taxa as ‘active’ regardless of the 581 

threshold 16S ratio activity level chosen, since most studies choose a threshold ratio 582 

less than 10 to designate taxa as ‘active’ (6, 8, 11). In addition, Method 1 sets each 583 

taxon in each sample with no detectable RNA or DNA reads to a value of zero, thereby 584 

eliminating undefined 16S ratios which arise due to a denominator of zero. In Method 2, 585 

every instance in which zero DNA reads are detected for a given OTU in a given sample 586 

is changed to a value of one in order to eliminate zeros in the denominator. In Method 3, 587 

previously used by (11), a value of one is added to every OTU in every sample in the 588 

DNA dataset. This method is meant to eliminate zeros in the denominator (as with 589 

Method 2), but also to treat every entry in the DNA dataset exactly the same. In Method 590 

4, previously used by (14), a value of one is added to every OTU in every sample in 591 

both the RNA and the DNA datasets. As with Methods 2 and 3, this method is meant to 592 

eliminate zeros in the denominator, but also to treat every entry in the entire dataset 593 

(both RNA and DNA reads) exactly the same. We compared the resulting percent 594 
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activity of the OTUs after using Methods 1-4 in both the corn and bean rhizosphere 595 

datasets, using threshold 16S ratios of 1, 2, and 5 for determination of ‘active’ versus 596 

‘inactive’ OTUs. Given that Methods 1-4 captured similar patterns in percent activity 597 

across treatments, we conducted all subsequent analyses using the recently published 598 

Method 3 (11) to calculate 16S ratios. 599 

 Next, we examined phylum-level differences in the distribution of 16S ratios in 600 

both the corn and bean rhizosphere datasets. After calculating 16S ratios, we generated 601 

histograms of the number of times a given 16S ratio occurred in each dataset (i.e. 602 

including every OTU in every sample assigned to a given phylum).  We also examined 603 

the relationship between the average number of 16S ribosomal operons per genome for 604 

each phylum, obtained from the Ribosomal RNA Database (version 5.4; (31, 62, 63)), 605 

and the observed 16S ratios in the present study.  606 

 Finally, we compared estimates and across-treatment patterns of microbial 607 

activity using the 16S ratio (threshold > 1) method to calculate the percentage of active 608 

taxa, versus using the cell staining method (CTC counts divided by Syto24 counts) to 609 

calculate the percentage of active cells. We also examined both active (CTC) and total 610 

(Syto24) counts across treatments in order to explore the influence these two values 611 

have on the percentage of active cells as calculated by the CTC/Syto24 ratio. 612 

Differences among treatments were assessed using ANOVA followed by a Tukey post-613 

hoc test for multiple comparisons. All bioinformatic workflows and custom scripts are 614 

available on GitHub 615 

(https://github.com/ShadeLab/PAPER_Bowsher_16sRatio_CTCstain). 616 

 617 
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Accession number(s).  618 

Corn and bean rhizosphere sequencing data were submitted to the NCBI 619 

Sequence Read Archive under BioProject accession numbers PRJNA490178 and 620 

PRJNA454289, respectively. 621 
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Fig 1 Prevalence of taxa with 16S RNA reads but zero 16S DNA reads (A, B) (i.e. 837 

‘phantom taxa), or a single 16S RNA read and zero 16S DNA reads (C, D) in 838 

rhizosphere soil of corn (A,C) and bean (B,D) as a function of sequencing subsampling 839 

level. Shown are best fit lines using the loess smoothing function (see Supplementary 840 

Figure S1 for same plots but including individual data points). Gray shading around the 841 

smoothing lines are 95% confidence intervals. 842 
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 854 

 855 

Fig 2 Conceptual diagram depicting the impacts of four distinct methods for calculating 856 

16S rRNA:rDNA ratios in the presence of ‘phantom taxa’ (i.e., OTUs in a given sample 857 

with 16S RNA reads but zero 16S DNA reads, which always produce undefined 16S 858 

ratios due to a zero denominator). The input OTU table for a given sample along with 859 

16S ratios is shown on the left, while the resulting OTU tables and 16S ratios are 860 

depicted on the right (changes are shaded blue). Four different sequencing scenarios in 861 

a hypothetical sample are considered: OTU1, in which the number of RNA reads is 862 

much larger than the number of DNA reads but both are present; OTU2, in which the 863 

number of RNA and DNA reads are both low but present; OTU3, in which the number of 864 

RNA reads is one and the number of DNA reads is zero; and OTU4, in which the 865 

number of both RNA and DNA reads is zero. 866 
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 867 

Fig 3 Comparison of the proportion of taxa that are active (i.e. percentage of total OTUs 868 

with 16S rRNA:rDNA ratio greater than a given threshold) in rhizosphere soil of bean (A) 869 

and corn (B) following each of four methods for calculating 16S ratios. See Figure 2 for 870 

depiction of the four methods for calculating 16S ratios and main text for description of 871 

treatment conditions. 872 

 873 
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 875 

 876 

Fig 4 Histogram depicting the distribution of 16S rRNA:rDNA ratios for phyla in the 877 

rhizosphere soil of bean (A) and corn (B). The y-axis depicts the number of times a 878 

given 16S ratio occurs in the dataset (i.e. within and across all samples) for a given 879 

phylum. Note that the x-axis is on a log-scale. The most abundant phyla are shown, 880 

along with less abundant phyla pooled as ‘other phyla’.  881 
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 891 

 892 

 893 

Fig 5 16S rRNA:rDNA ratio as a function of the average 16S operon copy number for 894 

the presented phyla as determined by the Ribosomal Copy Number Database (rrnDB). 895 

Data points represent every occurrence (i.e. within and across all samples) for a given 896 

phylum. Only phyla with representatives in the rrnDB are shown. 897 
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 917 

Fig 6 Proportion of active taxa/cells as determined by CTC/Syto24 staining (A, B) or 16s 918 

rRNA:rDNA ratios (C, D) in rhizosphere soil of corn (A, C) and bean (B, D).  Taxa in (C, 919 

D) are defined as active with a 16S rRNA:rDNA ratio > 1. See main text for description 920 

of treatment conditions. 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/435925doi: bioRxiv preprint 

https://doi.org/10.1101/435925
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 
 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

Fig S1 Prevalence of taxa with 16S RNA reads but zero 16S DNA reads (A, B) (i.e. 947 

‘phantom taxa), or a single 16S RNA read and zero 16S DNA reads (C, D) in 948 

rhizosphere soil of corn (A,C) and bean (B,D) as a function of sequencing subsampling 949 

level. Points indicate individual samples, with best fit lines using the loess smoothing 950 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/435925doi: bioRxiv preprint 

https://doi.org/10.1101/435925
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 
 

function. Gray shading around the smoothing lines are 95% confidence intervals. See 951 

Figure 1 for same plots but including only smoothing lines and confidence intervals. 952 
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 956 

Fig S2 Number of samples in each treatment following subsampling to a given 957 

sequencing level in rhizosphere soil of corn (A, C) and bean (B, D). Note that the 958 

number of samples in each treatment decreases as subsampling level increases 959 

because samples are excluded when their total read count is less than the level of 960 

subsampling. See main text for description of treatment conditions. 961 
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 972 

Fig S3 Flow cytometer counts (i.e., number of cells counted) per gram of soil extracted 973 

following staining with CTC (A, B) and Syto24 (C, D). 974 
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