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Abstract 10 

Conventional morphology-based identification is commonly used for routine assessment of freshwater 11 

ecosystems. However, cost and time efficient techniques such as high-throughput sequencing (HTS) based 12 

approaches may resolve the constraints encountered in conducting morphology-based surveys. Here, we 13 

characterized stream macroinvertebrate species diversity and community composition via metabarcoding and 14 

morphological analysis from environmental samples collected from the Shigenobu River Basin in Ehime 15 

Prefecture, Japan. We compared diversity metrics and assessed both approaches’ ability to evaluate the 16 

relationship between macroinvertebrate community and environmental variables. In total, we morphologically 17 

identified 45 taxa (3 families, six subfamilies, 31 genera, and five species) from 8,276 collected individuals 18 

from ten study sites. We detected 44 species by metabarcoding, with 35 species collapsed into 11 groups 19 

matching the morphologically identified taxa. A significant positive correlation between logged depth (number 20 

of HTS reads) and abundance of morphological taxa was observed, which implied that quantitative data can 21 

be used for subsequent analyses. Relatively higher estimates of alpha diversity were calculated from the 22 

metabarcoding data in comparison to morphology-based data. However, beta diversity estimates between 23 

metabarcoding and morphology data based on both incidence and abundance-based matrices were 24 

correlated proving that community differences between sampling sites were preserved in the molecular data. 25 

Also, both models were significant, but metabarcoding data (93%) explained a relatively higher percentage of 26 

variation in the relationship between community composition and the environmental variables than 27 

morphological data (91%). Overall, we present both the feasibility and limitations of HTS-driven estimations 28 

of taxonomic richness, community composition, and diversity metrics, and that metabarcoding was proven 29 

comparable and more sensitive against morphology-based analysis for stream macroinvertebrate biodiversity 30 

assessment and environmental monitoring. 31 
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1. Introduction 34 

Reliable and comprehensive, but rapid and cost-effective methods for monitoring freshwater ecosystems are 35 

encouraged due to the increasing threats of biological degradation faced by freshwaters worldwide (Carrizo 36 

et al., 2017). Since many ecological processes, stream characteristics and nutrient concentrations are 37 

important determinants of macroinvertebrate community composition (Heino, 2014; Shearer et al., 2015), 38 

macroinvertebrates have been the most commonly used focal groups for biological monitoring of the 39 

environmental quality of freshwater ecosystems (Menezes et al., 2010). They serve as good indicators of 40 

ecosystem health due to their high diversity, and different sensitivity to a range of natural and anthropogenic 41 

disturbances, which has been used to develop biotic indices for extensive monitoring programs (Aylagas et 42 

al., 2016).  43 

Conventional morphological analysis is most commonly used in routine monitoring programs evaluating 44 

environmental quality changes. However, this is not only time consuming but has serious issues with accuracy, 45 

and consistency in the level of taxonomic identification that highly depends on taxonomic expertise (Hajibabaei 46 

et al., 2011). Specifically, small organisms such as the larval stages of stream macroinvertebrates frequently 47 

used for river biomonitoring are often difficult or impossible to identify at finer taxonomic resolution (e.g., 48 

species level) (Sweeny et al., 2011). A promising alternative approach is DNA metabarcoding - a combination 49 

of amplicon-based high-throughput sequencing (HTS) analysis and DNA taxonomy (Hebert et al., 2003). High-50 

throughput amplicon sequencing can process large number of individuals simultaneously and in parallel (Thudi 51 

et al., 2012) making it faster and cheaper than the conventional Sanger sequencing (Voelkerding et al., 2009). 52 

Following a comprehensive read processing step, most metabarcoding pipelines carry out taxonomic 53 

assignments by comparing clustered reads or operational taxonomic units (OTUs) to a reference sequence 54 

database such as Genbank (Benson et al., 2012) and the Barcode of Life Data System (BOLD) (Ratnasingham 55 

and Hebert, 2007). Metabarcoding promises cost-effective and quicker assessments with more 56 

comprehensive and verifiable taxonomic identification that is less reliant on taxonomic expertise (Baird and 57 

Hajibabaei, 2012; Yu et al., 2012; Emilson et al., 2017).  58 

The application of HTS-based approaches for biodiversity assessments has been rapidly expanding across a 59 

wide range of fields, including the biomonitoring of stream macroinvertebrates (Baird and Hajibabaei, 2012; 60 

Beng et al., 2016). Previous studies have assessed the ability of DNA metabarcoding to identify 61 

macroinvertebrate communities in parallel to morphology-based identification. DNA metabarcoding provides 62 

broader taxonomic coverage and finer resolving power (Soininen et al., 2015). Hence, species that may exhibit 63 

diverse environmental responses would have a higher chance of detection benefiting study systems that 64 

require species-level identification (Elbrecht et al, 2017; Carew et al., 2018). With this advantage, DNA 65 

metabarcoding may provide stronger discriminatory power in detecting environmental variables that influence 66 

community composition compared to traditional methods (Emilson et al., 2017). 67 

Then again, amplicon-based HTS analysis for biomonitoring has technical difficulties associated with the 68 

quantitative assessment of the abundance of each species in a community (Elbrecht and Leese, 2015). 69 

Quantification of relative abundance is useful for community characterization, and assessment of biological 70 

indices as most diversity measures depend on a reliable recovery of taxonomic abundances (Gotelli and Chao, 71 
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2013; Aylagas et al., 2014; Bucklin et al., 2016). In theory, highly abundant species will yield higher 72 

concentrations of template DNA in the community DNA soup (Yu et al., 2012) leading to a positive correlation 73 

between the number of HTS reads (depth) and the abundance of species. However, interspecific differences 74 

in PCR primer compatibility and body mass may affect the efficiency of PCR amplification, potentially 75 

collapsing this correlation (Kowalczyk et al., 2011, Deagle et al., 2009, Zhou et al., 2013). Most metabarcoding 76 

studies were based on small organisms, such as algal, bacterial, and planktonic communities, where the 77 

morphological quantification of abundance is difficult or impossible, and so abundance and depth cannot be 78 

directly compared. However, recent metabarcoding studies have tested and found such positive correlation 79 

using relative abundances of morphologically identified taxa. Most of these studies were taxonomically limited 80 

to the family Nematoda (Porazinska et al., 2010), Chironomidae (Carew et al., 2013) or calanoid copepods 81 

(Clarke et al., 2017) that include similarly-sized species, while a handful tested environmental samples 82 

composed of macroinvertebrate taxa with varying size (e.g., Aylagas et al., 2016; Elbrecht et al., 2017; 83 

Krehenwinkel et al., 2017; Serrana et al., 2018). However, more tests with wider taxonomic and body size 84 

ranges such as macroinvertebrate communities are necessary to verify this relationship for taxonomically 85 

diverse communities for use in stream assessment. 86 

In this study, we compared conventional morphological identification against DNA metabarcoding to explore 87 

the feasibility and limitations of HTS analysis for stream macroinvertebrate diversity assessment and 88 

biomonitoring. Environmental samples of stream macroinvertebrate communities were collected from the 89 

Shigenobu River in Shikoku Island, Japan. First, we assessed the relationship between the number of HTS-90 

reads (depth) and relative abundance of taxonomic groups from the metabarcoding and morphology-based 91 

data to verify the applicability of abundance-based metrics for subsequent analyses. We then compare alpha 92 

and beta diversity metrics calculated from the two data sets and examine how HTS-derived data compares 93 

with the traditional method for assessment. Finally, we evaluated the ability of metabarcoding and 94 

morphological surveys in assessing the influence of stream environmental conditions in macroinvertebrate 95 

community composition in order to assess the capability of metabarcoding data for stream environmental 96 

monitoring. 97 

2. Materials and Methods 98 

2.1. Study area and sample collection 99 

Field survey was conducted in the Shigenobu River basin in Ehime Prefecture, Japan (33°47′N, 132°47′E; Fig. 100 

1) in August 2012. The basin has an area of approximately 445 km2, and the river originates from 1,232 m 101 

above sea level in its headwaters, flows 36 km along the length of the corridor, and finally discharges into the 102 

Seto Inland Sea as a fifth order river. The mountainous area is covered by plantation and secondary forests, 103 

while the lowland area predominantly consists of urban and agricultural land. Annual precipitation is 104 

approximately 1,300 mm with the wet season occurring in summer. From the mid- to lower reaches of the river, 105 

the channel is braided (bankfull width approximately 300 m maximum), and the flow tends to be intermittent 106 

owing to a thick channel layer of alluvial deposits. At present, there are three intermittent reaches in the river 107 

(upper: 18–22 km from the mouth; middle: 10–16 km; and lower: 4.9–7.4 km) (Kawanishi et al., 2011). 108 

Macroinvertebrate samples were collected from 10 sites longitudinally located from the headwater to the lower 109 
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reaches of the Shigenobu River (elevation range: 4–405 m; Table 1, and Fig. 1). We did not conduct sampling 110 

within the upper and middle intermittent reaches owing to the loss of surface water. Three equally spaced 111 

transects (40-m intervals) were established in each study site, and the macroinvertebrates were sampled at 112 

the center of each transect using a Surber sampler (25 × 25 cm quadrat, 0.5-mm mesh). The samples were 113 

immediately preserved in 99.5% ethanol, which was replaced twice in the field to prevent DNA degradation. 114 

The collected macroinvertebrates were then sorted and morphologically identified to the lowest taxonomic 115 

level possible using the taxonomic keys of Kawai and Tanida (2005). 116 

2.2. Library preparation and 454 pyrosequencing 117 

All specimens collected per study site were pooled, and dry weight (DW) was measured using a UMX2 Ultra-118 

microbalance (Mettler-Toledo, Inc., USA). Based on the measured DW (19 – 403 mg per site), the samples 119 

were separated into 10 mg DW portions and placed in 1.5-ml tubes. The samples were then homogenized 120 

in the tubes using pestles. DNA was extracted using DNeasy® Blood and Tissue Kit (Qiagen GmbH, Hilden, 121 

Germany) following the manufacturer’s instructions. Extracted DNA quantity and quality were measured using 122 

a NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA). DNA originating from the 123 

same study site were mixed with equal amounts of volume. A 658-bp fragment of the Cytochrome Oxidase I 124 

(COI) DNA barcode region was amplified using the universal primers LCO-1490 and HCO-2198 (Folmer et al., 125 

1994), which both had 454-specific fusion primers (11-mer) and a 4-mer key sequence (TCAG) added to the 126 

5′-end. To pool multiple PCR products from the 10 study sites in one 454 pyrosequence run, a Molecular 127 

Identifier (MID) tag (6-mer) was also added to the 5′-end of the LCO-1490 primer. PCR was conducted with a 128 

40-μl reaction volume containing 20 μl of Phusion® High-Fidelity PCR Master Mix with hydrofluoric acid (HF) 129 

buffer (New England Biolabs, UK), 2 μl of each PCR primer (10 uM), 3 μl of template DNA, and 13μl of PCR-130 

grade water using a T100TM Thermal Cycler (Bio-Rad Laboratories, CA, USA). The PCR conditions were 131 

denaturation at 94°C for 2 min; 30 amplification cycles at 94°C for 30 s, 40°C for 30 s, and 72°C for 60 s; and 132 

final extension at 72°C for 10 min. Two (duplicate) PCR products were generated for each site. The resulting 133 

20 PCR products were visualized using gel electrophoresis, and the target bands of successful samples were 134 

sliced and purified using the QIAquick® Gel Extraction Kit (QIAGEN, Germany). The DNA concentration of 135 

each purified PCR product was measured with a Quantus™ Fluorometer (Promega, Wi., USA) using the 136 

QuantiFluor® dsDNA System (Promega, Wi., USA) and was mixed with an equal molar amount. 137 

Pyrosequencing was carried out by Hokkaido System Science Co., Ltd. (Sapporo, Japan) using the 1/16 138 

region of a GS FLX Titanium instrument (454; Roche Diagnostics). 139 

2.3. Bioinformatics analysis 140 

In total, 165,508 passing filter reads with an average length of 328-bp were acquired. FastQC v0.11.5 141 

(Andrews 2010) was used to assess sequence quality. The raw pyrosequencing data were initially processed 142 

using Trimmomatic v0.36 (Bolger et al., 2014) to remove non-biological sequences, i.e., primer and index 143 

sequences. Quality filtering of the reads was performed following the UPARSE pipeline (Edgar 2013) using 144 

the maximum expected error parameter. Reads with >1 maximum expected error and length <200-bp were 145 

discarded. Surviving reads for the ten sites were truncated to 200-bp to obtain globally aligned reads, pooled 146 

and clustered into operational taxonomic units (OTU) using USEARCH v9.2.64 (Edgar 2010). For de novo 147 
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OTU assembly, the reads were dereplicated into unique sequences with 100% similarity. Resulting unique 148 

sequences were then clustered into operational taxonomic units (OTUs) with a similarity cut-off value of 97%, 149 

discarding putatively chimeric and singleton sequences. BLAST searches were performed on the OTU 150 

representative sequence against reference databases, i.e., Barcode of Life Database (BOLD) and GenBank. 151 

Taxonomic identification was assigned based on the best BLAST hit to a sequence with >97% identity, e-value 152 

>10-5 and minimum query coverage >90%. Representative OTU sequences without significant BLAST hits 153 

and non-arthropod matches were excluded from subsequent analyses.  154 

To examine the correlation between sequence depth and abundance, we plotted the number of reads of given 155 

taxa identified by BLAST against the abundance (individuals per 0.19 m2) of the morphologically identified 156 

taxa (morpho-taxa). Metabarcoding identified the samples at the species level while the morpho-taxa were 157 

identified at inconsistent taxonomic levels (e.g., Hydropsyche orientaris vs. Hydropsyche). The identified 158 

metabarcoding species were collapsed into a coarser taxonomic level (e.g., Hydropsyche) or “meta-taxa” to 159 

facilitate a balanced comparison between the two data sets. Detected metabarcoding taxa that did not match 160 

the morpho-taxa or false positive detection was retained at the species level in the dataset. 161 

2.4. Biodiversity analysis 162 

Diversity was evaluated within-community (alpha diversity) and between the communities (beta diversity) for 163 

both morpho-taxa and metabarcoding-identified species. Quantitative Insights into Microbial Ecology (QIIME) 164 

(Caporaso et al., 2010) was used to estimate diversity, with data matrices rarefied to the sampling site with 165 

the lowest abundance to equalize the number of reads or individuals. Alpha metrics assessed were Chao 1 166 

richness, Fisher’s alpha, Simpson’s index, and the Shannon-Wiener diversity index. Linear regression 167 

analyses were performed on log-transformed values to test the correlation of each alpha diversity matrices 168 

between the two data sets. Non-phylogenetic beta diversity was estimated using both qualitative metric 169 

(measure changes in communities based on presence or absence/incidence) – Binary-Jaccard dissimilarity, 170 

and quantitative metric (measure differences in relative abundances between communities) – Bray-Curtis 171 

dissimilarity. Mantel test was used to test the correlation between the morpho-taxa, and metabarcoding-172 

identified species data, and Principal Coordinates Analysis (PCoA) to visualize the dissimilarity matrices. 173 

Procrustes test was used to test for correlation between the two ordinations.  174 

2.5. Relationship between environmental variables and macroinvertebrate composition 175 

Physical and chemical characteristics were collected from each study sites. Physical habitat characteristics 176 

were measured at three equally placed points along five transects of each study sites. Stream characteristics 177 

such as width were measured on each transect (n = 5), while stream depth was measured to the nearest 1 178 

cm at each point of the transects (n = 15). Current velocity was measured above the streambed at each point 179 

using a portable current meter (Model CR-7WP; Cosmo-Riken Inc., Osaka, Japan). Electric conductivity and 180 

dissolved oxygen were measured using a multiparameter water quality meter (Model 556MPS, YSI Inc. Yellow 181 

Springs, OH, USA). Substrate coarseness and embeddedness were evaluated by visual assessment 182 

(Matthaei et al., 1999; Miyake and Akiyama, 2012). Single surface water samples were collected midstream 183 

of each site for water chemistry analysis. Periphyton biomass was estimated by measuring chlorophyll a 184 

concentration. The quantity of coarse particulate organic matter (CPOM) contained in each sample was 185 
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estimated via ash-free dry mass (AFDM, g m-2). Total nitrogen (TN) and total phosphorus (TP) were measured 186 

following standard methods (Apha, 2005). Redundancy analysis (RDA) was performed and plotted in the 187 

vegan R package (Oksanen et al., 2014) to visualize the relationships between the physical-chemical 188 

characteristics and the macroinvertebrate taxa detected via morphological and metabarcoding identification. 189 

Variance inflation factors (VIF) of the environmental variables were checked using the vif function in the 190 

faraway R package (Faraway, 2016). Variables selected have VIF values <4 and tolerance >0.20 variables to 191 

avoid issues of multicollinearity. ANOVA was run with 10000 permutations to assess the significance of 192 

constraints. Analyses were performed for the model (global test), for each constrained axis (setting: by = “axis”), 193 

and for each predicting variables (setting: by = “margins”) of the two data sets. Morphological and 194 

metabarcoding data were Hellinger-transformed before ordination. The predicting variables were log-195 

transformed to meet the assumptions of normality and equal variance. Statistical analyses were run in R 196 

v.3.3.1. 197 

3. Results 198 

3.1. Taxonomic identification 199 

A total of 8,276 individuals and 45 morpho-taxa (3 families, 6 subfamilies, 31 genera, and 5 species) were 200 

collected from the ten study sites (Table 1). The top three most dominant morpho-taxa were Chironominae 201 

(3,144 individuals, 38%), Baetis (2,203 individuals, 26.6%), and Orthocladiinae (1,639 individuals, 19.8%). 202 

The 454 pyrosequencing analysis generated a total of 165,508 reads (range: 8,593 – 31,291 reads/site; mean: 203 

19,942 reads/site) with an average length of 328-bp (range: 31 - 594-bp). Raw sequence data is available 204 

from NCBI Sequence Read Archive (SRA) with an accession number SRR7957429. After quality filtering, 205 

81,836 reads (49.5%) were retained, with 79,902 reads (48.3%) mapped to 156 OTUs. No significant matches 206 

in the BOLD database were obtained. However, 53 OTUs (34%) consisted of 47,641 reads (59.6% of reads 207 

mapped to OTUs) had significant BLAST hits to arthropod sequences in GenBank with >97% identity and e-208 

value >10-5 identified to the species level. The remaining OTUs either have BLAST identity under the matching 209 

criteria (91 OTUs, 31,962 reads), non-arthropod sequence match (7 OTUs, 171 reads), or no match (5 OTUs, 210 

128 reads). Metabarcoding identified 44 species (4 matches with “sp.”) under 6 orders, 13 families, and 29 211 

genera. For the orders, Diptera was the most abundant with 30,955 reads (65% of the taxonomically-identified 212 

arthropod sequences), followed by Ephemeroptera and Trichoptera with 14,881 reads (31.2%) and 1,570 213 

reads (3.3%) respectively. Other orders, i.e., Plecoptera, Odonata, and Podocopida, had <1% read abundance. 214 

See Fig. S2 for the relative abundance of the metabarcoding-detected species, and the meta- and morpho-215 

taxa. 216 

Significant positive correlations were found between the total abundance of morpho-taxa and the read 217 

abundance of meta-taxa for all sites, both in analyses including (R2 = 0.18; p = 0.001) and excluding (R2 = 218 

0.48; p = 0.02) false positive and false negative detections (Fig. 2). Positive linear correlations (p < 0.05) were 219 

also found for each sampling site including false positive and false negative detections, except for four sites 220 

i.e. sites 3, 4, 5 and 7 (Table 1). Thirty-five species (95.5% of reads) from our metabarcoding data matches or 221 

were under the taxonomic identification of 11 morpho-taxa (92.9% of individuals). The remaining 9 species 222 

(4.5% of reads) were false positive detections, while 34 morpho-taxa (7.12% of individuals) were undetected. 223 
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Most of the undetected morpho-taxa (false negative) have low representation (<6 individuals) in the community 224 

sample, with only nine groups having >14 individuals (Table 2). 225 

3.2. Comparison between morphological and metabarcoding-based diversity metrics 226 

Taxonomic richness or alpha diversity was assessed for both the morpho-taxa and metabarcoding-identified 227 

species data sets. Metabarcoding species data showed relatively higher values for Chao 1 richness and 228 

Fisher’s alpha, except for site 10, and sites 4 and 10, respectively. Additionally, Simpson’s and Shannon-229 

Wiener indices have relatively higher values for some sites in comparison to the morpho-taxa dataset (Table 230 

S1). However, linear regression analysis revealed that the alpha diversity metrics of the two data sets were 231 

not significantly correlated i.e., Chao 1 (p-value = 0.458), Fisher’s alpha (p-value = 0.698), Simpson’s index 232 

(p-value = 0.506) and Shannon-Wiener index (p-value = 0.653). On the contrary, mantel testing both beta 233 

diversity distances, Binary-Jaccard (Mantel r = 0.4701, 9999 permutations, p = 0.0073) and Bray-Curtis 234 

(Mantel r = 0.4581, 9999 permutations, p = 0.0075) dissimilarities of the morpho-taxa and metabarcoding-235 

identified species data matrices showed significant correlation. PCoA ordination plots of the beta diversity 236 

estimates were also significantly correlated shown via Procrustes analysis (Fig. 3). 237 

3.3. Environmental variables and macroinvertebrate community composition 238 

The detailed physical-chemical characteristics collected across the ten study sites are presented in Table S1. 239 

Redundancy analysis (RDA) was performed to visualize the relationships between stream physical-chemical 240 

characteristics and macroinvertebrate community composition. Seven environmental variables were selected 241 

as predicting variables, i.e., chlorophyll a, conductivity, CPOM, discharge, dissolved oxygen, TN, and TP. 242 

Global models of the morphology (p = 0.035) and metabarcoding (p < 0.001) data set constrained by the 243 

environmental variables were found to be statistically significant following a permutation ANOVA test. RDA 244 

explained about 91% of the total variability between macroinvertebrate composition and the environmental 245 

variables for the morphology data. Of the 91%, 59% was explained by RDA1 and 15% by RDA2. However, 246 

only the first axis was statistically significant (RDA1: p = 0.033). For the metabarcoding-identified species data, 247 

RDA explained 93% of the total variability. From this, the first two statistically significant axes explained 44% 248 

and 19 % respectively (RDA1: p < 0.001; RDA2: p = 0.011). The first axes (RDA1) of both data sets were 249 

positively loaded with chlorophyll a, conductivity, TN, and TP (biplot scores = 0.5171, 0.5559, 0.8195, and 250 

0.7151 respectively), and negatively loaded with CPOM, dissolved oxygen, and discharge (biplot scores = -251 

0.5367, -0.7587, and -0.1013 respectively). For second axis (RDA2) of the metabarcoding data was positively 252 

loaded with CPOM, discharge, and TN (biplot scores = 0.0140, 0.2053, and 0.0.0651 respectively), and 253 

negatively loaded with chlorophyll a, dissolved oxygen, conductivity and TP (biplot scores = -0.3012, -0.6468, 254 

-0.2314 and -0.1642 respectively) (Fig. 4). Also, permutation ANOVA set by margin to assess the marginal 255 

effects of each marginal term analyzed in the model with all other variables showed all environmental 256 

characteristics, except for chlorophyll a, were statistically significant for the metabarcoding data (Table S3). 257 

4. Discussion  258 

Assessing the changes in community composition in response to environmental variability is a key aspect of 259 

biodiversity assessment and monitoring (Ives and Carpenter, 2007). We evaluated the ability of the 260 
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morphological and metabarcoding approaches to assess the relationship between physical-chemical 261 

characteristics and macroinvertebrate community composition. Community-environment relationships can be 262 

quantified by explained variance from a redundancy analysis (Lu et al., 2016). Both models were significant, 263 

but the metabarcoding data set explained a relatively higher percentage of variation between the 264 

environmental variables and community composition. Although both approaches presented almost similar 265 

responses for each predictor variables (except for CPOM, discharge, and TN), only metabarcoding data 266 

ordination explained statistically significant variability between the environmental variables and community 267 

composition for the first two axes, and for each marginal terms. Hence, we can interpret that statistically 268 

significant physical-chemical characteristic from these analyses, i.e., conductivity, CPOM, discharge, 269 

dissolved oxygen, TN and TP strongly influenced macroinvertebrate community composition along the 270 

Shigenobu River basin during the conduct of the study.  271 

Evaluation of the sufficient taxonomic level for biodiversity assessments are vital for the establishment of a 272 

cost-effective monitoring program since identification at a higher taxonomic level (e.g. family or phylum) will 273 

reduce cost and processing time, requiring lesser taxonomic expertise (Thompson et al., 2003). Choosing the 274 

most appropriate taxonomic resolution highly depends on the biological group, the environment of the site and 275 

the objectives of the study (Machado et al., 2015). However, taxonomic identification with coarser resolution 276 

groups together biological species with different environmental preferences, masking the relationship between 277 

taxonomic composition and environmental variables (Martin et al., 2016). Nonetheless, DNA metabarcoding 278 

can provide a much more accurate taxonomic identification with finer resolution, so preliminary assessment 279 

of the sufficient taxonomic resolution appropriate for a specific study would not be required.  280 

We observed no significant correlation between the alpha diversity measures of morphological and 281 

metabarcoding data sets. The lack of correlation could be due to the difference in taxonomic resolution, with 282 

the latter having relatively higher taxonomic richness per site. Previous studies using metabarcoding have 283 

reported a generally higher species richness compared to morphology-based surveys (Cowart et al., 2015). 284 

DNA metabarcoding uncovered specific taxonomic groups undetected (false positive) from morphological 285 

assessments which magnifies the variation in community composition (Emilson et al., 2017). Molecular-based 286 

surveys have been proven to provide a broader view of the taxa present in the community due to its ability to 287 

uncover small sized, even eggs and juveniles of larger individuals from the collected environmental sample 288 

(Cowart et al., 2015). This, in addition to the undetected (false negative) morpho-taxa most likely resulted in 289 

the lack of correlation between the alpha diversity values of our morphological and metabarcoding-based 290 

approaches. On the contrary, significant correlations were observed for both beta diversity estimates assessed 291 

based on presence-absence (incidence) and sample/read abundance. Suggesting that changes in community 292 

composition observed from the metabarcoding data were congruent with the morphology-based assessment 293 

leading to similar interpretation about the ecological state of the sampled river. Our results were congruent 294 

with the report of Gibson et al. (2015) that HTS analysis provides a complete site- region-level biodiversity 295 

estimation (i.e., alpha, beta and gamma diversity metrics). These support previous studies that proclaimed 296 

HTS-based analysis is a suitable method for freshwater macroinvertebrate diversity assessments as an 297 

alternative to morphology-based surveys (Hajibabaei et al., 2011; Carew et al., 2018; Serrana et al., 2018).  298 
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Whereas many previous amplicon-based HTS studies have focused on microbial or planktonic taxa (e.g., 299 

Kermarrec et al., 2013, González-Tortuero et al., 2015, Hajibabaei et al., 2012, Tang et al., 2012, Zimmermann 300 

et al., 2015), we assessed environmental samples of diverse size with representatives having relatively large 301 

body size (>0.6 mm) which allowed us to directly compare the HTS data from conventional morphological 302 

identification. The positive correlation between the abundance of morphological taxa and sequence read 303 

abundance of the metabarcoding taxa among the merged taxonomic groups suggests that metabarcoding 304 

could be used to quantify relative species abundance based on depth information. It is worth to note that in 305 

accordance to the recent report of Elbrecht et al. (2017), we observed this correlation with a taxonomically 306 

broader community (i.e. the entire stream macroinvertebrate community) in comparison to former studies that 307 

also reported a positive correlation of sample and read abundance such as Nematoda (Porazinska et al., 308 

2010), Chironomidae (Carew et al., 2013), and calanoid copepod (Clarke et al., 2017) communities that 309 

assessed similarly-sized species. Although we did not measure the biomass (dry mass or wet mass) of 310 

individual samples, we can assume that there was large body mass variation between the small, e.g., 311 

Chironomidae: reported mean individual dry mass = 0.06 mg (Watanabe et al., 2008) and large e.g. 312 

Stenopsyche marmorata: 14.26 mg (Nakagawa and Takemon, 2015) taxa in our samples. 313 

Large taxa are expected to yield a larger portion of template DNA in the community DNA soup, leading to a 314 

higher number of reads regardless of their abundances. However, the fact that we were still able to detect an 315 

abundance-depth correlation demonstrates the robustness of this relationship. It is possible that the presumed 316 

high yield of template DNA from abundant species may overcome the potential bias effect of body mass 317 

variation among taxa. However, a comparison of the correlations between both body mass and abundance 318 

with depth is required in the future to validate these findings, considering the potential influence of taxon 319 

biomass to sequence reads (Elbrecht, Peinert, and Leese, 2017). This positive abundance-depth correlation 320 

also indicates that HTS may have low statistical power for detecting scarce species in community samples, 321 

which may lead to a high false-negative rate of species detection. Among the 45 morpho-taxa, 34 (7.12% of 322 

the individuals) were false negative, and 25 of these had relatively low representation in the whole community 323 

(<6 out of 8,276 individuals). All false negative detections have COI or whole genome sequences in GenBank. 324 

It is assumed that these scarce taxonomic groups yielded insufficient amounts of template DNA for PCR 325 

amplification and thus failed in the following HTS-based detection. Another likely reason for these false-326 

negative detections is low PCR primer compatibility (Kowalczyk et al., 2011, Deagle et al., 2009, Zhou et al., 327 

2013): species that have binding sites with a low affinity to the primers may capture fewer primer molecules 328 

during PCR annealing. 329 

Our metabarcoding approach was able to identify 11 of the morpho-taxa (92.9% of the individuals) in the 330 

community samples. However, false negative morpho-taxa (24.4% or 11/45 detected morpho-taxa) was 331 

considerably higher than has been reported in previous studies directly comparing morphological and 332 

metabarcoding identification, e.g., 0–25.0% or 0/8–2/8 species in Blanckenhorn et al. (2016); between 78-333 

83% species detection in Lobo et al. (2017); 80% or 16/20 of the morphologically identified families in Serrana 334 

et al. (2018); and 85% of samples identified at the family level in Carew et al. (2018). Our high missing rate 335 

could be due to: 1) we did not control (normalize) the relative abundance of taxa before the HTS library 336 

preparation; 2) we used 454 pyrosequencing, which generates smaller numbers of reads than more recent 337 

HTS platforms such as Illumina sequencer (Luo et al., 2012); or 3) our macroinvertebrate community sample 338 
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contained large inter-taxonomic variations in abundance and body mass. If we normalized the relative 339 

abundances before HTS library preparation by reducing the sample size of abundant morphological taxa (e.g., 340 

Harris et al., 2010), we would expect to obtain a higher detection rate of scarce species. However, the 341 

additional processing time required for this might reduce the motivation for using HTS (i.e., time-saving), and 342 

this approach also cannot estimate the relative abundances of taxa. It is possible that the recent and rapid 343 

advancement of HTS may lead to deeper sequencing technology with a larger read capacity may reduce the 344 

missing rate. HTS technology, e.g., 454 sequencing, Illumina or SOLiD has higher error frequency than Sanger 345 

sequencing with an approximately 0.5% vs. 0.1% error per nucleotide site, respectively (Shendure 2008). The 346 

454 system tends to cause errors of flame shift and gap opening in samples with low GC contents 347 

(Blanckenhorn et al., 2016), which may cause a biased over inflation of the diversity estimates (e.g., Brown et 348 

al., 2014, Rosen et al., 2012). 349 

5. Conclusion 350 

Reliable and comprehensive, but cost and time efficient methods are of critical importance for biodiversity 351 

assessment and environmental monitoring of freshwater ecosystems. In this study, we assess the feasibility 352 

of HTS-driven assessments of species diversity and relative abundances. We found supporting evidence for 353 

the positive correlation between HTS depth and abundance in the macroinvertebrate community, which had 354 

a wider taxonomical range and body mass variation. This finding indicates a possible application of 355 

metabarcoding in the quantitative assessment of relative abundances in taxonomically broad communities, 356 

although further validations are necessary that use body mass (dry mass) rather than abundance. This 357 

correlation also highlighted the pros and cons of the quantitative nature of amplicon-based HTS data. Based 358 

on our direct comparison of morphological and metabarcoding analyses, a high rate of false-negative detection 359 

was found specifically from scarce species in the community sample. Higher alpha diversity was observed 360 

due to the finer taxonomic resolution provided by metabarcoding, and that both incidence and abundance-361 

based estimation of beta diversity reflects that of the morphologically-identified data set. Assessment of the 362 

relationship between stream physical-chemical characteristics and the macroinvertebrate taxa detected via 363 

morphological and metabarcoding identification showed that both models were significant, but the latter 364 

explained a higher percentage of variation which indicates that the metabarcoding approach is capable, and 365 

a bit more sensitive in detecting environmental patterns comparable to morphology-based data sets mainly 366 

due to its ability to assign finer taxonomic identification (i.e., species level). Technological advancements in 367 

both the quantity (i.e., large capacity of total reads) and quality (i.e., low error rate) of HTS would make HTS-368 

based biomonitoring more accurate and reliable for both the research community and the public. 369 
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Figures 554 

 555 

Figure 1. Map of the ten study sites along the Shigenobu River in Shikoku Island, Japan. The altitude of each site is provided in Table 1. 556 

 557 

Figure 2. Correlation between the log sample abundance (morphologically-identified taxa/morpho-taxa) and log 454-read abundance 558 

(metabarcoding-identified taxa) of all sites showing analysis including (left) and excluding (right) false positive and false negative detection. 559 
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 560 

Figure 3. Principal coordinate analysis (PCoA) ordinations of beta diversity estimates (coords scaled by percent explained): Binary-561 

Jaccard (Procrustes:  p-value = 0.038) (top) and Bray-Curtis dissimilarity (Procrustes:  p-value < 0.001) (bottom). 562 
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 563 

 564 

Figure 4. Redundancy analysis (RDA) ordination plot of the morphologically-identified taxa (left) and metabarcoding-identified macroinvertebrate species (right) constrained by environmental variables. 565 

Both global models were found to be statistically significant following a permutation ANOVA test (p = 0.035, p < 0.001 respectively). “Chl-a” stands for chlorophyll a, “CPOM” for the coarse particulate 566 

organic matter, “DO” for dissolved oxygen, “EC” for conductivity, “TN” for total nitrogen and “TP” for total phosphorus. 567 
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Tables 568 

Table 1. Summary of altitude, DNA metabarcoding data, and species richness across the ten study sites.  569 

Study 
site 

Sample         
Size 

Read Processing   Metabarcoding 
Morpho-

taxa 
Meta-taxa 
(Match) 

False 
Positive 

False 
Negative 

Correlation Analysis 

Raw 
Reads 

Reads Mapped 
to OTUs 

OTUs 
Arthropod 

Readsa 
Meta-

species 
Meta-
taxa 

Pr > Fb R² R 

Site 01 603 18,867 10,593 14 4,338 13 3 5 2 1 3 0.03 0.73 0.85 

Site 02 228 31,300 15,371 15 11,704 14 6 7 3 3 4 0.03 0.48 0.69 

Site 03 208 8,593 4,941 24 2,520 20 8 9 5 3 4 0.10c 0.24 0.49 

Site 04 551 15,033 4,797 14 3,987 12 9 12 5 4 7 0.49c 0.03 0.18 

Site 05 1,347 12,598 5,792 28 3,534 25 9 14 6 3 8 0.08c 0.19 0.44 

Site 06 1,051 31,291 14,848 30 11,837 24 10 16 6 4 10 0.01 0.34 0.58 

Site 07 539 17,510 7,304 24 4,957 20 12 20 8 4 12 0.21c 0.06 0.25 

Site 08 2,740 10,626 4,944 26 2,802 21 12 25 8 4 17 0.01 0.25 0.5 

Site 09 843 8,784 5,106 28 1,462 22 9 22 6 3 16 0 0.39 0.62 

Site 10 166 10,906 6,206 15 500 13 6 27 5 1 22 0.03 0.17 0.41 

Total 8,276 165,508 79,902 53 47,641 44 20 45 11 9 34 0.001 0.18 0.43 

a arthropod sequence match at >97% identity and e-value >10-5 identified to the species level in GenBank. 
b including false positive and false negative detection. 
c no significant correlation with p-value > 0.05. 

570 
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Table 2. Absolute abundances of macroinvertebrates based on morphological identification (morpho-taxa) and metabarcoding sequence 571 

reads (meta-taxa). The correlations between these are shown in Figure 2. 572 

Order Family Genus Taxon Abundance Reads 

Ephemeroptera Baetidae Acentrella Acentrella                   108                       -    

 Baetidae Baetis Baetis                2,203                 6,466  

 Baetidae Cloeon Cloeon ryogokuense                       2                       -    

 Baetidae Labiobaetis Labiobaetis atrebatinus orientalis                                   -                      187  

 Baetidae Procloeon Procloeon                       1                       -    

 Baetidae Tenuibaetis Tenuibaetis flexifemora                                    -                      787  

 Caenidae Caenis Caenis                       6                       -    

 Ephemerellidae Drunella Drunella basalis                       1                       -    

 Ephemerellidae Ephemerella Ephemerella                     66                    280  

 Ephemerellidae Torleya Torleya                       1                       -    

 Ephemerellidae Uracanthella Uracanthella                     22                       -    

 Ephemeridae Ephemera Ephemera                       2                       -    

 Heptageniidae Afronus Afronus                     94                 1,922  

 Heptageniidae Cinygmula Cinygmula                       3                       -    

 Heptageniidae Epeorus Epeorus latifolium                     40                 5,207  

 Heptageniidae Rhithrogena Rhithrogena                   153                      32  

  Leptophlebiidae Choroterpes Choroterpes                     16                       -    

Plecoptera Chloroperlidae  ⸺ Chloroperlidae                       6                       -    

 Gripopterygidae Aucklandobius Aucklandobius gressitti                                    -                      218  

 Nemouridae Amphinemura Amphinemura                       2                       -    

 Perlidae Kamimuria Kamimuria                       2                       -    

 Perlidae ⸺ Perlinae                     14                       -    

  Perlodidae Isoperla Isoperla                       6                       -    

Trichoptera Glossosomatidae Glossosoma Glossosoma ussuricum                                   -                        20  

 Goeridae Goera Goera                       2                        8  

 Hydropsychidae Ceratopsyche Ceratopsyche orientalis                                   -                      463  

 Hydropsychidae Cheumatopsyche Cheumatopsyche                     32                      58  

 Hydropsychidae Hydropsyche Hydropsyche                       6                       -    

 Hydroptilidae Hydroptila Hydroptila                   158                       -    

 Lepidostomatidae Lepidostoma Lepidostoma                     24                       -    

 Limnephilidae Hydatophylax Hydatophylax soldatovi                                    -                      436  

 Psychomyiidae Lype Lype                       1                       -    

 Psychomyiidae Psychomyia Psychomyia                       1                       -    

 Rhyacophilidae Rhyacophila Rhyacophila                       4                       -    

  Stenopsychidae Stenopsyche Stenopsyche marmorata                       8                    585  

Diptera Athericidae Asuragina Athericidae                       1                       -    

 Chironomidae ⸺ Chironominae                3,144               20,145  

 Chironomidae ⸺ Orthocladinae                1,639               10,662  

 Chironomidae ⸺ Tanypodinae                   306                    129  

 Muscidae Lispe Lispe tentaculata                                   -                        19  

 Tipulidae Antocha Antocha                       4                       -    

  Tipulidae Hexatoma Hexatoma                       4                       -    

Coleoptera Elmidae Elminae Elminae                     35                       -    

 Elmidae Zaitzevia Zaitzevia                       1                       -    

 Elmidae Zaitzeviaria Zaitzeviaria                       3                       -    

 Hydrophilidae Laccobius Laccobius                       4                       -    

 Hydroporinae ⸺ Hydroporinae                     28                       -    

  Psephenidae Ectopria Psephenidae                       1                       -    

Odonata Gomphidae Davidius Davidius nanus                                   -                        11  

  Gomphidae Onychogomphus Onychogomphus                       1                       -    

Amphipoda Crangonyctidae Crangonyx Crangonyx floridanus                       2                       -    

  Gammaridae Pseudocrangonyx Pseudocrangonyx                       1                       -    

Isopoda Asellidae Asellus Asellus                   118                       -    

Podocopida Cyprididae Eucypris Eucypris virens                                   -                          6  

Total ⸺ ⸺ ⸺                8,276               47,641  

 573 
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