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Abstract

The fronto-temporal language network responds robustly and selectively to sentences. But the fea-
tures of linguistic input that drive this response and the computations these language areas support
remain debated. Two key features of sentences are typically confounded in natural linguistic input:
words in sentences a) are semantically and syntactically combinable into phrase- and clause-level mean-
ings, and b) occur in an order licensed by the language’s grammar. Inspired by recent psycholinguistic
work establishing that language processing is robust to word order violations, we hypothesized that the
core linguistic computation is composition, and, thus, can take place even when the word order violates
the grammatical constraints of the language. This hypothesis predicts that a linguistic string should
elicit a sentence-level response in the language network as long as the words in that string can enter into
dependency relationships as in typical sentences. We tested this prediction across two fMRI experiments
(total N=47) by introducing a varying number of local word swaps into naturalistic sentences, leading
to progressively less syntactically well-formed strings. Critically, local dependency relationships were
preserved because combinable words remained close to each other. As predicted, word order degradation
did not decrease the magnitude of the BOLD response in the language network, except when combinable
words were so far apart that composition among nearby words was highly unlikely. This finding demon-
strates that composition is robust to word order violations, and that the language regions respond as
strongly as they do to naturalistic linguistic input as long as composition can take place.

Keywords: fMRI, compositionality, semantics, syntax, information theory, mutual information

A left-lateralized network of anatomically and functionally inter-connected brain regions selectively sup-
ports language processing (e.g., Fedorenko, Behr, & Kanwisher, 2011). The regions of this “language net-
work” respond to both i) word meanings, and ii) combinatorial semantic/syntactic processing (e.g., Keller,
Carpenter, & Just, 2001; Fedorenko, Hsieh, Nieto-Castañón, Whitfield-Gabrieli, & Kanwisher, 2010; Fe-
dorenko, Nieto-Castanon, & Kanwisher, 2012; Bautista & Wilson, 2016). The magnitude of neural responses
in these regions, as measured with diverse brain imaging techniques, appears to scale with how language-
like the input is, with strongest responses elicited by sentences, and progressively lower responses elicited
by phrases, lists of unconnected words, pseudowords, and foreign/indecipherable speech (e.g., Fedorenko et
al., 2010; Bedny, Pascual-Leone, Dodell-Feder, Fedorenko, & Saxe, 2011; Pallier, Devauchelle, & Dehaene,
2011; Vagharchakian, Dehaene-Lambertz, Pallier, & Dehaene, 2012; Fedorenko et al., 2016; Scott, Gallée,
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& Fedorenko, 2017; Hultén, Schoffelen, Uddén, Lam, & Hagoort, 2019). But what features of the linguistic
stimulus and what associated linguistic computations drive the language network’s response? In particu-
lar, sentences – its preferred stimulus – both a) contain word pairs that are semantically and syntactically
combinable into phrases and clauses, and b) have the word order constrained by the rules of the language.
Here we evaluate a hypothesis that the core linguistic computation has to do with combining words into
phrases and clauses, and that this computation does not depend on word order (i.e., can take place even
when the word order is not licensed by the language’s grammar). A key prediction of this hypothesis is that
a linguistic string should elicit a sentence-level response in the language network as long as the words in that
string are combinable.

The motivation for this hypothesis is two-fold. First, all languages reflect the structure of the world
(e.g., Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Pennington, Socher, & Manning, 2014), including
both broad generalizations (e.g., that properties can apply to objects or entities, that entities can engage in
actions, or that some actions can affect objects) and particular contingencies (e.g., which specific properties
apply to which objects, which specific entities engage in which actions, etc.). This knowledge of the world
along with lexical knowledge (knowledge of word meanings) determines which words in the linguistic input
are combined to form phrases and clauses during language comprehension. For example, the words tasty (a
property, denoted by an adjective) and apple (an object, denoted by a noun) are combinable into a phrase,
in this case one with a plausible meaning, but the words tasty and ate (an action, denoted by a past tense
verb) cannot be combined because adjectives are not typically dependents of verbs like taste. In contrast,
although many accounts of syntactic representation and processing have emphasized word order as a key cue
to building syntactic structures (e.g., Bever, 1970; Kimball, 1973), languages across the world vary widely
in the rigidity of their word order constraints, with many languages exhibiting highly flexible orderings,
pointing to a more limited role of word order at least in those languages (e.g., K. Hale, 1983; Dryer &
Haspelmath, 2013; Jackendoff & Wittenberg, 2014). As a result, combinability of words into phrases and
clauses, but not strict word order, appears to be a universal feature of linguistic input that our language
processing mechanisms must be able to handle.

And second, recent work in psycholinguistics has shown that our sentence interpretation mechanisms are
well designed for coping with errors – including morpho-syntactic agreement errors and word swaps – as long
as a plausible meaning is recoverable (e.g., Ferreira, Bailey, & Ferraro, 2002; Levy, 2008b; Levy, Bicknell,
Slattery, & Rayner, 2009; Gibson, Bergen, & Piantadosi, 2013; Traxler, 2014). These coping mechanisms are
pervasive enough to interfere with our ability to detect errors during proofreading (e.g., Schotter, Bicknell,
Howard, Levy, & Rayner, 2014) and to make grammaticality judgments for sentences with easily correctable
syntactic errors compared to clearly grammatical/ungrammatical sentences (Mirault, Snell, & Grainger,
2018). As a result, if the core linguistic computation implemented in the language-selective cortex has to do
with combining words into phrases and clauses, form-based errors may be irrelevant as long as they do not
impede this process.

To test this hypothesis, we used a novel manipulation to examine neural responses to sentences where
word order is degraded (to varying extents), but local dependency relationships are preserved. In particular,
naturalistic sentences were gradually degraded by increasing the number of local word swaps (Figure 1),
which broke syntactic dependencies and led to progressively less syntactically well-formed strings (Table 1).
Critically, local semantic and syntactic relationships were preserved. The degree of local combinability can
be formally estimated using tools from information theory (Shannon & Weaver, 1963). Naturalistic linguistic
input is characterized by relatively high pointwise mutual information (PMI) among words within a local
linguistic context, and it falls off for word pairs spanning longer distances (e.g., Li, 1990; Lin & Tegmark,
2017; Futrell, Qian, Gibson, Fedorenko, & Blank, 2019). Our local-word-swap manipulation maintained
approximately the same level of local mutual information as that observed in typical linguistic input. As can
be seen in Figure 2e, the conditions with 1, 3, 5, and even 7 word swaps (Scr1, Scr3, Scr5, Scr7) have similar
local PMI levels to the intact condition (see Methods for details). To evaluate the importance of locality
for building dependency relationships, in one condition (in Experiment 2), we scrambled words within each
sentence in a way so as to minimize local PMI and thus break local inter-word relationships. In this condition,
local PMI is comparable to that of a list of unconnected words (see ScrLowPMI and Word-list conditions in
Figure 2e). Participants read these materials – presented one word at a time – while undergoing fMRI, and
blood oxygenation level dependent (BOLD) responses were examined in language-selective regions defined
using a separate localizer task (Fedorenko et al., 2010, Figure 2a).
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Figure 1: A sample item from the critical experiment; colors are used to illustrate the increasing degradedness
(i.e., the color spectrum becomes progressively more discontinuous with more swaps). a. The schematic of
the procedure used to create the scrambled-sentence conditions in Experiment 1. b. A sample stimulus from
the ScrLowPMI condition in Experiment 2.

If the core function of the language processing mechanisms is to combine words into phrases and clauses,
and this process is robust to word order violations, we would expect the neural response to remain high as
long as local PMI is similar to that observed in naturalistic linguistic input, but to drop for the condition
where local PMI is low. If, on the other hand, composition critically depends on word order, such that it is
hindered or altogether blocked in cases where the word order violates the grammatical rules of the language,
or if the core linguistic computation has to do with word-order-based parsing, then we would expect the
neural response to decrease as the word order becomes more degraded. It is also possible, on this hypothesis,
that there would be a non-linearity in the response across conditions, with an increase for conditions with
a small number of word swaps, which are relatively easily correctable with the cost carried by the language
areas, and then a drop for conditions with a larger number of swaps.

To foreshadow the key results, we found that the fMRI BOLD response in the language areas does not
decrease, relative to the response to its preferred stimulus (sentences), as long as mutual information among
nearby words remains as high as in typical linguistic input, allowing for composition. However, scrambling a
sentence so as to minimize local mutual information, blocking composition, leads to the response dropping to
the level of that for a list of unconnected words. These results support the idea that composition is the core
computation implemented in the language network, and this computation is robust to word order violations.

Methods

Participants

Forty-seven individuals (age 18 − 48, average age 22.8; 31 females) participated for payment (Experiment
1: n = 16; Experiment 2: n = 32; one individual participated in both Experiment 1 and Experiment 2,
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Figure 2: a. The schematic of the language localizer task used to define the language-responsive areas. b.
The parcels used to define the language-responsive areas. In each participant, the top 10% of most localizer-
responsive voxels within each parcel were taken as that participant’s region of interest. Replicating prior
work (Fedorenko et al., 2010), the localizer effect—estimated using across-runs cross-validation to ensure
independence—was highly robust in both experiments (ps¡0.0001). c-d. Neural responses (in % BOLD
signal change relative to fixation) to the conditions of the language localizer and Experiments 1 (n=16) and
2 (n=32). e. The formula for computing pointwise mutual information (PMI) (see Materials and Methods for
details), and average positive PMI values for the materials in Experiments 1 and 2 (N.B.: Slightly different
scramblings of the materials for the Scr1, Scr3, and Scr5 conditions were used in the two experiments; hence
two bars (left=Experiment 1) for each of these conditions.)

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2019. ; https://doi.org/10.1101/436204doi: bioRxiv preprint 

https://doi.org/10.1101/436204
http://creativecommons.org/licenses/by/4.0/


and one individual participated in Experiment 2 twice, once in version a and once in version b, as described
below, for a total of 49 scanning sessions across the 47 participants; for the participant who participated
in Experiment 2 twice, the data were combined across the two sessions). (We included twice as many
participants in Experiment 2 to ensure that the critical result in Experiment 1 was not due to insufficient
power.) Forty-one participants were right-handed, as determined by the Edinburgh handedness inventory
(Oldfield, 1971), or by self-report; the remaining six left-handed/ambidextrous individuals showed typical
left-lateralized language activations in the language localizer task (see Willems, Van der Haegen, Fisher, &
Francks, 2014, for arguments to include left-handers in cognitive neuroscience research). All participants
were native speakers of English from the Boston community. Four additional participants were scanned (for
Experiment 2) but excluded from the analyses due to excessive head motion or sleepiness, and/or failure
to perform the behavioral task. All participants gave written informed consent in accordance with the
requirements of MIT’s Committee on the Use of Humans as Experimental Subjects.

Experimental Design and Materials

In both experiments, each participant completed a) a version of the language localizer task (Figure 2a
Fedorenko et al., 2010), which was used to identify language-responsive areas at the individual-subject level,
and b) the critical sentence comprehension task (in 30/49 scanning sessions, participants completed the
localizer task in the same session as the critical task, for the remaining 19 sessions, the localizer came from
an earlier session; see Mahowald and Fedorenko (2016), for evidence of the stability of the localizer activation
maps across sessions). In addition, each participant completed a spatial working memory task (Fedorenko
et al., 2011), used in some control analyses to characterize brain regions sensitive to sentence scrambling, as
described below. Some participants further completed one or two additional tasks for unrelated studies. The
language localizer task was always completed first; the order of all other tasks varied across participants.
The entire scanning session lasted approximately 2 hours.

Language localizer

Participants passively read sentences and lists of pronounceable nonwords in a blocked design. The Sentences >
Nonwords contrast targets brain regions sensitive to high-level linguistic processing (Fedorenko et al., 2010).
The robustness of this contrast to materials, modality of presentation, language, and task has been previously
established (Fedorenko et al., 2010; Fedorenko, 2014; Scott et al., 2017). In this version of the localizer, the
sentences were constructed to vary in content and structures used, and the nonwords were created using the
Wuggy software (Keuleers & Brysbaert, 2010), to match the phonotactic properties of the nonwords to those
of the words used in the Sentence condition. Each trial started with 100 ms pre-trial fixation, followed by a
12-word-long sentence or a list of 12 nonwords presented on the screen one word/nonword at a time at the
rate of 450 ms per word/nonword. Then, a line drawing of a hand pressing a button appeared for 400 ms,
and participants were instructed to press a button whenever they saw this icon, and finally a blank screen
was shown for 100 ms, for a total trial duration of 6 s. The simple button-press task was included to help
participants stay awake and focused. Each block consisted of 3 trials and lasted 18 s. Each run consisted of
16 experimental blocks (8 per condition), and five fixation blocks (14 s each), for a total duration of 358 s
(5 min 58 s). Each participant performed two runs. Condition order was counterbalanced across runs.

Spatial working memory task (used in some control analyses)

Participants had to keep track of four (easy condition) or eight (hard condition) locations in a 3 × 4 grid
(Fedorenko et al., 2011). In both conditions, participants performed a two-alternative, forced-choice task at
the end of each trial to indicate the set of locations that they just saw. The Hard > Easy contrast targets
brain regions sensitive to general executive demands (e.g., Duncan & Owen, 2000; Duncan, 2010). Fedorenko,
Duncan, and Kanwisher (2013) have shown that the regions activated by this task are also activated by a
wide range of tasks that contrast a difficult vs. an easier condition Hugdahl, Raichle, Mitra, and Specht
(2015, see also). Each trial lasted 8 s (see Fedorenko et al., 2011, for details). Each block consisted of 4 trials
and lasted 32 s. Each run consisted of 12 experimental blocks (6 per condition), and 4 fixation blocks (16 s
each), for a total duration of 448 s (7 min 28 s). Forty-five participants performed two runs; the remaining
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Mean words moved Proportion crossing a syntactic boundary Length of largest meaningful substring
Int 0 (0) 0 12 (0)

Scr1 1 (0) 70.7 8.47 (2.04)
Scr3 2.49 (0.502) 77.3 5.82 (1.97)
Scr5 3.39 (0.611) 83.3 4.62 (1.64)
Scr7 4.29 (0.691) 87.0 4.46 (1.67)

Table 1: Description of the stimuli in Experiment 1 and 2a. Mean (SD)

two participants performed one run. Condition order was counterbalanced across runs when participants
performed two runs.

Critical task in Experiment 1

Design and materials

Participants read sentences with correct word order (Intact (Int)) and sentences with progressively more
scrambled word orders created by an increasing number (between 1 and 7) of local word swaps (Scrambled
(Scr) 1, 3, 5, and 7; Figure 1), as well as two control conditions: lists of unconnected words and lists of
nonwords. At the end of each trial, participants were presented with a word (in the sentence and word-list
conditions) or a nonword (in the nonword-list condition) and asked to decide whether this word/nonword
appeared in the preceding trial.

To create the sentence materials, we extracted 150 12-word-long sentences from the British National
corpus (Burnard, 2000). We then permuted the word order in each sentence via local swaps, to create the
scrambled conditions. In particular, a word was chosen at random and switched with one of its immediate
neighbors. This process was repeated a specified number of times. Because one random swap can directly
undo a previous swap, we ensured that the manipulation was successful by calculating the edit distance.
(The code used to create the scrambled conditions is available at OSF: https://osf.io/y28fz/.) We chose
versions with 1, 3, 5, and 7 swaps in order to i) limit the number of sentence conditions to five, while, at
the same time, ii) covering a range of degradedness levels. The materials thus consisted of 150 sentences
with five versions each (Int, Scr1, Scr3, Scr5, and Scr7), for a total of 750 strings. These were distributed
across five experimental lists following a Latin Square design, so that each list contained only one version of
a sentence and 30 trials of each of the five conditions. Any given participant saw the materials from just one
experimental list, and each list was seen by 2-4 participants.

To characterize the sentence materials in greater detail, as critical for interpretation (see Discussion),
we performed three analyses on the materials used in Experiments 1 and 2a (Table 1). First, we manually
annotated the number of words that were moved in each scrambled condition (where a move is defined as
a rightward or leftward movement of a word across one or more words). For example, if the dog chased the
cat was scrambled by 3 swaps to dog the cat chased the, two words (the and cat) have moved; and if it was
scrambled by 3 swaps to the chased the cat dog, only one word (dog) has moved. As expected, this value
increased gradually from the least to the most scrambled condition (i.e., from 1 in the Scr1 condition to 4.29
in the Scr7 condition), suggesting that there were more opportunities to break syntactic dependencies as the
number of swaps increased. Second, we manually annotated the stimuli for the proportion of swaps that
crossed a constituent boundary in the original sentence. This number increased gradually from 70.7% in
the Scr1 condition to 87% in the Scr7 condition. This analysis ensures that the scrambling procedure broke
syntactic dependencies, even in the condition with a single swap, and did not simply swap words within
constituents. And finally, we computed the length of the largest contiguous grammatical and meaningful
substring (whether or not that substring was present in the original sentence). This value decreased gradually
from 8.47 words in the Scr1 condition to 4.46 words in the Scr7 condition.

The word-list condition consisted of sequences of 12 real words (173 unique words: 55.5% nouns, 15.6%
verbs, 22.5% adjectives, and 6.4% adverbs; average word length: 7.19 phonemes, standard deviation 1.43
(Weide, 1998); average log frequency: 1.73, standard deviation 0.80 (Brysbaert, New, & Keuleers, 2012)), and
the nonword-list condition consisted of sequences of 12 nonwords (there were actually four different nonword-
list conditions – a manipulation not of interest to the current study; we averaged the responses across the four
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nonword-list conditions in the analyses). (The nonwords used in this experiment were generated differently
from the nonwords used in the language localizer task. In particular, they were created from real words
by introducing some number of letter replacements keeping local phonotactics intact. We do not make any
direct comparisons between nonword conditions across experiments, so this difference is of no consequence.)
The word-list and nonword-list materials were the same across participants. (All the materials are available
at OSF: https://osf.io/y28fz/)

Computing mutual information values

To estimate the likelihood of dependencies among nearby words, we used pointwise mutual information
(PMI), a metric from information theory (Fano, 1961; Church & Hanks, 1990), which measures the mutual
dependence between variables (in this case, words). Positive PMI values suggest a dependence between
words based on their overlap in contexts of use. Negative and near-zero PMI values suggest the absence of
a dependence. Following word2vec (Mikolov et al., 2013), we used a sliding four-word window to extract
local word pairs from each 12-word string. This is equivalent to collecting the bigrams, 1-skip-grams, and
2-skip-grams from each string.

For each word pair, we calculated PMI as follows:

PMI(wi;wj) = log
P (wj , wi)

P (wi)P (wj)
. (1)

Probabilities were estimated using the Google N-gram corpus (Michel et al., 2010) and ZS (Smith, n.d.)
with Laplace smoothing (α = 0.1). For each 12-word string, we averaged across the positive PMI values for all
word pairs occurring within a four-word sliding window. (The code for computing PMI is available at OSF:
https://osf.io/y28fz/.) Although PMI encompasses both semantic and syntactic dependence, it down-
weighs the contribution of high frequency, closed-class words, like determiners, pronouns, and prepositions,
given that it reflects inter-word association beyond the simple frequency of co-occurrence. As can be seen in
Figure 2e, local PMI across the four scrambled conditions (Scr1, Scr 3, Scr5, and Scr 7) is as high as that
in the intact (Int) condition. (Given that the sentences in the intact condition were drawn from a corpus,
their local PMI values likely reflect average local PMI in typical linguistic input.) This operationalization
is a coarse measure that collapses over finer-grained distinctions that may affect the formation of semantic
and syntactic dependencies (e.g. and reviews, Bemis & Pylkkänen, 2011; Pylkkänen, Bemis, & Elorrieta,
2014; Pylkkänen, 2016, 2019). However, to the extent that this operationalization can account for patterns
of neural (in this case, BOLD) responses and thus yield insights about the workings of the language system,
it holds theoretical and empirical value.

Procedure

Participants read sentences, scrambled sentences, word lists, and nonword lists in an event- related fMRI de-
sign. Each trial lasted 8 s and consisted of the presentation of the stimulus (a sequence of 12 words/nonwords
presented one at a time in the center of the screen with no punctuation, for 500 ms each, in black capital
letters on a white background), followed by a blank screen for 300 ms, followed by a memory probe presented
in blue font for 1,200 ms, followed again by a blank screen for 500 ms. The memory probe came from the
preceding stimulus on half of the trials. For the sentences, the probes were uniformly distributed across the
beginning (first four words), middle (middle four words), or end (last four words) of the sentence; for the
word and nonword lists, the probes were uniformly distributed across the 12 positions. Incorrect probes were
the shuffled correct probes from other sequences in the same condition.

The trials in each experimental list (300 total; 30 trials per condition, where the conditions included the
intact sentence condition, four scrambled sentence conditions, the word-list condition, and four nonword-list
conditions) were divided into six subsets corresponding to six runs. Each run lasted 480 s (8 min) and
consisted of 8 s * 50 trials (5 per condition) and 80 s of fixation. The optseq2 algorithm (Dale, 1999) was
used to create condition orderings and to distribute fixation among the trials so as to optimize our ability to
de-convolve responses to the different conditions. Condition order varied across runs and participants. Most
participants (n = 13) performed 5 runs; the remaining three participants performed 4 or 3 runs due to time
constraints.
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Critical task in Experiment 2

Design and materials

Experiment 2 was designed both 1) to assess the robustness of the results in Experiment 1, in line with
increasing emphasis on replicability in cognitive neuroscience (e.g., Poldrack et al., 2017; Siegelman, Blank,
Mineroff, & Fedorenko, 2019; Uddén et al., 2019), and 2) to directly evaluate the locality constraint on
semantic composition. In particular, as discussed above, in typical linguistic input, semantic and syntactic
dependencies tend to be local (e.g., Futrell, Mahowald, & Gibson, 2015). As a result, our linguistic processing
mechanisms are plausibly optimized for building complex meanings within local linguistic contexts. For
example, if words tasty and apple occur within the same sentence, but are separated by eight other words,
we may be less likely to combine them compared to cases where they occur in close proximity to one another.
To evaluate the importance of locality for the engagement of the composition mechanisms, we included a
manipulation where words were scrambled within a sentence in a way that minimizes local PMI. If locality
is important, this condition should elicit a lower neural response compared to the conditions with high local
PMI because participants would not be engaging in composition.

As in Experiment 1, participants read sentences with correct word order (Int) and sentences with pro-
gressively more scrambled word orders (Scr 1, 3, and 5). The materials for these scrambled conditions were
identical to those in Experiment 1 for half of the participants, and different permutations of the same intact
stimuli for the other half. Because, as expected, the results were almost identical across these two versions
of the materials, we report the results for all participants together.

The condition with 7 word swaps (Scr7) was replaced by a condition where each pair of nearby content
words was separated as much as possible within the 12-word string, so as to minimize local mutual information
(Figure 1). We focused on separating nearby content words because those carry the most information in the
signal (Shannon & Weaver, 1963) and contribute to positive PMI values as noted above. Take, for example,
one of our intact sentences: Larger firms and international companies tended to offer the biggest pay rises.
First, the content words were given a fixed order that maximized the sum of the distances between adjacent
content words (two content words are considered adjacent in the original string if they have no content words
between them): e.g., larger international tended biggest rises firms companies offer pay. This process was
repeated for the function words (e.g., and the to). Then, the ordered function words were embedded in the
center of the ordered content words (i.e., larger international tended biggest rises and the to firms companies
offer pay), which maximizes the distances between adjacent content words in the original sentence. (The
code is available at OSF: https://osf.io/y28fz/.) The manipulation was effective, leading to a significant
drop in local mutual information (Figure 2e). If locality is important for building inter-word relationships,
then minimizing the likelihood of dependency formation within local contexts should lead to a drop in the
neural response, similar to what is observed during the processing of unconnected word-lists (e.g., Fedorenko
et al., 2010; Pallier et al., 2011).

In addition to the five sentence conditions, we included five word-list conditions that were matched in
terms of their lexical properties word-for-word to the sentence conditions. In particular, each of 876 unique
words in the sentence conditions was replaced by a different word of the same syntactic category (using
the following set: nouns, verbs, adjectives, adverbs, and closed-class words), similar in length (+/- 0.03
phonemes, on average (Weide, 1998)) and frequency (+/- 0.23 log (lf), on average (Brysbaert et al., 2012)).
(Due to a script error, 11 words got replaced by the same word as the original word, and 6 words got
replaced by a word of a different part of speech.) We included the same number of word-list conditions as
sentence conditions to match the distribution of sentence and word-/nonword-list conditions in Experiment
1. However, in the analyses, we averaged the responses across the five word-list conditions given that there
is no reason to expect differences among them.

The materials were distributed across five experimental lists; any given participant saw the materials
from just one list, and each list was seen by 5-7 participants. As in Experiment 1, at the end of each trial,
participants were presented with a word and asked to decide whether this word appeared in the preceding
trial (see Results for behavioral performance).

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2019. ; https://doi.org/10.1101/436204doi: bioRxiv preprint 

https://osf.io/y28fz/
https://doi.org/10.1101/436204
http://creativecommons.org/licenses/by/4.0/


Procedure

The procedure was identical to that in Experiment 1 except that the memory probe was uniformly distributed
across the 12 positions in every condition. Most participants (n=30) performed 5 or 6 runs; the remaining
two participants performed 4 or 3 runs due to time constraints.

fMRI data acquisition

Structural and functional data were collected on the whole-body 3 Tesla Siemens Trio scanner with a 32-
channel head coil at the Athinoula A. Martinos Imaging Center at the McGovern Institute for Brain Research
at MIT. T1-weighted structural images were collected in 179 sagittal slices with 1 mm isotropic voxels (TR
= 2,530 ms, TE = 3.48 ms). Functional, blood oxygenation level dependent (BOLD) data were acquired
using an EPI sequence (with a 90◦ flip angle and using GRAPPA with an acceleration factor of 2), with the
following acquisition parameters: thirty-one 4 mm thick near-axial slices, acquired in an interleaved order
with a 10% distance factor; 2.1 mm × 2.1 mm in-plane resolution; field of view of 200 mm in the phase
encoding anterior to posterior (A > P) direction; matrix size of 96 mm x 96 mm; TR of 2,000 ms; and TE
of 30 ms. Prospective acquisition correction (Thesen, Heid, Mueller, & Schad, 2000) was used to adjust the
positions of the gradients based on the participant’s motion one TR back. The first 10 s of each run were
excluded to allow for steady-state magnetization.

fMRI data preprocessing and first-level analysis

First-level analyses were conducted in SPM5 (we used an older version of the software here due to the
use of these data in other projects spanning many years and hundreds of subjects); critical second-level
analyses were performed using custom MATLAB and R scripts. Each subject’s data were motion corrected
(realignment to the mean image using second-degree b-spline interpolation) and normalized into a common
brain space, the Montreal Neurological Institute (MNI) template (normalization was estimated for the mean
image using trilinear interpolation) and resampled into 2 mm isotropic voxels. The data were then smoothed
with a 4 mm Gaussian filter and high-pass filtered (at 200 s). The task effects in both the language
localizer task and the critical experiment were estimated using a General Linear Model (GLM) in which each
experimental condition was modeled with a boxcar function (corresponding to a block or event) convolved
with the canonical hemodynamic response function (HRF). The model also included first-order temporal
derivatives of these effects, as well as nuisance regressors representing entire experimental runs and offline-
estimated motion parameters.

Language fROI definition and response estimation

For each participant, functional regions of interest (fROIs) were defined using the Group-constrained Subject-
Specific (GSS) approach (Fedorenko et al., 2010; Julian, Fedorenko, Webster, & Kanwisher, 2012), whereby
a set of parcels or “search spaces” (i.e., brain areas within which most individuals in prior studies showed
activity for the localizer contrast) is combined with each individual participant’s activation map for the
same contrast. To define the language fROIs, we used six parcels (Figure 2b) derived from a group-level
representation of data for the Sentences > Nonwords contrast in 220 participants (a set of participants
scanned in our lab). These parcels included three regions in the left frontal cortex: two located in the inferior
frontal gyrus (LIFG and LIFGorb), and one located in the middle frontal gyrus (LMFG); and three regions in
the left temporal and parietal cortices spanning the entire extent of the lateral temporal lobe and extending
into the angular gyrus (LAntTemp, LPostTemp, and LAngG). (These parcels were similar to the parcels
reported originally in Fedorenko et al. (2010), except that the two anterior temporal regions were collapsed
together, and the two posterior temporal regions were collapsed together.) Following much prior work in
our group, individual fROIs were defined by selecting—within each parcel—the top 10% of most localizer-
responsive voxels based on the t-values for the Sentences > Nonwords contrast. Responses (in percent
BOLD signal change units) to the relevant critical experiment’s conditions, relative to the fixation baseline,
were then estimated in these fROIs. So, the input to the critical statistical analyses consisted of—for each
participant—a value (percent BOLD signal change) for each of 10 conditions in each of the six language fROIs.
Further, for Experiment 1, responses were averaged across the four nonword-list conditions, leaving a total of
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Estimate Est. Error 95% Credible Interval
Grand Mean 3.54* 0.08 3.38 3.69

Scr1 - Int -2.04* 0.11 -2.25 -1.83
Scr3 - Scr1 -1.42* 0.08 -1.57 -1.26
Scr5 - Scr3 -0.56* 0.05 -0.67 -0.46
Scr7 - Scr5 -0.23* 0.04 -0.30 -0.15

Table 2: The results of a mixed effect linear regression for the acceptability rating data. * denotes significant
difference.

seven conditions; and for Experiment 2, responses were averaged across the five word-list conditions, leaving
a total of six conditions. In the critical analyses (Figure 2c-d and Table 5), we consider the language network
as a whole (treating regions as random effects; see below) given the abundant evidence that the regions of
this network form an anatomically (e.g., Saur et al., 2008; Axer, Klingner, & Prescher, 2013) and functionally
integrated system, as evidenced by strong inter-regional correlations during rest and language comprehension
(e.g., I. Blank, Kanwisher, & Fedorenko, 2014; Paunov, Blank, & Fedorenko, 2019) and by correlations in
effect sizes across the regions (Mineroff, Blank, Mahowald, & Fedorenko, 2018), but we additionally report
the six language fROIs’ individual profiles and associated statistics (Figure 3 and Table 6). (In addition, to
facilitate comparisons with other datasets, we include individual participants’ whole-brain contrast maps for
all the individual conditions relative to the fixation baseline on OSF: https://osf.io/y28fz/.)

Statistical tests

To compare the average change in BOLD response across conditions, we conducted a mixed effect linear
regression model with maximal random effect structure (Barr, Levy, Scheepers, & Tily, 2013), predicting
the level of response with a fixed effect and random slopes for Condition, and random effects for Region of
Interest (ROI) and Participant. To further compare the average change in BOLD response across conditions
in each ROI separately, we conducted a mixed effect linear regression model with maximal random effect
structure, predicting the level of response with a fixed effect and random slopes for Condition, and random
effects for Participant. Condition was dummy-coded with Intact sentences as the reference level. Models
were fit separately for Experiment 1 and Experiment 2 using the brms package (Bürkner et al., 2017) in R
(Team, 2017) to interface with Stan (Stan Development Team, 2018).

Behavioral naturalness rating study

To ensure that our scrambling manipulation was successful (in that human comprehenders would show
sensitivity to it in some behavioral measure), 76 participants recruited through Amazon.com’s Mechanical
Turk rated the naturalness of the sentence stimuli used in Experiment 1 on a 7-point scale (from 1=unnatural
to 7=natural). On each trial, participants were presented with a single stimulus on the screen along with
the scale. The endpoints of the scale were labeled. Participants responded by selecting a discrete point on
the scale and then pressing the “Enter” key on their keyboard to move to the next trial. As in the fMRI
study, the materials were distributed across five experimental lists (150 trials each) following a Latin Square
design. Each list contained only one version of a sentence and 30 trials of each of the five conditions (Int,
Scr1, Scr3, Scr5, Scr7). Any given participant saw the materials from just one experimental list. Due to a
computer error, one list was administered to 16 participants; other lists were seen by 15 participants each.

The ratings were analyzed using a mixed effect linear regression model with a fixed effect and random
slopes for Condition, and random effects for Participant and Item. To demonstrate the effectiveness of the
manipulation at every level, Condition was backwards difference coded. As can be seen in Figure 4a and
Table 2, every increase in degradation was associated with a significant decrease in perceived naturalness,
although with diminishing returns. Thus participants were robustly sensitive to the scrambling manipulation.
(The presentation code and data are available at OSF: https://osf.io/y28fz/.)
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Estimate Est. Error 95% Credible Interval
Grand Mean 0.41* 0.13 0.15 0.69

Scr3 - Scr1 -0.71* 0.07 -0.85 -0.57
Scr5 - Scr3 -0.59* 0.06 -0.70 -0.48
Scr7 - Scr5 -0.32* 0.06 -0.44 -0.21

ScrLowPMI - Scr7 -1.46* 0.07 -1.61 -1.33

Table 3: The results of a mixed effect logistic regression for the reconstruction accuracy data. * denotes
significant difference.

Behavioral sentence reconstruction study

To assess the extent to which participants might be able to reconstruct the original sentence from its scram-
bled version, 180 additional participants recruited through Mechanical Turk were presented with the scram-
bled stimuli and asked to try to create a well-formed and meaningful sentence out of the words. As part of
the instructions, several simple examples were provided. Participants were instructed that the actual stimuli
would be more difficult and that they should try their best before moving on. For control purposes, we
included one of the word-list conditions from Experiment 2, but we don’t analyze those data here. Similar
to the rating study, the materials were distributed across experimental lists (six lists in this study, 150 trials
each) following a Latin Square design. Each list contained only one version of a sentence and 25 trials of
each of the six conditions (Scr1, Scr3, Scr5, Scr7, ScrLowPMI, word-list). Any given participant saw the
materials from just one experimental list. Each list was seen by 30 participants. On each trial, participants
were presented with a single stimulus on the screen along with a text box. Participants’ responses were
automatically constrained to only include words in the stimulus; however, due to a script error, participants
were allowed to use some words from the stimulus multiple times or omit words. In the analyses, we excluded
all trials in which a response was not the same length as the stimuli, resulting in 17% overall data loss (Scr1:
6%, Scr3: 11%, Scr5: 14%, Scr7: 19%; ScrLowPMI: 34%). The distribution of data loss over conditions is
itself a reflection of increasing reconstruction difficulty as the number of swaps increases.

Reconstruction accuracy was analyzed using a logistic mixed effect linear regression model with a fixed
effect and random slopes for Condition, and random effects for Participant and Item. As in the naturalness
rating study, Condition was backwards difference coded. As can be seen in Figure 4b and Table 3, every
increase in degradation was associated with a significant decrease in the ability to reconstruct the sentence.
This result suggests that it is unlikely that participants were able to reconstruct a full-fledged sentence-
level meaning, especially given the word-by-word presentation and time demands of our task in the scanner
compared to the unlimited time participants were given in the web-based reconstruction task. We return to
this point in the Discussion.

Discovering and characterizing brain regions sensitive to the
sentence-scrambling manipulation

Given that in the behavioral naturalness rating study we found robust sensitivity to the scrambling manip-
ulation, we asked whether any parts of the brain work harder when we process scrambled sentences. To
search for brain regions sensitive to scrambling, we performed a group-constrained subject-specific (GSS)
whole-brain analysis (Fedorenko et al., 2010; Julian et al., 2012). This analysis searches for spatially con-
sistent (across individuals) patterns of activation while taking into account inter-individual variability in
the precise loci of activations, which increases sensitivity relative to traditional random-effects analyses that
assume voxel-wise correspondence across people (Nieto-Castañón & Fedorenko, 2012). We chose a contrast
between the most scrambled condition that was shared between the two experiments (i.e., Scr5) and the
Intact condition. Pooling data across experiments (n=47; for the participant who took part in both Ex-
periments 1 and 2, we used the data from Experiment 1; for the participant who took part in Experiment
2 twice, we used the data from the first session), we took individual whole-brain activation maps for the
Scr5 > Int contrast and binarized them so that voxels that show a reliable effect (significant at p < 0.05,
uncorrected at the whole-brain level) were turned into 1’s and all other voxels were turned into 0’s. (We
chose a liberal threshold for the individual activation maps to maximize our chances of detecting regions of
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interest; as explained below, however, the resulting regions were subsequently evaluated using statistically
conservative criteria.) We overlaid these maps to create a probabilistic activation overlap map, thresholded
this map to only include voxels where at least 4 of the 47 participants showed activation, and divided it into
“parcels” using a watershed image parcellation algorithm (see Fedorenko et al., 2010, for details). Finally,
we identified parcels that—when intersected with the individual activation maps—contained supra-threshold
(i.e., significant for our contrast of interest at p < 0.05, uncorrected) voxels in at least half of the individual
participants.

To characterize the functional profiles of scrambling-responsive regions in greater detail, in each of the
regions, we estimated the BOLD response magnitude to the conditions of the two experiments. To estimate
the responses to the Scr5 and Int conditions, which were used in the localizer contrast, we used an across-runs
cross-validation procedure (e.g., Nieto-Castañón & Fedorenko, 2012), to ensure independence between the
data used to define the fROIs and to estimate the responses (Kriegeskorte, Simmons, Bellgowan, & Baker,
2009). In particular, each parcel was intersected with each participant’s activation map for the Scr5 > Int
contrast for all but the first run of the data. The voxels within the parcel were sorted—for each participant—
based on their t-values, and the top 10% of voxels were selected as that participant’s fROI. The responses
were then estimated using the left-out run’s data. The procedure was repeated iteratively leaving out each of
the runs. Finally, the responses were averaged across the left-out runs to derive a single response magnitude
per subject per region per condition. To estimate the responses to the other critical conditions, we used data
from the Scr5 and Int conditions across all runs. Statistical tests were performed on these extracted percent
BOLD signal change values.

In addition, we estimated the BOLD responses of scrambling-responsive regions to two other experiments:
i) the language localizer, and ii) the spatial working memory (WM) experiment. Responses to the language
localizer conditions can tell us whether the scrambling-responsive regions show a signature of the language
network: i.e., stronger responses to sentences than nonword sequences. We have constrained our definition
of the language-responsive regions in the critical analyses by a set of parcels derived based on activations for
the language localizer contrast in a large number of individuals (as described above). Thus regions outside of
this network of language-responsive regions should not show language-responsive properties. So this analysis
provides a reality check of sorts. Responses to the conditions of the spatial WM task tell us whether the
scrambling-responsive regions may belong to the domain-general multiple demand (MD) network, which
responds robustly to this task (e.g., Fedorenko et al., 2013) and which has been generally implicated in
executive functions like working memory and cognitive control (Duncan, 2010, 2013).

Results

Behavioral (memory probe task) data in Experiments 1 and 2

Response accuracy for each experiment was analyzed with a logistic mixed effect linear regression model with
a fixed effect and random slopes for Condition, and random intercepts for Participant and Item. Condition
was dummy-coded with Intact Sentences as the reference level. For both experiments, accuracy was above
chance for all conditions. In Experiment 1, accuracies in the scrambled sentence conditions did not signifi-
cantly differ from accuracy in the intact sentence condition; however, accuracy was significantly lower in the
word-list and nonword-list conditions compared to the intact sentence condition (Figure 4c and Table 4), in
line with prior work (e.g., Fedorenko et al., 2010). Similarly, in Experiment 2, accuracies in the scrambled
sentence conditions did not significantly differ from accuracy in the intact sentence condition; however, ac-
curacy was lower in the ScrLowPMI and the word-list conditions compared to the intact sentence condition
(Figure 4d and Table 4). (Data and analysis code are available at OSF: https://osf.io/y28fz/.)

fMRI data in Experiments 1 and 2

In Experiment 1, replicating much prior work (Fedorenko et al., 2010; Pallier et al., 2011), well-formed
sentences elicited significantly stronger BOLD responses than the word-list and nonword-list conditions
(Figure 2c, Table 5). However, degrading the sentences by introducing local word swaps did not decrease
the magnitude of the language network’s response: even stimuli with seven word swaps (e.g., their last on
they overwhelmed were day farewell by messages and gifts; Figure 1) elicited as strong a response as fully
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Figure 3: Neural responses (in % BOLD signal change relative to fixation) to the conditions of the language
localizer and Experiments 1 (top panel) and 2 (bottom panel) in each of the six language fROIs.

grammatical sentences (e.g., on their last day they were overwhelmed by farewell messages and gifts; Figure
2c, Table 5). The results also held—both qualitatively and statistically—for each language ROI separately
(Figure 3 and Table 6). This pattern of similarly strong responses for the well-formed and degraded sentences
suggests that inter-word dependencies are being formed even when the word order violates the rules of the
language, and supports the idea that composition is the core computation implemented in the language
network.

In Experiment 2, we replicated the pattern observed in Experiment 1 for the intact sentences and sentences
with 1, 3, or 5 local word swaps, all of which elicited similarly strong BOLD responses, all reliably higher
than the control, word-list, condition (Figure 2d, Table 5). However, the ScrLowPMI condition elicited a
response that was as low as that elicited by lists of unconnected words (Figure 2d, Table 5), demonstrating
that combinable words have to occur in close proximity to one another for the composition mechanisms to
get triggered. Again, the results held for each language ROI separately (Figure 3 and Table 6).

Brain regions sensitive to the sentence-scrambling manipulation

In spite of eliciting as strong a BOLD response as well-formed and meaningful sentences, the scrambled
sentences were rated as less acceptable behaviorally (Figure 4a and Table 2), suggesting there has to be
a cost to the processing of this kind of degraded linguistic input. The whole-brain search for scrambling-
sensitive areas discovered four regions, located in the middle frontal gyrus bilaterally and in the SMA (Figure
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Experiment 1 Experiment 2
Estimate Est. Error 95% CI Estimate Est. Error 95% CI

Intact (Int) 3.63* 0.33 3.03 4.32 1.98* 0.24 1.52 2.46
Scr1 vs Int 0.37 0.86 -0.94 2.44 -0.19 0.22 -0.62 0.27
Sc3 vs Int -0.02 0.74 -1.19 1.76 0.11 0.27 -0.39 0.70
Sc5 vs Int -0.39 0.59 -1.39 0.94 -0.27 0.24 -0.71 0.22

Scr7 vs Int -0.45 0.61 -1.50 0.87 – – – –
ScrLowPMI vs Int – – – – -0.64* 0.23 -1.07 -0.16

Words vs Int -1.74* 0.38 -2.51 -1.01 -0.30* 0.17 -0.64 0.04
Nonwords vs Int -2.35* 0.33 -3.04 -1.75 – – – –

Table 4: The results of logistic mixed effect models for Experiments 1 and 2 for the memory probe data.
Stimulus Type was dummy-coded with Intact sentences as the reference level. * denotes significant difference.

Experiment 1 Experiment 2
Estimate Est. Error 95% CI Estimate Est. Error 95% CI

Intact (Int) 1.06* 0.20 0.64 1.46 0.90* 0.18 0.55 1.27
Scr1 vs Int 0.07 0.09 -0.11 0.24 0.03 0.07 -0.11 0.17
Sc3 vs Int 0.11 0.10 -0.08 0.30 -0.10 0.08 -0.25 0.04
Sc5 vs Int 0.03 0.11 -0.19 0.26 -0.02 0.07 -0.16 0.12

Scr7 vs Int 0.06 0.11 -0.15 0.27 – – – –
ScrLowPMI vs Int – – – – -0.35* 0.08 -0.52 -0.19

Words vs Int -0.73* 0.12 -0.97 -0.50 -0.46* 0.08 -0.62 -0.30
Nonwords vs Int -1.00* 0.13 -1.26 -0.73 – – – –

Table 5: The results of mixed effect linear regressions for Experiments 1 and 2. Condition was dummy-coded
with Intact sentences as the reference level. * denotes significant difference.

5a).
The patterns of responses observed—averaging across the fROIs—are shown in Figure 5b. Qualitatively,

with respect to the conditions of the critical experiments, we found that the response increased parametrically
from the Int to the Scr5 condition in both experiments. Further, in Experiment 1, the response remained high
for the Scr7 condition, but in Experiment 2, the response fell off for the ScrLowPMI condition. To quantify
this non-monotonic pattern, we collapsed across experiments and conducted a mixed effect linear regression
with first and second order terms for Edit Distance (i.e., the number of swaps required to reconstruct the
original intact sentence) as a fixed effect and random slopes, and random effects for Participant and Region of
Interest. We found a small but significant increase in the BOLD response as stimuli become more scrambled,
with a decrease in the ScrLowPMI condition (Table 7).

With respect to the conditions of the language localizer and the spatial WM experiment, none of the
four fROIs showed a stronger response to sentences than nonword sequences (in fact, three of the four
regions showed a reliably stronger response to nonword sequences than sentences, in line with Fedorenko et
al. (2013); and all four fROIs showed a stronger response to the Hard than Easy condition in the spatial
WM experiment. These results suggest that the scrambling-responsive fROIs fall within the domain-general
MD cortex (Duncan, 2010, 2013). The parametric increase as a function of the degree of scrambling in the
critical experiments is in line with robust sensitivity of the MD cortex to effort across domains (e.g., Duncan
& Owen, 2000; Hugdahl et al., 2015). In particular, participants have to exert greater cognitive effort to
extract meaning from the more scrambled sentences (perhaps due to greater uncertainty about how words go
together, as suggested by the results of the behavioral sentence reconstruction experiment; Figure 4b). The
fall-off in these fROIs for the ScrLowPMI condition—which elicited a low response in the language regions
as shown in our critical analysis—is consistent with the idea that participants “give up” their attempts to
derive a meaningful representation in this condition (Callicott et al., 1999; Linden et al., 2003) (cf. Wen,
Mitchell, & Duncan, 2018). In particular, because participants no longer have the evidence in the input that
nearby words are combinable, they stop engaging their composition mechanisms.
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Experiment 1 Experiment 2
Estimate Est. Error 95% CI Estimate Est. Error 95% CI

Intact (Int)
LIFGorb 1.21* 0.12 0.97 1.44 0.75* 0.18 0.40 1.10

LIFG 1.43* 0.18 1.07 1.80 0.98* 0.17 0.64 1.31
LMFG 1.04* 0.15 0.75 1.32 1.11* 0.16 0.81 1.42

LAntTemp 0.89* 0.09 0.72 1.07 0.89* 0.10 0.70 1.09
LPostTemp 1.24* 0.08 1.07 1.41 1.04* 0.10 0.85 1.24

LAngG 0.61* 0.13 0.37 0.87 0.60* 0.14 0.33 0.86
Scr1 vs Int

LIFGorb 0.09 0.10 -0.10 0.27 0.01 0.09 -0.17 0.19
LIFG 0.16 0.10 -0.03 0.35 0.04 0.07 -0.09 0.17

LMFG 0.09 0.07 -0.05 0.23 0.11* 0.06 0.00 0.23
LAntTemp -0.01 0.05 -0.11 0.10 0.01 0.05 -0.10 0.12
LPostTemp 0.05 0.07 -0.08 0.18 0.02 0.06 -0.09 0.13

LAngG 0.05 0.05 -0.04 0.16 -0.05 0.06 -0.17 0.07
Scr3 vs Int

LIFGorb 0.16 0.12 -0.08 0.39 -0.17 0.09 -0.36 0.01
LIFG 0.26* 0.11 0.05 0.48 -0.12 0.08 -0.28 0.03

LMFG 0.18* 0.08 0.02 0.34 -0.03 0.07 -0.17 0.12
LAntTemp -0.03 0.07 -0.17 0.11 -0.09 0.06 -0.20 0.02
LPostTemp 0.07 0.07 -0.07 0.20 -0.09 0.06 -0.21 0.03

LAngG 0.02 0.05 -0.09 0.12 -0.13 0.08 -0.28 0.03
Scr5 vs Int

LIFGorb 0.08 0.12 -0.16 0.31 -0.07 0.10 -0.26 0.12
LIFG 0.22 0.12 -0.01 0.45 0.00 0.07 -0.14 0.14

LMFG 0.17* 0.08 0.02 0.32 0.08 0.07 -0.06 0.21
LAntTemp -0.13* 0.05 -0.23 -0.3 -0.07 0.06 -0.18 0.04
LPostTemp -0.02 0.08 -0.17 0.14 -0.02 0.06 -0.14 0.10

LAngG -0.14* 0.07 -0.28 -0.01 -0.08 0.06 -0.21 0.04
Scr7 vs Int

LIFGorb 0.13 0.13 -0.14 0.39 – – – –
LIFG 0.20 0.15 -0.08 0.49 – – – –

LMFG 0.16 0.11 -0.05 0.38 – – – –
LAntTemp -0.08 0.07 -0.23 0.05 – – – –
LPostTemp 0.03 0.08 -0.13 0.20 – – – –

LAngG -0.09 0.06 -0.22 0.04 – – – –
ScrLowPMI vs Int

LIFGorb – – – – -0.44* 0.11 -0.66 -0.22
LIFG – – – – -0.39* 0.09 -0.57 -0.21

LMFG – – – – -0.29* 0.08 -0.46 -0.13
LAntTemp – – – – -0.34* 0.06 -0.46 -0.22
LPostTemp – – – – -0.37* 0.06 -0.50 -0.25

LAngG – – – – -0.28* 0.08 -0.43 -0.13
Words vs Int

LIFGorb -0.75* 0.10 -0.95 -0.54 -0.41* 0.13 -0.67 -0.16
LIFG -0.89* 0.14 -1.17 -0.62 -0.43* 0.10 -0.62 -0.23

LMFG -0.75* 0.14 -1.04 -0.48 -0.55* 0.07 -0.68 -0.40
LAntTemp -0.62* 0.08 -0.77 -0.46 -0.44* 0.07 -0.58 -0.31
LPostTemp -0.83* 0.07 -0.98 -0.68 -0.45* 0.07 -0.58 -0.31

LAngG -0.55* 0.09 -0.73 -0.38 -0.49* 0.07 -0.63 -0.36
Nonwords vs Int

LIFGorb -1.06* 0.11 -1.29 -0.84 – – – –
LIFG -1.26* 0.16 -1.57 -0.95 – – – –

LMFG -0.87* 0.11 -1.08 -0.65 – – – –
LAntTemp -0.86* 0.07 -1.00 -0.72 – – – –
LPostTemp -1.11* 0.08 -1.26 -0.94 – – – –

LAngG -0.85* 0.13 -1.10 -0.58 – – – –

Table 6: The results of mixed effect linear regressions for Experiments 1 and 2 for the six language fROIs.
Condition was dummy-coded with Intact sentences as the reference level. * denotes significant difference.
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Figure 4: a) The average naturalness rating (higher=more natural). b) The average reconstruction accuracy.
c-d) The average memory probe accuracy from Experiments 1 and 2. All error bars reflect 95% bootstrapped
confidence intervals.

Estimate Est. Error 95% CI
Intercept 0.844 0.491 -0.125 1.835

Edit Distance 0.046* 0.024 0.012 0.086
Edit Distance2 -0.002* 0.001 -0.003 -0.0005

Table 7: The results of mixed effect linear regression models for the scrambling-responsive regions. * denotes
significant difference.

Discussion

In this study, we evaluated a hypothesis that that the core linguistic computation implemented in the
language-selective cortex has to do with combining words into phrases and clauses, and that this compu-
tation can take place even when the word order is not licensed by the language’s grammar. Across two
fMRI experiments, we examined the processing of stimuli where the word order was degraded, via a novel
parametric manipulation (varying numbers of local word swaps), making word-order-based parsing difficult
or impossible, but semantic and syntactic dependencies could still be formed among nearby words. Using
behavioral measures in independent groups of participants, we established robust sensitivity to the scram-
bling manipulation: sentences with more word swaps, and correspondingly more syntactic dependencies
disrupted (Table 1), were rated as less natural (Table 2, Figure 4a), and it was more difficult to reconstruct
the original sentence from the scrambled versions (Table 3, Figure 4b). However, scrambled sentences, even
the conditions with a large number (5 and 7) word swaps, elicited BOLD responses in the language areas
that were as strong as the response elicited by naturalistic sentences. Only when inter-word dependencies
could not be formed among nearby words did the BOLD response in the language areas drop to the level of
that elicited by lists of unconnected words. These results suggest that the ability to form local dependencies
is necessary and sufficient for eliciting the maximal BOLD response in the language-selective brain network,
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Figure 5: a. The parcels used to define the scrambling-responsive areas. In each participant, the top 10%
of most localizer-responsive voxels within each parcel were taken as that participant’s region of interest. b.
Neural responses (in % BOLD signal change relative to fixation) to the conditions of Experiments 1 (top)
and 2 (bottom), as well as the language localizer and spatial WM task.

where maximal is defined as the BOLD response to the preferred stimulus—well-formed and meaningful
sentences. We interpret these findings as suggesting that composition is the core linguistic computation
driving the neural responses in the language-selective cortex, and this computation does not depend on word
order (see Bornkessel-Schlesewsky, Schlesewsky, Small, & Rauschecker, 2015, for a related proposal).

Our analyses of the experimental materials and the behavioral sentence reconstruction study help rule
out two alternative explanations of these findings. One possibility is that conditions with 1, 3, 5 and even
7 word swaps (Scr1, Scr3, Scr5 and Scr7) but not the ScrLowPMI condition contained a sufficiently long
well-formed and meaningful substring, and that such substrings are sufficient to elicit a BOLD response
similar to that elicited by a fully well-formed sentence. To rule out this possibility, we turn to an earlier
fMRI study by Pallier et al. (2011). They examined responses to 12-word long sequences that varied in their
composition between a sentence, two 6-word-long substrings, three 4-word-long substrings, four 3-word-longs
substrings, six 2-word-long substrings, and a list of 12 unconnected words. The BOLD response was shown
to fall off as a function of the length of the substrings: a 12-word-long sentence elicited a stronger response
than a sequence composed of two 6-word-long substrings, which, in turn, elicited a stronger response than a
sequence composed of three 4-word-long substrings, etc. We replicate this finding in our work (Mollica et al.,
in prep.). The analysis of our experimental materials (Table 1) revealed that the length of the longest well-
formed and meaningful substring decreases with each scrambling level and drops to 4.46 words on average for
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the condition with 7 word swaps. As a result, the alternative hypothesis considered here predicts a gradual
fall-off in the BOLD response from the Int condition to the Scr7 condition, which is not the pattern we
observe.

Another possibility is that participants were able to reconstruct the original sentence in all the scrambled
conditions except for the ScrLowPMI condition. This possibility is unlikely given that in the behavioral
sentence reconstruction study the ability to reconstruct the original sentence dropped off with each additional
scrambling level (Figure 4b and Table 3). And this pattern was observed in spite of the fact that participants
had access to the entire stimulus string and were not limited time-wise (cf. the word-by-word relatively fast
presentation in the scanner). Furthermore, we model the BOLD response during the entire trial, and, by
design, participants do not have access to all the words until after the last word has been presented. As
a result, the similarly strong BOLD response across the Int through Scr7 conditions is unlikely due to
participants successfully “unscrambling” the stimuli and processing them as such. (Of course, some local
unscrambling could still take place. However, importantly, this unscrambling was, apparently, not carried
out by the language areas given that there was no increase in neural response to the scrambled compared to
intact stimuli in these areas. Thus, whatever computation is performed by the language areas proceeds in
the same way in the intact and the scrambled conditions.)

Having ruled out these two alternatives, we argue that during the incremental processing of linguistic
strings, participants form dependency relationships among words within a moving local context of a few
words. This process results in the construction of phrase- and clause-level meanings. Composition is driven
by the lexico-semantic and syntactic (part of speech and morphological endings) properties of the input
words combined with a plausibly Bayesian inductive inference process (e.g., Steyvers, Griffiths, & Dennis,
2006). In particular, when linguistic data under-constrain interpretation, participants likely make their best
guesses about the intended meaning by combining the information in the input with their prior semantic and
linguistic knowledge (see e.g., Chater & Manning, 2006; Gibson et al., 2013, for applications of the general
Bayesian framework to linguistic interpretation).

In addition to the consistently high BOLD response across the scrambled conditions, the behavioral
data from the memory probe task performed in the scanner (Figure 4c-d and Table 4) provide indirect
evidence that complex meanings were formed during the processing of all the sentence conditions except
for the ScrLowPMI condition. In particular, a classic finding in the memory literature is that people’s
memory for phrases and sentences is superior to their memory for lists of unconnected words (e.g., Brener,
1940; A. D. Baddeley, Hitch, & Allen, 2009), which has been attributed either to the fact that people
represent sentences in terms of their meaning / gist extracted during comprehension, and that gist can
later be used to regenerate the specific word-forms (e.g., Potter & Lombardi, 1990), or to the automatic
engagement of long-term memory mechanisms during sentence-level comprehension, which leads to more
effective binding of information within the episodic buffer (A. Baddeley, 2000; A. D. Baddeley, Allen, &
Hitch, 2011). We found that participants’ performance on the memory probe task did not decline as a
function of the scrambling manipulation. It only dropped in the ScrLowPMI condition. This consistently
high memory probe performance can be used to indirectly infer that participants successfully formed complex
meaning representations in the scrambled conditions, as they did when processing well-formed and meaningful
sentences.

In the remainder of the paper, we discuss three issues that our results speak to.

The relationship between lexico-semantic and syntactic processes

In this study, we showed that word order—one component of syntax—does not appear to affect the basic
composition process carried out by the core fronto-temporal language-selective network: as long as depen-
dencies can be formed between nearby words in linguistic strings, the composition mechanisms get engaged
as they do when we process naturalistic linguistic input. Throughout the manuscript, we have talked about
the composition process as encompassing both semantic composition and syntactic structure building. The
relationship between the two has been treated differently across proposals in the theoretical linguistic litera-
ture. In mainstream generative grammar and formal semantics (e.g., Chomsky, 1965, 1981; Montague, 1974;
B. Partee, 1975, 1995; B. B. Partee, ter Meulen, & Wall, 1990), semantic composition is considered to be a
special case of syntactic composition, and syntax determines the meaning of a phrase or a clause. However,
according to an alternative perspective, semantic composition can proceed (partially or fully) independently
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from syntactic structure building (e.g., Jackendoff & Jackendoff, 2002; Jackendoff, 2007; Culicover & Jack-
endoff, 2006; Culicover, Jackendoff, Jackendoff, et al., 2005; Kuperberg, 2007; Jackendoff, 2010; Jackendoff &
Wittenberg, 2017). Baggio (2018) refers to this idea as “autonomous semantics”. According to his proposal,
words are bound into “relational structures” based on associative, categorical, and logical relationships (see
Michalon & Baggio, 2019, for evidence of computational feasibility). We are sympathetic to the latter view.
We think of semantics as an independent computational system that obeys its own rules for how words are
bound together during language comprehension. Of course, many of these rules have correlates in syntax,
but nevertheless we conceive of semantic composition as a process that can take place independently from
syntactic structure building.

However, at the implementation level, it does not appear to be the case that semantic composition
and syntactic structure building are spatially separable in the brain, at least at the resolution accessible to
current imaging techniques. Many have searched for and claimed to have observed a dissociation between
brain regions that support (lexico-)semantic processing and those that support syntactic processing (e.g.,
Dapretto & Bookheimer, 1999; Embick, Marantz, Miyashita, O’Neil, & Sakai, 2000; Friederici, Opitz, &
Von Cramon, 2000; Noppeney & Price, 2004; Cooke et al., 2006, inter alia). However, some of these classic
findings do not appear robust to replication (Siegelman et al., 2019). And in general, taking the available
evidence from cognitive neuroscience en masse, the picture that has emerged does not support a double
dissociation between lexico-semantic and syntactic processes.

First, the specific regions that have been argued to support (lexico-)semantic vs. syntactic processing, and
the precise construal of these regions’ contributions, differ widely across studies and proposals (e.g., Friederici,
2011, 2012; Baggio & Hagoort, 2011; Tyler et al., 2011; Bemis & Pylkkänen, 2011; Duffau, Moritz-Gasser,
& Mandonnet, 2014; Ullman, 2004, 2016; Matchin & Hickok, 2019). Second, although diverse paradigms
have been used across studies to probe semantic vs. syntactic processing, any given study (cf. Fedorenko,
Mineroff, Siegelman, & Blank, 2018) has typically used a single paradigm, raising the possibility that the
results reflect paradigm-specific differences between conditions rather than a general difference between
semantic and syntactic computations. In addition, given the tight link between meaning and structure,
results from some syntactic manipulations may, in fact, be due to parallel semantic composition processes.
And finally, a number of neuroimaging studies have failed to observe a double dissociation between semantic
and syntactic processing, reporting instead overlapping areas of activation (e.g., Keller et al., 2001; Röder,
Stock, Neville, Bien, & Rösler, 2002; Fedorenko et al., 2010; Bautista & Wilson, 2016). In particular, any
brain region that shows sensitivity to syntactic processing appears to be at least as sensitive to individual
word meanings and semantic composition. (There do exist brain areas—in the left anterior temporal lobe
/ temporal pole—that respond to word meanings, or abstract conceptual representations, according to
some accounts, but not syntactic/combinatorial processing ((e.g., Schwartz et al., 2009; Schwartz, Marin,
& Saffran, 1979; Patterson, Nestor, & Rogers, 2007; Visser, Jefferies, & Lambon Ralph, 2010; Mesulam et
al., 2013; Lambom Ralph, Jefferies, Patterson, & Rogers, 2017)(cf. Westerlund & Pylkkänen, 2017).) In
summary, it appears that syntactic processing a) is not focally carried out in a particular brain region within
the language network contra some proposals (e.g., Friederici, Bahlmann, Heim, Schubotz, & Anwander, 2006;
Tyler et al., 2011; Brennan et al., 2012; Berwick, Friederici, Chomsky, & Bolhuis, 2013; Matchin & Hickok,
2019), but is distributed across the left lateral frontal and temporal areas (e.g., I. Blank, Balewski, Mahowald,
& Fedorenko, 2016), and b) is supported by the very same brain regions that support the processing of word
meanings and semantic composition.

We would further argue that semantic composition, not syntactic structure building—to the extent that
the two are separable—is primary in language comprehension and is the core operation driving the language-
selective areas (see also Fedorenko et al., 2016; Pylkkänen & Brennan, in press). On the theoretical side,
this argument is motivated by a key function of language—to communicate meanings (e.g., Goldberg, 2006;
Jackendoff, 2011)(cf. Chomsky, Noam, et al., 2002). Abundant evidence now suggests that many properties of
human languages—from the sound systems, to lexicons, to grammars—have been shaped by communicative
pressures, to optimize information transfer (see Gibson et al., 2019, for review). As a result, it seems likely
that our language processing mechanisms would be optimized for extracting meaning from the signal. On
the empirical side, we know that meaningful sentences elicit stronger responses in the language areas than
structured but meaningless stimuli, like Jabberwocky sentences or nonsensical sentences (e.g., Humphries,
Binder, Medler, & Liebenthal, 2007; Fedorenko et al., 2010; Scott et al., 2017)(cf. Pallier et al., 2011),
although the lack of a difference in the mean response to real vs. Jabberwocky sentences in some language
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areas does not appear to be replicable, and is likely driven by a between-subjects comparison in the original
study (Dehaene and Pallier, p.c.)), suggesting that syntactic structure building alone cannot explain the
response properties of the language areas. However, future studies should aim to further evaluate the
relative importance of semantic vs. syntactic composition in language comprehension.

Our results also speak to a differential role of language statistics in syntax versus semantics. On the
one hand, language statistics are relevant because humans plausibly store and continually update an im-
plicit predictive model of linguistic forms that they use to anticipate upcoming linguistic elements during
comprehension (J. Hale, 2001; Levy, 2008a; Christiansen & Chater, 2016). Indeed, a wealth of evidence
demonstrates that expectations over linguistic forms affect language processing (e.g., Dell & Chang, 2014;
Federmeier, 2007; Kuperberg & Jaeger, 2016; Pickering & Garrod, 2013). On the other hand, as discussed
in the Introduction, language statistics are relevant because they reflect the distributional properties of ob-
jects and events in the world albeit with a bias towards objects and events that are worth encoding in and
communicating through language (Griffiths, Steyvers, & Tenenbaum, 2007; Andrews, Vigliocco, & Vinson,
2009). Our work, along with a recent computational model of the N400 (Rabovsky, Hansen, & McClelland,
2018), demonstrates that the brain is sensitive to language statistics as a proxy for both world states and,
perhaps more clearly, the implicit semantic dependencies in world states (e.g., which properties are likely
to apply to which objects, which entities are likely engage in which actions, etc.). Keeping track of these
kinds of dependencies may subsume at least some of the syntactic information. For example, Rabovsky et
al. (2018) show that a model trained on semantic dependencies alone captures word order effects observed
in the N400 component.

The temporal receptive window of the language areas

An important notion has been gaining ground in the recent literature: the idea of a temporal receptive
window (TRW) of a brain unit (cell, voxel, brain area) (e.g., Hasson, Yang, Vallines, Heeger, & Rubin, 2008;
Lerner, Honey, Silbert, & Hasson, 2011; Overath, McDermott, Zarate, & Poeppel, 2015). A TRW is defined
by Hasson and colleagues as “the length of time before a response during which sensory information may
affect that response”, although the amount of information rather than time may be more relevant, especially
for higher-level areas (Vagharchakian et al., 2012). What is the size of the TRW of the core language areas?

We have known for some time that discourse-level processing—connecting sentences into coherent texts—
is carried out by regions outside of the fronto-temporal language network (e.g., Ferstl, Neumann, Bogler,
& Von Cramon, 2008; Ferstl & von Cramon, 2001; Kuperberg, Caplan, Sitnikova, Eddy, & Holcomb, 2006;
Lerner et al., 2011)(see Jacoby & Fedorenko, 2018, for evidence of insensitivity to discourse-level processing
in the functionally defined languages areas of the core fronto-temporal network). For example, Lerner et al.
(2011) presented participants with an auditory story as well as the same story scrambled at different grains
of information (at the paragraph level, at the sentence level, and at the word level). In a whole-brain voxel-
wise analysis of inter-subject correlations (Hasson et al., 2008), which can be used to draw inferences about
the size of the TRW of a voxel, they found that a) brain areas sensitive to paragraph-level structure and
above resemble the Default Mode network (e.g., Buckner, Andrews-Hanna, & Schacter, 2008) or the network
that supports social cognition (e.g., Saxe & Kanwisher, 2003), and b) brain areas sensitive to word and
sentence-level processing (but not to structure above the sentence level) resemble the core language network.
The inter-subject correlations were higher for the sentence-scrambled condition than the word-scrambled
condition (see also I. A. Blank & Fedorenko, 2019) but where exactly between a single word and a sentence
does the TRW of the language areas fall?

Pallier et al. (2011)’s study discussed above showed that the response in the language network appears
to increase gradually from same-length sequences composed of single words to 2-word phrases, to 3-word
phrases, to 4-words phrases, to 6-word phrases, with an additional, albeit smaller increase for full sentences.
Our results suggest that when combinable words are separated by 8 words (as previously adjacent content
words are in the ScrLowPMI condition; average separation is 8.33 words), resulting in low average local
PMI, composition does not take place as evidence by a low response in the language areas. The TRW of
the language areas therefore appears to be in the 5-7 word range. As alluded to in the Introduction, this
relatively local linguistic processing is likely driven by the statistical properties of natural language, where
most semantic/syntactic dependencies are local (e.g., Futrell et al., 2015), and PMI falls off quite sharply
as a function of inter-word distance (e.g., Lin & Tegmark, 2017). We can further speculate that linguistic
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chunks of this size are sufficient to express clause-level meanings, where clauses describe events – salient and
meaningful semantic units in our experience with the world (e.g., Zacks & Tversky, 2001). Of course, we can
detect and process syntactic and anaphoric dependencies that span much longer windows than 6 words, and
these types of non-local dependencies have been extensively investigated in the psycholinguistic literature
(e.g., Yngve, 1960; Miller & Chomsky, 1963; Lewis & Jones, 1996; Gibson, 1998, 2000, inter alia). How
exactly the processing of such dependencies is carried out in the brain remains debated, in part because the
most commonly used method in cognitive neuroscience (fMRI) lacks the temporal resolution needed to track
the dynamics of dependency formation. We don’t take our results as inconsistent with the human ability to
process non-local dependencies; instead, we take them to suggest that our language processing mechanisms
may be optimized for dealing with particular-size packages of linguistic information.

Sensitivity of domain-general executive mechanisms to the scrambling
manipulation

Although the language-selective regions’ BOLD responses were robust to the scrambling manipulation, in a
behavioral rating study, more scrambled sentences elicited lower naturalness ratings (Figure 4a and Table 2),
suggesting that such sentences should incur a greater processing cost. What cognitive and neural mechanisms
handle this extra cost? We found a number of brain regions that appear to fall within the domain-general
multiple demand (MD) network (Duncan, 2010, 2010), which has been implicated broadly in goal-directed
behavior and linked to executive functions, like working memory and cognitive control. These regions
expended more energy when participants processed sentences with scrambled word orders compared to intact
sentences. The level of BOLD response increased as the degree of scrambling increased, until participants
were no longer able to form local semantic dependencies (as evidenced by a drop in the BOLD response in
the language network), which occurred in the ScrLowPMI condition. These results suggest that the cost
associated with the processing of scrambled sentences is carried by domain-general executive regions that
support diverse demanding tasks across domains (e.g., Duncan & Owen, 2000; Hugdahl et al., 2015).

The importance and the precise role of the MD network in language comprehension remains debated
(e.g., Wright, Randall, Marslen-Wilson, & Tyler, 2011; I. Blank et al., 2014; Campbell & Tyler, 2018;
Diachek, Blank, Siegelman, & Fedorenko, 2019). A number of prior studies have reported activation in
the MD areas during the processing of acoustically degraded speech (e.g., Peelle, 2018) or sentences with
syntactic errors (e.g., Kuperberg et al., 2003), suggesting that the MD network may be important for coping
with signal corruption, perhaps performing specific operations aimed at “repairing” the input. However,
other studies have reported MD activity during conditions that do not involve corrupted input, both in the
domain of language (e.g., Whitney, Kirk, O’Sullivan, Lambon Ralph, & Jefferies, 2012; Hoffman, Loginova,
& Russell, 2018), and for many non-linguistic tasks (e.g., Duncan & Owen, 2000; Crittenden & Duncan,
2012; Fedorenko et al., 2013; Hugdahl et al., 2015), suggesting perhaps that the contribution is more general
in nature (e.g., providing more attentional or working memory resources). At this time, it is difficult to put
forward mechanistic-level accounts of the MD networks’ contribution to processing noisy linguistic input.

Conclusion

To conclude, we have provided evidence that constructing complex meanings appears to be the core linguistic
computation implemented in the language-selective fronto-temporal network: as long as that computation is
engaged (as determined by the combination of input properties and a plausibly Bayesian inference process),
language brain areas are as active as when they process their preferred stimulus – well-formed meaningful
sentences. Moreover, combinable words have to occur in close proximity to one another for the composition
mechanisms to get triggered. Many important questions about linguistic composition remain. For example,
how strongly is composition driven by our prior experience with particular words vs. the underlying concepts?
Is the span over which high mutual information is detected and affects composition determined by language
statistics or by our general memory limitations? And is it similar between the visual and auditory modalities?
How exactly do bottom-up lexico-semantic and syntactic cues trade off with top-down inferential processes
that take into account our knowledge of language and the world? And how are we able to quickly re-map
our world-knowledge priors when we process fictional or otherwise implausible scenarios (e.g., Nieuwland
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& Van Berkum, 2006)? In spite of all these open questions, current work brings us one step closer to a
mechanistic-level account of the computations that the language network plausibly supports.
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