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ABSTRACT  20 
 21 
The combination of high-throughput sequencing and in vivo crosslinking approaches leads to the 22 
progressive uncovering of the complex interdependence between cellular transcriptome and proteome. Yet 23 
the molecular determinants that govern interactions in protein-RNA networks are poorly known at present. 24 
Here we used the most recent experimental data to investigate the relationship between RNA structure and 25 
protein interactions. Our results show that, independently of the particular technique, the amount of 26 
structure in RNA molecules correlates with the capacity of binding to proteins in vitro and in vivo. To 27 
validate this observation, we generated an in vitro network that mimics the composition of phase-separated 28 
RNA granules. We observed that RNA, when structured, competes with protein binding and can rearrange 29 
the interaction network. The simplicity of the principle bears great potential to boost the understanding and 30 
modelling of cellular processes involving RNA-protein interactions. 31 
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INTRODUCTION 33 
 34 
Since the central dogma was proposed in 1950, the main role attributed to RNA has been to be an 35 
intermediate between DNA and protein. Yet, more than 70% of the genome is transcribed and just a small 36 
part has been found to code for proteins 1,2, which indicates that a major part could have unknown biological 37 
roles – if not only garbage . During the last decade many efforts have been made to develop procedures to 38 
study RNA isoforms: sequencing has been essential for detection of RNA species 3 and recent developments 39 
have provided a great deal of data on polymorphisms 4, expression 5 and half-lives 6 of all types of RNAs, 40 
which is highly informative of cellular functions and regulation. More specifically, a number of techniques 41 
reported on biological characteristics such as cellular location 7 or secondary structure 8 and characterization 42 
of the RNA interaction network (proteins and nucleic acids) is one of the most urgent challenges 9. In this 43 
context, computational methods are being developed to find patterns and understand features such as the 44 
structure that a transcript adopts 10 or to which partners are attracted 11. 45 
 46 
RNA is involved in many cellular processes such as control of gene expression, catalysis of substrates, 47 
binding of ligands, scaffold of complex assemblies 12 and molecular chaperoning 13. Transcripts ability to 48 
act as a hub of cellular networks is at the centre of an active research field and has already led to the 49 
discovery of diverse ribonucleoprotein (RNP) assemblies 14,15. A number of membrane-less organelles have 50 
been shown to contain specific mixtures of RNAs and RBPs that are difficult to characterize 9. In most 51 
cases, the RNP assemblies (e.g. P-bodies, stress granules 16) exchange elements with the surrounding 52 
content and adapt to the environmental condition in a very dynamic way. RNA plays a central role within 53 
these phase-separated condensates: whereas a peptide of 100 amino acids can bind one or two proteins, a 54 
chain of 100 nucleotides interacts with 5 - 20 proteins 17. Not surprisingly, changes in the interactions within 55 
RNP granules are associated with the development of several human diseases, from neurological disorders 56 
to cancer 18. Importantly, regulation of RNP contacts is controlled by molecular chaperones 18, such as 57 
HSP70 that is a central remodelling element able to promote assembly and disassembly of RNP complexes 58 
19 . 59 
 60 
In this large spectrum of activities, RNA structure dictates the precise binding of proteins by creating spatial 61 
patterns and alternative conformations and binding sites. Known complexes in which the structure of a 62 
transcript regulates protein binding include tRNAs whose three-dimensional conformation facilitates the 63 
codon/anticodon interaction 20 and the rRNA scaffold that sustains the ribosome 21. Yet, structure is not 64 
crucial only for some specific RNAs and there are several cases of nucleotide chains that play scaffolding 65 
roles : snoRNAs, for instance, are highly structured and act as a chaperone for assembly of other transcripts 66 
22. The secondary structure is particularly important for messenger RNAs (mRNAs) and defines the 67 
lifecycle 23, recruitment of ribosomes and response against environmental changes 23. Of both coding and 68 
non-coding transcripts, RNA-binding proteins (RBPs) are the major regulators 24 and are often classified as 69 
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single-stranded RNA (ssRNA) or double-stranded RNA (dsRNA) depending on their binding preferences, 70 
although this categorization is approximate. 71 
 72 
Here we computationally evaluated the relationship between RNA structure and ability to interact with 73 
proteins demonstrating a more general and influential impact than previously reported. We linked the 74 
secondary structure to the biological function of transcripts and investigated if RNAs of a specific type or 75 
with related roles have similar structural content. Our analysis reveals a tight relationship between 76 
properties of the transcripts and their protein partners. Based on these observations, we designed an 77 
experiment to evaluate the ability of a RNA to interfere the contact network of a protein complex. Overall, 78 
our results indicate that highly structured RNAs are able to favour formation of protein assembly and 79 
remodel contact networks like a chaperone.  80 
 81 
 82 
 83 
  84 
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RESULTS  85 
 86 
Highly structured RNAs bind more and stronger 87 
 88 
With the aim of studying how the structure influences the binding of proteins, we compared human RNAs 89 
based on their secondary structure content 8. In this analysis we selected the least (100 transcripts, called 90 
“LS” henceforth) and the most structured (100 transcripts, “HS”) RNAs revealed by parallel analysis of 91 
RNA structure (PARS) 8 (Fig. 1a, Supplementary Table 1). PARS is an experimental technique that 92 
distinguishes double- and single-stranded regions of RNA using the catalytic activity of two enzymes, 93 
RNase V1 (able to cut double-stranded nucleotides) and S1 (able to cut single-stranded nucleotides) 8. We 94 
calculated the interactions of LS and HS sets using catRAPID 25, an in-house algorithm that predicts the 95 
binding propensity of RBPs using physico-chemical properties (we here used 579 classic RBPs, as defined 96 
in 11; see Methods). The interaction propensity distribution (Z-score) shows that protein contacts with HS 97 
RNAs are stronger than those with LS (Fig. 1b and Supplementary Table 2). Indeed, for 501 out of 579 98 
RBSs tested, the HS set has larger Z-score than the LS set (Supplementary Table 2). Respectively 34% 99 
and 18% of the HS and LS interactions show catRAPID Z-score > 0 (i.e., binding ability). Thus, our 100 
computational analysis suggest that the RNA structure content is important to interact with proteins. 101 
   102 
To investigate whether the trend predicted by our algorithm is also observed at the experimental level, we 103 
analysed data coming from enhanced CrossLinking and ImmunoPrecipitation (eCLIP, see Methods), 104 
which is a technique revealing RBPs contacts on target RNAs at individual nucleotide resolution using 105 
ligation of barcoded single-stranded DNA adapters 26. In great agreement with our predictions, we found 106 
that the amount of double-stranded structure of each transcript correlates with the strength of protein-RNA 107 
contacts (Fig. 1c). It is worth to mention that the eCLIP assays favour detection of single-stranded (SS) 108 
RNA at the expense of double-stranded (DS) RNA. Importantly, the eCLIP dataset is not enriched in 109 
double-stranded RNA-binding proteins (9 out of 118 are assigned according to UniProt as DS RNA binding, 110 
12 out of 118 as SS RNA binding, using GO annotations available 27), which suggests that our results are 111 
not biased by the choice of proteins used in the analysis. To further corroborate our predictions, we found 112 
that 78 out of 118 proteins interact with the HS set and 1 out of 118 with the LS (Supplementary Table 113 
1). Transcripts in the LS set were found to bind between 0 and 1 binding proteins, while the HS showed a 114 
much larger span from 0 to 38 RBPs (Fig. 1c). We selected three sets of transcripts from the entire human 115 
transcriptome according to the protein-interacting potential as determined by eCLIP binding affinities and 116 
discovered that the propensity of RNAs to interact with proteins is proportional to the amount of RNA 117 
structure (Fig. 1d).  118 
 119 
To corroborate that the observed trend is not only intrinsic to eCLIP or PARS experiments, we analysed 120 
the interactome of 8 large (>1000nt) RNAs whose protein partners have been revealed by microarray, a 121 
crosslinking-free approach 28,29 (see Methods). In parallel, we estimated the structural content of each 122 
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transcript using the CROSS algorithm that was previously trained on SHAPE data 30 to predict the double 123 
stranded propensity at nucleotide level. Our results presented in Fig. 1e indicate that highly structured 124 
transcripts have more protein contacts than poorly structured transcripts, which is fully compatible with the 125 
findings presented in Fig. 1b.  126 
 127 
We further corroborated our observation by an accurate analysis of the ribonucleoprotein complexes 128 
deposited in the PDB database (X-ray resolution < 2 Å; Supplementary Table 3; see Methods), which 129 
comprise 196 distinct RNA-protein pairs analysed with different techniques (X-ray, NMR) and by different 130 
researchers. Measuring the amount of RNA intra- (i.e. amount of RNA structure) and inter-contacts (i.e., 131 
amino acid) per nucleotide chain, we found a striking correlation of 0.78 between the two variables, which 132 
provides compelling evidence of their tight relation (Fig. 1f). Thus, independently of the experiment, the 133 
computational tool or the species we found a link between number and strength of protein interactions and 134 
RNA structural content. 135 
 136 
Highly structured RNAs tend to interact with proteins 137 
 138 

The association that we describe here supports the existence of an RNA structure favouring the access to 139 
protein binding 31,32 (Fig. 2a). Literature cases supporting our observation include ribosomal RNA, for 140 
which there is a strong connection between structure and ability to scaffold protein interactions 33,34. 141 
Following up on this case, we wondered whether other RNA types could exploit structural regions to 142 
regulate the function of other proteins. Intriguingly, we found that the HS set is exclusively populated by 143 
protein-coding transcripts, while the LS set contains different functional classes of RNAs, such as antisense 144 
RNAs or long intergenic non-coding RNAs (lincRNAs) (Fig. 2b). In agreement with this observation, 145 
protein-coding RNAs are indeed the group with the largest structural content at the transcriptome level 146 
(Fig. 2c)30 . Perhaps unsurprisingly, messenger RNAs and other RNA types known to interact with proteins 147 
such as snRNAs 35 and tRNAs 20 show high amount of structure, whereas RNAs targeting complementary 148 
regions in nucleic acids such as antisense and lincRNAs 36,37 feature the smallest amounts of structure 38 149 
(Supplementary Table 4). Indeed, the secondary structure of mRNAs controls the translation speed 39 and 150 
the large difference of the coding group (Fig. 2c) indicates an intrinsic functional diversity. 151 
 152 
To further investigate the functions associated to LS and HS sets we analysed the GO terms by cleverGO 153 
27. The LS set, with almost 75% of non-coding sequences, was associated with very few annotations (the 154 
current classification manly refers to coding genes) and no clustering was obtained. By contrast, several 155 
GO annotations of the HS set were retrieved and we obtained 319 terms with a Bonferroni p-value < 0.05 156 
(see Methods). The analysis of semantic similarity indicates 146 terms clustered with a p-value of 0.01 157 
(see Methods) (Fig. 2d) that can be clustered in three main groups, each covering more than a quarter of 158 
the entries: (i) Complex protein assembly (59/146), (ii) Regulation of immune response (42/146) and (iv) 159 
Nucleoside metabolic process (41/146). Intriguingly, GO terms associated with the proteins binding 160 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 5, 2018. ; https://doi.org/10.1101/436279doi: bioRxiv preprint 

https://doi.org/10.1101/436279


N.	Sanchez	de	Groot	et	al.	

7	
	

exclusively dsRNA (see Methods), are also associated with similar biological processes, such as nucleoside 161 
metabolic process and regulation of immune response (Supplementary Fig. 1). 162 
 163 
Overall, our cluster analysis highlights that structured transcripts tend to interact more with polypeptides 164 
and code for proteins involved in the formation of complex contact networks, such as ‘protein complex 165 
assembly’. Accordingly, the four biological processes that involve RNA molecules interacting with proteins 166 
are: structural, hub, scaffolding and substrate. Given the relationship between RNA structure and protein 167 
interactions (Fig. 1), one interpretation of our results is that a high degree of control is required for genes 168 
that coordinate the activity of a large number of cellular networks 40. Thus, the analysis suggests a 169 
‘recursive’ property: highly-contacted transcripts code for highly-contacting proteins, which indicates a 170 
tight level of cellular regulation 12,41. 171 
 172 
Disorder and alpha helix distinguish between double and single stranded RNA 173 
 174 
To better understand the molecular basis for the structure-driven interactivity between proteins and RNAs, 175 
we analyzed the physico-chemical and structural parameters that allow to separate the HS and LS sets in 176 
the catRAPID algorithm 11,25. We removed each individual parameter to estimate the impact on prediction 177 
of RNA-protein associations and found that the capacity to distinguish between protein binding to HS and 178 
LS RNAs is significantly reduced when the polarity (p=0.205) and alpha helical (p=0.184) properties were 179 
excluded (Fig. 2e, Supplementary Table 5). The property that more significantly affects the HS binding 180 
strength is polarity, which is enriched in disordered proteins 42 and anti-correlates with hydrophobicity 181 
(Supplementary Table 6) that is the most important force involved in the formation of molecular 182 
interactions 43. As for the alpha helical propensity, we note that helices are the most frequent structural 183 
elements involved in the formation of contacts with double-stranded regions and occur in dsRBD and Zinc 184 
fingers 24 (Supplementary Table 7). This observation suggests co-evolution: while the RNA adopts 185 
complex shapes to expose binding regions, proteins increase their structural content. Thus, in agreement 186 
with the key lock theory, evolution have selected highly structured proteins as better interactors of double 187 
stranded RNAs 44. 188 

 189 
We validated the importance of protein polarity and helical structure by comparing three datasets of well-190 
studied RBPs 45-47 retrieved from UniProt as exclusively single-stranded (ssRNA, 453 proteins) or double-191 
stranded RNA (dsRNA, 390 proteins) binders (Supplementary Table 7). Analysis of biophysical 192 
properties with the cleverMachine approach 48 revealed that ssRNA binders and dsRNA binders are 193 
different for two properties: disorder and alpha-helix content (Fig. 2f). The comparison of the two sets, one 194 
against the other, indicate that RBPs binding to highly structured RNAs are structured and hydrophobic, 195 
while disordered and polar RBPs bind less structured RNAs (Supplementary Fig. 2). This analysis further 196 
expands what was previously reported for protein-protein networks, in which disordered regions play a 197 
central role 40, and identifies new rules for nucleotide base pairing with amino-acids. 198 
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 199 
Molecular chaperones: an example of relationship between RNA structure content and protein 200 
contacts  201 
 202 
Our analysis of the human transcriptome and across organisms indicate that highly structured RNAs are 203 
prone to interact with proteins and, in turn, code for proteins involved in biological processes with large 204 
and complex contact networks. To better investigate the structure-driven protein interactivity of RNA 205 
molecules, we focused on a class of transcripts coding for proteins interacting with a large number of 206 
partners. The natural choice for our analysis is represented by molecular chaperones, as they promote 207 
folding into the native state 49 and organize the assembly of ribonucleoprotein granules 50, thus fulfilling 208 
the ‘recursive’ property presented in Fig. 2d. eCLIP data 26 show that most of the RNAs coding for human 209 
chaperones are involved in interactions with multiple proteins (Fig. 3a). Confirming our hypothesis, we 210 
found a significant correlation between the protein-RNA interactions and the number of protein-protein 211 
interactions annotated in BioGRID (Fig. 3b). This result confirms that the transcripts bound by many RBPs 212 
code for highly-contacted proteins. 213 
 214 
To understand if the correlation between protein-protein and protein-RNA interactions is a general property 215 
or just associated with the chaperone family, we analysed interactions of three RNA classes: RNAs with no 216 
structure (PARS content = 0), top 100 transcripts from PARS, and RNAs coding for chaperone proteins 217 
(HSP) (Fig. 3c). The cumulative distribution of protein-protein contacts shows a significant difference 218 
between the “no structure” RNAs (very few interactions reported, in agreement with the results shown in 219 
Fig. 1d) and “top structure” RNAs (many interactions reported). The HSP transcripts have a distribution 220 
similar to the “top structure” ones. Thus, our calculations agree with the GO analyses (Fig. 2d) and suggest 221 
a relationship between mRNA and their coding partners: highly structured RNAs code for highly interacting 222 
proteins. 223 
 224 
The data presented so far suggest that RNAs related either by type (e.g. miRNA, snRNA) or function (e.g. 225 
coding for chaperones) share similar structural characteristics (Fig. 2). Thus, we should be able to estimate 226 
differences in the interaction network of two unrelated transcripts by analysing their structural content, and 227 
vice versa. To test this hypothesis, we selected the transcript of HSP70: highly structured (~51% according 228 
to PARS, Fig. 3d and Fig. 3e, also with CROSS, Supplementary Fig. 3) and coding for a chaperone 229 
essential to regulate protein complex assemblies such as clathrin coats 51 and stress granules 19,50. As a 230 
control we chose the transcript coding for BRaf: less structured (~20% according to PARS, Fig. 3d and 3e, 231 
also with CROSS, Supplementary Fig. 3) and encoding for an oncogene involved in transmission of 232 
chemical signals from outside the cell to the nucleus. Although there is a significant overlap between HSP70 233 
and BRaf interactions (Fig. 3f), HSP70 has more partners (30 RBPs identified by eCLIP) than Braf (9 234 
eCLIP RBPs), which is perfectly in agreement with the structure-driven protein interactivity property. 235 
 236 
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In keeping with the trend in Fig. 1b, catRAPID predictions show that HSP70 transcript performs stronger 237 
contacts than BRaf (Fig. 3g). Intriguingly, HSP70, as a highly structured RNA, codes for a protein with a 238 
higher number of interactors (244 BioGRID physical interactors) while BRaf is less structured and has a 239 
protein product binding to a smaller set of molecules (88 BioGRID physical interactors). These data suggest 240 
that an RNA with higher interactive capacity is predisposed to act as a network regulator: we can speculate 241 
that, because of its higher interactivity, HSP70 transcript could even perform a chaperone role depending 242 
on the context. 243 
 244 
Our analysis suggests that a structured RNA, due to its higher protein-interacting potential, should affect 245 
protein interaction networks more than a less structured RNA. To validate this hypothesis, we used a 246 
chemical compound, biotinylated isoxazole (b-isox), to induce formation of a granule-like protein assembly 247 
52,53 and incubated it with BRaf (from now LS RNA) and HSP70 (from now HS RNA) transcripts (Fig. 4a). 248 
We observed that the HS RNA altered the composition of the granule-like more than the LS RNA (Fig. 4b 249 
and Supplementary Table 8). A statistically significant change of concentration was determined for 29 250 
proteins (‘released’ set) when HS RNA was added, but only for 9 with LS RNA. Clustering of the 251 
significantly changed proteins revealed that the composition in the presence of LS RNA remains similar 252 
that of the background control (‘static’ set; Fig. 4c). The competition of RNA with the b-isox precipitate 253 
contact network 52,53 could be direct or indirect (Supplementary Fig. 4). Yet, catRAPID predictions support 254 
that this disruption is caused by a direct effect: as a decrease in the experimental stringency is associated 255 
with a drop in predictive power (Fig. 4d; see Methods). Moreover, analysis of eCLIP data indicates a 256 
higher number of contacts for the released proteins than for the static one. In agreement with our theoretical 257 
analysis the HS RNA-released proteins turned out to be significantly more polar (Fig. 4e).  258 
 259 
Overall, this experimental example demonstrates that the “recursive” trend is evolutionarily preserved and 260 
influences every level of RNA biology, from global interactome to single molecule function (Fig. 5). 261 
 262 
  263 
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DISCUSSION 264 
 265 
RNA is often relegated to a secondary position with respect to proteins that are the major effectors of all 266 
cellular activities. However, thanks to recent experiments, it has been possible to collect information on the 267 
majority of transcripts in the cell. These advances generate big amounts of data and are revealing new 268 
functions 9,29. There are many questions to be addressed at molecular level to understand the full picture of 269 
RNA roles. 270 
 271 
Here we focused on the relationship between RNA secondary structure and ability to interact with proteins. 272 
It is widely accepted that the structure of a molecule determines all aspects of its life, from stability to 273 
function 9. Yet, to the best of our knowledge, we are the first to show, at a transcriptome level, that the 274 
strength of protein interaction is correlated with the amount of RNA structure. We demonstrated the solidity 275 
of this principle by the analysis of crystal structures, protein micro-arrays and eCLIP data but also designing 276 
a new experimental approach. However, this observation is not completely unexpected, since lack of RNA 277 
structure is linked to more flexible and variable conformations and, thus, a shorter residence of a specific 278 
protein to a certain region. By contrast, presence of a native fold favours the formation of stable and well 279 
defined binding site that promote functional roles and, in turn, evolutionary selection. In addition, our 280 
finding agrees with the nucleotide ‘accessibility’ hypothesis defined as the probability of a protein to find 281 
its RNA motif 31,32. Overall, our observation identifies an intrinsic property associated to the RNA molecule 282 
that could have been exploited through to regulate the interactions between transcripts and proteins. 283 
 284 
For many RNAs (e.g., rRNA) the structure is functionally important and therefore subjected to evolutionary 285 
selection 8. The correlation shown in our work indicates that structure is particularly relevant for coding 286 
RNAs and suggest an extra layer of regulation that links RNA to the protein product 12,41. Something similar 287 
has been previously observed in plants 54 for which the transcripts with high conserved secondary structure 288 
are enriched in regulatory processes in the same way as we observed for the GO ontology of the highly 289 
structured RNAs. Indeed, we observed a link between the number of protein contacts of the transcripts and 290 
the participation of the encoded protein in a large network of interactions, revealing an important level of 291 
transcriptional regulation 29 for these highly connected proteins 40. For the chaperone family the number of 292 
contacts formed by the mRNAs correlates with the contacts formed by the coded proteins. 293 
 294 
We used a simple experimental approach to prove the relevance of RNA structure on the interaction with 295 
proteins and the functionality associated to this property. Our experiment demonstrated that a highly 296 
structured RNA, in this case the transcript coding for HSP70, is able to transform the contact network of a 297 
macromolecular complex assembly by competing with the pre-existent interactions. The main effect 298 
observed was the release of proteins from the aggregated assembly, proteins computationally and 299 
experimentally tested to be proper interactors of the HSP70 mRNA. Our finding is in agreement with 300 
previous reports indicating that RNAs are involved in RBPs assembly 55. Ribosomes, for instance, are 301 
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known as powerful co-factors that aid in the folding of polypeptide chains as they emerge from their channel 302 
13. On the one hand, RNA molecules can be regarded as chaperones assisting the assembly of proteins. On 303 
the other hand, RNA molecules are continuously handed off from one protein to another. After splicing, 304 
RNAs are escorted to the cytoplasm by proteins and delivered to the ribosome for translation. Evidence for 305 
the passage of proteins from one chaperone to another during folding provides a conceptual precedent for 306 
a chaperone action of proteins on RNA molecules56. Thus, there is a mutual chaperoning effect of proteins 307 
on RNA and RNA on proteins, which is likely the result of the co-evolution between the two molecules57. 308 
Our data suggest an intriguing activity of the HSP70 transcript as a chaperone and a connection between 309 
RNA and protein activities. Intriguingly, while the role of HSP70 protein as a protein chaperone is well 310 
documented and there are numerous reports on its binding to hydrophobic peptide domains to prevent 311 
aggregation and facilitate protein folding 58, very little is known about the property of its messenger RNA. 312 
 313 

In the future kinetic analyses tracking the RNA-protein association will be needed to further elucidate to 314 
which extent protein partners actively contribute to RNA structure formation. Our findings are reminiscent 315 
of the famous lock-and-key model in the field of enzymology 44: the structure of both, enzyme and its 316 
substrate, are key determinants of their association. Yet, structure contributions are not trivial in the case of 317 
ribonucleoprotein associations because the combination of different nucleotides bears an obvious 318 
specificity-determining potential. While unfolded regions promote for protein-protein assembly and 319 
disordered proteins exploit short motifs to ensure high connectivity 59, the reduced nucleotide alphabet and 320 
its complementarity suggest that nature favors structure to connect RNAs with proteins . The observations 321 
presented here, from transcriptome to single molecule, indicate that RNA is involved in multiple levels of 322 
regulation. The complexity and diversity of protein-RNA networks reported open the avenue for the 323 
investigation of new regulatory processes. 324 
 325 
  326 
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 489 
Figure legends 490 
 491 
Figure 1. The amount of protein structure correlates with the number of interactions. a) Distribution 492 
of the secondary structure content of human RNA measured by PARS 8,60 . Vertical lines indicate the top 493 
10% cases with the lowest secondary content (LS; blue) and the bottom 10% with the highest secondary 494 
content (HS; pink). b) Distribution of the catRAPID scores for all possible interactions with 579 canonical 495 
RBPs and transcripts with lowest and highest secondary structure content (LS and HS), respectively11,25. c) 496 
Distribution of RNAs according to their interactions with proteins as measured by eCLIP (empirical p-497 
value of the separation is 6.1·10-3) 26. The high and low structured RNAs for (A) are mapped as pink and 498 
blue dots respectively. d) Violin plots showing the distribution of the PARS structural content of three 499 
groups of RBPs divided by their eCLIP binding score. High, medium and low number of RNA-protein 500 
contacts are color-coded as pink, orange and blue, respectively (see Methods). e) Correlation between 501 
structural content (CROSS predictions of icSHAPE experiments) and protein interactions of 8 transcripts 502 
revealed by protein microarrays (0.76; Pearson’s correlation). f) Analysis of crystals containing protein-503 
RNA complexes reveals a trend between inter and intra-contacts of RNA chains. 196 different RNA-protein 504 
pairs analysed with different techniques and by different researchers. 505 

  506 
Figure 2. Functional footprints of the RNA structure-driven protein interactivity. a) Scheme showing 507 
the role of intra and intermolecular contacts in a RNA-protein complex. Top, intra-molecular contacts. 508 
Ribbon representation with red zones indicating the cores that sustain tertiary structures or local domains. 509 
Bottom, inter-molecular contacts. The simplified diagram highlights the main role: intra-molecular, sustain 510 
structures; inter-molecular, join functional elements. Contact strength, from dark blue (lowest) to red 511 
(highest). b) Fraction of transcripts corresponding to different RNA types according to PARS 512 
measurements 8,60: Left (HS) and right (LS) are the 100 transcripts with the highest and lowest secondary 513 
content, respectively. c) PARS structural content distribution in different RNA types (Ensembl 514 
classification). d) Semantic grouping of gene ontology terms associated to the HS. e) Changes in catRAPID 515 
interaction propensities caused by removing the alpha-helix and polarity (correlating with disorder 516 
propensity, Supplementary Table 6) contributions abrogate the ability to distinguish between HS and LS 517 
11,25. f) multicleverMachine analysis of the physico-chemical properties of three different data bases of RBPs 518 
and the set of proteins annotated in UniProt as binders of double stranded RNAs (DS) or single stranded 519 
RNAs (SS) (see Methods). “Disorder propensity” and “Alpha helix” are the properties showing significant 520 
difference and opposite results between DS and SS binders for at least two RBP databases (green or red 521 
indicate that DS or SS are enriched or depleted; yellow indicates no significant differences between the 522 
sets). 523 
 524 
Figure 3. Molecular chaperones: an example of relationship between RNA structure content and 525 
protein contacts. a) Distribution of the fraction of proteins binding to RNAs for chaperones, as measured 526 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 5, 2018. ; https://doi.org/10.1101/436279doi: bioRxiv preprint 

https://doi.org/10.1101/436279


N.	Sanchez	de	Groot	et	al.	

17	
	

by eCLIP 26. The transcripts coding for chaperone are represented as dots blue and pink accordingly to their 527 
structural content (blue for low and pink for high, respectively). Kolmogorov Smirnov (KS0 test p-value 528 
between blue and pink dots p = 4·10-7. b) Correlation between protein contacts of RNA coding for 529 
chaperones, measured with eCLIP 26, and physical interactions of the corresponding proteins, collected 530 
from BioGRID. c) Empirical cumulative distribution function of number of physical interactors retrieved 531 
from BioGRID for three different protein sets: blue - protein products of transcripts with a PARS structural 532 
content equal to 0 8,60; pink - proteins coded by transcripts with highest secondary content measured by 533 
PARS; grey - proteins corresponding to the chaperone family. blue, n=2142; red n=150; HSPs, n=31. d) 534 
PARS measurement of the secondary structure content of HS RNA (HSP70) and LS RNA (BRaf) 535 
transcripts. e) Boxplot distribution of the PARS the secondary structure content. f) Venn diagram showing 536 
the overlap (empirical p-value p < 6·10-3 computed on all the 100 eCLIP RBPs as background) between 537 
protein interactions of HSP70 and BRaf RNA. g) Prediction of protein binding affinity of HS RNA (HSP70) 538 
and LS RNA (BRaf) transcripts using catRAPID 11,25. 539 
 540 
Figure 4. Structured RNA competes with the amyloid-like scaffold for association with cellular 541 
proteins in vitro. a) B-isox-driven aggregation of HeLa protein lysate in vitro. Left, coomassie-stained 542 
gels, one representative experiment shown. Center, aggregated protein intensity was quantified and the 543 
difference evaluated using two tailed t-test (p = 1·10-3; N=4 biological replicates). Right, experimental 544 
scheme. b) Volcano plots indicating the p-values (Perseus measure) of the individual protein enrichments 545 
in the b-isox assembly (N=4 independent biological replicates). The statistical significance threshold is 546 
marked by a horizontal line (see also Supplementary Table 8). c) Color-coded LFQ intensities of proteins 547 
affected by the HS RNA on a scale from black (low) to red (high). Hierarchical clustering by Perseus is 548 
indicated. For comparison, the LFQ intensities of the same proteins in control and in the presence of the LS 549 
RNA are plotted as well. d) catRAPID predictions for positive and negative protein sets from the b-isox/HS 550 
RNA sample. e) Box plot of polarity distributions of proteins rescued or unaffected by the HS RNA (black 551 
or grey dots, respectively), corresponding to the right panel of Fig. 4b (p = 4.7·10-2, KS statistical test). 552 
 553 
Figure 5. The impact of the structure-driven protein interactivity. We studied the relationship between 554 
RNA secondary structure and ability to interact with proteins demonstrating that the interaction strength 555 
correlates with the amount of RNA structure. This property, which we called the structure-driven protein 556 
interactivity, impacts every aspect of RNA life. At the interactome level, we observed that the RNA 557 
structural content defines the number of protein contacts (see Fig. 1). Our analysis pointed out that RNAs 558 
functionally related have similar structural content, supporting the functional impact of the structure (see 559 
Fig. 2). Analyzing individual RNAs we found that the structural content is linked to the number of partners 560 
as well as the function that an RNA is able to undertake (e.g. chaperoning) (see Fig. 3 and Fig. 4). The 561 
structure-driven protein interactivity is an intrinsic property associated with the RNA molecule that can be 562 
traced at any regulatory level. 563 
 564 
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Interactome

Family

Molecule

Structural content defines the 
number of protein contacts.

Structural content defines
partners and function.

The impact of the structure-driven protein interactivity

Related RNAs have similar
structural content.  
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