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Abstract 
 

The interpretation of variants in cancer is frequently focused on direct 

protein coding alterations. However, this analysis strategy excludes somatic 

mutations in non-coding regions of the genome and even exonic mutations 

may have unidentified non-coding consequences. Here we present RegTools 

(www.regtools.org), a free, open-source software package designed to 

integrate analysis of somatic variant calls from genomic data with splice 

junctions extracted from transcriptomic data in order to efficiently identify 

variants that may cause aberrant splicing in tumors.  

 

Main 
 

Alternative splicing of messenger RNA is a biological process which allows a 

single gene to encode multiple gene products, increasing a cell’s functional 

diversity and regulatory precision. However, splicing malfunction can lead to 

imbalances in transcriptional output or even the presence of oncogenic 

novel transcripts1. The interpretation of variants in cancer is frequently 

focused on direct protein coding alterations2. However, most somatic 

mutations arise in intronic and intergenic regions, and exonic mutations may 

also have unidentified consequences. For example, mutations can affect 

splicing either in trans, by acting on splicing effectors, or in cis, by altering 
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the splicing signals located on the transcripts themselves3. Increasingly, we 

are beginning to see the importance of splice variants in disease processes, 

not least of which in cancer. However, our understanding of the landscape of 

these variants is limited and few tools exist for their discovery. Few tools are 

directed at linking aberrant splicing to variants in cis and most are tailored to 

a narrow set of scientific aims4,5,6. Here we present RegTools, a free, open-

source (MIT license) software package designed to efficiently identify 

potential cis-acting splice-relevant variants in tumors (www.regtools.org).  

 

RegTools is a suite of tools designed to aid users in a broad range of splicing-

related analyses. At the highest level, it contains three sub-modules: a 

variants module to annotate variant calls, a junctions module to analyze 

aligned RNAseq data and associated splicing events, and a cis-splice-effects 

module that combines these submodules, integrating genomic variant calls 

and transcriptomic sequencing data to identify potential splice-altering 

variants. Each sub-module contains one or more commands, which can be 

used individually or integrated into regulatory variant analysis pipelines.  

 

The variants annotate command takes a VCF containing somatic variant calls 

and a GTF of transcriptome annotations as input. RegTools does not have 

any particular preference for variant callers or reference annotations. Each 

variant is annotated with known overlapping genes and transcripts and its 

putative splicing relevance based on position relative to known exons, which 

we call the “variant type”. The variant type annotation depends on the 

stringency for splicing-relevance the user sets through the “splicing window” 

setting. By default, RegTools marks intronic variants within 2 bp from the 

exon edge as “splicing intronic”, exonic variants within 3 bp as “splicing 

exonic”, other intronic variants simply as “intronic”, and other exonic 

variants simply as “exonic” and considers only “splicing intronic” and splicing 

exonic” as important. To allow for discovery of an arbitrarily expansive set of 

variants, RegTools allows the user to customize the size of the 

exonic/intronic windows individually (e.g. -i 20 -e 5 for intronic variants 20 

bp from an exon edge and exonic variants 5 bp from an exon edge) or 
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consider all exonic/intronic variants as potentially splicing-relevant (e.g. -E 

or -I) (Fig. 1a).  

 

The junctions module contains the extract and annotate commands. The 

extract command takes a BAM file containing aligned RNAseq reads, infers 

the exon-exon boundaries based on the CIGAR strings7, and outputs each 

“junction” as a feature in BED12 format. The annotate command takes a file of 

junctions in BED12 format, such as the one output by junctions extract, a 

FASTA file containing the reference genome, and a GTF file containing 

reference transcriptome annotations and generates a TSV file, annotating 

each junction with: the number of acceptor sites, donor sites, and exons 

skipped and known overlapping transcripts and genes. We also annotate the 

“junction type”, which denotes if and how the junction is novel (i.e. 

discrepant compared to known transcript annotations). If the donor is 

known but the acceptor is not or vice-versa, it is marked as “D” or “A”, 

respectively. If both are known but the pairing is not known, it is marked as 

“NDA”, whereas if both are unknown, it is marked as “N”. If the junction is not 

novel (i.e. it appears in one or more transcripts of the supplied GTF), it is 

marked as “DA” (Fig. 1b).  

 

The cis-splice-effects module contains the identify command which 

identifies potential splice-altering variants from tumor sequencing data. The 

following are required as input: a VCF file containing variant calls, a BAM file 

containing aligned RNA-sequencing reads, a reference genome FASTA file, 

and a reference transcriptome GTF file. The identify pipeline internally relies 

on variants annotate, junctions extract, and junctions annotate to output a 

TSV containing junctions proximal to putatively splicing-relevant variants 

and can be customized using the same parameters as in the individual 

commands. Briefly, cis-splice-effects identify first performs variants 

annotate in order to determine the splicing-relevance of each variant in the 

input VCF. For each variant, a “variant region” is determined by finding the 

largest span of sequence space between the exons which flank the exon 

associated with the variant. From here, junctions extract identifies splicing 
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junctions present in the RNAseq BAM. To avoid processing unnecessary 

reads, this step only analyzes segments which overlap variant regions. 

Finally, each junction is annotated as described above and additionally is 

labelled with its associated variants based on variant region overlap (Fig. 1c). 

 

In order to demonstrate the utility of RegTools in identifying potential 

splice-relevant variants from tumor data, we applied RegTools to four patient 

cohorts: 28 hepatocellular carcinoma (HCC) samples, 21 small cell lung 

cancer (SCLC) samples, 106 breast carcinoma (BRCA) samples, and 33 oral 

squamous cell carcinoma (OSCC) samples. To validate the robustness and 

flexibility of RegTools, we used data prepared following various well-

established protocols. HCC, SCLC, and OSCC samples were derived from 

patients at Washington University. BRCA sequence data were generated by 

the Cancer Genome Atlas Research Network (cite TCGA). Genomic data were 

obtained by whole exome sequencing (WXS) for SCLC and BRCA and whole 

genome sequencing (WGS) for HCC and OSCC. Normal genomic data of the 

same sequencing type and tumor RNA-seq data were available for all 

subjects. For all data, DNA and RNA alignment and variant calling were 

performed as previously described using the Genome Modeling System 

(GMS)8,9 (Supplementary Methods). HCC and SCLC were aligned to Ensembl 

Reference GRCh37 while OSCC and BRCA were aligned to GRCh3810.  

 

Given the randomness of mutation in cancer, few tumor samples share any 

particular somatic variant, even in the case of metastases or distinct biopsies 

from the same lesion (citation here - MA Nowak paper?). Thus, our 

measurement of effect size was constrained by the fact that any variant of 

interest would occur at most only in a few samples (often only one). We 

focused most of our analysis on  NDA, D, and A junctions. We reasoned that 

these junction types were the most likely consequences of the disruption of 

splicing-relevant sites. Conversely, DA junctions, which have been observed 

in previous biological studies, could simply reflect baseline fluctuations in 

splicing regulation, and N junctions, which require splicing at novel sites on 

both the 3’ and 5’ end, are less likely to be the parsimonious result of a single 
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mutation. Furthermore, we required junctions to have > 5 reads of support to 

improve confidence in our inferences from the RNAseq data.  

 

As cis-splice-effects identify results merely reflect the proximity of junctions to 

potential splice variants, we performed statistical analyses to further filter out false 

positives (see Methods for full details). Briefly, we initially tested for significantly 

increased levels of a novel junction in the presence of a particular variant using both 

an “outlier” and a “ratio” method. In both methods, for each variant of interest, we 

grouped samples containing said variant and aggregate junction scores (number of 

reads of support) across such variant-containing samples. For each junction, we 

calculated a mean-norm score by dividing the aggregated junction score by the 

average aggregated DA junction scores within the relevant variant region. From 

here, in the outlier method, we calculated the z-score of this aggregate mean-norm 

score given the distribution of individual mean-norm scores across samples which do 

not contain the variant of interest and considered junctions with z-score > 2σ as 

significant. For the ratio method, we simply divided the aggregated mean-norm 

score for the variant-containing samples by the aggregated mean-norm score across 

the non-variant containing samples and considered junctions with a ratio > 2 as 

significant. Since matched normal samples of the same tissue type were available for 

HCC, we also considered three additional analyses for this cohort which are 

described in detail in the Supplementary Methods. Ultimately, we decided to proceed 

using the simple outlier method alone, as its results were either comparable to or 

nearly a strict subset of the other methods’, not only indicating potentially higher 

quality calls, but also better prioritizing results for downstream analysis and manual 

review efforts (Supplementary Table 1; Supplementary Methods).  

 

We completed the above workflow for 5 different splicing window sizes: 

‘i2e3’, ‘i20e5’, ‘i50e5’, ‘E’, and ‘I’ (Supplementary Table 2; Supplementary 

Methods). Each successively broader analysis identified additional variants in 

each patient cohort (Supplementary Fig. 1a; Supplementary Table 2). In 

smaller windows, NDA junctions constituted the majority of junctions while D 

and A junctions remained fairly even. As window size increased, the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2018. ; https://doi.org/10.1101/436634doi: bioRxiv preprint 

https://doi.org/10.1101/436634
http://creativecommons.org/licenses/by-nc-nd/4.0/


proportion of NDA junctions decreased as the proportion of D and A 

junctions increased approximately equally (Supplementary Fig. 1b; 

Supplementary Table 3). This might be explained by the fact that in larger 

windows, even the ostensibly exonic-only “E” window, variants are more 

likely to lie in intronic regions and therefore less likely to cause skipping 

through the disruption of splicing machinery on canonical exons. Based on 

our prioritized list of junctions and associated variants, we manually 

reviewed the top-ranked candidates from each window size in the 

Integrative Genomics Viewer11. Examples of reviewed novel junctions are 

shown in Supplementary Figures 2 - 7 and listed in Supplementary Tables 5-

8.  

 

To compare our calls against existing approaches, we annotated all variants 

identified by cis-splice-effects identify with Ensembl’s Variant Effect 

Predictor (VEP) in the “per_gene” and “pick” modes12. We considered any 

variant with at least one splicing-related annotation to be “VEP significant”. 

Most splicing-unrelated annotations were ‘intronic’, ‘missense’, ‘upstream 

gene’, ‘non-coding transcript’, ‘synonymous’, and ‘UTR’ (Figure 3a). In small 

windows (i2e3 and i50e5), a large percentage of outlier significant variants 

were VEP significant. This percentage dropped steeply to ~1% in the i50e5, E, 

and I windows (Figure 3b; Supplementary Table 4). Interestingly, the 

proportion of VEP significant variants was consistently higher in the set of 

outlier significant splice variants versus unfiltered RegTools splice variants, 

suggesting that our approach identified true positives while also detecting 

splice variants which VEP missed (Figure 3c; Supplementary Table 4). 

 

While many efforts have been made to understand how mutation affects 

splicing in cancer, few tools are directed at linking aberrant splicing 

specifically to cis-acting variants and most are tailored to narrow aims4,5,6. In 

contrast, RegTools is designed for broad applicability and computational 

efficiency. By relying on well-established standards for sequence alignments, 

annotation files, and variant calls and by remaining agnostic to downstream 

statistical methods and comparisons, our tool can be applied to a wide set of 
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scientific queries and datasets. Moreover, performance tests run on the 

HCC1395 breast cancer cell line show that cis-splice-effects identify can 

process a typical candidate variant list of 1,500,000 variants and a 

corresponding RNA-seq BAM file of 82,807,868 reads in just ~8 minutes 

(Supplementary Figure 8; Supplementary Methods) 13,8. 

 

In our analysis, we showed that RegTools combined with minimal 

downstream filtering identifies splice variants which the field standard VEP 

misses by not accounting for sample-specific transcriptomic information. 

The high degree of overlap in splice variants identified by the various 

statistical methods we considered provides evidence that given reasonable 

choices of splicing window and variant region parameters, RegTools can help 

users identify real cis-acting splice variants. Importantly, RegTools can be 

integrated with existing softwares such as SUPPA2 to focus on functional 

splicing alterations14. As such, this flexible and robust tool could be applied to 

various large-scale pan-cancer datasets to elucidate the role of splice 

variants in cancer. The exploration of novel tumor-specific junctions will 

undoubtedly lead to translational applications, from discovering novel tumor 

drivers, diagnostic and prognostic biomarkers, and drug targets, to perhaps 

even identifying a previously untapped source of neoantigens for 

personalized immunotherapy. 

 

Methods 
 

Command details 

RegTools contains three sub-modules: “variants”, “junctions”, and “cis-splice-

effects”. For complete instructions on usage, please visit regtools.org and 

regtools.readthedocs.io. 

 

Variants annotate 

This command takes a list of variants in VCF format. The file should be 

gzipped and indexed with Tabix15. The user must also supply a GTF file that 

specifies the reference transcriptome used to annotate the variants.  
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The INFO column of each line in the VCF is populated with comma-separated 

lists of the variant-overlapping genes, variant-overlapping transcripts, the 

distance between the variant and the associated exon edge for each 

transcript (i.e. each start or end of an exon whose splicing window included 

the variant) defined as min(distance_from_start_of_exon, 

distance_from_end_of_exon), and the variant type for each transcript.  

 

Internally, this function relies on HTSlib to parse the VCF file and search for 

features in the GTF file which overlap the variant. The splicing window size 

(i.e. the maximum distance from the edge of an exon used to consider a 

variant as splicing-relevant) can be set by the options “-e <number of bases>” 

and “-i <number of bases>” for exonic and intronic variants, respectively. The 

variant type for each variant thus depends on the options used to set the 

splicing window size. Variants captured by the window set by “-e” or “-i” are 

annotated as “splicing_exonic” and “splicing_intronic”, respectively. 

Alternatively, to analyze all exonic or intronic variants, the “-E” and “-I” 

options can be used. Otherwise, the “-E” and “-I” options themselves do not 

change the variant type annotation, and variants found in these windows are 

labelled simply as “exonic” or “intronic”. By default, single exon transcripts 

are ignored, but they can be included with the “-S” option. By default, output 

is written to STDOUT in VCF format. To write to a file, use the option “-o 

<PATH/TO/FILE>”. 

 

Junctions extract 

This command takes a BAM file containing aligned RNAseq reads and infers 

junctions (i.e. exon-exon boundaries) based on skipped regions in alignments 

as determined by the CIGAR string operator codes. These junctions are 

written to STDOUT in BED12 format. Alternatively, the output can be 

redirected to a file with the “-o <PATH/TO/FILE>”. RegTools ascertains 

strand information based on the XS tags set by the aligner, but can also 

determine the inferred strand of transcription based on the BAM flags if a 

stranded library strategy was employed. In the latter case, the strand 
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specificity of the library can be provided using “-s <INT>” where 0 = 

unstranded, 1 = first-strand/RF, 2, = second-strand/FR). We suggest that 

users align their RNAseq data with HISAT216, TopHat217, or STAR18, as these 

are the only aligners we have tested to date. If RNAseq data is unstranded 

and aligned with STAR, users must run STAR with the --outSAMattributes 

option to include XS tags in the BAM output.  

 

Users can set thresholds for minimum anchor length and 

minimum/maximum intron length. The minimum anchor length determines 

how many contiguous, matched base pairs on either side of the junction are 

required to include it in the final output. The required overlap can be 

observed amongst separated reads, whose union determines the thickStart 

and thickEnd of the BED feature. By default, a junction must have 8 bp 

anchors on each side to to be counted but this can be set using the option “-

a <minimum anchor length>”. The intron length is simply the end coordinate 

of the junction minus the start coordinate. By default, the junction must be 

between 70 bp and 500,000 bp, but the minimum and maximum can be set 

using “-i <minimum intron length>” and “-I <maximum intron length>”, 

respectively.  

 

For efficiency, this tool can be used to process only alignments in a particular 

region as opposed to analyzing the entire BAM file. The option “-r 

<chr>:<start>-<stop>” can be used to set a single contiguous region of 

interest. Multiple jobs can be run in parallel in order to analyze separate non-

contiguous regions. 

 

Junctions annotate 

This command takes a list of junctions in BED12 format and annotates them 

with respect to a reference transcriptome in GTF format. The observed 

splice-sites used are recorded based on a reference genome sequence in 

FASTA format. The output is written to STDOUT in TSV format, with 

separate columns for the number of splicing acceptors skipped, number of 

splicing donors skipped, number of exons skipped, the junction type, 
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whether the donor site is known, whether the acceptor site is known, 

whether this junction is known, the overlapping transcripts, and the 

overlapping genes, in addition to the chromosome, start, stop, junction 

name, junction score, and strand taken from the input BED12 file. This output 

can be redirected to a file with “-o /PATH/TO/FILE”. By default, single exon 

transcripts are ignored in the GTF but can be included with the option “-S”. 

 

Cis-splice-effects identify 

This command combines the above utilities into a pipeline for identifying 

variants which may cause aberrant splicing events by altering splicing motifs 

in cis. As such, it relies on essentially the same inputs: a gzipped and Tabix-

indexed VCF file containing a list of variants, a BAM file containing aligned 

RNAseq reads, a GTF file containing the reference transcriptome of interest, 

and a FASTA file containing the reference genome sequence of interest.  

 

First, the list of variants is annotated. The splicing window size is set using 

the options “-e”, “-i”, “-E”, and “-I”, just as in variants annotate. The variant 

region size (i.e. the range around a particular variant in which an overlapping 

junction is associated with the variant) can be set using “-w <variant region 

size>”. By default, this range is not a particular number of bases, but is 

calculated individually for each variant, depending on the variant type 

annotation. For “splicing_exonic”, “splicing_intronic”, and “exonic” variants, 

the region extends from the 3’ end of the exon directly upstream of the 

variant-associated exon to the 5’ end of the exon directly downstream of it. 

For “intronic” variants, the region is limited to the intron containing the 

variant. Single-exons can be kept with the “-S” option. The annotated list of 

variants in VCF format (analogous to the output of variants annotate) can be 

written to a file with “-v /PATH/TO/FILE”. 

 

The BAM file is then processed in the variant regions in order to produce the 

list of junctions. A file containing these junctions in BED12 format (analogous 

to the output of junctions extract) can be written using “-j /PATH/TO/FILE”. 
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The minimum anchor length, minimum intron length, and maximum intron 

length can be set using “-a”, “-i”, and “-I” options, just as in junctions extract.  

 

The list of junctions produced by the preceding step is then annotated with 

the information presented in junctions annotate. Additionally, each junction 

is annotated with a list of associated variants (i.e. variants whose variant 

regions overlapped the junction). The final output is written to STDOUT in 

TSV format (analogous to the output of junctions annotate) or can be 

redirected to a file with “-o /PATH/TO/FILE”. 

 

Analysis 

Sample processing 

We applied RegTools to four patient cohorts: 28 hepatocellular carcinoma 

(HCC), 21 small cell lung cancer (SCLC), 106 breast carcinoma (BRCA), and 33 

oral squamous cell carcinoma (OSCC). HCC, SCLC, and OSCC samples were 

derived from patients at Washington University. BRCA sequence data were 

generated by the Cancer Genome Atlas Research Network19. Genomic data 

were produced by whole exome sequencing (WXS) for SCLC and BRCA and 

whole genome sequencing (WGS) for HCC and OSCC. Normal genomic data 

of the same sequencing type and tumor RNA-seq data were also available for 

all subjects. Sequence data were aligned using the Genome Model System 

(GMS)8 using TopHat2 for RNA and BWA-MEM20 for DNA. HCC and SCLC 

were aligned to GRCh37 while OSCC and BRCA were aligned to GRCh38. 

Somatic variant calls were made using Samtools v0.1.17, SomaticSniper2 

v1.0.221, Strelka V0.4.6.222, and VarScan v2.2.622,23 through the GMS. 

 

Candidate junction filtering 

In order to generate results for 5 splicing window sizes, we ran cis-splice-

effects identify with 5 sets of splicing window parameters. For our “i2e3” 

window (RegTools default), in order to examine intronic variants within 2 

bases and exonic variants within 3 bases of the exon edge, we set “-i 2 -e 3”. 

Similarly, for “i20e5” and “i50e5”, in order to examine intronic variants within 

20 or 50 bases and exonic variants within 5 bases of the exon edge, we set “-i 
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20 -e 5” and “-i 50 -e 5”, respectively. To view all exonic variants, we simply 

set “-E”, without “-i” or “-e” options. To view all intronic variants, we simply 

set “-I”, without “-i” or “-e” options.  

 

We initially considered 5 methods downstream of cis-splice-effects identify 

in order to filter our set of putative splicing variants: “outlier”, “ratio”, “all 

outlier”, “all ratio”, and “pairwise ratio”. These methods are defined below. 

We first discarded any junctions which were DA or N and any which did not 

more than 5 reads of support. The “outlier” and “ratio” methods were applied 

to all cohorts. The latter 3 methods were only applied to samples from HCC, 

as this was the only cohort with matched normal RNA data from the same 

tissue type. We decided to proceed using the simple outlier method alone, as 

its results were either comparable to or nearly a strict subset of the results of 

the other methods, indicating potentially higher quality calls and more 

efficiently prioritizing results for downstream analysis and manual review 

(Supplementary Table 1).  

 

Outlier:  

For each variant, v, identified as splicing relevant by cis-splice-effects identify: 

For each junction, j, overlapping the variant region of v: 

 For each sample, s: 

Divide the score (i.e. number of reads of support from s) of 

j by the arithmetic mean of the scores of DA junctions 

within the variant region of v to obtain the “mean-norm 

score” for j in sample s. 

 

Calculate the arithmetic mean of the mean-norm scores for j 

across all samples containing v to obtain the aggregate variant 

mean-norm score for (j, v).   

 

Calculate the z-score of of the aggregate variant mean-norm 

score for (j, v) relative to the distribution of mean-norm scores 

for junction j across samples not containing v. 
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  If z-score > 2:  

Consider the presence of j to be significantly related to the 

presence of v. 

Ratio:  

For each variant, v, identified as splicing relevant by cis-splice-effects identify: 

For each junction, j, overlapping the variant region of v: 

 For each sample, s: 

Divide the score (i.e. number of reads of support from s) of 

j by the arithmetic mean of the scores of DA junctions 

within the variant region of v to obtain the “mean-norm 

score” for j in sample s. 

 

Calculate the arithmetic mean of the mean-norm scores for j 

across all samples containing v to obtain the aggregate variant 

mean-norm score for (j, v).   

 

Calculate the arithmetic mean of the mean-norm scores for j 

across all samples not containing v to obtain the aggregate non-

variant mean-norm score for (j, v).   

 

Divide the aggregate variant mean-norm score by the aggregate 

non-variant mean-norm score to obtain the mean-norm ratio for 

(j, v). 

 

If mean-norm ratio > 2:  

Consider the presence of j to be significantly related to the 

presence of v. 

All outlier:  

This method is the same as the outlier method, but considers normal 

samples in the set of samples not containing the variant (as opposed to 

just the tumor samples without a particular variant). 

All ratio:  
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This method is the same as the ratio method, but considers normal 

samples in the set of samples not containing the variant (as opposed to 

just the tumor samples without a particular variant). 

Pairwise ratio:  

This method is similar to the ratio method, but comparisons are made 

only across each tumor sample and its matched normal sample. 

 

Data availability 

Sequence data for each cohort analyzed in this study are available through 

dbGaP at the following accession IDs:  phs001106 for HCC, phs001049 for 

SCLC, phs000178 for BRCA, and phs001623 for OSCC. 
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Fig. 1: Flexible, streamlined discovery of cis-acting splice variants with 
RegTools modules and  cis-splice-effects identify workflow . 

 
 
a,  By default,  variants annotate  marks variants within 3bp on the exonic side and 2bp on the intronic side of an 
exon edge as potentially splicing-relevant. This “splicing window” can be modified individually for the exonic 
side and intronic side using the “-e” and “-i” options, respectively. With  cis-splice-effects identify , for each 
variant in the splicing window, a variant region is determined by finding the largest span of sequence space 
between exons which flank the exon associated with the splicing-relevant variant. The variant region can also 
be set manually to contain the entire sequence space  n  bases upstream and downstream of the variant using 
the “-w” option. Junctions overlapping the variant region are associated with the variant. Using the -E option 
considers all exonic variants as potentially splicing-relevant, but is otherwise the same. The -I option considers 
all intronic variants and also limits the variant region to the intronic region in which the variant is found, 
excluding the flanking exons.  b,   Cis-splice-effects identify  and the underlying  junctions annotate  command 
annotate splicing events based on whether the donor and acceptor site combination are found in the reference 
transcriptome GTF. In this example, there are two transcripts (shown in blue) which overlap a set of junctions 
from RNAseq data (depicted as junction supporting reads in red). Comparing the observed junctions to the 
reference junctions in the first transcript (top panel), RegTools checks to see if the observed donor and 
acceptor splice sites are found in any of the reference exons and also counts the number of exons, acceptors, 
and donors skipped by a particular junction. Double arrows represent matches between observed and reference 
acceptor/donor sites while single arrows show novel splice sites. These steps are repeated for the rest of the 
relevant transcripts, keeping track of whether there are known acceptor-donor combinations. Junctions with a 
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known acceptor but novel donor or vice-versa are annotated as “A” or “D”, respectively. If both sites are known 
but do not appear in combination in any transcripts, the junction is annotated as “NDA”, whereas if both sites 
are unknown, the junction is annotated as “N”. If the junction is known to the reference GTF, it is marked as 
“DA”.  c,  The  cis-splice-effects identify  command relies on the  variants annotate ,  junctions extract , and  junctions 
annotate  submodules. This pipeline takes variant calls and RNA-seq alignments along with genome and 
transcriptome references and outputs information about novel junctions and associated potential cis 
splice-altering sequence variants. RegTools is agnostic to downstream research goals and its output can be 
filtered through user-specific methods and thus can be applied to a broad set of scientific questions. 
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Fig. 2: VEP comparisons. 

 
a,  Variants determined as significant based on the outlier method were annotated using VEP with the “pick” and 
“per_gene” options. Only “pick” results were shown here, though both modes produced similar results. Stacked 
bars represent the percentage of total VEP annotations for each splicing window size across all variants 
discovered in each cohort. Blocks showing splicing-relevant annotations are highlighted with a black border. 
Annotation consequences are based on VEP consequences but similar annotations have been consolidated for 
clarity ({3_prime_UTR_variant, 5_prime_UTR_variant} →  UTR_variant; {inframe_insertion, 
inframe_deletion} → inframe_indel; {splice_donor_variant, splice_acceptor_variant} → splice_variant; 
{mature_miRNA_variant, coding_sequence_variant, frameshift_variant, intergenic_variant, 
NMD_transcript_variant, non_coding_transcript_exon_variant, regulatory_region_variant, start_lost, 
start_gained, stop_lost, stop_gained, TF_binding_site_variant, protein_altering_variant} → other).  b,  Initially, 
in the default splicing window size, only a small portion of variants identified using the outlier method are not 
annotated as splicing relevant by VEP. However, as we extend the scope of our discovery, VEP quickly begins to 
miss potentially important splicing-relevant variants.  c,  Variant counts are displayed in overlaying bars (values 
scaled by log10).  Cis-splice effects identify  produces a large number of ostensibly false positive calls which must 
be narrowed down by downstream filtering methods. Using VEP as a downstream filter is not particularly 
helpful as it over-calls in the smaller splicing windows (i2e3 and i20e5) and under-calls in the larger ones. The 
outlier method provides a more consistent level of filtering which simplifies downstream analysis. 
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