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Abstract

The Gene Ontology (GO) is a central resource for functional-genomics research. Scientists

rely on the functional annotations in the GO for hypothesis generation and couple it with

high-throughput biological data to enhance interpretation of results. At the same time, the

sheer number of concepts (>30,000) and relationships (>70,000) presents a challenge: it

can be difficult to draw a comprehensive picture of how certain concepts of interest might

relate with the rest of the ontology structure. Here we present new visualization strate-

gies to facilitate the exploration and use of the information in the GO. We rely on novel

graphical display and software architecture that allow significant interaction. To illustrate

the potential of our strategies, we provide examples from high-throughput genomic anal-

yses, including chromatin immunoprecipitation experiments and genome-wide association

studies. The scientist can also use our visualizations to identify gene sets that likely experi-

ence coordinated changes in their expression and use them to simulate biologically-grounded

single cell RNA sequencing data, or conduct power studies for differential gene expres-

sion studies using our built-in pipeline. Our software and documentation are available at

http://aegis.stanford.edu.
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Introduction

Since its inception, the Gene Ontology (GO)1 has empowered analyses of high-throughput molec-

ular data. Researchers often perform statistical tests using the GO to determine functional enrich-

ments within their discoveries2–4 and recently it has also been used to improve model architectures

in machine learning applications5, 6. The GO hinges on two continuously evolving elements: 1) a

collection of curated biological terms with semantic hierarchical relationships and 2) annotations

that link genes and gene products to specific terms. When associated with a dataset, such as genes

identified from differential gene expression testing7, a statistical testing strategy can assign each

GO term an “enrichment score”, which measures how genes previously annotated with this term

are enriched in the data. The large number of interrelated concepts8 and the evolving nature of

the knowledge base, while assuring the richness of GO information, also represent a challenge

in defining appropriate testing strategies9, interpreting and displaying results10, and ensuring their

reproducibility11.

Data visualizations, by illustrating the number of terms, rendering the relations between them

and displaying term annotations, can alleviate some of the aforementioned issues. The information

in GO is organized as a directed acyclic graph (DAG), where each node corresponds to a GO term

and edges indicate relations such as “part of”, “a type of”, etc. It is then natural to rely on the DAG

structure of the GO for information visualization (Supplementary Figure 1). Indeed, there are a

number of published tools that leverage the structure and can be broadly divided in two groups:

ones that are specialized for local graph characteristics, and ones that are optimized for rendering

global graphs structures.
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On the one hand, many existing GO tools focus on displaying a small subset of terms to

reveal nuances of the hierarchical relationships. For instance, one of the most commonly-used

web interfaces, QuickGO12 allows querying and browsing a single GO term along with its re-

lated terms (and annotations) as a DAG. REVIGO13 can present multiple selected terms in a se-

mantic graph via different representations (e.g., its scatter and table view, tree map view, and

interactive graph view). Other tools feature displays where node and links can be retrieved with

more interactive features14–16, or where node enrichment scores can be highlighted with additional

customization17–19.

On the other hand, relatively fewer visualizations aim to simultaneously displaying the entire

GO20, 21, despite extensive literature on large graph or network visualization22–26. In contrast to

small graph displays, these tools are typically not flexible enough to highlight node- or link-specific

details due to numerous visual elements. However, they can provide a global view of the graph,

such as nodes clusters or overall hierarchies that are especially helpful for understanding trends of

term relationships or enrichment scores in the GO.

Our new open-source software AEGIS (Augmented Exploration of the GO with Interactive

Simulations) aims to bridge the merits of both visual approaches, and support extensive interactions

with the information coded in the ontology. We link representations of local and global structures

within the GO DAG by adopting the focus-and-context framework, reminiscent of classical princi-

ples in visual information system design: overview first, zoom and filter, then details-on-demand27.

AEGIS capitalizes on the flexibility and power of efficient search routines to render dynamic dis-

plays for real-time interactions. Not only can the users interact with the interface to visualize their
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results output from existing pipelines with increasing degrees of specificity, they can also choose

any vantage point to explore the GO with our visualization prior to collecting their data or running

their pipelines. During the exploratory process, AEGIS allows them to extract biological infor-

mation relevant for simulations and hypothesis generation, as well as power calculations for study

design.

Results

To increase interpretability and facilitate user interactions with the GO, we reasoned that it is key

to both effectively display granular information relative to a set of concepts of interest and provide

a means to put them in the larger context of the ontology. AEGIS achieves this objective by a new

visualization: focus and context graphs. It couples a Sugiyama-style graph28 (the focus graph)

that renders the hierarchical structure of a selected sub DAG with a silhouette view (the context

graph) that provides indication of the overall number of nodes that are similar to or related to

the concepts in the sub DAG. Both the focus and context graphs are customizable in real time

thanks to our customized data structure and software system (Methods and Supplementary Figures

2-4). AEGIS complements the focus and context graphs with interactive highlighting options and

layouts, including the buoyant layout, a graph drawing strategy that incorporates gene annotation

information. The buoyant layout relies on a novel algorithm we developed, and improves the

interpretation of the hierarchical levels in the GO terms that are assigned to the same level share

a similar number of annotated genes (Methods, Supplementary Algorithms, and Supplementary

Note 1).

Unlike most GO visualizations that are used at the last step of the analysis to illustrate results,
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our visualization strategies allow researchers to explore the ontology and plan experiments prior to

data acquisition. With interactive features complementing the focus and context graphs, they can

generate biologically plausible simulated data and run power studies: in fact, interaction in AEGIS

is not limited to customization of graph displays, but includes multiple methods to identify a set of

concepts of interest, generate hypotheses, and select study parameters (Methods and Supplemen-

tary Note 2). Unique to AEGIS, the context graph can conveniently summarize the multiplicity of

the tested hypotheses within the hierarchy, and the focus graph can magnify precise positions of

the non-null hypotheses which researchers aim to discover. Subsequently, they can visualize the

dependencies among the hypotheses and identify potential testing biases. As new testing strategies

are emerging29, 30, these insights are valuable for benchmarking their performance and comparing

their underlying assumptions.

We next resort to a number of biological examples that showcase the different aspects of our

visualization and its applications. While the main results below are renderings of static displays,

we refer the reader to detailed video tutorials and documentation of the examples (Supplemen-

tary Videos and Supplementary Note 3), as well as a lite on-line interactive platform available at

http://aegis-viz.appspot.com.

Focus and context graphs

The focus and context graphs are two juxtaposed representations tailored to balance the global

structures and local details of a DAG with tens of thousands of nodes and links. The focus graph

displays precise term relationships and annotation information via a bona fide graph representation

following the Sugiyama style: nodes are arranged in different levels, with the roots at the top and
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a parent always above its children so that all links are directed downwards (Figure 1, left hand

side). We will discuss in the next section the different options for assigning a node to a level, but

it is important here to remark that levels are at the basis of the coupling of the focus and context

displays. The context graph is represented by a bar chart (Figure 1, right hand side), capturing

the node counts at each level of a larger reference DAG (by default the entire GO). The coupled

displays allow the viewer to understand how many nodes are on the same level of a concept of

interest, and how many are at higher or lower levels in the hierarchy.

To provide a concrete illustration, we used AEGIS to create a visualization of 27 significantly

enriched GO terms for hair color phenotypes from a genome-wide association study31 (Supplemen-

tary Note 3). By displaying the ancestral terms, it becomes apparent that some of these concepts

are more closely related than others: the focus graph on the left hand side of Figure 1 identifies

with roman numerals the most specific of the 27 terms, and groups together the concepts with a

most recent common ancestor. Aside from stylistic variations and possible customizations, the fo-

cus graph resembles standard representations of the GO DAG3, 12, 28. The context graph on the right

hand side, in contrast, is unique to AEGIS: the silhouette representation of the entire “biological

process” ontology DAG (15,000 terms) allows us to indicate the locations of the approximately

1,000 concepts related to the 27 query terms, highlighting, for example, how they include 907

descendants.

The focus and context graphs are achieved without overcrowding the display with numer-

ous objects and without appreciably increasing the computing time. Consequently, the gains in

computational and representational efficiency facilitate real-time interactions with the GO DAG.
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For example, an investigator can explore focus graphs anchored on different terms, or customize

selections of context graphs (Methods and Supplementary Videos).

Buoyant layout that incorporates annotation

The visualization in Figure 1 exemplifies a standard option for assigning a node to a level in a

Sugiyama-style graph28: the level represents a node’s longest distance to the roots. We refer to

this leveled layout as the root-bound layout. Another standard option assigns a node to the longest

distance to the leaves —we call this the leaf-bound layout, and both options are available in AEGIS.

The root-bound and leaf-bound layouts achieve spatial compactness by minimizing the number of

levels, but also have their limitations. A viewer is naturally prone to interpret terms in the same

level as sharing the same degree of specificity. This might be approximately true in some contexts,

but it is rather misleading in the case of the GO DAG.

The ontology is created as a way of representing existing literature and the curation process

focuses on term-to-term relationships, not the overall graph structure. While it is always true that

descendant terms are more specific than their ancestors, the number of terms separating a concept

from the root or leaf nodes is not a reliable indication of its specificity. Some biological processes

have been studied in detail, so that a number of different terms exist to describe them, while others

are known at a much less granular level. One can imagine a well studied concept separated from

the root node by 10 concepts, while a less studied concept of comparable specificity might be only

two nodes away from the root.

Fortunately, in the case of GO, we have another source of information on the level of speci-

ficity of a node: the number of genes that annotate it. AEGIS leverages this in a novel Sugiyama-
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style graph, the buoyant layout, which enjoys two properties: (1) a parent node is always placed at

a level above its children; and (2) a node with fewer annotations is never placed higher than any

node with more annotations (Methods and Supplementary Note 1).

To contrast the renderings of the different layouts, we re-analyzed a chromatin immunopre-

cipitation sequencing (ChIP-seq) study3, 32 (Supplementary Note 3), and selected two significant

terms to highlight their differences (Figure 2). In the root-bound layout, for instance, the term

“ruffle” (with 164 annotations) is at a higher level, and therefore appears to be more generic than

the term “actin cytoskeleton” (with 448 annotations) only because a smaller number of concepts

lie between “ruffle” and the root “cellular component”. The buoyant layout, in contrast, preserves

a more interpretable node ordering based on the number of annotated genes. We also remark that

the buoyant layout is particularly meaningful when coupled with the context graph: each level

corresponds to a range of gene annotation counts (Supplementary Videos).

Interactive features and Gene Ontology navigation

By choosing which nodes to display in the focus graphs, against which context to interpret them,

the user can navigate the GO and extract annotation information useful for simulations and study

designs. This process is further enhanced with many auxiliary interactive features (Methods and

Supplementary Videos). Here we start with showing how AEGIS facilitates extracting informa-

tion from the GO for the purpose of simulations. We consider the task of generating artificial

signals from single cell RNA sequencing (scRNA-seq), where one is interested in discovering sub-

populations of cells that have distinct expression signatures. Rather than arbitrarily deciding which

genes differ across simulated cell types33, 34, AEGIS allows a researcher to leverage the GO to iden-
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tify a group of genes that are biologically related, specifying a signal structure that is realistic, and

model a cellular process the researcher is specifically interested in.

We simulated the transcriptomic profiles of single cells that differ by cell cycle states, a

common confounding factor in scRNA-seq data (Figure 3). Previously, cell cycle genes have

been collectively considered at the resolution of more generic GO terms such as the cell cycle

process (GO:0022402)35. With AEGIS we can explore and select more detailed sub-processes:

specifically we identified three descendants: G1/S transition of mitotic cell cycle (GO:0000082),

G2/M transition of mitotic cell cycle (GO:0000086), and mitotic cell cycle arrest (GO:0071850).

We select then 10 genes among the ones annotating each of these terms and refer to these 30 genes

as the “signature genes”. Using standard procedures (Supplementary Note 3), we can then generate

expression data for 120, 150, 100, 300 cells for G1/S transition, G2/M transition, cell cycle arrest,

and control respectively. Each cell type has higher expression of its 10 signature genes, while the

baseline cell type does not express any of these transition markers.

A biologically sound ground truth can help contrast alternative visualizations of the data,

such as PCA36 and t-SNE37 (Figure 3). As we expect, both methods organize the data points

in a way consistent with the ground truth cell types, with better cell type segregation under t-

SNE. However, our functionally related gene set uncovers how visualizations with PCA can offer

additional insights: PCA-based biplots can indicate directions in the data dominated by individual

genes. These “gene directions” can in turn suggest “functional directions”, i.e., annotated gene

sets that collectively align in the subspaces spanned by the top principal components.
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Power analysis for GO enrichment testing

Study design is one of the contexts where it is most useful for an investigator to interact with GO

visualizations and AEGIS further enables them with a built-in power simulator, filling in a sur-

prising gap in the literature of enrichment tests2, 18, 38, 39 (Methods). While enrichment hypotheses

are stated and tested at the level of GO terms, their truth status depends on the expression of the

genes associated to the concepts: because often the same gene contributes to the annotation of

multiple GO terms, there are logical dependencies between enrichment hypotheses. Without ac-

tual access to the GO structure, it is difficult to simulate these dependencies, which have important

consequences for power and interpretability of results.

AEGIS’ pipeline aids the investigator in multiple ways (Supplementary Figure 5): 1) By

allowing navigation of the GO, it enables the investigator to select ontology terms that are rep-

resentative of the biological process under study and determine that all or some of the genes in

their annotation are differentially expressed—thereby anchoring the power study to biologically

relevant hypotheses. 2) Once differentially expressed genes are specified, AEGIS identifies all the

non null enrichment hypotheses, according to one of two standard definitions (e.g., ‘competitive’

or ‘self-contained’9, described in Supplementary Note 2), allowing the investigator to evaluate

the specificity of the hypotheses tested. 3) The built-in power simulator generates gene expres-

sion datasets using the sample size and signal strength specified, carries out testing with a choice

of testing and multiplicity correction strategies, and computes power and False Discovery Rate

(FDR). 4) The power results are displayed with reference to the relevant GO sub-DAG, using

binder plots. By organizing nodes linearly while still displaying hierarchical information, this vi-
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sualization facilitates the display of additional node-specific information such as term names, bar

plots or heatmaps for the summary statistics from the power analysis. The order of nodes is based

on number of annotations (following the bouyant layout), and edges are rendered with curves that

preserve Sugiyama-style graph drawing rules.

As an example, we conducted a power analysis to guide a study with the goal of confirm-

ing the enrichment of heart-specific developmental processes (Supplementary Note 3). We study

how power changes with sample size using two different strategies for formulating and testing the

enrichment hypotheses: competitive nulls with hypergeometric test, and self-contained nulls with

p-values obtained with Simes’ combination rule (Figure 4 and Supplementary Note 2).

As previously documented9, increasing the number of samples leads to monotonically higher

power for self-contained tests, but can have limited impact on competitive tests that are based on

a “gene sampling” (rather than subject sampling) strategy. On the other hand, inspection of the

binder plots reveals that the loss of power of competitive/hypergeometric tests is mostly due to

their not rejecting rather non-specific hypotheses: they do single out “heart development” (where

the signal was planted) and “adult heart development” (whose annotation is very similar).

We note that this strategy can be used to benchmark multiplicity-correction procedures, and

documented the results of a comparison of DAGGER29, a recent sequential testing method, and the

Benjamini-Hochberg procedure (Supplementary Note 3).

Conclusion

AEGIS employs multiple strategies to navigate the GO and present GO-based discoveries: the

focus-and-context graph, the buoyant layout, and the binder plot are novel visualizations that lever-
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age graph-theoretic properties of the GO DAG, extensive customization and interactive displays

allow user engagement, and built in power simulations facilitate study design.

AEGIS is available both as a web-based application for simple GO exploration, and a download-

able software package for hypothesis testing and further customization. Currently, version-controlled

visualizations rendered via AEGIS can be downloaded as vector graphics, such that attributes such

as colors, annotations and node positions can be customized via common editing tools. The com-

putation back-end and visualization front-end, along with online documentations, tutorials and

videos, are open-source and portable. As such, existing GO analysis pipelines can employ the

functionalities of AEGIS to present and disseminate their results. For example, our current pipeline

is compatible with emerging GO testing strategies and multiple comparison procedures3, 29, 30, and

it also has the flexibility to support the analyses of a broader range of data input types with these

options. Moreover, the visualization strategies can potentially be transferred to other ontologies3,

such as the Plant Ontology and Human Disease Ontology. For ontologies where annotations are not

limited to gene sets, we can extend the buoyant layout to encode other side information associated

with each term to render interpretable levels graph layouts using their specific constraints.
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Methods

1 GO data preprocessing

The analysis in this manuscript is based on the GO version: release-2018-06-21 (format version:

1.2) with gene annotations downloaded from the National Center for Biotechnology Information

(NCBI) gene2go table (ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz, release-2018-06-21). The

open-source software goatools (https://github.com/tanghaibao/goatools) was used to parse these

files. For the associations, all evidence types are included as default3. All relationships (e.g.,

“is a”, “part of”, “has part”, or “regulates”) for the GO terms were used for the cellular component

ontology, but only “is a” relationships were kept for the biological process ontology.

To handle the redundancy of GO terms during hypothesis testing, we developed a DAG re-

finement algorithm, which also preserves the semantic relationships in the original DAG (Supple-

mentary Algorithm 1). Essentially, the algorithm iteratively remove a parent if one of its child is

annotated to the exact same gene set. DAG refinement is optional for visualization but is strongly

recommended for hypothesis testing, because if a parent and child share the exact same gene sets,

the corresponding test statistics would be identical and unnecessarily increase the burden of testing

multiplicity. Further, the user can optionally filter the node-size range to remove overly generic or

specific terms, a function commonly used in gene set testing tools3. We found that other works

rely on DAG reduction approaches for similar reasons3, 6, however, we were unable to identify a

full algorithmic description or justification of the process. Thus, our algorithmic description is also

accompanied with its theoretical justification (Supplementary Note 1).
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2 Customization of the context graph

The context graph is by default the entire GO, but it can be narrowed to a sub-DAG by specifying

a set of context anchors: any GO terms can be chosen as anchors, playing one of three roles in

identifying the sub-DAG: root, leaf or waypoint. Selecting root anchors will result in a DAG that

includes all their descendants; leaf anchors in a DAG that only include their ancestors; and way-

point anchors in a DAG which include both their descendants and ancestors (Supplementary Figure

2). This procedure can be seen as a way to eliminate nodes that have no semantic relationship with

the context anchors. The induced sub-DAG can be further processed using DAG refinement.

Once the context is specified, the focus graph can be similarly specified with focus anchors,

which can be defined as waypoint or leaf. If these anchors are not specified, the default would

be the the context anchors as leaf anchors. In order to make sure that the number of nodes in the

focus graph is small enough to allow interaction, two constraints are implemented on the sizes of

the displayed sub-DAG: 1) we limit the number of focus anchors; and 2) descendants beyond the

immediate children of the focus anchors are displayed only when the the size of the resulting focus

graph is predicted to be smaller than a threshold. Both these parameters can be adjusted.

AEGIS supports three layouts for the focus graph: root-bound, leaf-bound, or buoyant. The

first two are standard topological layouts28, while the buoyant layout is new and described below.

Given a context graph, one can change the focus anchors in the focus graph in multiple interactive

ways, including key word search, node selection, or random draws of nodes from a specific level

(Supplementary Videos).
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3 Buoyant layout and the bubble float algorithm

For graphical displays of the GO DAG, a buoyant layout requires two constraints: each parent

node should be placed at a higher level than all of its children (topological constraint) and a node

annotated with a smaller number of genes should never be placed higher than any larger node

(descending node size constraint). The bubble float algorithm aims to generate the buoyant layout

based on the two constraints. It starts by initializing the layout by lexicographically sorting all

the nodes according to (1) descending ordering of the node size and (2) ascending ordering of

the longest distance to the root. The remainder of the algorithm consists in repeated applications,

starting from the bottom of the graph, of a float operation that merges multiple nodes into a layer

so long as the two constraints remain satisfied. We show that the bubble float algorithm satisfies

both the topological constraint and the descending node size constraint during initialization and at

each iteration. In addition, the necessary and sufficient conditions of the buoyant layout are proven

theoretically, such that it is guaranteed to exist for any GO DAG (Supplementary Note 1).

The resulting number of levels of the buoyant layout is always equal to or greater than that

of the root-bound layout (Figure 2), because the latter only requires the topological constraint.

Particular to the GO, this can be advantageous when too many nodes are displayed and could be

more spread out by levels. Thus, we also provide a parameter to control the maximum span of

node sizes on each level (Supplementary Algorithm 2).

Once the level of each node in the DAG is determined, what remains is the ordering of

the nodes in each layer for the focus graph. Computing the optimal ordering of nodes in each

level that minimizes edge crossings between layers reduces to the problem of bipartite crossing
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minimization, which is unfortunately NP-hard40. Yet, there exist many graph drawing heuristics,

which we build upon to determine the layout of the focus graph: we group anchors together if they

are semantically related, add exclusive ancestor and descendant nodes to the respective groups,

and separate these groups the nodes during display (Figure 1, Supplementary Algorithm 3). The

grouping delivers a clearer interpretation of the focus anchors and their relatives. In contrast to

the focus graph layout, the rendering of the bar layout of the context graph does not require node

ordering at each layer. Because the representation only concerns the node counts, the computation

cost for the context graph is negligible.

4 Software architecture

The specifications of the context and focus graphs, choices of different layouts, and states in the

interaction process can be combinatorial. To efficiently support the graphical rendering and in-

teraction, we created a new data hierarchy: a data object includes 1) primary attributes that are

invariant across any context and focus representations; 2) secondary attributes that can vary under

different choices of the context graph, but are invariant to what the focus graph is; 3) tertiary at-

tributes that can vary with the choice of the focus graph and interactions on the graph. All these

attributes collectively define how an object is displayed on the front-end interface, but because

some of the attributes can be expensive to compute, we use this hierarchy to reduce the space and

time needed for computations (Supplementary Figure 3). It is expected that certain computations

in back-end, such as performing a statistical testing method can be more computationally expen-

sive. Nevertheless, this computation does not affect the layout—our hierarchy assigns them to

primary attributes, and none of these results need to be recomputed for layout and interaction pur-
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poses. Therefore, we were able pre-compute and cache the simulation results prior to running the

web server. Another computational bottleneck in our system is data communication with the GO

database and basic file parsing (which can take up to minutes depending on Internet connection).

To systematically integrate this data hierarchy, we created new software libraries to define

the data classes and perform the core algorithms (Supplementary Figure 4). We also utilized state-

of-the-art Python packages to query and parse GO ontology databases, and incorporated Flask, a

Python micro-framework to deliver server side computations. All of the user interactions were

developed based on commonly-used JavaScript packages: jQuery.js and D3.js to support light-

weight front-end computations on the client side.

Despite the size of a DAG with tens of thousands of nodes, our computational framework and

system architecture offer the advantage of minimal time and space required for interactions with

the full-scale data. As a result, our application does not require expensive resources to perform all

the computations in the background, and reduces the need to be hosted as a centralized web portal.

All the development and demonstrations were performed on a MacBook Pro laptop with a 2.8

GHz i7 processor with 8 Virtual Cores and 16GB RAM. The interaction updates in the front-end

interface each take less than 0.1 seconds.

5 Power analysis workflow

The power analysis for GO enrichment testing in RNA-seq studies requires three ingredients: 1) the

ground truth: a priori defined truly differentially expressed genes, as well as whether each GO term

is a true null or non-null hypothesis; 2) the data: the gene expression matrix and term-specific p-

values; and (3) the statistical procedure: testing methods to select which terms are significant. The
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selected ground truth genes determine if a GO term is a true null hypothesis or not, and there are

two distinct types of null hypothesis to be considered: the self-contained null and the competitive

null9. We say that a GO term is a self-contained null if no gene associated with the term is truly

differentially expressed; a term is a competitive null if the genes associated with this term are at

most as often differentially expressed as the genes not associated with this term (Supplementary

Note 2).

To generate the data, AEGIS takes the selected truly differentially expressed genes, effect

size βeffect and sample sizes ncontrol, ncase as parameters to generate g-dimensional gene expression

matrices for the control samples and case samples. For simplicity, the gene expression values for

the controls are sampled fromN (0, I), a multivariate normal distribution with a length-g zero mean

vector and a covariance matrix equal to the identity matrix; and the cases are similarly sampled

from N (µ, I), where µ is vector of values equal to βeffect only at the truly differentially expressed

genes and 0 otherwise. This vanilla model can be extended for more complicated scenarios: for

example, the single-cell RNA-seq simulation uses the negative binomial model instead and impose

additional zero values in the expression matrix, also known as as “drop-outs” (Supplementary Note

3). Further, the assumption that the gene measurements are uncorrelated can be relaxed given the

knowledge of platform-specific noise patterns.

For testing, a total of g gene p-values are obtained based on a two sample t-test; these are

the ingredients to determine GO term-specific p-values. For the self-contained hypothesis, the

Simes’ combination rule aggregates all the gene p-values annotated with a GO term to obtain the

term p-value; For the competitive hypothesis, the hypergeometric test is based on first selecting
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significant genes based on a gene-wide significant threshold, and testing whether these genes are

independent of those annotated to a specific GO term (Supplementary Note 2). For either case, we

control the false discovery rate at level q using the Benjamini-Hochberg (BH) procedure. Note that

this pipeline is modifiable: other methods, such as Bonferroni correction or DAGGER, can replace

BH for multiplicity correction (Supplementary Note 3).

Without loss of generality, letA1 be the set of non-null terms for a particular type of null hy-

pothesis, and letR be the set of terms rejected by the appropriate procedure. Then, the (empirical)

power and false discovery proportion (FDP) are defined as follows:

Power =
|A1 ∩R|

max{|A1|, 1}
, FDP =

|R \ A1|
max{|R|, 1}

,

where |·| denotes the size of the set, and \ denotes set difference. For a particular power calculation,

we fix the ground truth and repeat the data generation process to obtain multiple realizations of

Power and FDP, in order to infer the power as well as the false discovery rate (FDR) of detecting

the true non-nulls.

1. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nature Genetics 25,

25 (2000).

2. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for inter-

preting genome-wide expression profiles. Proceedings of the National Academy of Sciences

102, 15545 LP – 15550 (2005).

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/436741doi: bioRxiv preprint 

https://doi.org/10.1101/436741


3. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions.

Nature Biotechnology 28, 495 (2010).

4. Schmid, P. R., Palmer, N. P., Kohane, I. S. & Berger, B. Making sense out of massive data by

going beyond differential expression. Proceedings of the National Academy of Sciences 109,

5594 LP – 5599 (2012).

5. Kulmanov, M., Khan, M. A. & Hoehndorf, R. DeepGO: predicting protein functions from

sequence and interactions using a deep ontology-aware classifier. Bioinformatics 34, 660–668

(2018).

6. Ma, J. et al. Using deep learning to model the hierarchical structure and function of a cell.

Nature Methods 15, 290 (2018).

7. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-

seq. Nature Biotechnology 31, 46 (2012).

8. Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical

data integration. Nature Biotechnology 25, 1251 (2007).
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Figure 1: Focus and Context Graph Representations of AEGIS.
The GO DAGs are rendered by focus and context graphs in AEGIS based on specific term queries. In this example,
the focus graph on the left includes a total of 27 significantly enriched functions, which are highlighted in blue; all of
their ancestral nodes under “biological processes” are displayed in purple. The least redundant leaf terms are identified
with roman numerals, and annotated with their GO identifiers. We use the root-bound layout, where the level of a node
corresponds to its longest distance to the root. The position of each node within its level in the focus graph depends
on semantic relationships: related nodes are grouped together. The context graph on the right captures the entire GO
DAG under the root of “biological processes” with 15391 terms; the silhouette view indicates the number of nodes in
each level under the root-bound layout. Among the nodes in each level, the count of the terms that are ancestral or
descendent to the 27 terms (including themselves) are highlighted in purple.
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Figure 2: The Buoyant Graph Layout for the GO.
Root-bound, leaf-bound and buoyant layouts. Each link is assumed to point downwards from the root (indicated with a
gray triangle), and the nodes are colored depending on the number of genes with which they are annotated (or the node
size), as in the legend on the right hand side. Orange and yellow triangles point to two significant cell components
identified from the CHiP-seq study by Valouev et al. Note that the root-bound layout places ruffle at a higher level
that actin cytoskeleton, despite the fact that ruffle is annotated with 164 genes, and likely a more specific compartment
than actin cytoskeleton, which is annotated with 488 genes. Similar size-level inconsistencies appear in the leaf-bound
layout, but the buoyant layout successfully resolves these issues across all the nodes.
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Figure 3: Simulated scRNA-seq with Cell Cycle Signatures.
(a) Heatmap. Gene expression signatures for cells in G1/S transition (120 cells), G2/M transition (150 cells), cell
cycle arrest (100 cells), and a baseline cell type (300 cells, with no cell cycle signature). The first 30 genes are cell
type specific signatures used for the simulation: 10 randomly selected from each of the set of gene annotating the
three GO terms corresponding to G1/S transition, G2/M transition, and cell cycle arrest. The last 10 genes are selected
at random from the total of remaining 2030 genes for which expression was generated using a zero-inflated negative
binomial models with mean parameters varying with cell types. (b) Biplot on the top 2 principal components (PCs).
The biplot includes the first and second PCs and each point represents individual cells projected in this space. The
vector arrows are the projection of the 30 signature genes colored by their annotation group, and those with largest
magnitude per group are indicated. The point coordinates and the gene vectors were scaled (while preserving the inner
products) to fit the display space. (c) t-SNE 2D embedding. The t-SNE visualization of the cells also highlights the
four distinct cell sub-populations and processes they are enriched in. The t-SNE was computed based on the top 10
PCs of the data. The scale of the t-SNE plot is arbitrary.
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Figure 4: Binder plots, Heatmaps and Box Plots for the Heart Development Case Study.
(a-b) All the genes from those annotating the term “adult heart development” (with node border marked blue and
ancestors indicated in blue as well) and defined as differentially expressed. This defined a set of non null hypotheses
for the competitive and the self-contained framework, all displayed in the binder plots, rooted at “animal organ devel-
opment”. In each binder plot, the non-null terms relative to the appropriate hypothesis are shown with black text: for
completeness and ease of comparison, binder plot for the competitive tests includes in gray three null terms related to
the non-nulls. The terms are ordered by descending node sizes, and the different levels are distinguished by alternating
shades of green. The heatmaps highlight the fraction of times a particular node is rejected across 100 repetitions per
sample size regime. (c) The box plots in the bottom portion of the displays summarize the false discovery proportion
(at level 0.1) and empirical power across all nodes. The Benjamini-Hochberg procedure was used for multiple testing
adjustment.
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