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Abstract  23 

The battle against malaria has been substantially impeded by the recurrence of drug resistance in Plasmodium falciparum, 24 

the deadliest human malaria parasite. To counter the problem, novel antimalarial drugs are urgently needed, especially 25 

those that target unique pathways of the parasite, since they are less likely to have side effects. The mitochondrial type II 26 

NADH dehydrogenase of P. falciparum, PfNDH2 (PF3D7_0915000), has been considered  a good prospective 27 

antimalarial drug target for over a decade, since malaria parasites lack the conventional multi-subunit NADH 28 

dehydrogenase, or Complex I, present in the mammalian mitochondrial electron transport chain (mtETC). Instead, 29 

Plasmodium parasites contain a single subunit NDH2, which lacks proton pumping activity and is absent in humans.  A 30 

significant amount of effort has been expended to develop PfNDH2 specific inhibitors, yet the essentiality of PfNDH2 has 31 

not been convincingly verified. Herein, we knocked out PfNDH2 in P. falciparum via a CRISPR/Cas9 mediated 32 

approach. Deletion of PfNDH2 does not alter the parasite’s susceptibility to multiple mtETC inhibitors, including 33 

atovaquone and ELQ-300. We also show that the antimalarial activity of the fungal NDH2 inhibitor HDQ and its new 34 

derivative CK-2-68 is due to inhibition of the parasite cytochrome bc1 complex rather than PfNDH2. These compounds 35 

directly inhibit the ubiquinol-cytochrome c reductase activity of the malarial bc1 complex. Our results call into question 36 

the validity of PfNDH2 as an antimalarial drug target. 37 

Importance  38 

For a long time, PfNDH2 has been considered an attractive antimalarial drug target. However, the conclusion that 39 

PfNDH2 is essential was based on preliminary and incomplete data. Here we generate a PfNDH2 KO (knockout) parasite 40 

in the blood stages of Plasmodium falciparum, showing that the gene is not essential. We also show that previously 41 

reported PfNDH2-specific inhibitors kill the parasites primarily via targeting the cytochrome bc1 complex, not PfNDH2. 42 

Overall, we provide genetic and biochemical data that help to resolve a long-debated issue in the field regarding the 43 

potential of PfNDH2 as an antimalarial drug target.  44 

 45 

 46 
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Introduction  48 

The mitochondrial electron transport chain (mtETC) is an important, validated drug target in malaria parasites. The 49 

mtETC is the primary generator of the electrochemical gradient across the mitochondrial inner membrane. In the asexual 50 

blood stages of malaria parasites, however, the only critical function of the mtETC is  the continuous reoxidation of 51 

ubiquinol to sustain dihydroorotate dehydrogenase (DHODH) activity, which is required for de novo pyrimidine 52 

biosynthesis (1). In contrast, in insect stages, mitochondrial oxidative phosphorylation appears to have increased 53 

importance (2), likely requiring an intact central carbon metabolism (3) and increased mtETC activity to maintain the 54 

electrochemical gradient that drives ATP synthesis. For decades, the mtETC of malaria parasites has attracted major drug 55 

development efforts (4), ultimately resulting in antimalarials for clinical use and in preclinical/clinical stages of 56 

development. MalaroneTM, a combination of atovaquone and proguanil, has been used clinically since 2000. Recent drug 57 

development efforts focused on the parasite DHODH led to the clinical candidate DSM265, which is currently undergoing 58 

Phase II clinical trials (5, 6). ELQ-300, an inhibitor of the Qi site of the bc1 complex (Complex III), has also reached 59 

preclinical development (7, 8). This underscores that the essential protein components of the parasite mtETC are attractive 60 

antimalarial drug targets.  61 

In the parasite mtETC, there are five dehydrogenases that donate electrons to ubiquinone producing ubiquinol (reduced 62 

ubiquinone), which is subsequently oxidized by the bc1 complex (Complex III).  These five enzymes include NDH2, 63 

malate quinone oxidoreductase (MQO), DHODH, glycerol 3-phosphate dehydrogenase (G3PDH), and succinate 64 

dehydrogenase (SDH). As mentioned above, the parasite DHODH is a validated antimalarial drug target. NDH2 has also 65 

been considered a promising antimalarial drug target for over a decade (9-12). In general, NADH dehydrogenase is a 66 

membrane bound flavoenzyme that catalyzes electron transfer from NADH to quinone producing NAD+ and quinol. In 67 

human mitochondria, a type I NADH dehydrogenase (Complex I) has 45 subunits and pumps protons across the 68 

mitochondrial inner membrane concomitant with electron transfer (13). Mutations of Complex I subunits are responsible 69 

for a significant portion of hereditary human respiratory chain disorders (14). In contrast, malaria parasites lack the 70 

conventional multi-subunit Complex I. Instead, they have a type II NADH dehydrogenase (NDH2), which is a single 71 

subunit, non-proton pumping protein, likely attaching to the mitochondrial inner membrane and facing the mitochondrial 72 

matrix. Toxoplasma gondii, another apicomplexan parasite, has two isoforms of NDH2, which both face the mitochondrial 73 
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matrix, catalyzing oxidation of mitochondrial NADH (15). NDH2 is also present in bacteria (16), fungi (17) and plants 74 

(18), but not in humans or other mammals. 75 

 76 

The absence of NDH2 in humans suggests that the parasite enzyme might be a good antimalarial drug target (9-12). In 77 

1990, Fry and Beesley first measured NADH oxidation activities in isolated mitochondria of malaria parasites (P. yoelii 78 

and P. falciparum) using two spectrophotometric methods (19). Briefly, in the first assay, NADH oxidation was coupled 79 

to cytochrome c reduction and changes of cytochrome c absorption spectrum were measured at a wavelength of 550 nm; 80 

in the second assay, NADH oxidation produced NAD+, directly leading to a reduced absorption at 340 nm. Using these 81 

measurements, Fry and Beesley found that NADH oxidation in the mitochondrial samples was more robust than that of 82 

other substrates and was not inhibited by rotenone, a classical Complex I inhibitor. The conclusion was that mitochondria 83 

of malaria parasites were able to oxidize NADH, although it was not clear which specific enzyme(s) were responsible or 84 

which pathway(s) were involved. In 2006, Biagini et al. also observed significant NADH oxidation activity  (direct assay 85 

at 340 nm) in  P. falciparum extracts (9). Biagini et al. used atovaquone and potassium cyanide to block the activities of 86 

Complexes III and IV individually, leading them to conclude that the observed NADH oxidation was due to PfNDH2 (9). 87 

However, with the use of total cell extracts containing various NADH dependent enzymes, it seems questionable to 88 

attribute all the observed NADH oxidation activity to PfNDH2 alone (9, 12). Coincidentally at that time, the ubiquinone 89 

analogue HDQ (1-hydroxy-2-dodecyl-4(1H) quinolone) was found to be a potent inhibitor of the fungal NDH2 in 90 

Yarrowia lipolytica (20). Later HDQ was shown to be highly effective against P. falciparum and T. gondii parasites (10). 91 

Based on these results (9, 10, 12), it became widely accepted that PfNDH2 could be an attractive antimalarial drug target. 92 

As a result, a significant drug discovery campaign based on high throughput screening was undertaken to seek HDQ-like 93 

inhibitors to specifically inhibit PfNDH2 (21-23), yielding the lead compound, CK-2-68 (22). Recently, the crystal 94 

structure of PfNDH2 was resolved via x-ray crystallization (24), which could further encourage drug development efforts 95 

towards PfNDH2 using approaches based on in silico docking and structure activity relationships of PfNDH2 inhibitors. 96 

 97 

The rationale for targeting PfNDH2 for antimalarial drug development has, however, been controversial (25, 26).  The 98 

fact that the entire mtETC in asexual blood stages could be functionally bypassed by expression of the  heterologous 99 

yDHODH from Saccharomyces cerevisiae to support pyrimidine biosynthesis in the presence of mtETC inhibition raised 100 
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the likelihood that PfDHODH is the only essential enzyme among the five mitochondrial dehydrogenases that donate 101 

electrons to ubiquinone (1).  The yDHODH transgenic parasites can be grown continuously under a high atovaquone 102 

pressure (100 nM) (1, 27). Under such conditions, the bc1 complex is fully inhibited, which prevents the reoxidation of 103 

ubiquinol by the mtETC and, therefore, should block the turnover of all subsequent quinone-dependent dehydrogenases, 104 

implying that PfNDH2, as well as PfG3PDH, PfMQO, and PfSDH, are not required for growth. Interestingly, drug 105 

development research towards PfNDH2 inhibitors  did not appear to slow down (21-23) after these results were reported 106 

(25), nor even when the type II NADH dehydrogenase in the rodent malaria parasite P. berghei, PbNDH2, was genetically 107 

ablated in 2011 (28) . Very recently, selection of resistant P. falciparum parasites by treatment with CK-2-68 and RYL-108 

552, reported “PfNDH2 specific” inhibitors, generated mutations in the mtDNA encoded cyt b locus, while no mutations 109 

were found in PfNDH2 (29); these data strongly suggests that CK-2-68 and RYL-552 exert their antimalarial activity by 110 

inhibiting the parasite bc1 complex, not PfNDH2, in contrast to previous suggestions (21-23). However, in the absence of 111 

specific genetic data on the essentiality of PfNDH2, the importance of PfNDH2 in P. falciparum has not been settled 112 

definitively.  113 

 114 

Here, we successfully knocked out PfNDH2 in P. falciparum using a CRISPR/Cas9 based approach, which should put to 115 

rest the question of the validity of PfNDH2 as an antimalarial drug target. We found that deletion of PfNDH2 did not alter 116 

the parasite’s susceptibility to major mtETC inhibitors and, further, that HDQ and CK-2-68 kill malaria parasites by 117 

directly inhibiting the parasite cytochrome bc1 complex.  118 

 119 

Materials and Methods 120 

1. Parasite maintenance and transfection. P. falciparum D10 is the wildtype (WT) parasite line used in this study. 121 

D10attB-yDHODH was generated previously (27), which expresses the yeast DHODH gene of Saccharomyces cerevisiae. 122 

Parasites were cultured with RPMI 1640 medium (Invitrogen by Thermo Fisher Scientific) supplemented with 5g/L 123 

Albumax I (Invitrogen), 10 mg/L hypoxanthine, 2.1 g/L sodium bicarbonate, HEPES (15 mM), and gentamycin (50 124 

µg/ml). Cultures were maintained in human red blood cells (Type O, Interstate Blood Bank, Tennessee) and kept in a 125 

CO2/O2 incubator filled with a low oxygen mixture (5% O2, 5% CO2, and 90% N2). Ring stage parasites with 5% 126 

parasitemia were electroporated with plasmid DNA in cytomix buffer using a Bio-Rad gene pulser. Drug medium was 127 
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added 48 h post electroporation. For hdhfr (human dihydrofolate dehydrogenase) selectable marker, 5 nM WR99210 was 128 

used.  129 

 130 

2. Plasmid construction.  131 

1) Removal of yDHODH from the pAIO pre-gRNA construct. The pre-gRNA construct pAIO was generously provided 132 

by Dr. Josh Beck (30); the plasmid contains yDHODH and Streptococcus pyogenes Cas9 coding sequences (CDS) 133 

connected by a 2A “self-cleaving” peptide. To remove yDHODH, pAIO was digested with BamHI and BglII to release 134 

the entire sequence of yDHODH and the first 250 bp of Cas9, since there is no unique restriction site between the two 135 

genes that could be used to release the yDHODH CDS alone. The first 250 bp of Cas9 were amplified from the original 136 

pAIO vector with primers P1 and P2, which include short homologous sequences that match the ends of the pAIO vector 137 

after its digestion with BamHI and BglII. The PCR product and the digested vector were then joined together using 138 

NEBuilder® HiFi DNA Assembly (New England Biolabs®, Inc). A colony PCR was performed to screen colonies using 139 

primers P1 and P2. Positive clones were grown up, and their plasmid DNAs were digested with BamHI and BglII to 140 

confirm the loss of yDHODH. The positive plasmids were then sequenced using a primer upstream of Cas9 (P3) to 141 

confirm the intactness of Cas9. These procedures yielded the pre_gRNA construct without yDHODH, namely pAIO-142 

yDHODH(-).  143 

2) PfNDH2 KO construct. PfNDH2 (PF3D7_0915000) is 1602 bp long with no introns. We cloned the 5’ and 3’ 144 

homologous regions of PfNDH2 into a pCC1 vector bearing the hdhfr selectable marker (31). The 5’HR (934 bp) was 145 

amplified with primers P4 and P5 and cloned into pCC1 digested by NcoI and EcoRI. Subsequently, the 3’HR (936 bp) 146 

was amplified with primers P6 and P7 and cloned into the vector digested by SpeI and SacII.  After cloning, both 5’HR 147 

and 3’HR were sequenced (Genewiz LLC). The KO construct was named 5'3'PfNDH2_pCC1. Maxi prep DNA of 148 

5'3'PfNDH2_pCC1 (Qiagen) was digested with HincII overnight to linearize the vector before transfections.  149 

3) Guide RNA constructs. The sequence between the 5’HR and 3’HR of PfNDH2 (490 bp) was submitted to the gRNA 150 

design tool (http://grna.ctegd.uga.edu/) to seek potential gRNAs. From the list of candidates, three sequences were chosen 151 

based on their high scores and zero off-target predictions. For each of these sequences, a pair of complementary 152 

oligonucleotides (60 or 61 bp) was synthesized and annealed in a mixture of NEB Buffers 2 and 4 by heating to 95°C for 153 

5 minutes, then slowly cooling to room temperature. The vector, pAIO-yDHODH(-), was digested with BtgZI and joined 154 
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with the annealed oligonucleotide pair by gene assembly (New England Biolabs®, Inc), yielding a pAIO-yDHODH(-)-155 

gRNA construct. Other gRNA cloning procedures followed our published protocol (32).  156 

Primers used for cloning procedures are listed below. 157 

P1 (Remove yDHODH-F), 5’- ATACCTAATAGAAATATATCAGGATCCAAAAATGGACAAGAAGTACAGCATCG;  158 

P2 (Remove yDHODH-R), 5’- CCATCTCGTTGCTGAAGATC;  159 

P3 (Remove yDHODH-chk), 5’- GTATATTTTAAACTAGAAAAGGAATAAC;  160 

P4 (KO-5fF), 5’- GACCATGGATATCAAAAAATAATGCAGTAAAATGC;  161 

P5 (KO-5fR), 5’- CCGAATTCTGAACCTAGGATTATAATCTTTTCTTTTC;  162 

P6 (KO-3fF), 5’- CTACTAGTGTCGAAGTTACCGCAGAATTTG;  163 

P7 (KO-3fR), 5’- AACCGCGGTCTTAATAAAATCGATGAAAAAATGGAACC;  164 

P8 (gRNA1-F), 5’- CATATTAAGTATATAATATTgAATGTACCACTACATAAACAGTTTTAGAGCTAGAAATAGC;  165 

P9 (gRNA1-R), 5’- GCTATTTCTAGCTCTAAAACTGTTTATGTAGTGGTACATTcAATATTATATACTTAATATG;  166 

P10 (gRNA2-F), 5’- CATATTAAGTATATAATATTgCATGTAGCTGTTGTAGGAGGGTTTTAGAGCTAGAAATAGC;  167 

P11 (gRNA2-R), 5’- GCTATTTCTAGCTCTAAAACCCTCCTACAACAGCTACATGcAATATTATATACTTAATATG;  168 

P12 (gRNA3-F), 5’- CATATTAAGTATATAATATTgTTATTTAATTATAGCTGTAGGTTTTAGAGCTAGAAATAGC;  169 

P13 (gRNA3-R), 5’- GCTATTTCTAGCTCTAAAACCTACAGCTATAATTAAATAAcAATATTATATACTTAATATG;  170 

P14 (gRNA1-N20), 5’- AATGTACCACTACATAAACA;  171 

P15 (gRNA2-N20), 5’- CATGTAGCTGTTGTAGGAGG;  172 

P16 (gRNA3-N20), 5’- TTATTTAATTATAGCTGTAG;  173 

P17 (N20CheckR), 5’- ATATGAATTACAAATATTGCATAAAGA;  174 

P18 (5fchk), 5’- GAACTATACATCTATAAAGCATTAC;  175 

P19 (3fchk), 5’- GAAAAAAGAAGCACATATATATATAT;  176 

P20 (hDHFR-F), 5’- ATGCATGGTTCGCTAAACTGCATC;  177 

P21 (hDHFR-R), 5’-ATCATTCTTCTCATATACTTCAAATTTGTAC.  178 

 179 

3. Assessing parasite growth. PfNDH2 KO and D10 WT lines were synchronized several times by alanine (0.5 M, pH 7.6 180 

with 10 mM HEPES) treatment. On day 0, parasites were inoculated into a 24 well plate with each well containing 2.5 ml 181 

of culture at 1% parasitemia and 3% hematocrit. Cultures were fed daily and split every two days. At each split (1:5), a 182 

sample of the parasitized RBCs was pelleted and fixed with 4% paraformaldehyde at 4°C overnight. After all samples 183 

were collected and fixed, they were washed with 1x PBS and stained with SYBR green I at 1:1000 (Catalog S7567, Life 184 

technologies by ThermoFisher Scientific). The samples were washed with PBS three times and analyzed on a C6 Flow 185 
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Cytometer (BD). A total of 250,000 events were collected for each sample. Unstained infected RBCs and stained 186 

uninfected RBCs served as negative controls for gating. Growth curves were drawn using Graphpad Prism 6.  187 

  188 

4. Growth inhibition assays using 3H-hypoxanthine incorporation. Inhibitor compounds were diluted by a series of three-189 

fold dilutions in 96 well plates in low hypoxanthine medium (2.5 mg/L). Parasites were washed three times with low 190 

hypoxanthine medium, supplemented with fresh blood sufficient to make 1% parasitemia and re-suspended in the proper 191 

volume of low hypoxanthine medium to make a suspension with 3% hematocrit. Aliquots of the diluted culture were 192 

added to the 96-well plates containing the inhibitor dilution series. After 24 h incubation, 10 μl of 0.5 μCi 3H-193 

hypoxanthine was added to each well and the plates were incubated for another 24 h. After a total of 48 h incubation, the 194 

parasites were lysed by freezing-and-thawing, and nucleic acids were collected onto a filter using a cell harvester (Perkin 195 

Elmer). Radioactivity was counted using a Topcount scintillation counter (Perkin Elmer). Data were analyzed and graphed 196 

using Graphpad Prism 6.  197 

 198 

5. Ubiquinol-cytochrome c reduction assay. Mitochondria of ∆PfNDH2 and D10 WT were individually isolated using a 199 

method published previously (32, 33). Briefly, a large volume of parasite culture of each line (~2 liter) was lysed with 200 

saponin (0.05%) and disrupted in a N2 cavitation chamber (Parr 4639 Cell Disruption Bomb) in an isotonic mitochondrial 201 

medium. The total parasite lysate was spun down at 900 g for 6 min to remove large debris, and the cloudy supernatant 202 

was passed through a MACS CS column (Miltenyi Biotec) in a Vario MACS magnetic separation apparatus to remove 203 

most of the hemozoin. The eluted light yellow material was pelleted at 23,000 × g for 20 min at 4 °C, and the pellet was 204 

re-suspended in buffer and stored at -80 °C. The cytochrome c reductase activity of the bc1 complex was measured with a 205 

modification of previous methods (32-34). The assay volume was 300 µl, containing mitochondrial proteins (~5-10 µl 206 

mitochondrial preparation), 100 µM decylubiquinol, 75 µM horse heart cytochrome c (Sigma-Aldrich), 0.1 mg/ml n-207 

docecyl-β-D-maltoside, 60 mM HEPES (pH 7.4), 10 mM sodium malonate, 1 mM EDTA, and 2 mM KCN, and was 208 

incubated at 35°C in a stirred cuvette. Reduction of horse heart cytochrome c was recorded at 550 nm with a CLARITY 209 

VF integrating spectrophotometer (OLIS, Bogart, GA). A Bio-Rad colorimetric assay was used to measure protein 210 

concentrations of all mitochondrial samples.  211 
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6. NADH-cytochrome c reductase assay. Assay conditions were similar to those described above for the ubiquinol-212 

cytochrome c reduction assay. The 300 µL assay mix contained 5-10 µl of mitochondrial proteins, 50 µM horse heart 213 

cytochrome c, 60 mM HEPES (pH 7.4), 10 mM sodium malonate, 1 mM EDTA, 2 mM KCN and 300 µM NADH. The 214 

assay buffer contained no detergent, since it was reported that detergents heavily interfere with assays of NADH oxidation 215 

(35).   216 

 217 

Results 218 

PfNDH2 is not essential in asexual blood stages of Plasmodium falciparum. 219 

Transcriptomics data indicate that the type II NADH dehydrogenase in P. falciparum (PF3D7_0915000) is expressed in 220 

the asexual blood stages (PlasmoDB.org). It has been shown that the leader sequence of PfNDH2 was able to target GFP 221 

into the mitochondrion (36), suggesting that PfNDH2 is a mitochondrial enzyme. To further confirm that, we genetically 222 

tagged PfNDH2 with 3x HA and the tagged PfNDH2 was localized to the parasite mitochondrion by immunofluorescence 223 

assays (37). To assess the essentiality of PfNDH2, we employed the CRISPR/Cas9 DNA repair technique. A KO plasmid 224 

vector was constructed (Figure 1A, Materials and Methods), containing a 5’HR (homologous region) mostly upstream of 225 

the gene’s coding sequence (CDS) (outside) and a 3’HR near the end of the CDS (inside). The 3’HR was chosen from the 226 

coding region to circumvent inclusion of overly high AT content in the KO vector. Three gRNA sequences targeting the 227 

PfNDH2 gene were individually cloned into a modified pre-gRNA-Cas9 plasmid construct, from which yDHODH had 228 

been removed (Materials and Methods). Previous studies have shown that expression of yDHODH in malaria parasites 229 

renders the entire mtETC nonessential by providing a metabolic bypass for pyrimidine biosynthesis (1). Therefore, to 230 

assess the essentiality of PfNDH2 in the context of a normal mtETC, we removed yDHODH from the gRNA vectors. The 231 

KO plasmid was linearized by restriction digestion and transfected into D10 parasites together with the three circular 232 

gRNA vectors (Materials and Methods). Viable transgenic parasites were observed under WR99210 selection three weeks 233 

post transfection. As shown in Figure 1B, a diagnostic PCR revealed that PfNDH2 was disrupted. We then tightly 234 

synchronized both ∆PfNDH2 and WT lines and examined the growth rates over 4 intraerythrocytic developmental cycles 235 

(IDCs) via flow cytometry. As shown in Figure 1C, ∆PfNDH2 and WT parasites grew equally well over this time period. 236 

The PfNDH2 KO line was further maintained in culture for over one month, and no growth defects were noticeable (data 237 

not shown). Deletion of PfNDH2 also did not appear to affect parasite health and morphology (Figure 1D). Collectively, 238 
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our data indicate that PfNDH2 is not essential in asexual blood stages of P. falciparum, consistent with the KO study 239 

carried out previously in the rodent malaria parasite, P. berghei (28). These results argue against the long-held assumption 240 

that PfNDH2 is an attractive drug target (9-12).  241 

 242 

The ∆PfNDH2 parasite is equally susceptible to mtETC inhibitors.  243 

The healthy growth of the PfNDH2 parasites in vitro (Figure 1) suggests that the parasite mtETC remains functionally 244 

competent in the absence of PfNDH2. To challenge the KO parasites, we exposed them to mtETC inhibitors in growth 245 

inhibition assays, measured as 3H-hypoxanthine incorporation. As shown in Figure 2, in comparison to the WT, the 246 

∆PfNDH2 parasites were equally sensitive to atovaquone (a Qo site inhibitor of the bc1 complex) and ELQ-300 (a Qi site 247 

inhibitor) (8). Thus, these data suggest that deletion of PfNDH2 has little effect on the sensitivity of asexual parasites to 248 

downstream inhibitors of the mtETC. The loss of NDH2, thus, does not appear to affect the function of the remainder of 249 

the mtETC. As noted previously, HDQ and its newer derivative CK-2-68 were considered to be PfNDH2 specific 250 

inhibitors (21-23) or, more recently, dual-targeting inhibitors of cytochrome bc1 as well as PfNDH2 (38). In that case, 251 

HDQ and CK-2-68 would be expected to lose potency in the ∆PfNDH2 parasite, since the putative primary target is 252 

absent. However, HDQ and CK-2-68 were still highly potent in the KO parasite (Figure 2), suggesting that HDQ and CK-253 

2-68 primarily target another site than PfNDH2.  254 

 255 

The bc1 complex of the mtETC is the target of HDQ and CK-2-68.  256 

Our data above suggests that HDQ and CK-2-68 target an activity other than PfNDH2 (Figure 2). Since HDQ and CK-2-257 

68 are ubiquinone analogs, we suggest that they kill malaria parasites by targeting the bc1 complex, although Vallieres et 258 

al. and Biagini et al. previously suggested that HDQ and CK-2-68 had a dual effect on both PfNDH2 and the bc1 complex 259 

(38, 39). To distinguish between these alternatives, we performed growth inhibition assays in the yDHODH transgenic 260 

parasite line using HDQ and CK-2-68 in combination with proguanil. As shown previously, expression of the yDHODH 261 

gene bypasses the need for mtETC function in asexual parasites (1). The yDHODH transgenic parasites have become a 262 

handy tool to examine whether a compound targets the mtETC, as all mtETC inhibitors suffer a large loss of potency in 263 

the yDHODH background, which applies to both bc1 inhibitors and PfDHODH inhibitors (40). Further, a low 264 

concentration of proguanil (1 µM) can restore sensitivity to bc1 inhibitors in yDHODH transgenic parasites (1), but not for 265 
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PfDHODH inhibitors. As a control, we showed that yDHODH parasites were fully resistant to atovaquone but became 266 

fully sensitive in the presence of 1 µM proguanil (Figure 3). Upon inhibition by atovaquone, the yDHODH parasites lose 267 

their primary source of ∆m generation, conveyed by the bc1 complex and cytochrome c oxidase of the mtETC, and 268 

become hypersensitive to proguanil, which targets a secondary generator of ∆m (1). Using this system, we tested the 269 

HDQ and CK-2-68 sensitivity of the yDHODH parasites with and without 1 µM proguanil. As shown in Figure 3, 270 

yDHODH parasites were highly resistant to HDQ and CK-2-68, as expected; upon proguanil treatment, the yDHODH 271 

parasites regained sensitivity to these compounds. HDQ and CK-2-68, thus, behaved in a very similar manner to 272 

atovaquone against the yDHODH transgenic parasites, indicating that HDQ and CK-2-68 target the bc1 complex. These 273 

results are consistent with a previous report that found that parasites grow normally in the presence of 10 µM HDQ when 274 

expressing the yDHODH gene (41). Furthermore, recent chemical mutagenesis experiments using CK-2-68 generated 275 

mutations that were all in the cyt b locus, rather than in PfNDH2 (29). Collectively, these results indicate that HDQ and 276 

CK-2-68 are potent cytochrome bc1 inhibitors.   277 

 278 

HDQ and CK-2-68 directly inhibit the enzymatic activity of the bc1 complex.  279 

In addition to growth inhibition assays as described above (Figures 2 and 3), we also directly investigated the effect of 280 

HDQ and CK-2-68 on the enzymatic activity of the bc1 complex in a preparation enriched in parasite mitochondria using a 281 

spectrophotometric assay (Materials and Methods) (33). As shown in Figure 4, HDQ and CK-2-68 inhibited the 282 

ubiquinol-cytochrome c reductase activity in the mitochondria of ∆PfNDH2 and WT in a dose dependent manner. 283 

Importantly, the inhibitory potency of HDQ and CK-2-68 were equally robust in two types of mitochondria from WT and 284 

∆PfNDH2, respectively. This provides further evidence that the antimalarial mode of action of HDQ and CK-2-68 arises 285 

from inhibition of the bc1 complex, rather than PfNDH2.  286 

 287 

In vitro measured NADH linked cytochrome c reductase activity is likely non-biological.  288 

Previously data from Fry and Beesley (19) revealed a relatively strong NADH-cytochrome c reductase activity in parasite 289 

mitochondrial preparations. Interestingly, the activity was not inhibited by rotenone (80 µM) or antimycin A (a Qi 290 

inhibitor at 20 µM) (19). Rotenone insensitivity suggested that malaria parasites lack a conventional multi-subunit 291 

Complex I, which was later interpreted as evidence that the type II NADH dehydrogenase was essential (9).  While 292 
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antimycin A did not inhibit the NADH-cytochrome c reductase activity in Fry and Beesley’s mitochondrial preparations, 293 

it did inhibit the cytochrome c reductase activity when other mitochondrial substrates were used, such as -294 

glycerophosphate and succinate (19). In addition, antimycin A kills malaria parasites in whole cell assays with an EC50 of 295 

13 nM (42). Thus, the provenance of the apparent NADH-cytochrome c reductase activity observed in mitochondrial 296 

preparations has been an unsettled issue. In intact parasites, NADH oxidized by NDH2 is presumed to pass electrons to 297 

ubiquinone, which are then transferred on to the bc1 complex, cytochrome c, cytochrome c oxidase and, finally, to O2 . If 298 

the in vitro assay were replicating the initial steps  of the in vivo pathway, we should observe a much diminished NADH-299 

cytochrome c reductase activity in the ∆PfNDH2 parasites since PfNDH2, missing in the knockout parasite, is the only 300 

known enzyme donating electrons from NADH to the mtETC in the parasites (15). As shown in Figure 5, however, 301 

deletion of PfNDH2 had no effect on NADH-cytochrome c reductase activity, suggesting that this in vitro assay is likely 302 

non-physiological. Further, in both ∆PfNDH2 and WT mitochondria, NADH-cytochrome c reductase activity was not 303 

inhibited by a mix of malaria parasite specific bc1 inhibitors, including atovaquone (62 nM), ELQ-300 (62 nM), and HDQ 304 

(3,100 nM), each at equal or greater than 100x EC50 (Figure 5). Thus, our data are consistent with the earlier observation 305 

that antimycin A failed to inhibit the NADH-cytochrome c reductase assay (19) and suggest that  the in vitro NADH-306 

cytochrome c reductase activity is likely non-enzymatic (see Discussion).  307 

 308 

Discussion  309 

A common strategy for developing antimicrobial drugs is to target divergent proteins of the microbe to circumvent 310 

potential toxicity against the host. Proteins unique to microbes are even more interesting as their inhibitors would 311 

potentially have little to no side effects in the host. The type II NADH dehydrogenase is present in malaria parasites but 312 

not in humans; thus, it has been considered an attractive prospective drug target for a long time (9, 11, 43). However, a 313 

unique protein may not necessarily be an essential one. A valid drug target should normally be essential to the pathogen in 314 

order that its inhibition will arrest growth and/or kill the pathogen. Initial failures to disrupt the NDH2 gene in P. 315 

falciparum parasites suggested that the gene might be essential (35, 37).  On the other hand, data on the effect of mtETC 316 

inhibitors in yDHODH transgenic parasites (1) and the reported knockout of NDH2 in P. berghei (28) suggested that 317 

PfNDH2 should be dispensable in asexual parasites (as described above). Without conclusive data, however, it remains a 318 

long-debated issue in the field whether PfNDH2 is a good antimalarial drug target. In this report, we have provided strong 319 
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evidence indicating that PfNDH2 is dispensable in asexual blood stages and, therefore, is unlikely to be an effective 320 

antimalarial drug target. We note that our knockout result is consistent with the recent genetic screen of P. falciparum 321 

growth phenotypes, in which a PiggyBac transposon insertion was recovered in the CDS of PfNDH2, suggesting non-322 

essentiality of the gene (44).  323 

 324 

Our results suggest that the parasite mtETC is functionally intact in the absence of PfNDH2. Not only is the growth of the 325 

KO line closely similar to that of the WT parental line (Figure 1C), but the response to cytochrome bc1 inhibitors is 326 

virtually identical (Figure 2). Evidently, in the PfNDH2 parasites, the other ubiquinone-dependent dehydrogenases—327 

MQO, SDH, G3PDH, and DHODH—supply sufficient ubiquinol to maintain adequate function of the mtETC during 328 

asexual development. DHODH is essential for the parasite’s pyrimidine de novo synthesis pathway, since malaria 329 

parasites cannot salvage pyrimidine precursors; the other dehydrogenases, however, may be functionally redundant as 330 

electron donors to the mtETC. We have previously carried out a comprehensive genetic and biochemical study in the TCA 331 

cycle of P. falciparum (3). In the asexual blood stages, the main carbon source of the TCA is glutamine, rather than 332 

glucose. KDH (alpha-ketoglutarate dehydrogenase) is the entry point of glutamine derived carbons into the TCA cycle. 333 

KDH converts alpha-ketoglutarate to succinyl-CoA, with the concomitant reduction of NAD+ to NADH, and it is likely 334 

that KDH is the principal producer of NADH in the mitochondrial matrix due to a relatively large TCA flux observed with 335 

labeled glutamine (3). Yet, neither KDH nor the TCA flux contributed by glutamine is essential to the parasite in asexual 336 

blood stages, which is consistent with the non-essential nature of PfNDH2 as a consumer of NADH.  337 

 338 

Although HDQ and CK-2-68, and probably other related derivatives (29) do not primarily target PfNDH2 in parasites, as 339 

shown by our results, they are potent antimalarial compounds via inhibition of the parasite bc1 complex. Importantly, 340 

HDQ and CK-2-68 retained their potency in atovaquone resistant parasites (38, 39). Experiments with yeast cyt b mutants 341 

suggested that HDQ likely bound to the Qi site of bc1 complex, whereas atovaquone is a Qo site inhibitor (38). CK-2-68, 342 

on the other hand, is likely to be a Qo site inhibitor, but, nevertheless, exhibited no cross resistance with atovaquone (29).  343 

Biagini et al. have developed additional quinolone derivatives with more favorable pharmacological properties that were 344 

predicted to bind at the Qo site (39). Combinations of non-cross resistant bc1 inhibitors may be effective at slowing the 345 

development and spread of resistance, since strong resistance mutations in cyt b may exert a significant survival fitness 346 
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cost (45), including blocking transmission (46). Thus, the development of additional antimalarial candidates targeting the 347 

bc1 complex may facilitate the future development of effective combination therapies. Indeed, atovaquone and ELQ-300, 348 

Qo and Qi inhibitors respectively, were recently shown to be a highly effective and synergistic antimalarial combination 349 

(47).  350 

 351 

The results of our attempts to measure in vitro NADH-cytochrome c reductase activity spectrophotometrically provide a 352 

cautionary tale for the design and interpretation of assays involving the oxidation of NADH, a reactive reductant.  Neither 353 

elimination of PfNDH2 nor strong inhibition of the cytochrome c reductase activity of bc1 affected the observed reaction 354 

(Fig. 5), implying that the reaction does not proceed through the mtETC. Fry and Beasley apparently observed the same 355 

phenomenon when they measured apparent NADH-cytochrome c reductase activity in Plasmodium mitochondria with and 356 

without antimycin A, a general Qi site inhibitor of the bc1 complex (19).  Given the report that detergents (which form 357 

micelles) accelerate NADH oxidation (35), we speculate that it may be the presence of mitochondrial phospholipid 358 

membranes  in the mitochondrial samples that produce this effect. Cytochrome c is known to bind to phospholipids head 359 

groups (48), so mitochondrial particles could provide a surface that concentrates cytochrome c for reaction with NADH (a 360 

trimolecular reaction, requiring 2 cytochromes c to oxidize one NADH, as it is a 2-electron reductant). The non-enzymatic 361 

reaction may also be facilitated by the relatively high concentration of cytochrome c used in spectrophotometric assays 362 

(50-100 µM).  At any rate, our results demonstrate that the apparent robust NADH-cytochrome c activity that has been 363 

reported in Plasmodium mitochondrial preparations in vitro is not an indication of high NADH dehydrogenase activity in 364 

intact parasites. 365 

 366 

Figure legend 367 

Figure 1. Disruption of the type II NADH dehydrogenase of P. falciparum does not affect growth in asexual blood 368 

stages. (A) A schematic diagram depicts the genetic deletion of a large segment of PfNDH2 via CRISPR/Cas9-assisted 369 

homologous recombination. (B) A diagnostic PCR confirming the genotype of the ∆PfNDH2 parasite. Primer positions 370 

are shown in (A). In ∆PfNDH2, a 4.1 kb knockout band (Lane 1), a 2.2 kb 5’ integration band (Lane 4) and a 2.5 kb 3’ 371 

integration band (Lane 7) were detected. In WT, only a 2.5 kb band was detected (Lane 2) whereas no 5’ integration (Lane 372 

5) or 3’ integration (Lane 8) was observed. Lanes 3, 6, and 9 were negative controls with no DNA in PCR reactions. (C) A 373 
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growth curve of the ∆PfNDH2 parasite determined by SYBR green staining and flow cytometry analysis (Materials and 374 

Methods). (D) The ∆PfNDH2 parasite is morphologically healthy. Giemsa stained thin smears of WT and ∆PfNDH2 375 

cultures are shown displaying schizont and ring forms. 376 

Figure 2. Deletion of PfNDH2 does not affect sensitivity to mitochondrial electron transport chain inhibitors. 3H-377 

hypoxanthine incorporation assays were performed in the ∆PfNDH2 and WT parasites challenged with atovaquone (A), 378 

ELQ-300 (B), HDQ (C) and CK-2-68 (D). Data shown is a representative of n≥3 replicates.  379 

Figure 3. HDQ and CK-2-68 target the bc1 complex.  D10attB-yDHODH transgenic parasites were challenged with 380 

atovaquone (A), HDQ (B) and CK-2-68 (C) with and without proguanil (1 µM). Growth was measured using 3H-381 

hypoxanthine incorporation assays. With an EC50 of ~60 µM, 1 µM of proguanil had no effect on WT parasites (1).  382 

Figure 4. HDQ and CK-2-68 directly inhibit mitochondrial ubiquinol-cytochrome c reductase activity in vitro. In 383 

each measurement, the same amount of mitochondria of KO or WT (10 µl of sample) was used. Reduction of cytochrome 384 

c was followed spectrophotometrically at 550 nm (Materials and Methods). The rates of reduction in the presence of 385 

various concentrations of inhibitors were normalized to that of no drug controls (average of 4-5 replicates), resulting in 386 

relative activity (%). (A) Inhibition by HDQ. Data shown is plotted from n=3 biological replicates. (B) Inhibition by CK-387 

2-8. Data shown is plotted from n=2 biological replicates. 388 

Figure 5. NADH-linked cytochrome c reductase activity in the in vitro assay is not dependent on PfNDH2 or 389 

mtETC. In each measurement, 10 µl of mitochondrial sample was used. Rates of cytochrome reduction were measured 390 

without and with addition of bc1 inhibitors (atovaquone (62 nM), ELQ-300 (62 nM) and HDQ (3,100 nM)). Data shown is 391 

mean ± s.d. of n=3 replicates. 392 
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Figure 1. Disruption of the type II NADH dehydrogenase of P. falciparum does not affect growth  
in asexual blood stages. 
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Figure 2. Deletion of PfNDH2 does not affect sensitivity to mitochondrial electron transport chain inhibitors.  
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Figure 3. HDQ and CK-2-68 target the bc1 complex. 
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Figure 4. HDQ and CK-2-68 directly inhibit mitochondrial ubiquinol-cytochrome c reductase activity in vitro.  
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Figure 5. NADH-linked cytochrome c reductase activity in the in vitro assay is not dependent on PfNDH2  
or mtETC.  
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