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Abstract:

Genomic aberrations in somatic cells are major drivers of cancers and cancers are of high genetic
heterogeneity and most driver genes are only of moderate or small effect size. Existing
bioinformatics methods poorly model background mutations and are underpowered to identify driver
genes in typical-size samples. Here we propose a novel statistical approach, weighted iterative zero-
truncated negative-binomial regression (WITER), to detect cancer-driver genes showing an excess of
somatic mutations. This approach has a three-tier framework to improve power in small or moderate
samples by accurately modelling background mutations. Compared to alternative methods, this
approach detected more significant and cancer-consensus genes in all tested cancers. This technical
advance enables the detection of driver genes in TCGA datasets as small as 30 subjects, rescuing
genes missed by alternative tools. By introducing an advanced statistical model for accurately
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estimating the background mutation rate even in small-to-moderate samples, the proposed method is
more powerful approach for detecting cancer driver genes than current methods, helps provide a
comprehensive landscape of driver genes in cancers.

Running title: powerful cancer-driver gene detection method

Keywords: iterative zero-truncated negative-binomial regression, cancer-driver genes, somatic
mutations, passenger genes, small sample

Introduction

It is well known that genomic aberration in somatic cells makes an important contribution to the
development of cancers(1). Mutations that confer selective growth advantage to cancer cells are
known as cancer-drivers (2) (3); a gene harboring driver-mutations is defined as a cancer-driver
gene. It has been established, for example, that non-synonymous mutations in the two famous driver
genes TP53 and PIK3CA contribute to many types of cancer (4). However, cancers are known to be
highly heterogeneous(5) and many driver genes for most cancers remain to be identified. A full
landscape of driver-genes is critical for early diagnosis, identification of effective drug targets, and
precise treatments of a cancer (2).

There are generally two existing strategies to detect cancer driver genes, background mutation rate
(BMR) and ratiometric. The BMR-based methods evaluate whether a gene has more somatic
mutations than expected; examples include MutSigCV (6) and MuSiC(7). The expected number of
mutations is estimated from multiple predictors including base context, gene size and other variables
of “background” passenger genes. In particular, MutSigCV proposed using three extra variables
(DNA replication timing, transcriptional activity and chromatin state in cancer cells) to improve the
prediction of the expected background mutation rate. The ratiometric-based methods detect cancer-
driver genes according to the composition of mutation types normalized by the total number of
mutations in a gene. For instance, the ratiometric 20/20 rule simply assesses the proportion of
inactivating mutations (including synonymous mutations) and missense mutations(3). Oncodrive-
fm(8) and OncodriveFML(9) integrate mutation functional impact into the evaluation.
OncodriveCLUST considers the positional clustering of mutation patterns(10). Recently a method
20/20 plus (11) extended the ratiometric idea in the 20/20 rule and integrated 18 additional features
of positive selection to predict cancer-driver genes by a machine learning approach. It also generated
statistical p-values of the prediction scores by Monte Carlo simulations.
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Although the general principles of both strategies are simple, technical issues remain especially when
sample size is not sufficiently large. For example, a recent study (11) found that the statistical p-
values produced by existing cancer-driver gene methods did not follow uniform distribution,
implying the underfitting of background mutations. Although simulation or permutation can correct
the distribution, adequate fitting of background genes is critical for accurate discrimination of true
driver genes from noise background genes. This issue will become more severe when the sample is
too small to generate a stable model. Moreover, existing statistical tests are generally underpowered
to detect driver-genes with small or moderate effect size. This may be a reason why a supervised
approach integrating common gene features beyond collected samples was also proposed. However,
given the high heterogeneity in cancers (6), adding more common features may not work for unique
driver genes; and the trained model for known driver genes may have limited power for detecting
new driver genes. Lastly, the predicted cancer-driver genes by different tools do not generally agree
with each other(2). It is often laborious and subjectively biased to combine their results. Therefore,
more powerful methods are pressingly needed for unraveling a full spectrum of cancer-driver genes.

Here, we describe a new statistical method, weighted iterative zero-truncated negative-binomial
regression (WITER), to detect cancer-driver genes by somatic mutations at non-synonymous
variants. This approach belongs to the unsupervised category and therefore does not suffer from
training bias. The method has a unique three-tier structure to accurately fit the number of somatic
mutations in background genes. This structural advance enables it to detect more driver genes in both
small and large samples regardless of cancer types. Although it is basically a type of BMR approach,
it also adopts the ratiometric idea to use silent mutations as an explanatory variable in the regression
model. We then investigated its performance in 34 cancers. A comprehensive landscape of driver-
genes was constructed by WITER and analyzed to investigate the common and unique insights
across cancers.

Results

Overview of the statistical framework

We propose a unified statistical framework, WITER, for detecting cancer-driver genes by somatic
mutations in cancers. The main input is somatic mutations in samples from cancer patients. The
output is a table of p-values for excess of somatic non-synonymous mutations at individual genes; a
significant p-value would suggest a driver gene that has more somatic mutations because such
mutations confer selective growth advantages to cancer cells. Compared to alternative approaches, it
has a unique three-tier structure to accurately fit the number of somatic mutations in background
genes (See its diagram in Figure 1). In the first tier, it has an advanced model, iterative zero-
truncated negative-binomial distribution regression (ITER), to fit the zero-inflation and
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overdispersion of mutation counts. As shown in the following section, the model can more accurately
fit the background mutation counts compared to other widely-used models [Figure 3b and 3c]. In
addition, p-values can be straightforwardly derived by deviance residuals of the regression [Figure 2
and 3a], so that conventional time-consuming simulations are not needed for significance evaluation.
The iterative procedure reduces the distortion of the background mutation rates by the exclusion of
the driver genes in the model, so that the relative excess of mutations can be measured more
accurately. In the second tier, it can flexibly impose prior weights upon mutation counts to further
boost statistical power. The prior weights are generated by a random forest model trained by a large
dataset we curated from COSMIC(V83) [Figure S6]. The weighting scheme contributes to
identification of extra significant genes which would be missed by same framework without weights
[Figure 3b and 3c, Table S8]. In the third tier, it allows the integration of independent reference
samples from either the same or different cancers to produce a stable background model. This solves
the problem of model instability in small cancer samples. This feature enables WITER to produce
statistically valid p-values (Figure S1) and to detect multiple significant driver-genes (Table 1) in
datasets with around 30 subjects. The approach and auxiliary functions have been implemented into
a user-friendly software tool which is publicly available at http://grass.cgs.hku.hk/limx/witer.

Distributions of p-values for background mutation genes

The p-values of the proposed approach approximately followed uniform distribution. When the
overall divergence from uniform p-values was measured as the mean log fold change (MLFC) of
Tokheim et al (2016), the MLFCs of MutSigCV and OncodriveFML deviate from zero in all the
cancers substantially, suggesting a large deviation from uniform distribution (Figure 3a). Consistent
with the QQ plots, ITER and WITER had very low absolute MLFC (<0.02) in all the 11 cancers
(Figure 3a). Moreover, as shown in the QQ plots (Figure 2), the p-values produced by WITER, were
close to the uniform distribution (corresponding to null hypotheses) in all the cancers. This was also
true for the unweighted version, iterative zero-truncated negative-binomial regression (ITER).
Invalid uniform distribution of p-values is a tricky problem in almost all existing approaches (11).
We chose two alternative approaches which achieved the best performance among 7 widely-used
unsupervised tools (11)for the comparison, MusigCV (6) and OncodriveFML (9). The MutSigCV
produced deflated statistical p-values in 10 cancers except that it produced proximately uniform
distribution p-values in melanoma (MEL) (Figure 2). The OncodriveFML also produced deflated
statistical p-values in all the 11 cancers (9) (Figure 2).

Significant genes identified in the 11 cancers with relatively large mutation number

We compared the number of significant genes detected by the 4 un-supervised approaches
(MutSigCV, OncodriveFML, ITER and WITER) in the 11 cancer datasets. Instead of following the
conventional “pancancer” (all cancers) evaluation strategy (11), we made the comparison for
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individual cancers, a more challenging scenario. The significant genes are determined according to a
widely adopted cutoff in cancer-driver gene analysis, FDR<0.1(11). WITER always detected the
largest number of significant genes in the 11 cancers among the 4 approaches (Figure 3b). ITER
detected the second largest number of significant genes in 10 out of the 11 cancers. MutSigCV can
be ranked at the third place according to the number of significant genes. The OncodriveFML
detected the minimal number of significant genes in all the 11 cancers although it also integrated
function prediction score, CADD (12). Compared to MutSigCV, WITER detected at least 8 extra
significant genes in all cancers. The extra significant gene number increased to be at least 13 when
comparing to OncodriveFML. WITER detected at least 12 more significant genes than ITER in 9 out
the 11 cancers (bladder urothelial carcinoma, breast invasive carcinoma, colorectal adenocarcinoma,
uterine corpus endometrial carcinoma, kidney renal clear cell carcinoma, lung adenocarcinoma,
melanoma, ovarian carcinoma and stomach adenocarcinoma), suggesting the prior weights of
frequent mutation potential at variants have great potential to improve the statistical power. Note that
all the subjects in the testing cancer datasets were excluded from the COSMIC database to avoid
circulating issues when building the prior weights for WITER.

Cancer consensus significant genes in the 11 cancers

We further checked the significant genes in the Cancer Gene Census (CGC) list (13) detected by the
tools. Again, among the 4 methods, WITER always detected the largest number of genes in CGC list
(Figure 3c). It detected at least 10 more CGC genes for 6 cancers than ITER. Anyhow, ITER was
still the second-best method according to the number of CGC genes. It detected more CGC genes
than MutSigCV in 10 cancers while it reported more CGC genes than OncodriveFML in all the 11
cancers. The OncodriveFML reported the smallest number of CGC genes in 10 cancers. Note we did
not compare the percentage of the CGC genes in the total significant genes because the number of
total significant genes by OncodriveFML were too few. Moreover, it should be noted that significant
genes beyond CGC list are not necessarily spurious driver genes although a higher number of CGC
genes is a strong sign of higher power. Take two non-CGC genes for examples. The AJUBA gene
(p=8.1E-8 in head and neck cancer) is involved in the regulation of NOTCH/CTNNBL1 signaling and
is an important driver gene of head and neck cancer (14), (15). TLR4 (p=1.1E-4 in stomach
adenocarcinoma) is an important member of Toll-like receptor (TLR) pathway and mutations in the
gene may disrupt innate immune signaling and promote a microenvironment that favors
tumorigenesis (16) and it was associated with gastric cancer in independent samples (17).

Unique significant genes by individual approaches

We also compared the number of unique significant genes by different tool. WITER detected the
largest number of unique significant genes (FDR<0.1) in the tested cancer types, which were
insignificant and would be ignored by MutSigCV and OncodriveFML (Figure 3d). This was also true
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for the unique significant CGC genes by WITER(Figure 3e). WITER detected in total 267 unique
significant genes and 133 unique CGC genes for all 11 cancers. Each cancer had at least 8 unique
significant genes (Figure 3d). The colorectal adenocarcinoma (COAD) had the largest number of
unique significant genes by WITER, 44, among which 16 genes were CGC genes. For example,
CTNNBL is a well-known driver gene for colorectal adenocarcinoma (18). It had 11 non-
synonymous somatic mutant alleles in the colorectal adenocarcinoma samples. WITER calculated a
p-value 1.44E-10 at this gene. The p-values by MutSigCV and OncodriveFML were 0.001 and 0.51
respectively. In contrast, MutSigCV detected no unique significant genes (FDR<0.1) in 6 cancers
and <3 unique significant genes in 4 cancers. The only exception was the lung adenocarcinoma for
which MutSigCV detected 8 unique significant genes out of the 16 significant genes (FDR<O0.1).
Many of the 8 unique significant genes had either long coding region or multiple synonymous
mutations or close chromatin states. After correcting for the explanatory variables, WITER produced
an insignificant p-value. For example, FBN2 has 77 non-synonymous or splicing mutant alleles in
the lung cancer patients and MutSigCV gave a p-value 4.28E-07. However, it had a 9.1 kb coding
region, 10 synonymous mutant alleles and close chromatin state (scored 9), WITER gave an
insignificant p-value 0.25 for the excess of corrected non-synonymous or splicing mutant alleles.
Similarly, OncodriveFML also detected very few unique significant genes in each of the 11 cancers
compared to WITER. In the comparison, we ignored ITER because all significant genes by ITER
were also significant by WITER. These results suggest that the WITER has great power to detect
many potential driver genes in many cancers, which might be ignored by widely-used alternative
methods.

Moreover, we also investigated the enrichment significance of known cancer related genes in the
unique significant genes by WITER. Using the 19198 protein coding gene as the population size and
699 CGC genes as the number of success states, we performed enrichment analysis by
hypergeometric distribution test. As shown in Table S2, the unique driver genes by WITER in all the
11 cancers were significantly enriched with the CGC genes (p<5.56E-8). In addition, we also
performed a rough in-silico validation for all genes by searching literature co-mentioning the gene
symbols and the specific cancer names in titles and abstracts of papers from the NCBI PubMed
database by July 10, 2018. As it is very time-consuming to check the hit papers for all coding genes,
we drew a random gene set of the same size for each cancer and performed Fisher’s exact test. Due
to the small random sample size, it was much more conservative than the hypergeometric
distribution test. The genes with three or more hit papers were counted. In the random gene set, most
cancers had zero counts. The p-values were <0.01 in 7 cancers, showing a significant enrichment of
cancer-related genes in the unique driver genes by WITER compared to the random gene sets. Noted
that for less-studied cancers the significance tends to be less significant as well. This may be the
reason why the significance varied from cancers to cancers. Nonetheless, the two analyses
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convincingly suggested the unique significant genes by WITER were enriched with many
functionally important genes for the corresponding cancers

Rescued significant genes in small samples by an alternative tool

We investigated the scenario in which the significant genes missed by a tool in a small sample can be
rescued by another tool. We randomly drew 6 sub-samples of half size from the largest dataset,
breast invasive carcinoma dataset, and detected cancer driver-genes by the three tools, MutSigCV,
OncodriveFML and WITER. As shown in Table S8, MutSigCV detected 11 significant genes on
average in sub-samples with half of the breast invasive carcinoma sample. In the same sub-samples,
WITER rescued 4 genes on average, which were detected in the full sample by MutSigCV.
Similarly, WITER rescued 3 genes on average, which were missed in half sample but were detected
in the full sample by OncodriveFML. Using half of the breast invasive carcinoma sample, WITER
detected similar number of significant genes (FDR<0.1) as it did in the full dataset. This was larger
than that detected by MutSigCV and OncodriveFML in the full dataset. Moreover, MutSigCV and
OncodriveFML rescued less than 1 gene on average which were missed in half sample and were
detected in the full sample by WITER. This comparison shows WITER has enhanced power in small
samples to detect driver genes that would be missed by alternative methods due to the small sample
sizes.

Performance in 23 cancer datasets with relatively small samples

Another important advantage of WITER is its ability to detect cancer-driver genes in small samples
with a usage of reference samples. We applied the approach to 23 cancers of small samples. We
deliberately used two reference samples with very low and high background mutation rates to
investigate how WITER is sensitive to the reference samples. The low background mutation rate
cancer was the breast invasive carcinoma, and the high one was the melanoma. Four evaluations
were carried out. First, the usage of the reference datasets substantially improved the distribution of
p-values, compared to the analysis without reference samples. According to the QQ plots (Figure
S1), the p-value distributions of the background genes (FDR>0.1) with reference samples were very
close to the uniform distributions. In contrast, the p-values of the background genes without
reference sample were weird and did not follow the uniform distribution. Second, WITER detected
significant genes even for cancers with very small sample size (See the results in Table 1). Among
the 21 cancers with one or more significant genes (FDR<0.1), 5 cancers had less than 50 subjects,
e.g., B-cell lymphomas (n=26), small cell lung carcinoma (n=30), and cervical carcinoma (n=37).
Third, it seemed the background mutation rate had a simple influence on the number of significant
genes or statistical power. As expected, the low background mutation rate reference sample led to
more significant genes than the high one. Moreover, we noted that almost all significant genes
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according to the high background mutation rate reference sample were also significant according to
the low background-mutation rate reference sample. Therefore, the false positive findings can be
easily controlled by using a high background mutation rate reference sample in practice although this
may increase the false negatives. Anyhow, the overlapping percentage of the significant genes were
also generally high. For four cancers (acute myeloid leukemia, prostate adenocarcinoma, pancreatic
adenocarcinoma and low-grade glioma) with at least 15 significant genes have 100%, 93%, 83% and
67% overlapped significant genes based on breast invasive carcinoma and melanoma reference
samples respectively. Finally, WITER detected much more significant genes than ITER again (Table
S3). WITER detected 5 to 23 more significant genes in 9 cancers than ITER regardless of different
reference samples. These results suggest that the WITER is also powerful for datasets of small
sample and the detected significant genes are not very sensitive to the reference datasets.

It should be also noted that extra significant genes according to the low background mutation rate
reference sample are not necessarily false. For instance, MYCN was significant driver gene of
neuroblastoma based on the breast invasive carcinoma reference (p=5.06E-8) but insignificant based
on melanoma reference(p=0.0012). Actually, MYCN is a well-known driver gene of neuroblastoma
(19). Anyhow, to reduce false positive results rigorously, we used the conservative results, i.e.
significant genes according to the melanoma reference sample, for the subsequent analysis.

Analysis of explanatory variables for predicting background somatic mutations

We further investigated the contribution of the 6 explanatory variables to prediction of background
mutations in the regression models (See coefficients and p-values in Table 2). The coding region
length and number of mutant alleles at synonymous variants of a gene were the top two explanatory
variables in terms of their statistical significance. Their p-values were extremely small in all the
testing cancers. As expected, a gene having longer coding region and more synonymous variants(20)
tended to have larger number of mutant alleles at non-synonymous variants and splicing variants in
background genes, n. Interestingly, the significant p-values at both explanatory variables under the
same model implied their independent contribution although they were also correlated (Spearman
correlation~0.4-0.5 in cancers). The replication time (measured in HeLa cells) was also positively
related with n in most of cancers. This is consistent with the biological assumption that high
replication leads to more somatic mutations (21) (22). The coefficients of constraint missense Z
scores (23) were also positive in most of cancers, suggesting a gene with high de novo mutation
potential in germline cells tends to have more somatic mutations as well. There were 2 explanatory
variables, expression (averaged across 91 cell lines in the Cancer Cell Line Encylcopedia) and HiC
(measured from HiC experiments in K562 cell), having negative coefficients. This is consistent with
findings by Lawrence et al. (2013) in which genes with lower expression tended to have more
somatic mutations (22). The negative coefficient of HiC implied that a gene with more densely
packed DNA also tended to have less number of somatic mutations in cancer cells (24).

The zero-truncated negative binomial model outperforms other models
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We also compared the performance of the zero-truncated negative binomial model with three
alternative widely-used models for fitting the mutation counts. The three models are Poisson
distribution model, negative binomial distribution model, zero-truncated Poisson distribution models
respectively. It turned out the zero-truncated negative binomial model had the smallest Akaike
information criterion (AIC) values in all the 11 cancers, suggesting it is the best fitting model for the
counts of somatic mutations among the four models (Table 3). The zero-truncated Poisson
distribution was the second best model although its averaged AIC values was still 3364 larger than
that of the zero-truncated negative binomial distribution. For negative binomial distribution or
Poisson distribution, the zero-truncated versions were much better than the original versions. For the
negative binomial distribution, the averaged AIC value in 11 cancers of the zero-truncated ones was
3267 smaller than the un-truncated ones. The averaged AIC value of the zero-truncated Poisson
distribution was 819 smaller than the un-truncated Poisson distribution. This implies that it is critical
to exclude the influence of the zero-counts when constructing a regression model. A well-fitted
model for mutation counts at background genes led to more accurate residues for evaluating the
excess of mutations in a gene.

The numbers of significant genes are more related with the number of mutations than sample
size

We also investigated factors influencing the number of significant genes among the 34 cancers by
WITER, which implies factors affecting the power in real data. The number of significant genes was
highly related with the number of somatic variants. In a linear prediction model, the number of
somatic variants had a good prediction on the number of significant genes, with a coefficient of
determination R?, 0.36 (Figure S2). According to the prediction model, 57,000 somatic variants were
needed to detect 30 significant genes. Because mutation rates are different in cancers, the
corresponding sample sizes for such amount of mutations vary from cancers to cancers. Given the
ratio of somatic variant number to sample size (Table S6), over 900 samples are needed to
accumulate 57,000 variants in breast invasive carcinoma, kidney renal clear cell carcinoma, and
ovarian serous cystadenocarcinoma. In contrast, for four cancers, less than 250 samples are
sufficient, lung adenocarcinoma, melanoma, lung squamous cell carcinoma and bladder urothelial
carcinoma. Compared to the number of somatic variants, sample size had less influence on the
number of significant genes. In a linear regression model, coefficient of determination of sample size
was only 0.17 (Figure S3). These results imply that the power of WITER may be determined by both
sample size and somatic mutation rate.

The comprehensive landscape of driver-genes at 32 different cancers

WITER detected one or more significant genes in 32 cancers according to FDR<0.1. The total
number of unique genes was 247 (See details in the Supplementary Excel File 1). Seventy-six genes
occurred in two or more cancers. As expected, TP53 was the most common significant genes (in 27
cancer types), followed by PIK3CA, KRAS, FBXW?7, NRAS, CTNNB1 and BRAF, each of which is
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associated with 10 or more cancer types. Four cancers had over 40 significant genes, colon
adenocarcinoma (COAD), uterine corpus endometrial carcinoma (UCEC), melanoma (MEL) and
stomach adenocarcinoma (STAD). Most of the predicted driver genes are previously reported for the
corresponding cancers. Interestingly, multiple PCDHA genes were significant in five cancers.
Although the significance at multiple genes probably were probably caused by the highly overlapped
coding regions, it at least suggested PCDHA gene family is associated with the cancers. PCDHA
genes encode a family of cadherin-like cell surface proteins for cell-cell adhesion. There have been
no studies showing its somatic mutations contribute to tumorigenesis. However, DNA
hypermethylation on PCDHAs were detected in multiple cancers including prostate cancer(25) and
small-cell lung cancer (26). In the in-silico validation in the NCBI PubMed, 21 cancers had 70%
significant genes with hit papers (Summarized in Table S4).

Cancer clusters according to overlapped significant genes

According to multiple overlapped significant genes(Table S7), cancers were clustered into groups
(Figure 4). Consistent with a recent study(2), some cancers in a group had either similar tissue or
similar cell of origins. A group contained 4 blood cell related cancers, multiple myeloma(MM),
diffuse large B-cell lymphoma(DLBCL), chronic lymphocytic leukemia (CLL), acute myeloid
leukemia (LAML). DLBCL and LAML had a uniquely overlapped gene, EZH2, which had been
widely studied for both diseases (27), (28). In another group, two nervous system related cancers,
low grade glioma (LGG) and glioblastoma multiforme (GBM), had 7 overlapped significant genes
and formed a sub-group. The two female cancers, uterine corpus endometrial carcinoma (UCEC) and
breast invasive carcinoma (BRCA) had 14 overlapped significant genes and formed a sub-group.
Moreover, there were also multiple sub-groups which did not look so related biologically. For
example, in a group, lung squamous cell carcinoma(LUSC) and head and neck squamous cell
carcinoma(HNSC) had 9 overlapped genes and formed a sub-group. There have been multiple
studies suggesting that the two types of tumors had similar pathological features (29), (30). In
another group, ovarian serous cystadenocarcinoma (OV) and bladder urothelial carcinoma (BLCA)
had 8 overlapped genes. The prostate adenocarcinoma (PRAD) and pancreatic adenocarcinoma
(PAAD) had even 15 overlapped genes and formed a sub-group. These high overlapping patterns
imply pathogenic connection of different cancers although larger samples and more experiments are
needed to investigate the possible mechanistic link.

Genes significant only in an individual cancer

Besides the overlapped genomic signatures for clustering cancers, it is also interesting to find out the
unique significant genes of a cancer for the characterization. Among the 34 cancers, we found 23
cancers having one or more unique significant genes (See details in Table 4 and Table S5). Cancers
with more significant genes tended to have more unique significant genes, implying their high
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heterogeneity. For instance, for the 7 cancers with over 30 significant genes, each had over 10 unique
significant genes (See the cancer names in Table 4). The numbers of hit papers in the NCBI PubMed
database are summarized in Table 4 and the detailed PubMed IDs of hit papers are listed in Table S5.

Take colon adenocarcinoma for an example, it had 20 unique significant genes. Three genes
(CXCR4, TCF7L2 and GNAS) had over 10 hit papers, suggesting that they are well-studied genes
for colon cancer. For instance, there are at least 100 papers mentioning the relation of CXCR4 with
colon adenocarcinoma. CXCR4 encodes a CXC chemokine receptor specific for stromal cell-derived
factor-1. A very recent study suggested that the level of CXCR4 can determine the effects of
ALDH1AS3 on in vitro proliferation and invasion in colon cancer (31). Zheng et al suggested CXCR4
may play a key role in colorectal adenocarcinoma progression via the mediation of tumor cell
adhesion (32). However, in literature, CXCR4 was also associated with lymphoplasmacytic
lymphoma (33). However, in the 34 collected cancers, 31 cancers had totally insignificant p-values
(p>0.18) expect for multiple myeloma (p=0.0025) and lung squamous cell carcinoma (p=0.046).
These results suggest mutant CXCR4 may at least have relatively larger susceptibility to colon
cancer than to most of other cancers. The gene TCF7L2 encodes a transcription factor 7-
like2/transcription factor 4 that plays a key role in the Wnt/p-catenin signaling pathway (34) and was
reported to be associated with colon adenocarcinoma (35). Similarly, except for a suggestively
significant p-value in stomach cancer (p=8.47E-4), it had totally insignificant p-values in the other 32
cancers (p>0.42) although it was also reported to be associated with other cancers, such as breast
cancer (36). The gene, GNAS, encodes guanine nucleotide binding protein (G Protein) and alpha
stimulating activity polypeptide complex. In human protein atlas (HPA,
http://www.proteinatlas.org/ENSG00000087460-GNAS/tissue) database, this gene has been
categorized as a cancer-related gene. (See the PubMed IDs of related papers in Supplementary Table
4). In addition, 7 genes had one or several hit papers related to colon adenocarcinoma. For example,
the unique significant gene PCBP1 (p=6.17e-07) had two hit papers. One paper suggested that
PCBP1 was a molecular marker of Oxaliplatin (a standard treatment for colorectal adenocarcinoma)
resistance in colorectal adenocarcinoma and a promising target for colorectal adenocarcinoma
therapy (37). The other paper suggested that PCBP1 was responsible for stabilizing gastrin mRNA
which was highly expressed in colorectal adenocarcinoma (38). PCBP1 represses autophagy-
mediated cell survival and inhibition of tumor cell autophagy and the PCBP1 upregulation may be an
effective therapeutic strategy to colon tumor with low PCBP1 expression (39). LIFR(p=4.90e-04)
had 4 hit papers and encodes protein that belongs to the type I cytokine receptor family. One of the
studies used the meta-analysis with public cancer methylome data verified the colon cancer
specificity of LIFR promoter methylation (40). Kim et al suggested that a missense mutation of LIFR
rs3729740 may be useful as a biomarker for predicting whether metastatic colorectal
adenocarcinoma patients were sensitive to relevant target regimens(41).
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Five cancers had only one unique significant gene, chronic lymphocytic leukemia (CLL), cervical
carcinoma (CESC), multiple myeloma (MM), rhabdoid tumor (RHAB) and thyroid carcinoma
(THCA). The genes of two cancers (RHAB and CLL) had multiple hit papers. The unique significant
gene of RHAB, SMARCBJ1, had even 100 hit papers. SMARCB1 encodes part of a complex that
relieves repressive chromatin structures to allow the transcriptional machinery to access its targets
effectively. It is a known tumor suppressor gene, and its mutations have been associated with
malignant RHAB (42). After first discovered in RHAB, mutant SMARCB1was subsequently found
in multiple cancers (e.g., renal medullary carcinoma) (43). Almost all the cancers with mutant
SMARCB1 were characterized by the presence of ‘rhabdoid cells’ featuring large vesicular nuclei
and large paranuclear filamentous cytoplasmic inclusion (44). The gene FGFR1 for Astrocytoma
had 16 hit papers. FGFR1 encodes a fibroblast growth factor receptor. Studies suggested genomic
alterations in FGFR1 can account for most pathogenic alterations in low-grade neuroepithelial
tumors, including pilocytic astrocytomas (45). The unique significant gene of CLL, MYD88
(p=1.34E-09), had 40 hit papers. MYD88 encodes cytosolic adapter protein, an essential signal
transducer in the interleukin-1 and Toll-like receptor signaling pathways (46). Except for a
suggestively significant p-value in diffuse large B-cell lymphoma (DLBCL) (p=8.47E-4), it had
totally insignificant p-values in the other 32 cancers (p>0.42). In fact, a lot of studies have suggested
MY D88 as a driver gene for the two cancers (47), (48). The single unique genes of three other
cancers had no hit papers by far in PubMed and are subject to validation in the future.

Pathway analysis of driver genes among multiple cancers
We performed pathway enrichment analysis by DAVID 6.7 (https://david.ncifcrf.gov/, Figure S7)
among 8 cancers which had more than 10 significant driver genes. Two pathways, ErbB signaling

pathway and Neurotrophin/Trk signaling, were enriched by the predicted driver-genes in most
cancers. The ErbB signaling pathway was significant in all the 8 cancers. ErbB family of receptor
tyrosine kinases (RTKSs) are involved in intracellular signaling pathways to regulate diverse biologic
responses, including proliferation, differentiation, cell motility and survival (49). Several well-known
cancerous pathways, such as MAPK pathway and PI-3K pathway, are the downstream of the ErbB
receptors (50). This result suggests that ErbB signaling pathway may have a common driver role in
genesis of many tumors. The neurotrophin signaling pathway was significant in 6 cancers. The
Neurotrophin/Trk signaling is regulated by connecting a variety of intracellar signaling cascades,
which include MAPK pathway, PI-3K pathway, and PLC pathway, transmitting positive signals like
enhanced survival and growth (51). Therefore, Neurotrophin/Trk signaling may be commonly
involved in the development of multiple tumors. Another interesting pattern was that MEL
(melanoma) and STAD (stomach adenocarcinoma) had many shared pathways although they only
had 10 shared predicted driver genes. Quite a few of the shared pathways are related to immune


https://david.ncifcrf.gov/
https://doi.org/10.1101/437061

bioRxiv preprint doi: https://doi.org/10.1101/437061; this version posted October 8, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

response, such as Chemokine signaling pathway, Fc epsilon RI signaling pathway, and Natural killer
cell mediated cytotoxicity (52). Besides, another shared pathway, focal adhesive, plays essential
roles in important biological processed including cell motility, proliferation, differentiation (53). The
shared pathways provide interesting clues to common pathogenesis of cancers, which are subject to
be investigated by more experiments.

Discussion

Accurately modeling counts of somatic mutations at background genes in small samples has long
been a fundamental technical challenge in genomic characterization of cancer-driver genes (2, 11).
The proposed approach, WITER, has four unique advantages to address this issue. First, it has an
advanced model, zero-truncated negative binomial regression, to fit the number of somatic mutations
at background genes. In small samples, one often sees an inflation of zero mutation genes and
overdispersion of mutation counts. Particularly, the inflated zero values make it difficult to fit the
distribution of genomic counts by conventional distributions. The zero-truncated negative binomial
distribution subtly circumvents both the zero inflation and the overdispersion issues. This is also the
reason why zero-truncated negative binomial model always achieved the minimal AIC among four
alternative models. Moreover, the deviance residuals in the regression model lead to statistically
valid p values for rapid analysis. This solves the common problem of alternative methods that time-
consuming simulation or permutation is needed to obtain valid p-values (Figure 3b and c) for
hypothesis tests. Secondly, the iteration of the regression diminishes the influence of driver genes on
the background mutation models. The progressive exclusion of likely driver genes results in a
“purer” background mutation model, in the contribution of somatic mutations from driver genes will
become less prominent. Third, the method also has an advantage of using an independent sample as
reference to boost statistical power. When the sample size is small, there will be limited number of
mutations and the resulting model for background genes will be unstable. This may be a common
problem of existing cancer-driver gene tests. The usage of reference sample solves the problem of
small samples. More importantly, we found the number of significant genes detected by WITER was
generally not sensitive to the reference samples in most cancers (Table 1). Finally, it can impose
prior weights to treat potential driver mutations and passenger mutations differently. Due to the
iterative design, the resulting model will be fitted mainly by the passenger mutations.

The weighting scheme contributed much to the finding of extra significant genes. In the real data
analysis of 34 cancers, the weighted version (WITER) always detected more significant genes and
cancer-consensus genes than the unweighted version (ITER) and two other widely-used methods
(MutSigCV and OncodriveFML). Note OncodriveFML also integrated functional impact scores
(e.g., CADD). We also have demonstrated the WITER and ITER had similar and valid p-value
distributions (Figure 3a), implying the imposed weights do not statistically invalidate the p-values. In
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the present study, we simply used the predicted highly frequent (n>15) mutation potential in
COSMIC database as prior weights with the assumption that highly frequent somatic mutations in
cancer cells are more likely to be driver-mutations. Although it is hard to say the assumption works
for every somatic mutation, the prior weights substantially enhanced the power in all cancers (Figure
3b and c). Theoretically, this property should be applicable to other types of prior weights. The more
accurate weights in terms of the probability of being a cancer driver-mutation, the more improved
power WITER will have.

We compared the proposed method with two widely-used and well-performed approaches(11), both
of which belong to the unsupervised category. Another category of methods is the supervised
approaches for detecting cancer driver genes. According to Tokheim et al (2016)(11), the supervised
method 20/20plus outperformed the unsupervised methods (including MutSigCV and
OncodriveFML) in terms of p-value distributions and the number of significant genes. However, a
supervised strategy has learning bias toward the training samples in nature(54). If the training sample
is not representative of all sample, the trained model will have low power for new samples. This
would be particularly true for cancers because of their high genetic heterogeneity(5). Second, the
20/20plus also used many common genomic features of a gene (e.g., evolutionary conservation,
predicted functional impact of variants, and gene interaction network connectivity) in the prediction
(11). Although the usage of common genomic features will add information to prioritize common
cancer-driver genes, it also runs the risk of diluting the information in local sample for identifying
unique cancer driver genes, which would be important for a precision diagnosis and treatment of the
tested cancers. Finally, the 20/20plus resorted time-consuming permutation procedure to generate p-
values for statistical test. In contrast, the WITER and ITER are much faster than 20/20plus because it
calculates p-values directly. Nevertheless, we also made additional comparisons between WITER
and 20/20plus approach in the 11 cancers. In 4 cancer datasets, the p-value distribution of
background ground genes produced by WITER were a little bit closer to uniform distribution than
that by 20/20plus. (See QQ plots in Figure S4). WITER also detected more significant and cancer-
consensus genes in 6 out of the 11 cancers (See details in Figure S5) and rescued more missed genes
by other tools(See details in Table S8). These results suggest WITER may have slightly better
performance than 20/20plus generally.

Applying the powerful approach, WITER, we generated a landscape of driver genes in 32 cancers.
Although it would be more informative if samples were larger, the landscape has already showed
some common and unique patterns of cancers. According to the overlapped significant genes, we
saw many cancer subgroups, say UCEC and BRCA. Although the underlying mechanism of
common driver genes between the different cancers remains elusive, highly overlapped genes in
these subgroups unlikely occur by chance. Identifying the common causes of a subgroup cancers
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may help find the pathogenic and metastatic relationship of the cancers and facilitate development of
common treatments. On the other hand, the unique significant genes in the landscape have potential
to characterize individual cancers. There are 24 cancers with one or more unique significant genes.
Although some significant genes of a cancer may become no longer unique after sample size get
increased, it may at least imply a relatively high susceptibility of the gene in a reported cancer, say
SMARCB1 for rhabdoid tumor. Clearly, some of these unique significant genes will be very helpful
for characterizing the tumor types, say MYD88 for lymphoma (55), which is important for precision
diagnosis and treatment of the tumors.

Methods and Materials

The unified statistical framework

The unified statistical framework has a three-tier structure to examine driver genes by using somatic
mutations in cancer cells (See the diagram in Figure 1). The first tier is an iterative zero-truncated
negative-binomial regression which estimates expected non-synonymous and splicing mutation
counts of a gene under background mutation model. The second tier is a weighting scheme to
generate and integrate prior weights for prioritizing variants of high somatic mutation potential in
cancer samples. The third tier is a schedule of adopting independent reference samples to stabilize
the regression model in small samples. These methods work from different angles to improve the
model of background mutations in passenger genes for a more powerful evaluation of driver genes.

Tier I: The iterative zero-truncated negative-binomial regression

We proposed an approach, ITER, to estimate somatic mutation counts of each gene on the genome.
The difference between the observed mutation counts and the estimated counts of a gene measures
the excess of somatic mutations at a gene in a cancer. The mutation types of interest are non-
synonymous mutations and splicing mutations, which assumes a gene with significant excess of
these types of mutations may confer selective growth advantage in cancer as a driver gene(6). Denote
the mutant allele counts at a non-synonymous or a splicing variant j in a background gene i as ¢;
and the total alleles of m;variants in this gene is, yi. We assume yi follows a negative binomial (NB)

distribution(56):
Vi = Z;n:l ¢;j ~NB(u;, 6),

where y; is the expected number of mutations and 6 is a dispersion parameter. The probability

F(x+6)  ufe®

mass function (PMF) is f(x|u;, 0) = F@)x 8y

where T'( ) is the gamma function and

x=0,1,2, ....
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As somatic mutation is a rare event, many genes have no somatic mutations in a sample of typical
size. While the negative binomial model includes a probability mass at x=0, this is often much less
than the number of genes with no somatic mutations in real data. This inflation of zeros makes it
very difficult to fit the negative binomial distribution to the counts of somatic mutations. Therefore,
we proposed to use a zero-truncated negative binomial (TNB) distribution to model the mutant allele
counts of background gene i. The PMF of TNB is:

_ f(x|Hi'9)
9014 0) = gy

x=1,2,-- .

Based on the TNB, we constructed a generalized linear regression model to estimate mutant allele of
non-synonymous or splicing variants in a gene i by 6 covariables:

n =log(u;) = Bo + B1 X [x1, number of mutant alleles at synonymous variants]

+B, X [x,,length of unique coding region]

+B5 X [x3, constraint score for de novo mutation potential]

+B4 X [x4, expression in cell lines in the Cancer Cell Line Encylcopedia]

+Bs X [xs, DNA replication timing in HeLa cells]

+f¢ X [x¢,long — range chromatin interactions by HiC in K562 cell],

where log(u;) is the link function and the B,, -, B are the coefficients.

The number of mutant alleles at synonymous variants was counted in the local samples. The length
of unique coding region was calculated from gene model defined by a reference gene model
database, RefGene. The gene's constraint scores were from Samocha et al (2014) (23). The last
three covariates were adopted from MutSigCV (6). The expression values were averaged expression
across 91 cell lines in the Cancer Cell Line Encylcopedia (CCLE). The replication time of a gene
was measured in HeLa cells, ranging from 100 (very early) to 1000 (very late). The chromatin state
of a gene was measured from HiC experiments in K562 cells, ranging approximately from -50 (very
closed) to +50 (very open). Because some covariables had missing values, a widely-used
nonparametric missing value imputation method based on Random Forest, missForest, in a R
package was used to impute missing values. This model is also open for other covariables as long as
they can improve the prediction accuracy.

The parameters can be estimated by maximum likelihood with a quasi-Newton method. In our study,
we called the maximum likelihood method in a R package countreg (https://r-forge.r-

project.org/R/?group_id=522) to estimate the coefficients. The dispersion parameter 6 is jointly

estimated with the regression coefficients, B,,---,Bs. The model is fitted only for genes with non-
zero counts.
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With the established model, the logarithm of the expected mutation counts, log(4;), at non-
synonymous or splicing variants in a gene i can be calculated by:

log () = Bo + Prxin + Boxiz + BaXiz + Baxia + Bsxis + Boxie
where f,, -, B are the fitted coefficients.

PN
Given the fitted parameters, the probability of zero mutation gene i is: p; o = (@fﬁ-) :

Under zero-truncated model, the raw residual at gene i is:

B

EYiT 1-Dio’

The deviance residual of the model at gene i is:

e0 = sign(r) + |2 = [10vlw, 6) — U1 D)
where sign(x) is the standard sign function, ll(u, 8) is the natural logarithm of the likelihood
function of the zero-truncated negative binomial distribution,
U(yilu, 6) = In[g(y;|u, 0)].
and ;] is the estimated mean given the observed count y; and estimated 8 of a saturated model,
obtained by solving the following equation:

)= ™

l -_ o~
9

1- (§+u2‘

)'é
The deviance residuals are further standardized by the estimated mean /i, and standard deviation
6, of the deviance residuals,

i = Gl
Oe¢
In real data analysis [Figure 2, 3a and S1], we demonstrated the standard normal distribution can be
used to approximate the corresponding p-values of the standardized deviance residual é;:
pi =1—P(&),

where @(x) is the cumulative distribution function of the standard normal distribution.

The assumption is that most majority of genes are background passenger genes. So, the ITER models
the expected mutant alleles at somatic non-synonymous or splicing variants under null hypothesis. A
large é; means the observed number of somatic mutations is much larger than the expected number

of mutations from the null hypothesis.

In order to reduce distortion of driver genes in the null-hypothesis regression model, we proposed to
perform the regression under an iterative procedure:
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Step 1: perform ITER to calculate p-vales for all genes.

Step 2: exclude significant genes by a cutoff corresponding to false discovery rate (FDR) <0.1.
Step 3: perform ITER to calculate p-vales for the retained genes.

Step 4: repeat Step 2 and 3 until there is no extra significant genes according to FDR<0.1.

The fitted ITER model in the last iteration is closest to the null hypothesis model and is then used to
re-calculate deviance residuals and p-values of all genes (including the ones excluded during
iteration).

Tier 11: The weighted iterative zero-truncated negative-binomial regression
We further extend ITER to a WITER, which integrates prior weights at variants to boost power.
Assume a variant j of gene i has a score, s;; € [0,1], implying its cancer driver potential. We bin

s;; asan integer score, wi,, by the ceiling function of s; ;/0.1, i.e., w;; = [si,j/O.l]. The integer

score is then used as prior weights for the variant. The ITER is a special case of WITER when
w; ; = 1 for all variants. The weighted mutation allele count is:

N m;
Vi = Zj:l Cij *Wij.

We now assume the weighted counts y; follow a negative binomial (NB) distribution:
Vi~NB(11;, ),

where g; is the expected weighted counts of mutations and & is a dispersion parameter of the NB

distribution. After replacement of original counts (yi) with weighted counts (y;), the same iterative

zero-truncated negative-binomial regression procedure is carried out to test whether a gene has

excess of weighted mutant alleles at non-synonymous or splicing variants.

In the present study, we built a model to predict high-frequency cancer driver potential to use as prior
weights, in the form of a random forest (ensemble of 500 decision trees) trained by a large cancer
somatic mutation database, COSMIC (V83). To avoid circular bias, all subjects (n=7,916) in our
collected testing samples of the 34 cancers were excluded from COSMIC database. We collected
4,320 somatic mutation variants occurring over 15 times in primary cancer tissues to constitute a
positive variant set in COSMIC(V83). A negative control variant set containing 258,846 somatic
mutation variants was randomly sampled from the COSMIC as well. Each of the control variant
occurred only once in primary cancer tissues. The predictors at each variant include 19 deleterious or
conservation scores from the database doNSFP v3.5 (57), (e.g., MutationTaster2 (58) and FATHMM
(59), see the names of all tools in Supplementary Figure S6). The area under the receiver operating
characteristic curve of the random forest model was 79%, which was much better than a multivariate
logistic regression model and individual predictors (Figure S6). The random forest prediction scores,
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s, ranged from O to 1. For variants without prediction scores due to missing values, the average score
in the gene was used.

Tier 111: ITER or WITER with reference samples in analysis for small cancer samples

When the number of somatic variants is small (say <28,000), it is difficult to build a stable regression

model. However, note that the key idea of ITER and WITER is to build a prediction model for

background passenger genes. When the mutation rates of passenger genes of two cancers are similar,

it may be workable to integrate background genes of one cancer for the other cancer. We proposed a

reference sample strategy for building a stable ITER or WITER model in small sample dataset. This

is carried out into two stages.

® At the first stage, the above ITER or WITER is used to produce p-values for excess of somatic
mutations at genes in a reference sample which have sufficient number of variants. Genes with
p-values less than a very loose cutoff, say FDR 0.8, are excluded.

® At the second stage, the somatic mutations of retained genes are integrated with the local small
sample and input into ITER or WITER to build a new regression model. The excess of somatic
mutations and corresponding p-values at genes are calculated based on the new model.

Performance comparison with alternative tools

There have been multiple tools for detecting cancer-driver genes(2). According to an evaluation
study(11), 2 tools (MutSigCV(6) and OncodriveFML(9)) and 1 tool (20/20plus(11)) had relatively
better performance were chosen for comparisons in the present study. We compared their p-value
distributions and number of significant genes with ITER and WITER. The MutSigCV was developed
based on the background mutation rate while the OncodriveFML and 20/20+ were developed based
on the ratio-metric. According to another classification, MutSigCV and OncodriveFML used an
unsupervised strategy to predict cancer driver genes while 20/20plus used a supervised strategy. So,
the unsupervised methods were chosen as the main targets for the performance comparison.
MutSigCV is a powerful method for detecting genes mutated more often than expected by chance. It
used a local regression model to estimate the expected mutant alleles by multiple genomic features of
a gene in cancer cells including its expression level, replication time and 3D chromatin interaction
capture (HiC). The online MutsigCV version (1.2) was used through the Broad website
(http://genepattern.broadinstitute.org/gp/pages/index.jsf?Isid=MutSigCV). The recommended exome

coverage file
(https://genepattern.broadinstitute.org/gp/data/xchip/gpprod/shared data/example files/MutSigCV 1

.3lexome_full192.coverage.txt) and gene covariates file

(https://genepattern.broadinstitute.org/gp/data//xchip/gpprod/shared data/example files/MutSigCV

1.3/gene.covariates.txt) were used. OncodriveFML is a method designed to estimate the accumulated

functional impact bias of tumor somatic mutations in both coding and non-coding genomic regions,
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based on a simulation process. It used CADD scores to predict mutational impacts. The results were
produced according to coding DNA sequence (CDS) regions. The genome reference and CDS files
were downloaded from the website (https://bitbucket.org/bbglab/oncodrivefml) as the authors
recommended. The default parameters of OncodriveFML were used to produce the results. The

20/20 plus is a machine-learning-based method integrating multiple features to predict driver genes,
including sample mutational clustering, evolutionary conservation, predicted functional impact of
variants, mutation consequence types, gene interaction network connectivity, etc. It used computer
simulation to generate p-values for statistical significance. The 20/20plus v1.1.3 was downloaded
and installed according to the website tutorial (http://2020plus.readthedocs.io/en/latest/index.html).

The necessary files were also collected as the authors suggested
(http://probabilistic2020.readthedocs.io/en/latest/tutorial.ntml#gene-bed-file and
http://probabilistic2020.readthedocs.io/en/latest/tutorial.html#pre-computed-scores-optional). The
data were analyzed by a pipeline to predict the cancer drivers under the default parameters. The

20/20 plus took 1.5 hours on average to analyze a dataset on a computer with 12 CPU (1.70GHz)
cores and 64G RAM. The number of simulations was 10000.

Evaluation metrics in the performance comparison

We adopted four evaluation metrics for performance comparison, number of significant genes
predicted, overlap with Cancer Gene Census (CGC) (13), observed vs. theoretical p values, and
unique significant genes by a tool. The former 3 were also major metrics in an evaluation framework
of cancer driver gene prediction method(11). The CGC dataset contained 699 manually curated
cancer genes by Dec. 16, 2017. The departure of p-values from uniform distribution was measured
by the mean absolute log2 fold change (MLFC) (11). The widely-used cutoff, Benjamini and
Hochberg FDR 0.1, was used to report significant genes. A valid statistical test should lead to a
MLFC close to zero in background (or passage) gene. We also used the distribution of Quantile-
Quantile (QQ) plot to examine the distribution of p-values at the tail of small p-values.

Dataset of somatic mutations

We partitioned a curated full somatic mutation dataset by Tokheima and colleagues (11) into 34 sub-
datasets according to the cancer types (See Table S6). Eleven sub-datasets contain 2,800 or more
variants and were called relatively larger cancer dataset throughout the paper. Their sample sizes
ranged from 142 to 1093. The ratios of variant number to sample size in the 11 cancers ranged from
50 to 327. The 23 other cancers with less number of variants are called relatively smaller cancer sets.
The names, variant number and sample sizes of all cancers can be seen in Table S6.

In silico validation by PubMed search
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We used PubMed search function to coarsely validate the relation between significant genes and a
specific cancer. The underlying assumption is that the papers co-mentioning the gene and the cancer
name in the title or abstract are likely to implicate the relatedness between the gene and the cancer.
The more hit papers, the more likely the gene is related to the cancer. This is a quick in-silico
validation although it may be rough. We employed the web application programming interfaces
(APIs) of PubMed to execute the search. The search link was,
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term="DiseaseNames(inlcudin
g homonymies)”[tiab]%29+AND+“GeneSymbol (including RefSeq mRNA IDs)” [tiab]. The search
responsed PubMed ID and relevant data of the papers, if available, in extensible markup language
(XML).

Tool availability
The statistical framework has been implemented into a Java standalone application and is available at
http://grass.cgs.hku.hk/limx/witer/.
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Figure legends

Figure 1: The diagram of the statistical framework for detecting cancer-driver genes

This framework includes three tiers denoted by the dashed rectangles. The first tier is an iterative
zero-truncated negative-binomial regression (ITER). The second tier is a weighted iterative zero-
truncated negative-binomial regression (WITER). The third tier is the ITER or WITER integrating
reference samples. Tier 1 is part of tier 2. Tiers 1 and 2 are also part of tier 3. The unique
components of each tier are marked by different colors. The major inputs are somatic mutations at
non-synonymous, splicing and synonymous variants of different cancer patients. The outputs are p-
values for excess of somatic mutations of individual gene in the cancer samples.

Figure 2: QQ plot of background gene p-values produced by 4 methods in 11 cancers

The p-values less than a cutoff according to FDR 0.1 were excluded. Among the 34 collected
cancers, 11 cancers have 25,000 variants with somatic mutations in the data sets and were used for
the comparison.

Figure 3: Performance comparison of different methods for detecting cancer driver mutation
in 11 cancers

a: The MLFC of 4 methods; b: the number of significant genes; c: cancer consensus significant
genes; d: the number of unique significant genes; e: the number of unique significant genes
overlapped with the cancer consensus gene set.

The p-values less than a cutoff according to FDR 0.1 were excluded. Cancer name labels: BLCA:
Bladder Urothelial Carcinoma; BRCA: Breast invasive carcinoma; COAD: Colon adenocarcinoma;
UCEC: Uterine corpus endometrial carcinoma; HNSC: Head and Neck Squamous Cell Carcinoma;
KIRC: Kidney renal clear cell carcinoma; LUAD: Lung Adenocarcinoma; LUSC: Lung Squamous
Cell Carcinoma; MEL: Melanoma; OV: Ovarian serous cystadenocarcinoma; STAD: Stomach
Adenocarcinoma.

Figure 4. Circos plot displays 247 significant genes in 32 cancers

Notes: The innermost ring denotes dendrogram of genes. The next ring contains significant genes
(marked in red) and cancer clusters. It is followed by a ring of counts cancers in which the genes are
significant. The outmost ring contains gene symbols. The bashed rectangles denote the main clusters
of the cancers according to the overlapped genes. ALL: Acute lymphoblastic leukemia, AT:
Astrocytoma, BLCA: Bladder Urothelial Carcinoma, BRCA: Breast invasive carcinoma, CARC:
Carcinoid Cancer, CESC: Cervical Carcinoma, CLL: Chronic lymphocytic leukemia, COAD: Colon
adenocarcinoma, DLBCL.: Diffuse large B-cell lymphoma, ESCA: Esophageal carcinoma, GBM:
Glioblastoma Multiforme, HNSC: Head and Neck Squamous Cell Carcinoma, KICH: Kidney
chromophobe carcinoma, KIRC: Kidney renal clear cell carcinoma, KIRP: Kidney Papillary Cell
Carcinoma, LAML.: Acute myeloid leukemia, LB: B-cell lymphomas, LGG: Low Grade Glioma,
LIHC: Liver Hepatocellular carcinoma, LUAD: Lung Adenocarcinoma, LUSC: Lung Squamous Cell
Carcinoma, LUSE: Small cell lung carcinoma, MED: Medulloblastoma, MEL: Melanoma, MM:
Multiple myeloma, NB: Neuroblastoma, OV: Ovarian serous cystadenocarcinoma, PAAD:
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Pancreatic Adenocarcinoma, PRAD: Prostate Adenocarcinoma, RHAB: Rhabdoid tumor, STAD:
Stomach Adenocarcinoma, STS: Soft Tissue Sarcoma, THCA: Thyroid Carcinoma, UCEC: Uterine
corpus endometrial carcinoma
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Tables:

Table 1 Significant genes by WITER in 23 cancers with small samples

Cancer Sample Size Sig. Genes with Sig. Genes with Overlapped
Melanoma Ref. Breast invasive Genes
carcinoma Ref
Prostate Adenocarcinoma 420 25 27 25
Glioblastoma Multiforme 365 10 13 9
Neuroblastoma 351 2 3 2
Medulloblastoma 331 8 8 7
Thyroid Carcinoma 325 8 10 8
Pancreatic Adenocarcinoma 233 21 23 19
Low Grade Glioma 227 10 15 10
Chronic lymphocytic 223
leukemia 5 8 S
Multiple myeloma 205 7 11 7
Acute myeloid leukemia 196 17 17 17

Esophageal carcinoma 160 6 7 6
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Liver Hepatocellular 150

. 2 2 2
Carcinoma
Kidney Papillary Cell 111

. 2 4 2
Carcinoma
Kidney chromophobe 65 1 1 1
carcinoma
Diffuse large B-cell 56 7 14 7
lymphoma
Acute Iymphoblastlc 55 0 0 0
leukemia
Carcinoid Cancer 54 1 2 1
Astrocytoma 42 1 1 1
Cervical Carcinoma 37 3 5 2
Rhabdoid tumor 32 1 1 1
Small cell lung carcinoma 30 1 1 1
B-cell lymphomas 26 1 3 1
Soft Tissue Sarcoma 15 0] 0 0

Note: Sig. Genes: Significant genes according to their p-values (FDR<0.1). Ref.: reference sample.

Table 2. The significance level of covariates in 11 cancer datasets

#Minor Coding Expression Replication HiC Constrain
alleles at Length Time t Score
synonymous
variants
Bladder Urothelial 0.072(1.40E-  0.245(2.41E- -0.05(1.56E-  1.61E-07(9.98E- -2.46E- 0.026(1.39E
Carcinoma 09) 298) 03) 01) 03(5.74E-05) -05)
Breast invasive 0.071(2.67E-  0.244(0) -0.078(3.27E-  2.05E-04(2.71E-  -1.56E- 0.025(1.25E
carcinoma 23) 12) 04) 03(4.02E-04)  -08)
Colon 0.176(6.46E-  0.185(5.91E- -0.12(5.36E-  4.67E-04(1.05E- -2.62E- 0.052(1.50E
adenocarcinoma 56) 180) 14) 08) 03(4.26E-05)  -16)
Uterine corpus 0.106(5.02E-  0.211(0) -0.11(3.48E-  8.59E-05(2.22E-  6.63E- 0.054(2.17E
endometrial 30) 15) 01) 07(9.99E-01) -24)
carcinoma
Head and Neck 0.104(2.87E- 0.23(0) -0.109(6.16E-  4.84E-04(3.50E-  -2.83E- 0.029(4.95E
Squamous Cell 69) 25) 19) 03(2.74E-11)  -11)
Carcinoma
Kidney renal clear cell  0.088(2.13E-  0.214(1.53E-  -0.09(8.64E-  2.76E-05(7.41E-  6.60E- 0.02(1.27E-
carcinoma 09) 252) 08) 01) 05(9.21E-01) 03)
Lung 0.135(0) 0.205(0) -0.092(1.38E-  6.26E-04(5.72E-  -3.90E- =
Adenocarcinoma 25) 48) 03(6.46E-29) 0.003(4.43E
-01)
Lung Squamous Cell 0.149(5.55E-  0.209(0) -0.106(4.10E-  6.12E-04(4.72E-  -4.15E- -
Carcinoma 116) 21) 27) 03(4.25E-20) 0.007(1.57E
-01)
Melanoma 0.139(0) 0.179(1.99E-  -0.067(1.12E- 4.76E-04(2.83E- -2.91E- -
254) 10) 21) 03(1.51E-12)  0.028(3.76E
-10)
Ovarian serous 0.121(2.16E- 0.213(1.84E-  -0.089(6.49E-  3.13E-04(1.96E-  -7.26E- 0.026(3.76E
cystadenocarcinoma 16) 221) 08) 04) 04(2.68E-01)  -05)
Stomach 0.142(4.97E-  0.215(1.25E-  -0.128(3.02E-  4.97E-04(1.05E-  -3.29E- 0.036(6.19E
Adenocarcinoma 68) 294) 23) 13) 03(2.71E-10)  -12)

Note: The coefficients are produced by WITER using R package “countreg”.The values in the
brackets are p-values for the significance of the coefficients calculated by Wald test.

Table 3: Akaike information criterion (AIC) of the various regression models

Poisson Zt- Poisson Negative Binomial  Zt-Negative

Binomial
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Bladder Urothelial Carcinoma  32574.08 30840.35 33492.05 29827.37
Breast invasive carcinoma 48124.84 47794.76 47552.87 4454485
Colon adenocarcinoma 29239.13 27224.3 29842.38 26295.96
Uterine corpus endometrial 35991.2 34559.58 36589.3 32903.45
carcinoma

Head and Neck Squamous Cell ~ 50038.23 49927.61 49332.66 46188.44
Carcinoma

Kidney renal clear cell 27669.52 25839.32 29178.44 25416.79
carcinoma

Lung Adenocarcinoma 76294.46 77151.63 67903.28 65669.84
Lung Squamous Cell 44860.29 44692.98 45806.77 42342.03
Carcinoma

Melanoma 67107.65 68103.84 60022.15 58037.14
Ovarian serous 28326.67 26517.45 29772.79 25979.07

cystadenocarcinoma

Stomach Adenocarcinoma 37883.63 36445.78 38534.62 34881.70
Note: The glm() function in R was used to fit the generalized linear model (GLM) of Poisson distribution. The
glm.nb() function in the R package of MASS was used to fit the GLM of Negative Binomial distribution. The other

two models were fitted by the R package of countreg.

Table 4, Genes significant only in an individual cancer

Cancer Total auni. Genes

KIRC 34 23 BAP1[9.49-28(56)], KDM5C[3.86e-15(13)], SETD2[6.89e-14(43)], PABPCL1[6.48¢-13(0)],
ALKBHS8[1.18e-08(0)], PRSS3[1.47e-08(0)], MAP2K3[1.26e-07(0)], PABPC3[3.79¢-07(0)],
ZC3HC1[6.16-07(0)], SLC11A2[1.36e-06(0)], NF2[4.35e-06(3)], COBL[5.70e-06(0)],
MAP4K5[1.48e-05(0)], SLFN12L[2.13e-05(0)], TCF12[3.88¢-05(0)], MTOR[4.32e-05(65)],
NLRP7[4.52e-05(0)], PIGQ[7.30e-05(0)], IST1[1.14e-04(0)], HK1[2.66e-04(0)], HLA-DQB1[3.20e-
04(0)], ZNF800[3.47€-04(0)], FAM200A[3.57e-04(0)]

COAD 57 20  GNAS[1.23e-07(11)], OPRM1[1.95e-07(0)], TCF7L2[5.64e-07(65)], PCBP1[7.12e-07(2)],
AMER1[1.52e-06(5)], KIAA1804[6.64e-06(2)], MLK4[9.89¢-06(1)], RGMB[2.30e-05(2)],
ZNF560[8.45e-05(1)], RIMS2[1.36e-04(0)], GRIK3[1.77e-04(0)], NGB[2.30e-04(1)],
ACVR1BI[3.01e-04(1)], ZC3H13[3.12e-04(1)], LIFR[4.14e-04(4)], STIM2[4.77e-04(3)],
CXCR4[5.21e-04(100)], ATG2A[5.78e-04(0)], ACKR2[5.86€-04(0)], KLC4[5.96e-04(0)]

STAD 45 18  PTH2[8.78e-15(0)], ORAC3[3.63e-08(0)], ZNF721[7.39e-08(0)], ADRALA[3.69e-07(0)],
MAP2K7[4.33e-07(0)], TTK[4.89¢-07(0)], PRNP[2.85¢-06(0)], BNC2[5.56e-06(0)],
SLC35G3[7.86e-05(0)], HLA-B[8.88¢-05(0)], TLRA[1.15e-04(4)], BEST3[1.36e-04(0)],
SLITRK6[1.62e-04(0)], SLCO1B3[1.63e-04(0)], STAT3[1.75¢-04(6)], AQP2[2.61e-04(0)],
TCEALS6[2.80e-04(0)], ZC3H4[3.03e-04(0)]

MEL 41 17 PPP6C[2.10e-21(10)], MAP2K1[3.01e-16(14)], STK19[1.56e-15(5)], GNA11[1.52e-10(100)],
PDE1A[8.29e-07(1)], COL21A1[2.35e-06(1)], TCP10L2[8.27-06(0)], OR4M2[1.51e-05(0)],
DSG3[2.32e-05(1)], ALCF[3.67e-05(0)], SELP[3.72¢-05(1)], TCHHL1[4.08e-05(0)], CLIP1[9.97¢-
05(0)], PRDM7[1.54e-04(0)], GUCA1C[1.71e-04(0)], MUC13[1.81e-04(0)], PYHIN1[2.87e-04(1)]

BLCA 35 16 CDKNI1A[1.11e-12(2)], KDM6A[3.91e-08(3)], RARG[8.89e-08(0)], PSG1[1.63e-07(0)],
ZNF624[1.65e-07(0)], ERCC2[9.69e-07(3)], CSPG5[3.91e-06(0)], STK39[1.916-05(0)],
RXRA[2.17e-05(1)], TXNIP[5.80e-05(0)], PCDHGA7[9.39e-05(0)], KLF5[1.00e-04(1)],
UGT1A9[1.08e-04(0)], ZFP37[1.42e-04(0)], TAS1R3[2.09e-04(0)], ZNF513[2.80e-04(0)]

UCEC 42 16  MYCN[6.07e-11(3)], ESR1[5.10e-09(35)], GIGYF2[8.62e-09(0)], ARID5B[2.15¢-08(2)],
CTNND1[1.86€-06(0)], CCND1[7.15e-06(20)], METTL8[1.05e-05(0)], FOXA2[3.27€-05(6)],
MY 010[4.00e-05(1)], DICER1[7.58e-05(7)], SLC6A2[8.32¢-05(1)], BCAN[1.16€-04(0)],
LZTR1[1.24e-04(0)], HEPH[1.356-04(0)], INPP4A[1.79e-04(0)], SGK1[3.74e-04(2)]

BRCA 33 14 GATA3[5.08e-41(100)], MAP3K1[7.40e-23(78)], CBFB[7.99e-13(7)], MAP2K4[2.53¢-10(16)],
FCRL5[1.95e-06(0)], TBX3[3.17¢-06(32)], KLFA4[1.07e-05(87)], FOXAL[1.09e-05(100)],
TPRX1[2.41e-05(0)], ZFP36L1[5.67e-05(2)], FAM47C[1.11e-04(0)], GLA[1.40e-04(35)],
HIST1H3B[1.41e-04(0)], NCOR1[2.17e-04(22)]

HNSC 24 9  AJUBA[8.10e-08(4)], NOTCH1[2.95¢-07(41)], EPHA2[6.94e-07(4)], ZNF750[4.76e-06(1)],
NSD1[3.03e-05(4)], PEG3[5.65¢-05(0)], CD248[5.87e-05(0)], ADCY8[1.52e-04(0)], FCRL4[1.68e-
04(0)]

LAML 17 7 FLT3[5.79e-61(100)], SRSF2[1.30e-12(45)], NPM1[1.77e-12(100)], WT1[1.14e-09(100)],

TET2[1.32e-06(100)], ROCK2[1.39e-05(0)], CEBPA[1.60e-05(100)]
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ov 17 5 BRCAL[3.356-07(100)], CDK12[7.56e-06(10)], ZBTB18[2.41e-05(0)], ADGRE3[5.11e-05(0)],
HLA-G[1.39e-04(14)]

LUAD 29 4 STK11[1.35e-14(88)], KCNBL[7.226-05(0)], HGF[8.67e-05(100)], TARS2[1.466-04(0)]

DLBCL 7 3 CD79B[5.33e-10(42)], GNA13[2.74e-05(13)], MEF2B[4.51e-05(10)]

LGG 10 3 ATRX[1.51e-10(11)], FUBP1[3.39-06(2)], CIC[4.10e-05(1)]

PAAD 21 3 CHRDI[1.20e-06(0)], CDC27[4.28¢-05(1)], TGFBR2[1.44e-04(15)]

LUSC 13 2 PDYN[L.78e-05(0)], CYP11B1[3.67e-05(1)]

MED 8 2 SMOJ2.38e-15(77)], DDX3X[4.64e-14(10)]

NB 2 2 ALK[4.07e-18(100)], PTPN11[7.12¢-08(14)]

PRAD 25 2 LCTL[2.85e-06(0)], AR[5.33e-05(100)]

CLL 5 1 MYD88[1.34e-09(40)]

CESC 3 1 KRTAP4-11[1.45¢-05(0)]

MM 7 1 ZNF717[9.14e-07(0)]

RHAB 1 1 SMARCB1[2.52e-07(100)]

THCA 8 1 RPTN[2.17e-05(0)]

ALL 0 0 -

AT 1 0

CARC 1 0

ESCA 6 0

GBM 10 0

KICH 1 0

KIRP 2 0

LIHC 2 0

LUSE 1 0

LB 1 0

STS 0 0 -

Note: The values in square brackets are p-values by WITER. The significant genes are determined according to the p-values (FDR<0.1). The number in
the brackets are the number of papers co-mentioning the disease name and gene symbol according to search APl in PubMed database,
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term="DiseaseNames(inlcuding homonymies)"[tiab]%29+AND+“GeneSymbol
(including RefSeq mRNA IDs)” [tiab]. For genes with over 100 papers, only the most recent 100 papers are shown. The PubMed ID of the papers are in
supplementary Table 3. “-” denotes no unique significant genes. “a”: number of total significant genes. “b”: number of unique significant genes. ALL:
Acute lymphoblastic leukemia, AT: Astrocytoma, BLCA: Bladder Urothelial Carcinoma, BRCA: Breast invasive carcinoma, CARC: Carcinoid Cancer,
CESC: Cervical Carcinoma, CLL: Chronic lymphocytic leukemia, COAD: Colon adenocarcinoma, DLBCL.: Diffuse large B-cell lymphoma, ESCA:
Esophageal carcinoma, GBM: Glioblastoma Multiforme, HNSC: Head and Neck Squamous Cell Carcinoma, KICH: Kidney chromophobe carcinoma,
KIRC: Kidney renal clear cell carcinoma, KIRP: Kidney Papillary Cell Carcinoma, LAML: Acute myeloid leukemia, LB: B-cell lymphomas, LGG:
Low Grade Glioma, LIHC: Liver Hepatocellular carcinoma, LUAD: Lung Adenocarcinoma, LUSC: Lung Squamous Cell Carcinoma, LUSE: Small
cell lung carcinoma, MED: Medulloblastoma, MEL: Melanoma, MM: Multiple myeloma , NB: Neuroblastoma, OV: Ovarian serous
cystadenocarcinoma, PAAD: Pancreatic Adenocarcinoma, PRAD: Prostate Adenocarcinoma, RHAB: Rhabdoid tumor, STAD: Stomach
Adenocarcinoma, STS: Soft Tissue Sarcoma, THCA: Thyroid Carcinoma, UCEC: Uterine corpus endometrial carcinoma
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Figure S1: the QQ plots of p-values in 23 sample by WITER with and without reference samples
Note: The p-values less than a cutoff according to FDR 0.1 were excluded.
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Figure S2: The linear regression between number of significant genes and number of somatic
mutation variants
The dashed line is the fitted line. R2 is the coefficient of determination.
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Figure S3: The linear regression between number of significant genes and sample size
The dashed line is the fitted line. R2 is the coefficient of determination.
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Figure S4. QQ plot of background gene p-values produced by WITER and 2020 plus methods in 11
cancers. The p-values less than a cutoff according to FDR 0.1 were excluded. Cancer name labels:
BLCA: Bladder Urothelial Carcinoma; BRCA: Breast invasive carcinoma; COAD: Colon
adenocarcinoma; UCEC: Uterine corpus endometrial carcinoma; HNSC: Head and Neck Squamous
Cell Carcinoma; KIRC: Kidney Clear Cell Carcinoma; LUAD: Lung Adenocarcinoma; LUSC: Lung
Squamous Cell Carcinoma; MEL: Melanoma; OV: Ovarian serous cystadenocarcinoma; STAD:
Stomach Adenocarcinoma.
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Figure S5: Performance comparison of WITER and 20/20+ for detecting cancer driver mutation in
11 cancers

a: the number of significant genes; b: cancer consensus significant genes. The p-values less than a
cutoff according to FDR 0.1 were excluded. Cancer name labels: BLCA: Bladder Urothelial
Carcinoma; BRCA: Breast invasive carcinoma; COAD: Colon adenocarcinoma; UCEC: Uterine
corpus endometrial carcinoma; HNSC: Head and Neck Squamous Cell Carcinoma; KIRC: Kidney
Clear Cell Carcinoma; LUAD: Lung Adenocarcinoma; LUSC: Lung Squamous Cell Carcinoma;
MEL: Melanoma; OV: Ovarian serous cystadenocarcinoma; STAD: Stomach Adenocarcinoma.
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Figure S6: Performance of predicting frequent mutant variants by individual and combined methods.
The 5 folder-cross validation was used to generate the AUC. The evaluation was carried out by a
Java package WEKA(V3, https://www.cs.waikato.ac.nz/ml/weka/)
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Figure S7: Heatmap of biological pathways enriched by driver-genes The values of the cells are -
logi0(FDR g-values). The colors indicate the magnitude of the values. The cancers and pathways are
grouped by an heterarchical bi-cluster analysis in R

Table S1: Unique significant genes by WITER in the 11 cancers

Cancer Gene MutSigCV  oncodriveFML WITER CancerConsensus
BLCA ELF3 0.010103 2.30E-04  1.61E-09 5.76E-09 1
BLCA NFE2L2 5.59E-04 0.9962 = 6.68E-07 1.36E-16 1
BLCA ERBB3 0.001646 0.24978  8.98E-06 1.64E-15 1
BLCA ERBB2 0.08132 0.96319  0.002115 3.50E-07 1
BLCA ERCC2 0.001459 0.92244  3.60E-07 9.69E-07 1
BLCA NRAS 0.133981 0.92125  0.244118 3.86E-08 1
BLCA IDH1 0.078409 0.53155  0.094995 9.54E-05 1
BLCA FBXW7 4.28E-04 0.22664  3.09E-05 3.59E-17 1
BLCA FGFR3 0.027388 0.18021  1.32E-05 8.23E-23 1
BLCA PIK3CA 0.001452 0.65818 @ 1.57E-06 2.15E-33 1
BLCA KRAS 0.398044 0.99787  0.283061 1.41E-07 1
BLCA HRAS 0.02805 0.89445  0.003506 1.62E-25 1
BLCA CASP8 0.017869 0.39864  0.033465 1.29E-04 1
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BLCA CTNNB1 0.684378 0.57518 = 0.416055 1.86E-07 1
BLCA SH2D2A 0.20842 0.79357  0.068549 2.88E-05 0
BLCA CSPG5 0.182609 0.00472 = 0.107078 3.91E-06 0
BLCA RXRA 0.00108 0.86402  1.24E-05 2.17E-05 0
BLCA TASI1R3 0.045749 0.22505  1.32E-04 2.09E-04 0
BLCA PSG1 0.05198 0.91418  0.012434 1.63E-07 0
BLCA KLF5 0.181665 0.3705  6.55E-05 1.00E-04 0
BLCA PCDHGA7 0.028043 0.28091  0.009189 9.39E-05 0
BLCA RARG 0.010501 0.29293 = 4.14E-07 8.89E-08 0
BLCA ZFP37 0.004457 0.49592  7.15E-05 1.42E-04 0
BLCA TXNIP 0.604767 2.40E-04  3.49E-05 5.80E-05 0
BLCA ZNF878 0.96682 0.95306  0.169874 1.65E-10 0
BLCA STK39 0.771555 1 0.359025 1.91E-05 0
BLCA ZNF624 0.512218 0.26753  3.57E-08 1.65E-07 0
BLCA ZNF513 0.039256 0.02061 @ 1.65E-04 2.80E-04 0
BLCA UGT1A9 0.10839 0.59112  0.100226 1.08E-04 0
BRCA FAM47C 0.087477 0.36442 = 0.009041 1.11E-04 1
BRCA DNMT3A 0.843839 0.50455  0.064191 2.64E-05 1
BRCA HIST1H3B 0.002763 0.22537 = 8.65E-05 1.41E-04 1
BRCA ERBB3 6.32E-04 0.14789  9.74E-05 2.02E-08 1
BRCA ERBB2 0.00302 0.45049 = 2.27E-05 2.42E-26 1
BRCA FOXA1 0.024566 0.00308  5.67E-06 1.09E-05 1
BRCA XPO1 0.798226 0.16802 = 0.068682 2.85E-05 1
BRCA KLF4 0.962375 0.72487  0.256697 1.07E-05 1
BRCA FBXW?7 0.691241 0.49823 = 0.004454 3.04E-08 1
BRCA FGFR2 0.12402 0.41424  0.012374 1.61E-10 1
BRCA PIK3R1 0.007757 0.0056 = 1.39E-07 2.37E-07 1
BRCA KRAS 0.001827 0.33858 0.00379 1.08E-26 1
BRCA GLA 0.329366 0.80435 = 0.089082 1.40E-04 0
BRCA FCRL5 0.277234 0.50848  0.008545 1.95E-06 0
BRCA DUSP16 0.051057 0.01668 = 0.007051 7.55E-05 0
BRCA TPRX1 0.253056 0.37048  0.071328 2.41E-05 0
BRCA ZFP36L1 0.002974 1.30E-04  3.73E-05 5.67E-05 0
COAD CHD4 0.078877 0.20769  0.002289 2.45E-06 1
COAD PPP2R1A 0.141973 0.72775 = 0.141875 1.06E-07 1
COAD CNBD1 0.110659 0.86018  0.010546 2.40E-05 1
COAD ERBB3 0.1158 0.64679 0.00142 1.41E-13 1
COAD ERBB2 0.065614 0.9027  0.005465 9.95E-14 1
COAD LIFR 0.006573 0.29661  1.96E-04 4.14E-04 1
COAD CXCR4 0.011262 0.86731  0.031564 5.21E-04 1
COAD IDH2 0.045499 0.22688 = 0.014912 7.01E-06 1
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COAD BRAF 4.82E-04 0.32704  8.91E-08 1.82E-50 1
COAD RAF1 0.244126 0.72739 | 0.009653 5.35E-15 1
COAD PIK3CA 0.001561 0.98003  6.31E-16 9.59E-90 1
COAD PIK3R1 0.360783 0.034 = 0.044889 1.61E-05 1
COAD PCBP1 0.02945 0.22172  0.004449 7.12E-07 1
COAD ARID1A 0.003605 0.28983 = 0.001281 2.92E-04 1
COAD GNAS 0.242151 0.82802  0.009841 1.23E-07 1
COAD CTNNB1 0.001028 0.50651 = 1.03E-04 1.44E-10 1
COAD ACVR1B 0.005239 0.3425  1.48E-04 3.01E-04 0
COAD ZC3H13 0.002089 0.09886 = 3.47E-04 3.12E-04 0
COAD NGB 0.002664 0.80948 0.01041 2.30E-04 0
COAD ATG2A 0.802205 0.61151 = 0.232782 5.78E-04 0
COAD KLC4 0.039784 0.7423  2.99E-04 5.96E-04 0
COAD DUSP16 0.087652 0.52282 = 0.018478 1.65E-04 0
COAD PCDHA1 0.372299 0.69821  1.38E-04 7.00E-20 0
COAD PCDHAS5 0.643394 0.52408 = 0.001556 2.91E-18 0
COAD PCDHA4 0.555239 0.26458  0.002888 1.02E-16 0
COAD PCDHA3 0.106343 0.79539 = 4.69E-05 2.27E-20 0
COAD PCDHA2 0.48885 0.68016  0.003121 1.54E-16 0
COAD PCDHA9 0.571704 0.61216 = 7.01E-04 2.74E-18 0
COAD PCDHAS 1 0.97541  0.049066 7.49E-15 0
COAD PCDHAY 0.641067 0.61617 = 6.92E-04 3.53E-19 0
COAD PCDHAG 0.645205 0.67044  0.001918 8.60E-18 0
COAD PCDHAC?2 0.822949 0.63764 = 0.005493 3.00E-15 0
COAD PCDHAC1 0.356993 0.11488  0.001222 1.35E-15 0
COAD KIAA1804 0.145079 0.60659 = 3.25E-04 6.64E-06 0
COAD PCDHA13 0.064687 0.05377  4.32E-05 5.81E-18 0
COAD PCDHA12 0.3295 0.00718 = 6.95E-05 3.80E-21 0
COAD PCDHA11 0.481675 0.35176  0.001229 1.18E-18 0
COAD PCDHA10 0.216798 0.20336 = 5.62E-05 1.51E-21 0
COAD RGMB 0.564593 0.03731  0.348865 2.30E-05 0
COAD ING1 0.003298 0.26098 = 0.004505 2.00E-07 0
COAD OPRM1 0.174087 0.75567  0.073868 1.95E-07 0
COAD RIMS2 0.669523 0.87839 = 0.187879 1.36E-04 0
COAD ZNF560 0.091638 0.38193  0.002806 8.45E-05 0
COAD STIM2 0.459306 0.3714  0.100589 4.77E-04 0
HNSC FCRL4 0.007489 0.24308  1.14E-04 1.68E-04 1
HNSC SMADA4 0.002188 0.36564 = 0.006628 1.82E-07 1
HNSC CTCF 0.001286 0.03975  2.24E-05 3.07E-05 1
HNSC KEAP1 0.001599 0.57845 = 2.75E-05 3.94E-05 1
HNSC RAC1 0.014924 0.63907  0.017661 9.06E-05 1
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HNSC FGFR3 0.370749 058282  0.009941 1.49E-04 1
HNSC EP300 2.42E-04 0.74769  0.001763 2.17E-06 1
HNSC CD248 0.681864 064177  4.14E-05 5.87E-05 0
HNSC ADCY8 0.010859 0.73408  1.24E-04 1.52E-04 0
HNSC ZNF750 0.004355 0.00107  2.96E-06 4.76E-06 0
HNSC PEG3 0.048453 03124  4.29E-05 5.65E-05 0
HNSC ZNF563 0.257063 021164  0.007018 9.62E-05 0
KIRC DNMT3A 0.005229 0.14019  1.00E-04 1.88E-04 1
KIRC NFE2L2 0.002882 044296  0.001841 1.28E-06 1
KIRC NF2 0.085351 0.14288  0.024529 4.35E-06 1
KIRC SMARCA4  0.051244 0.82687  0.002104 1.97E-05 1
KIRC TCF12 0.115914 0.70984  0.016125 3.88E-05 1
KIRC CDKN2A 0.016215 0.20555  0.071108 1.36E-04 1
KIRC MTOR 1.40E-04 070182  3.42E-05 4.32E-05 1
KIRC PIK3CA 0.038472 0.72737  6.76E-06 8.48E-32 1
KIRC ARIDIA 0.177427 0.00908  8.99E-05 1.14E-04 1
KIRC PABPC1 0.999712 0.75376  2.10E-04 6.48E-13 1
KIRC ZC3HC1 0.200287 005711  0.019925 6.16E-07 0
KIRC SLFN12L 0.128629 0.67547  0.025289 2.13E-05 0
KIRC HK1 0.903897 043214  0.069491 2.66E-04 0
KIRC SLCI11A2 0.392912 002879  0.279041 1.36E-06 0
KIRC HLA- 0.35833 0.88843  0.283265 3.20E-04 0
DQB1
KIRC COBL 0.231746 034013  0.023333 5.70E-06 0
KIRC MAP2K3 0.127763 0.70998  0.069393 1.26E-07 0
KIRC MAP4K5 0.204151 001573  0.03684 1.48E-05 0
KIRC FAM200A  0.023997 054103  1.67E-04 3.57E-04 0
KIRC PABPC3 0.240863 0.66656  0.014623 3.79E-07 0
KIRC ALKBHS8 0.609278 0.15275  0.027668 1.18E-08 0
KIRC PRSS3 0.043846 038443  0.227373 1.47E-08 0
KIRC ZNF800 0.036792 0.15307  1.55E-04 3.47E-04 0
KIRC ZNF563 0.145925 0.96191 0.2047 5.47E-05 0
KIRC NLRP7 0.86958 056637  0.179508 452E-05 0
KIRC PIGQ 0.067671 0.75672  0.007288 7.30E-05 0
LUAD ERBB2 0.209199 031662  0.006193 4.22E-06 1
LUAD NRAS 0.122752 059442  0.192335 5.67E-09 1
LUAD BRAF 0.001509 09526  0.001325 1.73E-13 1
LUAD FBXW?7 0.075704 049917  0.067721 1.17E-04 1
LUAD PIK3CA 0.557858 0.62573  0.005158 2.60E-17 1
LUAD EGFR 0.187768 0.07497  3.20E-05 1.46E-25 1
LUAD HRAS 0.30991 04113  0.440817 5.10E-06 1


https://doi.org/10.1101/437061

bioRxiv preprint doi: https://doi.org/10.1101/437061; this version posted October 8, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

LUAD B2M 0.009884 0.12132 = 0.276422 1.46E-04 1
LUAD CTNNB1 0.059615 0.77653  0.009174 5.73E-14 1
LUAD KCNB1 0.002193 0.16821  6.26E-05 7.22E-05 0
LUAD TARS2 0.001074 0.69406  1.21E-04 1.46E-04 0
LUAD HGF 5.61E-04 0.73882  8.01E-05 8.67E-05 0
LUAD PCDHA1 0.209752 0.27592  0.001493 3.17E-06 0
LUAD PCDHA2 0.827439 0.73373 = 0.006186 1.30E-06 0
LUAD PCDHA9 0.987765 0.28907 0.04019 1.46E-05 0
LUAD PCDHAG 0.947894 0.54997 = 0.035802 1.24E-04 0
LUAD PCDHAC2 0.96184 0.27743  0.061438 1.56E-04 0
LUAD PCDHAC1 0.981846 0.00265 = 0.053546 1.12E-04 0
LUAD PCDHA13 0.644272 0.12318  0.009487 1.77E-06 0
LUAD PCDHA11 0.661556 0.88795 = 0.011187 1.56E-05 0
LUAD PCDHA10 0.466271 0.01717  0.012936 1.04E-05 0
LUAD ZNF716 9.10E-04 0.47729 = 0.002249 4.26E-05 0
LUSC BRAF 0.111669 0.92827 0.02411 1.11E-06 1
LUSC FBXW?7 0.71995 0.32652 = 0.040881 3.21E-10 1
LUSC FGFR3 0.711763 0.60777  0.071165 4.27E-09 1
LUSC PIK3CA 6.58E-05 0.70456 = 2.01E-07 2.56E-41 1
LUSC HRAS 0.004331 0.60182  0.001246 3.00E-26 1
LUSC EP300 0.566185 0.44866 = 0.023434 4.04E-06 1
LUSC CYP11B1 0.018104 0.3285  7.75E-05 3.67E-05 0
LUSC PDYN 1.38E-04 0.3027 = 9.77E-05 1.78E-05 0
MEL KIT 0.998462 0.03646  0.366527 7.44E-05 1
MEL IDH1 0.002983 0.66861 = 0.001578 1.05E-20 1
MEL RB1 0.003552 0.62742  0.026078 1.72E-04 1
MEL SF3B1 0.867726 0.0909  0.113301 2.09E-04 1
MEL FBXW?7 0.227594 0.37101  0.041834 3.17E-06 1
MEL MAP2K1 0.01392 0.65035  1.26E-04 3.01E-16 1
MEL PIK3CA 0.997668 0.99968 = 0.145884 1.08E-07 1
MEL A1CF 0.150594 0.56116 = 0.042353 3.67E-05 1
MEL CLIP1 0.93025 0.893  0.099724 9.97E-05 1
MEL KRAS 0.253845 0.97933 = 0.157189 2.37E-05 1
MEL TP53 1.50E-04 0.10517  1.23E-12 1.49E-99 1
MEL HRAS 0.787203 0.33192  0.386905 9.68E-06 1
MEL GNAl1 0.305116 0.00179  0.038123 1.52E-10 1
MEL CTNNB1 0.229997 0.08914 = 0.006305 2.75E-11 1
MEL TCHHL1 7.39E-04 0.24143  7.57E-05 4.08E-05 0
MEL PRDM7 0.473125 0.02803 = 0.150664 1.54E-04 0
MEL DSG3 0.007989 0.54472  1.05E-05 2.32E-05 0
MEL COL21A1 0.005546 0.17557 = 1.50E-05 2.35E-06 0
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MEL GUCAILC 0.999985 0.94228  0.354276 1.71E-04 0
MEL TCP10L2 0.771295 0.98607 = 0.108327 8.27E-06 0
MEL MUC13 0.13666 0.63281  0.002076 1.81E-04 0
MEL PYHIN1 0.089041 0.85172 = 0.041391 2.87E-04 0
MEL SELP 0.991729 0.66347  0.022625 3.72E-05 0
MEL PDE1A 0.020903 0.24727 = 0.003439 8.29E-07 0
MEL PCDHA1 0.736402 0.49221  6.69E-04 6.41E-07 0
MEL PCDHA4 0.664652 0.69132 = 0.014475 9.36E-05 0
MEL PCDHA9 0.985803 0.89353  0.045793 2.11E-05 0
MEL PCDHAS8 0.943164 0.45249 = 0.004418 4.75E-06 0
MEL PCDHAC1 0.975452 0.90427  0.022801 1.60E-04 0
MEL PCDHA13 0.974912 0.53566 = 0.038056 1.01E-04 0
MEL PCDHA11 0.832659 0.79157  0.015775 2.61E-05 0
MEL PCDHA10 0.619007 0.6205 @ 0.013421 8.04E-06 0
MEL OR4M2 0.248195 0.70563 = 0.040744 1.51E-05 0
MEL STK19 0.015007 0.40515  0.001674 1.56E-15 0
ov PPP2R1A 0.035963 0.70978 0.02113 8.49E-08 1
ov ERBB2 0.09813 0.60963 = 0.013541 1.52E-07 1
ov NRAS 0.002679 0.19963 0.01214 2.27E-10 1
ov BRAF 0.027588 0.88872 = 0.147142 1.53E-06 1
ov FBXW?7 0.054434 0.55663  0.026804 1.70E-08 1
ov PIK3CA 0.764045 0.62605 0.34417 2.83E-06 1
ov KRAS 0.031988 0.78275  0.064287 5.91E-15 1
ov BRCA1l 0.046156 0.00213 = 3.99E-07 3.35E-07 1
ov RHOA 0.017567 0.49302  0.041488 4.64E-06 1
ov CASP8 0.098064 0.16397 = 0.020871 3.70E-05 1
ov B2M 0.00113 1 0.184225 4.06E-08 1
ov HLA-G 0.009173 0.98089 = 0.035958 1.39E-04 0
STAD CHD4 0.245523 0.93725  0.001411 4.80E-05 1
STAD PBRM1 0.035327 0.37478 = 0.007447 3.63E-04 1
STAD CNBD1 0.22133 0.33913  0.004851 1.17E-05 1
STAD SMAD2 1.17E-04 0.183 = 0.007402 2.24E-08 1
STAD ERBB3 0.054637 0.43843  1.52E-05 2.56E-14 1
STAD ERBB2 0.378157 0.51653  1.25E-04 7.70E-22 1
STAD PTEN 0.002746 0.76119  2.43E-04 5.34E-10 1
STAD NRAS 0.232912 0.55772  0.122884 6.70E-08 1
STAD BRAF 0.723083 0.2195 0.11387 6.04E-06 1
STAD FBXW?7 0.30357 0.07034 = 0.057405 5.96E-07 1
STAD RAF1 0.556977 0.65231  0.135408 3.37E-07 1
STAD CDKN2A 0.002944 0.01257 = 0.006938 4.80E-05 1
STAD STAT3 0.999879 0.85839  0.033901 1.75E-04 1
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STAD PIK3R1 0.087327 0.00732 = 0.038981 2.61E-05 1
STAD APC 3.95E-04 0.00153  0.007943 2.59E-05 1
STAD CTNNBL1 0.080782 0.36951 = 0.003409 1.85E-15 1
STAD ZC3H4 0.554437 0.43913  0.042694 3.03E-04 0
STAD SH2D2A 0.210084 0.68834 = 0.053048 1.14E-05 0
STAD TCEALG 0.289818 0.66131  0.132711 2.80E-04 0
STAD SLITRK6 0.156137 0.40283 @ 8.37E-05 1.62E-04 0
STAD ADRAIA 0.061514 0.29788  0.015719 3.69E-07 0
STAD PRNP 0.24016 0.93164  0.211218 2.85E-06 0
STAD PTH2 0.016192 0.08521  0.038948 8.78E-15 0
STAD HLA-B 0.034437 0.02137 = 0.008293 8.88E-05 0
STAD BEST3 0.034339 0.35638  7.28E-05 1.36E-04 0
STAD BNC2 0.33532 0.54984 = 0.029017 5.56E-06 0
STAD MAP2K7 0.016319 0.44553  3.26E-04 4.33E-07 0
STAD TTK 0.884283 0.03814 = 0.063077 4.89E-07 0
STAD AQP2 0.016088 0.97596  0.215925 2.61E-04 0
STAD TLR4 0.00703 0.18558 @ 4.89E-05 1.15E-04 0
STAD OR4C3 0.141493 0.81999  0.034835 3.63E-08 0
STAD ZNF878 0.789422 1 0.383649 4.69E-07 0
STAD ZNF721 0.534072 0.97744  0.012705 7.39E-08 0
STAD ZNF716 0.089027 0.49855 = 0.014667 2.19E-04 0
STAD SLCO1B3 0.028308 0.88891  5.61E-04 1.63E-04 0
UCEC U2AF1 0.209206 0.18068 = 0.334132 3.73E-07 1
UCEC NFE2L2 0.048451 0.94445  3.41E-05 1.16E-08 1
UCEC ESR1 0.344057 0.14186 0.00915 5.10E-09 1
UCEC ERBB3 0.213392 0.47654  7.62E-05 4.72E-10 1
UCEC ERBB2 0.942756 0.88756 = 0.063658 4.10E-05 1
UCEC MAX 0.029877 0.19557  0.010747 5.53E-16 1
UCEC LZTR1 0.035479 0.84019  7.56E-05 1.24E-04 1
UCEC AKT1 1.33E-04 0.83264  0.003355 1.36E-14 1
UCEC NRAS 0.003672 0.9416  0.001754 8.38E-23 1
UCEC DICER1 0.824804 0.28748  0.070705 7.58E-05 1
UCEC RB1 0.054063 0.88633 = 0.017768 2.41E-04 1
UCEC CCND1 3.45E-04 0.1409  3.04E-06 7.15E-06 1
UCEC VHL 0.145151 0.72076 = 0.246007 1.48E-06 1
UCEC SGK1 0.411208 0.22921  2.61E-04 3.74E-04 1
UCEC KRAS 0.159112 0.72248 @ 9.04E-25 6.68E-190 1
UCEC MYCN 0.123471 0.556  0.013539 6.07E-11 1
UCEC CASP8 0.006749 0.58603 = 0.002024 3.77E-06 1
UCEC CTNND1 0.520007 0.13848  5.16E-04 1.86E-06 1
UCEC BCAN 0.033629 0.49353  6.53E-05 1.16E-04 0
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UCEC GIGYF2 0.751871 0.07728  7.68E-04 8.62E-09 0
UCEC FOXA2 6.29E-04 1.70E-04 = 1.54E-05 3.27E-05 0
UCEC MYO10 0.712137 0.10595  0.058648 4.00E-05 0
UCEC DUSP16 0.013243 0.43285 0.01384 1.86E-04 0
UCEC HEPH 0.187478 0.62103  0.020346 1.35E-04 0
UCEC ING1 2.74E-04 0.17255 = 0.018412 3.31E-06 0
UCEC SLC6A2 0.525061 0.2611  0.047213 8.32E-05 0
UCEC METTLS 0.019233 0.87109 = 0.109738 1.05E-05 0
UCEC INPP4A 0.556185 0.01036  1.08E-04 1.79E-04 0

The p-values less than a cutoff according to FDR 0.1 were excluded. Cancer name labels: BLCA:
Bladder Urothelial Carcinoma; BRCA: Breast invasive carcinoma; COAD: Colon adenocarcinoma;
UCEC: Uterine corpus endometrial carcinoma; HNSC: Head and Neck Squamous Cell Carcinoma;
KIRC: Kidney Clear Cell Carcinoma; LUAD: Lung Adenocarcinoma; LUSC: Lung Squamous Cell
Carcinoma; MEL: Melanoma; OV: Ovarian serous cystadenocarcinoma; STAD: Stomach
Adenocarcinoma.

Table S2 Enrichment significance of related genes in the unique significant genes by WITER

a: The p-
values was
calculated
BLCA Real 10 19 0.00077 14 15 0 by the Fisher
Random 0 29 - - .
BRCA  Real 12 5 0.0013 12 5 2.59E-14 exact test. b:
Random 2 15 - - The p-values
COAD Real 15 29 0.0028 16 28 1.30E-12 was
Random 3 41 - -
UCEC Real 15 13 4.6E-6 18 10 0 calculated
Random 0 28 - - by the
HNSC Real 5) 7 0.037 7 5 5.56E-08
Random 0 12 - -
KIRC Real 6 20 0.022 10 16 1.20E-08
Random 0 26 - -
LUAD Real 10 12 0.00052 9 13 3.47E-08
Random 0 22 - -
LUSC Real 3 5 0.2 6 2 6.00E-08
Random 0 8 - -
MEL Real 13 21 0.0087 14 20 4.49E-12
Random 3 31 - -
oV Real 12 0 9.6E-6 11 1 1.55E-15
Random 1 11 - -
STAD Real 6 29 0.025 16 19 1.72E-14
Random 0 35 -

hypergeometric distribution test. Cancer name labels: BLCA: Bladder Urothelial Carcinoma; BRCA:
Breast invasive carcinoma; COAD: Colon adenocarcinoma; UCEC: Uterine corpus endometrial
carcinoma; HNSC: Head and Neck Squamous Cell Carcinoma; KIRC: Kidney Clear Cell
Carcinoma; LUAD: Lung Adenocarcinoma; LUSC: Lung Squamous Cell Carcinoma; MEL.:
Melanoma; OV: Ovarian serous cystadenocarcinoma; STAD: Stomach Adenocarcinoma.

Table S3: The number of significant genes in 23 cancers with two different extreme samples by
ITER
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Gene Melanoma Breast invasive Overlapped Gene Overlapped
Ref carcinoma Ref Number Percentage

Acute lymphoblastic 0 0 0 )

leukemia

Astrocytoma 0 0 0 -

Carcinoid Cancer 0 0 0 =

Chronic lymphocytic 0 0 0 )

leukemia

Cervical Carcinoma 2 1 1 0.5

Diffuse large B-cell 0 2 0 0

lymphoma

Esophageal carcinoma 1 1 1 1

Glioblastoma

Multiforme 5 6 S 0.83

Kidr_ley chromophobe 0 1 0 0

carcinoma

Kidney Papillary Cell 0 0 0 )

Carcinoma

Acute myeloid leukemia 10 13 10 0.77

Liver Hepatocellular 1 1 1 1

Carcinoma

Low Grade Glioma 4 4 4 1

Sma_ll cell lung 1 1 1 1

carcinoma

B-cell lymphomas 0 1 0 0

Multiple myeloma 2 2 2 1

Medulloblastoma 3 3 3 1

Neuroblastoma 0 0 0 -

Pancreatic

Adenocarcinoma 8 ¢ g 1

Prostate

Adenocarcinoma 2 2 2 1

Rhabdoid tumor 0 0 0 =

Soft Tissue Sarcoma 0 0 0 -

Thyroid Carcinoma 2 2 2 1

Note: The percentage of overlapped genes is calculated by #overlapped genes/(#sig. genes in setl
+#sig. genes in set2-#overlapped genes).

Table S4: The number of significant genes in 34 cancers with hit papers in PubMed database

Cancer AlISig.Gene HitSig.Gene Proportion

AT 1 1 1.000
CLL 5 5 1.000
DLBCL 7 7 1.000
ESCA 6 6 1.000
GBM 10 10 1.000
KICH 1 1 1.000
KIRP 2 2 1.000
LIHC 2 2 1.000
LUSE 1 1 1.000
LB 1 1 1.000
NB 2 2 1.000
RHAB 1 1 1.000

LAML 17 16 0.941
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ov 17 15 0.882
BRCA 33 29 0.879
MED 8 7 0.875
LUSC 13 11 0.846
LGG 10 8 0.800
HNSC 24 19 0.792
UCEC 42 31 0.738
MM 7 5 0.714
CESC 3 2 0.667
LUAD 29 18 0.621
MEL 41 25 0.610
COAD 57 34 0.596
BLCA 35 18 0.514
THCA 8 4 0.500
KIRC 34 14 0.412
PRAD 25 9 0.360
STAD 45 15 0.333
PAAD 21 6 0.286
CARC 1 0 0.000
ALL 0 0 >

STS 0 0 -

AlISig.Gene: the number of all significant genes. HitSig.Gene: the number of significant genes with hit papers. ALL: Acute lymphoblastic leukemia,
AT: Astrocytoma, BLCA: Bladder Urothelial Carcinoma, BRCA: Breast invasive carcinoma, CARC: Carcinoid Cancer, CESC: Cervical Carcinoma,
CLL: Chronic lymphocytic leukemia, COAD: Colon adenocarcinoma, DLBCL: Diffuse large B-cell lymphoma, ESCA: Esophageal carcinoma, GBM:
Glioblastoma Multiforme, HNSC: Head and Neck Squamous Cell Carcinoma, KICH: Kidney chromophobe carcinoma, KIRC: Kidney Clear Cell
Carcinoma, KIRP: Kidney Papillary Cell Carcinoma, LAML: Acute myeloid leukemia, LB: B-cell lymphomas, LGG: Low Grade Glioma, LIHC: Liver
Hepatocellular carcinoma, LUAD: Lung Adenocarcinoma, LUSC: Lung Squamous Cell Carcinoma, LUSE: Small cell lung carcinoma, MED:
Medulloblastoma, MEL: Melanoma, MM: Multiple myeloma , NB: Neuroblastoma, OV: Ovarian serous cystadenocarcinoma, PAAD: Pancreatic
Adenocarcinoma, PRAD: Prostate Adenocarcinoma, RHAB: Rhabdoid tumor, STAD: Stomach Adenocarcinoma, STS: Soft Tissue Sarcoma, THCA:
Thyroid Carcinoma, UCEC: Uterine corpus endometrial carcinoma

Table S5. Uniquely significant genes of different cancers

Cancer To 3U Genes

tal ni.

KIRC 34 23 BAP1[9.49-
28(29617669;29558292;29426696;29266978;29158875;29118224;28900502;28812986;28779136;2876511
6;28753773;28731045;28723536;28618948;28488170;28473526;28459210;28408295;28327121,28284891
;28212566;27751729;27556922;27085487;26891804;26864202;26854086;26839909;26484545;26452128;
26300492;26300218;26166446;26111976;25972334;25873528;25826081;28326264;25479927,;25465300;2
5126716;25124064,24821879;24382589;24166983;24158655;24128712;24076305;24029645;23709298;23
620406;23277170;23036577;22949125;22805307;22461374)], KDM5CI[3.86¢-
15(28779136;28723536;28408295;28212566;27751729;27556922;26484545;25124064;24029645;2303657
7,22949125;21725364;20054297)], SETD2[6.8%-
14(29674707;29558292;28812986;28779136;28754676;28753773;28731045;28723536;28445125;2840829
5;28260718;27764136;27751729;27288695;27556922;27292023;26891804;26864202;26575290;26559293
;26537074,;26452128;26166446;26111976;26073078;25873528;25853938;25714014;28326264;25124064;
24821879;24186201;24166983;24158655;24029645;23792563;23620406;23036577;22949125;22805307;2
2461374;20501857;20054297)], PABPC1[6.48e-13(?)], ALKBH8[1.18e-08(?)], PRSS3[1.47e-08(?)],
MAP2K3[1.26e-07(?)], PABPC3[3.79e-07(?)], ZC3HC1[6.16e-07(?)], SLC11A2[1.36e-06(?)], NF2[4.35¢e-
06(25893302;20528227;20054297)], COBL[5.70e-06(?)], MAP4K5[1.48e-05(?)], SLFN12L[2.13e-05(?)],
TCF12[3.88e-05(?)], MTOR[4.32e-
05(29610387;29536301;29508215;29479523;29202733;29158991;29144820;29118224;29079709;2892709
8;28779136;28765116;28723536;28680592;28545465;28396841;28329682;28257806;28247252;28197812
;27751729;27738339;27615548;27574806;27453294;27405474,26974204;26787754;26609489;26408740;
26255626;26224474,25997916;25948777;25783986;25625928;25520878;25426415;25351205;25293974;2
5186283;25152703;24929890;24821879;24575852;24565854;24504440;24496460;24495452;24136229;23
797736;23633458;23290145;22322364;21798997;21644050;20709527;20437403;20022054;19956876;198
43858;19663736;19657325;19265534;17987219)], NLRP7[4.52e-05(?)], PIGQ[7.30e-05(?)], IST1[1.14e-
04(?)], HK1[2.66e-04(?)], HLA-DQB1[3.20e-04(?)], ZNF800[3.47e-04(?)], FAM200A[3.57e-04(?)]

COAD 57 20 GNAS[1.23e-
07(29069792;28749961;27938333;27756406;27568332;26074686;24498230;24475022;23857251;2340382
2;20126641)], OPRM1[1.95e-07(?)], TCF7L2[5.64e-
07(29511559;29389519;29301589;29245969;29135090;29131639;29118424;29050326;28949031;2881136
1,28472810;28450117;28362475;28343235;28143522;28117551;28060743;28002797;27792933;27761963
;27504909;27755946;27709738;27527215;27398792;26474385;26243311;26191083;26165840;26060019;
25913757;25277775;25205133;25131200;25050608;24943349;24913975;24836286;24828199;24670930;2
4608966;24398765;24338422;24317174,23951231;23817222;23796952;23319804,22895193;22419714,22
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108803;22005519;21983179;21956205;21892161;20056134;19924301;19760027;19561607;18992263; 186
21708;18478343;18398040;18268068;18268006)], PCBP1[7.12¢-07(28076324;17928403)],
AMER1[1.52¢-06(28551381;28002797;26527806;26071483;24251807)], KIAA1804[6.64¢-
06(29453410;24811787)], MLK4[9.89e-06(17016444)], RGMB[2.30e-05(27384995;26029998)],
ZNF560[8.45e-05(24137329)], RIMS2[1.36e-04(?)], GRIK3[1.77e-04(?)], NGB[2.30e-04(25683270)],
ACVR1B[3.01e-04(26497569)], ZC3H13[3.12e-04(21388066)], LIFR[4.14e-
04(28751909;23579219;21617854;21239504)], STIM2[4.77e-04(28087343;25143380;22125164)],
CXCR4[5.21e-
04(29739049;29719205;29641987;29481800;29408658;29257331;29235568;29117108;29063978;2893681
0;28900008;28739729;28629469;28621237;28549801;28515923;28176874;28123896;28061765;27835898
:27835894;27798120;27668882;27657827;27575851;27517626;27489286;27481098;27409174;27330310;
27314328;27212031;27176720;27160279;27085904;27059706;26998092;26985708;26959057;26745593;2
6744523;26727921;26678887;26552750;26406413;26318034;26078947;26020117;25987090;25960214;25
899003;25884903;25866254;25846512;25735334;25669980;25580640;26978017;25413075;25396735;253
59494;25301403;25280997;25232565;25150783;24804700;24647809;24629239;24532280;24395653;2437
5277;24342323;24330809;24255072;24238971;24189753;24085800;23885267;23766363;23758411;23744
532;23730510;23708747;23544165;23385555;23313233;23245395;23192271;23188729;23098564:230717
44:22970002;22959209;22923991;22888250;22871210;22689289;22639890:22433494:22409183)],
ATG2A[5.78e-04(?)], ACKR2[5.866-04(?)], KLCA[5.96e-04(?)]

STAD 45 18 PTH2[8.78e-15(?)], ORAC3[3.63e-08(?)], ZNF721[7.39¢-08(?)], ADRALA[3.69¢-07(?)], MAP2K7[4.33¢-
07(?)], TTK[4.89¢-07(?)], PRNP[2.85e-06(?)], BNC2[5.56e-06(?)], SLC35G3[7.86¢-05(?)], HLA-B[8.88¢-
05(?)], TLRA[1.156-04(28531216;28093329;25371568;17645528)], BEST3[1.366-04(?)], SLITRK6[1.62¢-
04(?)], SLCO1B3[1.63e-04(?)], STAT3[1.75¢-
04(27930339;22834702;22581828;15730617;15682485;14996748)], AQP2[2.61e-04(?)], TCEALS[2.80e-
04(?)], ZC3H4[3.03e-04(2)]

MEL 41 17 PPP6C[2.10e-
21(26868000;25857817;25486434;24755198;26263704;24341237;24336958;23729733;22842228;2281788
9)], MAP2K1[3.01e-
16(29461977;28881731;26913480;26684394;26673799;26343386,26018731;23639941;23444215;2317402
2,22197931;22105811;21726664;20526349)], STK19[1.56e-
15(27184836;25857817;26263704;24341237;22817889)], GNALL[1.52¢-
10(29738114;29726589;29689622;29570931;29490280;29371009;29206651;29059311;28982892;2888173
1;28809862;28700778;28594900;28486107;28444874;28409567;28399339;28229253;28228113;28223438
:28203054;28074614;28018010;27934878;27914687;27745836;27660484;27507190;27499153;27486988;
27354579;27348266,27273450;27239460;27218826;27148356;27123562;27117140;27116551;27089179;2
7058448;27044592;26994139;26991400;26825879;26791842;26769193;26744134;26743513;26743478;26
683228;26601868;26403583;26397223;26275246;26217306;26113083;26086698;26084293;26076063;259
76133;25769001;25764247;25695059;25653058;27308390;27188223;25526026;25413220;25399693;2536
1747;25315378;25304237;25113308;25030020;24994677;24970262;24938562;24899684;24882516;24842
760;24755198;24713608;24697775;24563540;24423917;24345920;24274719;24141786:24077403;239810
10;23975010;23887304;23877823;23825798;23778528;23752084;23714557;23685997;23478236)],
PDE1A[8.29¢-07(22045655)], COL21A1[2.35¢-06(20667089)], TCP10L2[8.27e-06(?)], OR4M2[L.51e-
05(?)], DSG3[2.32e-05(11422052)], ALCF[3.67e-05(?)], SELP[3.726-05(23648484)], TCHHL1[4.08e-
05(?)], CLIP1[9.97e-05(?)], PRDM7[1.54e-04(?)], GUCALC[1.71e-04(?)], MUC13[1.81e-04(?)],
PYHIN1[2.87e-04(25199457)]

BLCA 35 16 CDKNILA[L.11e-12(28802642;23571005)], KDM6A[3.91e-08(29573965;28339163;23887298)],
RARG[8.89e-08(?)], PSG1[1.63¢-07(?)], ZNF624[1.65¢-07(?)], ERCC2[9.69e-
07(28802642;27479538;25096233)], CSPG5[3.91e-06(?)], STK39[1.91e-05(?)], RXRA[2.17¢-
05(26008846)], TXNIP[5.80e-05(?)], PCDHGA7[9.39¢-05(?)], KLF5[1.00e-04(28915599)],
UGT1A9[1.08e-04(?)], ZFP37[1.42e-04(?)], TASIR3[2.09¢-04(?)], ZNF513[2.80e-04(?)]

UCEC 42 16 MYCN[6.07e-11(23167388;14654551;11433525)], ESR1[5.10e-
09(29546395;28578502;27527851;27160768;27018308;26057478;26594762;26431491;26330482;2588443
4;25546926;25437045;25048628;24337234;24023309;23843231;23624782;23593326:23319822;23019147
:22633539;22404101;21543766;21472251;21272446;20381444;20018910;19438492;19319135;18990228;
18923163;18788074;18720455;18403104;16707768)], GIGYF2[8.62¢-09(?)], ARID5B[2.15¢-
08(27346418;23636398)], CTNND1[1.86e-06(?)], CCNDL[7.15¢-
06(29232554;28408839;27831653;27648123;27349856;27105504;26366417;26353976;25546926;2521456
1;24779718;24337234;24126431;23733133;23731275;21454826;16569247;15069681; 12955092;10473073
)], METTLS[1.056-05(?)], FOXA2[3.27¢-
05(29546371;29442045;28940304;27538367;25994056;22945641)], MY O10[4.00e-05(18783612)],
DICERL[7.58e-05(28529604;28459098;28381177;23680357;23392577;22252463;21425145)],
SLC6A2[8.326-05(29693365)], BCAN[1.16e-04(?)], LZTR1[1.24e-04(?)], HEPH[1.35¢-04(?)],
INPP4A[1.79¢-04(?)], SGK1[3.74e-04(28177128;22911820)]

BRCA 33 14 GATAB3[5.08¢-
41(29662164;29609951;29593425;29546532;29535312;29510139;29462945;29435983;29431200; 2941666
0:29408697;29358704;29351903;29262572;29207126;29202657;29123100;29053396;28966727;28965624
:28945747;28884749;28810293;28805661;28789340;28752189;28722108;28703335;28693516;28690657;
28611201;28581515;28580595;28574279;28514748;28428285;28423734;28394898;28351929;28288473;2
8273452;28258171;28211079;28078827;28077797;28066512;28038704;28027327;27997592;27917009;27
904775;27900363;27867016;27829216;27809618;27666519;27654269;27588951;27556500;27556158;275
14395:27473079;27356755;27354564;27338760;27283966;27184484;27154416:27093921;27041579;2701
8307;26998104;26960396;26922637;26907767;26852374;26825466;26772397;26768031;26730200;26719
157;26682631;26657142;26648682;26637396;26603012;26510790;26486740;26467651;26465236;264514
90;26428280;26313026;26249178;26160249;26028330;26008846;25994056;25906123;25850943)],
MAP3K1[7.40e-
23(29559730;29372690;29371908;29339359;29296238;29139094;28985766;28757652;28672935: 2860826
6:28580595;28491135:28408616;28344865;28178648;28029147;28027327;27572905;26920143; 26803517
:26770289;26759750;26695891;26458823;26094658;25798844;25529635;24993294: 24759887;24743323;
24595411;24386504;24340245;24253898;24218030;24177593;23634849;23577780;23544012;23225170;2
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791674;21748294;21475998;21445572;21415360;21197568;21118973;20809358;20690207;20605201;205
54749;19887619;19843670;19656774;19617217;19607694;19232126;19094228;19092773;19088016;1902
8704;18973230;18785201;18612136;18437204;18355772;17997823;17529967)], CBFB[7.99-
13(28077088;28027327;26870154;26643573;22722202;22722193;9586906)], MAP2K4[2.53¢-
10(28491135;28446401;28344865;28027327;27792260;26907767;26249178;25086928;24194916:2272219
3:22522925;19593635;19404734;15578079;12097290;11754110)], FCRL5[1.95¢-06(?)], TBX3[3.17¢-
06(29344954;28238063;28215225;27632063;27553211;27100732;26920143;26579496;26451490;2624917
8:26215676;25552398;25343378;23733266;23624936;22722201;22535523;22532574;22039763;21098263
:20942798;21779450;19858224;19828084;19403417;19218121;18245468;18025091;16049973;15781639;
15289316;11255752)], KLF4[1.07¢-
05(29614984;29552326;29322784;29200954;29185119;29133945;28988130;28656310;28565864;2842371
8:28422735;28289232;28167342;28068319;27721402;27609189;27590511;27502039;27323810;27300169
:27109463;27082853;26998096;26840086;26825466;26729194;26657485;26459242;26420673;26356142;
26191205;26110566;26053033;25879941;25834779;25819032;25789974;25652398;25616642;25481840;2
5428807;25417726;25368523;25220908;25202123;25127259;25122612;24824039;24675390;24532790;24
531713;24386275;24088818;24037901;23974095;23770845;23737434;23451207;23384942;23376074;233
74354;23019226;22908280;22751119;25436680;22528804;22489015;22389506;22037779;21750654; 2167
4249:21586797;21518959;21263130;21261996;21242971;20937839;20356845;19503094;19276356;18376
139;17908689;17472751;17308127;16244670;15102675;11551969)], FOXAL[1.09e-
05(29416660;29396764;29358704;29180470;29123100;28943920;28884749;28867731;28865492; 2881623
6;28789340;28756535;28658208;28534958;28514748;28455227;28361702;28350011;28336670;28273452
:28270510;28215225;27997592;27959926;27926873;27835577;27185372;27791031;27672107;27524420;
27514395;27499099;27496708;27473079;27390128;27378691;27284343;27233940;27212698;27197147;2
7103403;27062924;27045898;27034986;27005559;26926684;26919034;26708273;26541755;26537518;26
527523;26510790;26476779;26451490;26431101;26404658;26363213;26298189;26260807;26160249;260
08846;25995231;25994056;25762479;25755696;25752574:25716347;25707489;25652398;25531315;2543
5372;25422910;25415051;25264199;25248036;25234841;25223786;25175082;25155268;25145671;25122
612;25100862;25071007;25016694;24962896;24891455;24887547;24830797;24802759;24758297;246395
48;24596378;24596370;24564526;24549642;24528009;24484401;24434785;24415069;24392136)],
TPRX1[2.41e-05(?)], ZFP36L1[5.67e-05(19146866;17855657)], FAMA47C[1.11e-04(?)], GLA[1.40e-
04(29689288;28464803;28212442;27009385;25980823;25335329;24754877;24289581;22516725;2147586
4;16264182;15763439;15607568;15208499;15138577;15138562;14521914;12810158;12684675; 12538085
:11291069;10780877;10699943;9218004;8669881;7491296;8375111;8210965;8319825;8435199;1399132;
2216462;3288258:3702424;6601977)], HISTIH3B[1.41e-04(?)], NCOR1[2.17¢-
04(27699256;27499907;26920143;26219265;25670202;24563328;22722201;21731475;20003447;1978132
2:19183483;19122196;18768663;17130524;16886664;16609009;16529049;16019133;15225781;15225779
;12684393;12124798)]

HNSC 24 9 AJUBA[8.10e-08(29053175;28126323;29034103;25303977)], NOTCH1[2.95¢-
07(29489439;29340043;29331751;29232766;29146722;29068587;29053175;28195818;27965308;2759550
4;27380877;27117272;27035284;27028310;26927514;29034103;25836654; 2563386 7;25588898; 25580884
:28324520;25440877;25303977;25275298;25234595;24787294;24670651;24667986;24292195;24277457;
24001612;23750501;23714515;23645351;23607916;22773520;21798897;21798893;20175927;20127005; 1
9550121)], EPHA2[6.94e-07(24864260;22455776;21955398;18425361)], ZNF750[4.766-06(26949921)],
NSD1[3.03¢-05(29636367;29340043;29213088;29053175)], PEG3[5.65¢-05(?)], CD248[5.87e-05(?)],
ADCYS8[1.52¢-04(?)], FCRL4[1.68¢-04(?)]

LAML 17 7 FLT3[5.7%-
61(29721667;29716633;29696374;29692343;29688850;29682194;29665898;29664232;29663558; 2965439
8,29654265;29643943;29625580;29624746;29573577;29563537;29556023;29551027;29541391;29534404
:29530994;29507660;29505696;29491461;29487059;29472722;29472720;29472718;29463564;29463558;
29437468;29431743;29416774;29408852;29384595;29372308;29343975;29339551;29336115;29330746;2
9310020;29309772;29306105;29304116;29296935;29286103;29286055;29274134;29262547;29257272;29
254227:29249819:29231051;29227476;29212189;29209600;29206680;29193057;29188605;29187377;291
72276;29166740;29166738;29142066;29100302;29090521;29080039;29079128;29074603;29069784;2905
9168;28989589;28980058;28978861;28978821;28967922;28940816;28933735;28923882;28914261;28895
560;28893624;28884855;28883285;28883284;28882949;28881711;28858244;28851457;28841206:288368
68:28835438;28830460;28823257;28810324;28799432;28793301;28767575;28753595;28748750)],
SRSF2[1.30e-
12(29721207;29549983;29549529;29472724;29309772;29249818;29181548;29148089;28953917;2875177
1;28555081;28255022;28152414;28054536;27137476;27486981;27256388;27135740;27023522;26849014
:26848861;26848006;26820131;26812887;26799334;26542416;26514544;26115659;25553291;25533824;
25445211;25412851;25220401;24989313;24970933;24923295;23996481;23645565;23558522;23349007;2
2823977;22773603;22722453;22431577;22389253)], NPM1[1.77¢-
12(29721667;29696374;29665898;29661468;29625580;29624746;29622865;29573577;29563537;2955602
3:29541391;29534404;29530994;29519869;29491461;29472722;29441887;29435155;29423110;29408852
:29402726;29343273;29330746;29310020;29286103;29283500;29274134;29254789;29254227;29249819;
29238371;29224316;29221119;29219176;29193057;29188605;29172276;29166740;29166738;29157973;2
9111347;29090521;29079128;29069784;28978861;28971903;28923882;28920929;28882949;28841206;28
836868;28835438;28830460;28823257;28753595;28740552;28710806;28698788;28679652;28618016;285
74487;28569789;28475434;28473620;28471807;28456748;28452374;28411256;28407515;28384310;2838
0436;28368672;28362701;28341738;28318150;28315400;28297624;28294102;28245376;28219218;28210
583;28167452;28163010;28152414;28111462;28106537;28090023;28070990;28055106;28017614;279958
76:27994664;27983727;27906185;27899775;27865970;27864740;27841873;27595757;27581357)],
WT1[1.14e-
09(29739109;29573577;29563537;29551027;29452230;29434724;29408852;29407184;29388165: 2938619
5:29306105;29296935;29286103;29240258;29227476;29166742;29166740;29152069;29096332;29070097
:29041012;28994041;28980766;28954349;28949050;28923882;28846953;28830889;28830460;28810324;
28567073;28521413;28477011;28475434;28454430;28400619;28395566;28321480;28211167;28163010;2
8159598;28139337;28125133;28114959;28114350;28074068;28024475;27974109;27941286;27893200;27
889611;27866185;27821287;27801325;27636548;27694926;27659531;27612989;27575502;27544285;275
12765;27499136;27478011;27359055;27342485;27285584;27252512;27225156;27197573;27149388;2711
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1858;27062340;27055875;26992216;26970379;26941285;26893773;26725349;26644203;26531831;26520
650;26519872;26499507;26451309;26284582;26234722;26224397;26221900;26138637;26137066;260540
17;26046002;26012361;25956466;25932436;25890432;25841655;25835542;25807502;25805812)],
TET2[1.32¢-
06(29721207;29702001;29664232;29661468;29624746;29573577;29491461;29472724;29343972;2933177
4;29309772;29306105;29285580;29274134:29249818;29219176;29150453;29148089;29029424: 28992762
:28978861;28978821;28923882;28823558;28823257;28642303;28555081;28407691;28400619;28315400;
28297624;28255022;28242787;28167452;28152414;28074068;28070990;28053194;27881874;27821287;2
7658049;27486981;27477909;27449473;27424808;27391574;27389053;27359055;27352183;27285584;27
215596;27055875;27050425;27023522;26984174;26941285;26876596;26849014;26848006;26828965; 268
12887;26789100;26725349;26703470;26666714;26666262;26586702;26568194;26524018;26414667;2637
5248;26277372;26234722;26118500;25956466;25886910;25873173;25700647;25699704;25601757;25482
556;25473623;25426838;25412851;25381129;25311741;25276435;25246247;25200248;25022553;249893
13;24986689;24970933;24898826;24859829;24816242;24778653;24726781;24659740;24609756)],
ROCK2[1.39e-05(?)], CEBPA[1.60e-
05(29624746;29622865;29573577;29541391;29534404;29515250;29483711;29435155;29431622;2940272
6;29343483;29310020;29306105;29286103;29238371;29193057;29188605;29032147;29025912;28978861
:28923882;28900037;28895127;28882949;28830460;28753595;28745571;28663557;28504718;28473620;
28452374;28380436;28357685;28341738;28299657;28250006;28249600;28210006;28203345;28186500;2
8179278;28144729;28090023;28074068;28070990;27899775;27812248;27694926;27626217;27512765;27
367478;27359055;27350755;27288520;27285584;27129260;27062340;27040395;27034432;27023522;270
12040;26992835;26040274;26876264;26802049;26725349;26721895;26708912;26693794;26676635;2658
6702;26537612;26496024;26488113;26466372;26460249;26450903;26419342;26408402;26386075;26377
688;26376842;26375248;26374622;26239249;26234722;26174629;26167872;26071459;26053097;260315
27,26025484;25987038;25976969;25938608;25932436;25794001;25787321;25732229:25659730)]

ov 17 5 BRCAL[3.35€-
07(29731958;29712865;29707124;29707112;29673794;29671401;29665859;29661778;29660759; 2965958
7.29618939;29617664;29617652;29615458;29610032;29606854;29602379;29580810;2956 7272;29566657
:29558274;29550970;29550896;29545475;29534594;29522266;29511213;29493783;29487695;29483665;
29479477;29470806;29464354;29464067;29460478;29453736;29447163;29445031;29429842;29428045;2
9427345;29409816;29409476;29405995;29404838;29383094;29371908;29368626;29367421;29361001;29
356917;29348823;29344385;29340030;29335712;29319983;29310832;29307397;29302806;29298688;292
97111;29286205;29282716;29278246;29275357;29273311;29271107;29270046;29262038;29259228;2925
4167;29252925;29236593;29236234;29215753;29203787;29189915;29170526;29168504;29164969; 29153
097;29146938;29143969;29138572;29137324;29133618;29132681;29121898;29109859;20096890;290942
53:29084914;29082457;29081841;29063517;29061375;29058922;29054568;29054544;29053726)],
CDK12[7.56e-
06(28950147;27905519;27662623;27241520;26247403;25429106;24554720;24240700;22012619;2172036
5)], ZBTB18[2.41e-05(?)], ADGRE3[5.11e-05(?)], HLA-G[1.39%-
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LUAD 29 4 STKI1[l.35e-
14(29575851;29540834;29535211;29337640;29307989;29279706;29219616;29198084;29191602;2916834
6:29066508;28914263;28911955;28884744;28754670;28652249;28619094;28538732;28435024;28413430
:28387316;28336552;28205554;28145643;27923066;27687306;27565922;27467949:27299180;27218826;
27151654;27121209;26960398;26917230;26833127;26829311;26625312;26599269;26477306;26463840;2
6420428;26350096;26124082;26119936;26087898;26069186;26066407;25982285;25969368;25964588;25
695224;25634010;25477232;25444907;25278450;25122068;25036236;25031567;24828662;24482041;244
68202;24448687;24297535;24236184;24086281;24077454;24054548;23276293;23047306;22768234;2259
0557;21532627;20057966;19661141;19483050;19353596;19176640;19165201;17711506;17676035;17216
011;16912160;16580634;15639728;15021901;12097271;11212897;10508479)], KCNB1[7.22¢-05(?)],
HGF[8.67¢-
05(29717265;29558956;29371783;29253515;29187584;29168346;29125233;29063069;29058790;2905023
1;28944826;28940757;28938541;28903317;28843992;28559461;28554854;28485480;28469968; 28416482
:28404966;28373408;28332364;28260071;28192876;28164089;28164087;28121629;28096505;28064454;
28061464;28038979;27873490;27863726;27803065;27716616;27566197;27525306;27422710;27374174:2
7133742;27071409;27015549;26983447;26923077;26919104;26919096;26870265;26811313;26719536;26
701889;26695082;26639195;26579470;26542886;26463323;26416301;26153496;26138771;26115510;260
63323;26045672;26038598;26011628;25992382;25992367;25936889;25925948;25919140;25889721;2587
7780;25806289;25798262;25757678;25640943;25575814;25543140;25522765;25504327;25502629; 25449
774;25444907;28548075;25314153;25266653;25249428;25130970;25057941;24983493;24959087;249524
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:26647218;26639163;26515759;25991819;25925619;25708834;25623213;25612555;25529125;25391967;
25275047;25030036;24327543;24240734;23372794;23285191;22961721;21173233;20054396;16531332;1
2651942;11396639)], GNAL3[2.74e-
05(28302137;27980305;26989201;26819451;26773040;26616858;26608593;25991819;25274307;2369960
1;23292937;23143597;22343534)], MEF2B[4 51¢-
05(29309299;28851661;27166360;26245647;26089142;25769544;23974956;23292937;22343534; 2179611
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LGG 10 3 ATRX[L5le-
10(29111096;29091765;29027701;28980701;28419269;28392842;27758882;26508407;25664944:2471021
7.23373454)], FUBP1[3.39¢-06(29606613;23373454)], CIC[4.10e-05(23373454)]

PAAD 21 3 CHRD[L.20e-06(?)], CDC27[4.28¢-05(25912578)], TGFBR2[L.44e-
04(29393426;28809762;28373289;26279302;26255562;25791160;23690952;23378339;23237571;2310386
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LUSC 13 2 PDYN[1.78e-05(?)], CYP11B1[3.67e-05(27347096)]

MED 8 2 SMO[2.38e-
15(29531057;29378965;29348431;20274272;29208776;29055107;28923910;28873303;28833911;2871605
2,28618224;28605510;28487292;27785591;27495899;27236920;27069629;26960983;26891329;26691947
:26633513;26450969;26371509;26323341;26286140;26169613;26113054;26080084;25859932;25636740;
25505589;25485584;25484239;25376612;25355313;25306392;25131638;24994715;24973920;24951114;2
4871706;24276242;24068730;23872071;23671675;23662017;22966790;22923130;22869526;22851551;22
452947;24451804;22084163;21618411;21501498;21325292;21143927;21123452;20881279;20524040;204
93695;20386868;20024066;19726788;19701203;18826648;18502968;18288402;17413002;17017853;1670
7575;16618744;15806168;12192414;11965540;10984056;10564585)], DDX3X[4.64¢-
14(29582169;29222110;27180681;27058758;26290144;25724843;24608801;22832583;22820256; 2272282
9)]

NB 2 2 ALK[4.07e-
18(29660984;29642598;29638111;29600072;29559559;29556564;29555900;29535836;29515255; 2950595
8;29492199;29466695;29455642;29441070;29380702;29378002;29374774;29371588;29357780;29321660
:29317532;29296183;29290991;29203817;29184034;29084134;29081033;29069774;29027209;29018329;
28915622;28915608;28871274;28800395;28756644;28676342;28674118;28666189;28665006;28662353;2
8604107;28602975;28546523;28521285;28458126;28425916;28423360;28350380;28338501;28326957;28
178969;28163672;28139105;28069802;28030793;27997549;27879258;27830764;27707976;27684973;276
55666;27604320;27573755;27483357;27471553;27285993;27179218;27165366;27076624;27013922;2700
9859;27009842;26986945;26925973;26893860;26835380;26829053;26826611;26794043;26750252;26735
175;26687816;26633716;26630010;26616860;26539795;26517508;26503946;26468446;26388126;263091
60;26299615;26206265;26122839;26067621;26059187;26005112;25979929;25950466;25925003)],
PTPN11[7.12¢-
08(29189514;28947394;28329685;27655895;27362227;24628801;23813970;23334666;21548061; 2046175
6:18328949;16631468;16518851;15604238)]

PRAD 25 2 LCTL[2.85e-06(?)], AR[5.33¢-
05(29734647;29733466;29725990;29721186;29716963;29712835;29707651;29707137;29699261;2970000
3;29695920;29693622;29693262;29691406;29686105;29684818;29682197;29682196;29670000;29668110
:29666833;29666783;29666302;29665325;29662238;29658587;29641940;29633296;29632047;29618577;
29594945;29588330;29581250;29579692;29574703;29572225;29571584;29568400;29566488;29562689;2
9562494;29555975;29555663;29552052;29542849;29541371;29540675;29535823;29530947;29527701;29
523504;29508425;29490263;29488772;29477539;29477409;29474983;29473182;29464071;29463549;294
62692;29456113;29453313;29449534:29448139;29444261;29441606;29438990;29438723;29436611;2943
1615;29429990;29427323;29425687;29423094;29421751;29417861;29402932;29398263;29395951; 29388
326;29386530;29383186;29383141;29383125;29381490:29379164;29378906;29372107;29371946;293671
97,29366632;29360794:29359890;29358171;29353883;29346776;29339080;29334357;29332354)]

CLL 5 1 MYDB88[L.34e-
09(29286214;29242635;28994094;28892161;28664939;28424451;28399885;28255015;28241765;2795990
0;27742074;27633522;27491692;27198719;27060156;26630574;26482097;26454445;26316624: 26230596
:26181643;26136429;26053404;25696845;25605254;25480502;24943833;24943832;24782504;2476 7771;
24103588;23935380;23684423;23665546,;23477936;23419703;23246696;23178471;22150006;19050243)]

CESC 3 1 KRTAP4-11[1.456-05(?)]

MM 7 1 ZNF717[9.14e-07(?)]

RHAB 1 1 SMARCB1[2.52e-
07(29696793;29670784;29602769;29528755;29512865;29428974,29397238;29339179;29324471;2931606
6,29280680;29271065;29258531;29228610;29110337,28966010;28945250;28824165;28812319;28789476
,28777153;28714904,28521298;28434767,28382842;28338502,28109176,;28108836;28084340;27966820;
27783942;27734605;27695363;27639430,27467095;27380723;27356182;27338635,27267444,27218413;2
7095948;27092963;27013922,26920892,26755072;26646792,26578851,26567940,26557502,26407663;26
370283;26363008;26342593,26234633;26073604,25751458,25638158,25494491,25479928;25312828,253
07865,25274825;25268025,25262118;25246033;25200863;25169151,25114695,25053104,;25018128,;2501
6934;24972932;24853101,24585572;24555876;24503755;24423609;24418192;24327545,24308011,24287
458;24141276,24075062,23880166,23364536;23190500;23154773;23084579;23074045,23060122;229972
01;22814326;22201954;22180295;21934399;21775180;21724432;21566516;21417895;21412926)]

RPTN[2.17e-05(?)]
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Note: The values in square brackets are p-values by WITER. The significant genes are determined according to the p-values (FDR<0.1). The number in
the brackets are the PubMed ID of papers co-mentioning the disease name and gene symbol according to search APl in PubMed database,
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term="DiseaseNames(inlcuding homonymies)’[tiab]%29+AND+“GeneSymbol
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(including RefSeq mRNA IDs)” [tiab]. For genes with over 100 papers, only the most recent 100 papers are shown. “-”” denotes no unique significant
genes. “a”: number of total significant genes. “b”: number of unique significant genes. ALL: Acute lymphoblastic leukemia, AT: Astrocytoma, BLCA:
Bladder Urothelial Carcinoma, BRCA: Breast invasive carcinoma, CARC: Carcinoid Cancer, CESC: Cervical Carcinoma, CLL: Chronic lymphocytic
leukemia, COAD: Colon adenocarcinoma, DLBCL.: Diffuse large B-cell lymphoma, ESCA: Esophageal carcinoma, GBM: Glioblastoma Multiforme,
HNSC: Head and Neck Squamous Cell Carcinoma, KICH: Kidney chromophobe carcinoma, KIRC: Kidney Clear Cell Carcinoma, KIRP: Kidney
Papillary Cell Carcinoma, LAML: Acute myeloid leukemia, LB: B-cell lymphomas, LGG: Low Grade Glioma, LIHC: Liver Hepatocellular carcinoma,
LUAD: Lung Adenocarcinoma, LUSC: Lung Squamous Cell Carcinoma, LUSE: Small cell lung carcinoma, MED: Medulloblastoma, MEL.:
Melanoma, MM: Multiple myeloma , NB: Neuroblastoma, OV: Ovarian serous cystadenocarcinoma, PAAD: Pancreatic Adenocarcinoma, PRAD:
Prostate Adenocarcinoma, RHAB: Rhabdoid tumor, STAD: Stomach Adenocarcinoma, STS: Soft Tissue Sarcoma, THCA: Thyroid Carcinoma,
UCEC: Uterine corpus endometrial carcinoma

Table S6: Sample size and variant number of 34 cancer datasets

Full Name Abbreviation Sample Size Variant Ratio aEstimated
Number Sample Size
Lung Adenocarcinoma LUAD 394 106088 269.26 212
Melanoma MEL 289 94715 327.73 174
Head and Neck Squamous Cell HNSC 407 59389 145.92 391
Carcinoma
Breast invasive carcinoma BRCA 1093 54932 50.26 1134
Lung Squamous Cell Carcinoma LUSC 175 53384 305.05 187
Stomach Adenocarcinoma STAD 244 42113 172.59 330
Uterine corpus endometrial UCEC 255) 38733 151.89 375
carcinoma
Bladder Urothelial Carcinoma BLCA 142 33623 236.78 241
Colon adenocarcinoma COAD 244 31461 128.94 442
Kidney Clear Cell Carcinoma KIRC 484 28199 58.26 978
Ovarian serous oV 480 27946 58.22 979
cystadenocarcinoma
Glioblastoma Multiforme GBM 365 21601 59.18 -
Esophageal carcinoma ESCA 160 18935 118.34 -
Prostate Adenocarcinoma PRAD 420 16618 39.57 -
Multiple myeloma MM 205 10663 52.01 -
Low Grade Glioma LGG 227 9620 42.38 -
Small cell lung carcinoma LUSE 30 8377 279.23 -
Pancreatic Adenocarcinoma PAAD 233 7674 32.94 -
Liver Hepatocellular carcinoma LIHC 150 7614 50.76 -
Kidney Papillary Cell Carcinoma KIRP 111 7513 67.68 -
Cervical Carcinoma CESC 37 6104 164.97 -
Thyroid Carcinoma THCA 325 6095 18.75 -
Diffuse large B-cell lymphoma DLBCL 56 5742 102.54 -
Neuroblastoma NB 351 5042 14.36 -
Acute myeloid leukemia LAML 196 4052 20.67 -
Medulloblastoma MED 331 3483 10.52 -
Chronic lymphocytic leukemia CLL 223 3455 15.49 -
Carcinoid Cancer CARC 54 1650 30.56 -
Kidney chromophobe carcinoma KICH 65 1263 19.43 -
B-cell lymphomas LB 26 1168 44.92 -
Acute lymphoblastic leukemia ALL 55 613 11.15 -
Rhabdoid tumor RHAB 32 240 7.5 -
Soft Tissue Sarcoma STS 15 117 7.8 -
Astrocytoma AT 42 95 2.26 -

Note: a: the estimated sample size is for detecting 30 significant genes by WITER. —: the sample
sizes are not estimated because of the unreliable ratio derived in small samples.
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Table S7: The overlapped significant genes among multiple cancers detected by WITER
C CL CE

Cancer A AT | BL | BR D U ES | G H Kl Kl Kl LA | LI LG
LL C C
A A

LU [ L LB | M M M N o PA | PR
LB [ CE | C B NS | C R RP [ M H G SE us M ED | EL | B \Y A A
D D

L

L SsC U
CL | C A M c H C L C A C

D

O >
O»00
©>»ID

w

w

[N

[N
[N

=

N
N

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

34 | - - - - - - - - - - - - - - - - - - -

[
]

'

'

'

'

'

'

'

'

'

'

'

'

'

[

N

—
[N

a1 | - B - - - - - B

0

7

[

ov

PAAD 11

ol
P

13

=
a
N

PRAD

RHAB 0

o|lo|lo|v|o|lo|o|s|w|k ||k |lolan(s v o |k o o]~

STS 0 0| - -

,_

>

<

[
o|lo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o
ol|o|o|o|o|o|o|o|r|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|-
Rlolo|la|nv|m|o|o|as|vfk|o|k|o|w|d sk sk |~|o|s|wvo|n|N k| o |d

'
ook |r|r|o|k|k|k|r|r|r|r kR Rr Rk ek |o|- |~
NI E IR EIENER N EEENEIN RN E
- -
Njolo[N[N|o|o|a|a sk sk |N|a N s R |w|k| s>
ol|lo|lo|a|rslo|o|v|s |k |alk|a|ua|k vk |w e |w o
o|o|o|vvo|o|lo|w|Nv|k|o|kwN]k ke o|e
rlolo|r|r|r|o|r|k|r|r|r Rk kR~
NIT=Y (=1 DS Y SN F-1 1Y [NC) P PR PR PN Y SN TN
o|o|o|r|o|o|o|o|s|s|r|~N|r |0
Flo|lo|kr|k|r|lolr|k|k|k|F|-
IR E
solovns|o|a|k |~
ol|o|o|o|o|o|n
w|o|o|nv |~
o

o
N
=

STAD 10 0 45 | -

[

[ L=l (=] =] F- [V BN Ea ) ENE (VR DGH g B ol Kol B Dl N ol B ol K6 0 (6 ) [OV) B N ] Hood ol B ol (3N ]
ON|ICIO(F|WN|IC|W(FINIF|FIFR (NP RN (PRI RN N NN (oo
RWoOo(R|IN(W|IO|w(F|W(FIN|F[W|F(FWF[F]FP PN NN~
rRloolo|lw|lw|w|o|u|w [Nk |w |k (av Nk |wk s o
N(o|lo|lo(w|Fk[(NV|O|A|[Ww|k|F|O|FR[w|lw|F NN
(=X (= f=1 I R N =1 P P PR T T N N TN T TR )
Rwo|loNMdIN(w|o|lOg|F &R |F P~ lw( -
== S = S Y Y R S L)
w|o|ofo|w|k|s|o|N|w|w(-
o
N
Ll Eol k=]l (=) (V] oy [V fan ) By o]

o
w|u|olo|a
olo|o|

THCA 1 2 4 0 3 0 0 4 8

o
o
N
o
w
N
w
o
o
N
o

Notes: ALL: Acute lymphoblastic leukemia, AT: Astrocytoma, BLCA: Bladder Urothelial Carcinoma, BRCA: Breast invasive carcinoma, CARC: Carcinoid Cancer, CESC: Cervical Carcinoma, CLL: Chronic
lymphocytic leukemia, COAD: Colon adenocarcinoma, DLBCL.: Diffuse large B-cell lymphoma, ESCA: Esophageal carcinoma, GBM: Glioblastoma Multiforme, HNSC: Head and Neck Squamous Cell Carcinoma,
KICH: Kidney chromophobe carcinoma, KIRC: Kidney Clear Cell Carcinoma, KIRP: Kidney Papillary Cell Carcinoma, LAML: Acute myeloid leukemia, LB: B-cell lymphomas, LGG: Low Grade Glioma, LIHC:
Liver Hepatocellular carcinoma, LUAD: Lung Adenocarcinoma, LUSC: Lung Squamous Cell Carcinoma, LUSE: Small cell lung carcinoma, MED: Medulloblastoma, MEL: Melanoma, MM: Multiple myeloma , NB:
Neuroblastoma, OV: Ovarian serous cystadenocarcinoma, PAAD: Pancreatic Adenocarcinoma, PRAD: Prostate Adenocarcinoma, RHAB: Rhabdoid tumor, STAD: Stomach Adenocarcinoma, STS: Soft Tissue
Sarcoma, THCA: Thyroid Carcinoma, UCEC: Uterine corpus endometrial carcinoma
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Table S8: Rescued genes in the Breast invasive carcinoma dataset by different tools
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a: The significant genes detected by a tool in the full dataset. b: The significant genes detected by
a tool in the extracted random samples. c: This item is inapplicable.


https://doi.org/10.1101/437061

