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Abstract 22 

Recent evidence suggests that the human functional connectome is stable at different time 23 

scales and unique. These characteristics posit the functional connectome not only as an 24 

individual marker but also as a powerful discriminatory measure characterized by high 25 

intersubject variability. Among distinct sources of intersubject variability, the long-term 26 

sources include functional patterns that emerge from genetic factors. Here, we sought to 27 

investigate the contribution of additive genetic factors to the variability of functional 28 

networks by determining the heritability of the connectivity strength in a multivariate 29 

fashion. First, we reproduced and extended the connectome fingerprinting analysis to the 30 

identification of twin pairs. Then, we estimated the heritability of functional networks by 31 

a multivariate ACE modeling approach with bootstrapping. Twin pairs were identified 32 

above chance level using connectome fingerprinting, with monozygotic twin 33 

identification accuracy equal to 57.2% on average for whole-brain connectome. 34 

Additionally, we found that a visual (0.37), the medial frontal (0.31) and the motor (0.30) 35 

functional networks were the most influenced by additive genetic factors. Our findings 36 

suggest that genetic factors not only partially determine intersubject variability of the 37 

functional connectome, such that twins can be identified using connectome 38 

fingerprinting, but also differentially influence connectivity strength in large-scale 39 

functional networks. 40 

Keywords: Connectome fingerprinting; Multivariate modeling; Twin study; Functional 41 

connectome  42 
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Introduction 43 

In the past few years, fMRI research has been living a paradigm shift, moving from 44 

population inferences to the study of individual differences (Dubois & Adolphs, 2016; 45 

Seghier & Price, 2018). Previous studies have paved the way for the study of individual 46 

variability in functional connectivity patterns of the human brain (Finn et al., 2015; 47 

Miranda-Dominguez et al., 2014; Mueller et al., 2013). In this context, resting-state fMRI 48 

(rs-fMRI) showed to be particularly powerful in determining underlying differences in 49 

the wiring patterns of functional connectome (FC) profiles. Indeed, connectome-based 50 

individual predictions achieved identification accuracies as high as 99% when comparing 51 

functional connectivity matrices (Finn et al., 2015). Hence, the endeavor to identify and 52 

to characterize the individual functional connectivity architecture has been shown to have 53 

an imperative place in the study of individual differences. 54 

Recent and mounting evidence suggests that FC profiles are stable at different time scales 55 

(Gratton et al., 2018; Jalbrzikowski et al., 2020; Miranda-Dominguez et al., 2018; Sato, 56 

White, & Biazoli, 2017). This characteristic posits the FC not only as an individual marker 57 

due to the comparably low intrasubject variability but also as a powerful discriminatory 58 

measure characterized by the high intersubject variability. Gratton et al. (2018) showed 59 

that despite functional networks displaying common organizational features at the group-60 

level, the similarity between functional networks substantially increased at the individual 61 

level when evaluating the same participant in different tasks and sessions. This evidence 62 

supports the fact that individual stable patterns are crucial for explaining the intersubject 63 

variability of functional networks. Therefore, these findings suggest that sources of 64 

intersubject variability are stable over time, acting as individual signatures or 65 

‘fingerprints’. 66 
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Seghier and Price (2018) refer to the presence of distinct sources of intersubject variability 67 

that differ in their timescale. In the lower bound, there are sources of variability due to 68 

mood states and context. The medium to long-term sources of intersubject variability 69 

include functional patterns built from the intimate interaction of an individual with the 70 

environment and genetic factors (Seghier & Price, 2018), respectively. Interestingly, 71 

functional networks show distinct levels of intersubject variability. Networks comprising 72 

higher-order associative cortical areas seem to remarkably contribute to the FC 73 

distinctiveness (Finn et al., 2015; Jalbrzikowski et al., 2020; Kaufmann et al., 2017; 74 

Miranda-Dominguez et al., 2018, 2014; Mueller et al., 2013), which, in turn, might be 75 

due to a high intersubject (Gratton et al., 2018; Mueller et al., 2013) and low intrasubject 76 

variability (Laumann et al., 2015; Poldrack et al., 2015). On the other hand, functional 77 

connectivity within networks that comprises primary sensory and motor regions showed 78 

high intrasubject and low intersubject variability (Gratton et al., 2018; Laumann et al., 79 

2015; Mueller et al., 2013; Poldrack et al., 2015). The importance of genetic factors to 80 

these different levels of intersubject variability, however, is yet to be further investigated. 81 

Recent reports suggest that genetic factors crucially influence the intersubject variability 82 

in the functional connectome (Colclough et al., 2017; Demeter et al., 2020; Elliott et al., 83 

2019; Ge, Holmes, Buckner, Smoller, & Sabuncu, 2017; Miranda-Dominguez et al., 84 

2018; Yang et al., 2016). Connectome-based identification analyses were extended to the 85 

identification of twin pairs suggesting that part of the intersubject variability is due to 86 

genetic factors (Demeter et al., 2020; Miranda-Dominguez et al., 2018). Accordingly, 87 

studies indicate that the average heritability of the connectivity strength of the whole-88 

brain connectome is between 15% to 25% within the Human Connectome Project dataset 89 

(Adhikari et al., 2018; Colclough et al., 2017; Elliott et al., 2019). On the other hand, the 90 
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heritability of the connectivity strength within some functional networks seems to be 91 

much higher (Ge et al., 2017; Teeuw et al., 2019) than in the whole-brain connectome. 92 

However, substantial differences in brain parcellation schemas (Arslan et al., 2018; 93 

Eickhoff, Yeo, & Genon, 2018; Salehi et al., 2020) undermines the effort to determine 94 

the relationship between heritability and the different levels of intersubject variability. 95 

Here, we (1) reproduced and extended the identification analysis introduced by Finn et 96 

al. (2015) to determine the functional networks that best uncovered individual uniqueness 97 

and intersubject similarity among matched twin pairs, and (2) we investigated how the 98 

different levels of intersubject variability of functional networks relate to their heritability 99 

by using a multivariate ACE modeling approach with bootstrapping. In our approach, 10 100 

functional connections (edges) were randomly drawn from the pool of connections and 101 

were used as variables in a multivariate ACE model. This model decomposes the variance 102 

of each variable (i.e., each edge) and the covariance between variables into additive 103 

genetic influences (A, or narrow-sense heritability (Mayhew & Meyre, 2017)), shared 104 

environment (C) and external sources of variability (E). Here, we only focused on the 105 

partitioning of variance to estimate network heritability, doing so by averaging the 106 

decomposition of variances into A, C and E components across variables (i.e., across 107 

edges) for each model fit. This process was repeated for many iterations which results in 108 

the distributions of means for each component (A, C and E). Additionally, this approach 109 

allows one to easily generate null distributions for statistical testing by randomly shuffling 110 

monozygotic and dizygotic twin statuses at each iteration (Colclough et al., 2017).  111 
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Results 112 

Functional connectivity-based identification analyses  113 

Individual identification. Whole-brain functional connectivity matrices were 114 

determined by using two distinct parcellation schemas: "Shen" (Shen, Tokoglu, 115 

Papademetris, & Constable, 2013) (268 nodes, 71,824 edges) and "Gordon" (Gordon et 116 

al., 2014) (333 nodes, 110,889 edges). For brevity, we only report the results using “Shen” 117 

parcels with appropriate reference to equivalent results using “Gordon” parcels in the 118 

supplementary material. Connectivity-based identifications were performed comparing 119 

pairs of resting-state functional connectivity matrices4. Resting-state data were acquired 120 

in two different days for every participant included in this study, resulting in two distinct 121 

functional connectivity matrices per participant. These pairs of connectivity matrices 122 

were separated into a ‘target’ and a ‘database’ set. Individual identification was 123 

determined by computing the Pearson’s correlation score of a target connectivity matrix 124 

from the ‘target’ set (n=380) with all connectivity matrices from the ‘database’ set 125 

(n=380). Following that, the maximum correlation score among all comparisons between 126 

the target matrix and each of the FC matrices from the ‘database’ set should correspond 127 

to the correlation of the functional connectivity matrices of the same participant in 128 

different sessions. This process was repeated for all functional connectivity matrices 129 

within the ’target’ set (Figure 1A). The accuracy of the method was defined by the 130 

proportion of correct predicted participants. 131 

Individual identification analyses were determined with whole-brain functional 132 

connectome and individual functional networks (Supplementary Table 1). The resulting 133 

accuracy of whole-brain connectome based individual predictions was 97.8% (SD = 134 

0.4%), in agreement with previous studies (Finn et al., 2015; Waller et al., 2017). We also 135 
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investigated the relevance of individual functional networks for individual predictions by 136 

sectioning the whole-brain functional connectome into sub-matrices of single networks. 137 

From the 8 functional networks previously defined (Finn et al., 2015), the most successful 138 

networks were the medial frontal (93.9 ± 0.5%) and frontoparietal (91.8 ± 0.3%) networks 139 

(Figure 1B and Supplementary Table 1). Note that the visual networks and the default 140 

mode network were the ones with the worst individual identification accuracy.  141 

 142 

Figure 1 - Connectome-based identifications. A) Functional connectivity matrices from 143 

different sessions were grouped into two datasets, which could be either the ‘target’ set or the 144 

‘database’. Following that, we computed the Pearson’s correlation of each individual connectivity 145 

matrix from a ‘target’ set with each connectivity matrix from the ‘database’. Therefore, each row 146 

within the individuals vs. individuals matrix contains the correlation scores between a target’s FC 147 

and all functional connectivity matrices of the database. B) Mean identification accuracies for 148 

individual and twin identification analyses for all functional networks (whole-brain included). 149 

Mean identification for individual prediction was determined from two combinations of 150 

‘database’ and ‘target’ sets (RESTX × RESTY, where X and Y ∈ {1, 2} and X≠Y), while the 151 

mean twin identification was determined from four combinations (RESTX × RESTY, where X 152 

and Y ∈ {1, 2}). Error bars represent the standard deviation. All, whole-brain; MF, medial frontal; 153 

FP, frontoparietal; SC, subcortical-cerebellum; M, motor; VI, visual I; DMN, default mode 154 

network; VA, visual association; VII, visual II. We also present the number of nodes in each 155 

network. 156 
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Twin identification. Previous studies indicate that functional connectivity among higher-157 

order associative brain regions greatly varies across individuals (Gratton et al., 2018; 158 

Mueller et al., 2013), even though they are comparably more stable within an individual 159 

across sessions (Laumann et al., 2015; Poldrack et al., 2015). Thus, we hypothesized that 160 

genetic factors governed sources of high intersubject and low intrasubject variability in 161 

the functional connectome. In order to test this hypothesis, we sought to determine 162 

whether the FC profiles from pairs of twins were more similar compared to the ones from 163 

pairs of unrelated individuals by using connectome-based predictions. 164 

First, we evaluated monozygotic twin identification by computing the correlation 165 

coefficients of the functional connectivity matrices of monozygotic individuals (n=246) 166 

within the ‘target’ set with all matrices in the database (246x380=93,480 comparisons). 167 

Our prediction was based on the selection of the highest correlation score (excluding the 168 

correlation scores between functional connectivity matrices of the same individual) for 169 

each ‘target’ participant vs. ‘database’ iteration. The mean whole-brain based prediction 170 

accuracy was 57.2% (SD = 2.6%). This result indicates that the idiosyncratic FC profiles 171 

might be genetically determined and they are sufficiently stable so one could identify 172 

monozygotic twins well above chance. Indeed, we have performed a permutation test, by 173 

exchanging twin pairs’ identities 1,000 times, such that for each identification iteration, 174 

a new twin pair identity was assigned. The maximum identification accuracy found 175 

through these 1,000 permutations was 1.6%, indicating that the whole-brain based 176 

identification performance is significantly different from the chance level (p-value < 177 

0.001). 178 

Later on, we investigated the ability of specific functional networks in discriminating a 179 

twin pair from pairs of unrelated individuals (Figure 1B). At this stage, the most 180 

successful functional networks were the subcortical-cerebellum (28.6 ± 1.5%) and medial 181 
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frontal (21.1 ± 2.2%) networks. Noteworthy, the most successful functional networks on 182 

twin identification were amongst the ones that best performed on individual 183 

identifications. Nonetheless, a substantial decrease in the successful twin identification 184 

rates was observed for functional networks when compared to the whole-brain 185 

connectome, and these results were particularly affected by the number of nodes within 186 

each network. The least successful functional networks on twin identification were the 187 

ones with the least number of nodes, while the networks with a larger number of nodes 188 

tended to present higher accuracies. The Pearson’s correlation score between the number 189 

of nodes of each network and its ability to correctly identify monozygotic twins was r = 190 

0.95 (p-value = 6.3E-5; Supplementary Table 2), as opposed to a nonsignificant 191 

correlation between the number of nodes and individual identification accuracy (r = 0.52, 192 

p-value = 0.15). This implies that the ability of a priori defined functional networks to 193 

capture similarities in the FC profiles of monozygotic twins differentially relies on the 194 

amount of information provided (i.e., by the number of nodes).  195 

Finally, we performed all the previous analyses for the identification of dizygotic twins. 196 

At this time, we selected only the dizygotic individuals (n=134) within the ‘target’ set, 197 

giving 134x380=50,920 comparisons. For the whole-brain based identification, the mean 198 

prediction accuracy was 8.9% (SD = 2.3%; p-value <0.001). This abrupt change in twin 199 

identification accuracy indicates that the functional connectivity patterns of monozygotic 200 

twins are strictly more similar in comparison to dizygotic twins, which indicates the 201 

relevance of shared genetic background. At the level of individual functional networks, 202 

identification accuracies dropped even further (Figure 1B), and they were also correlated 203 

with the number of nodes of the networks (r = 0.92, p-value < 0.001).  204 
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Fingerprinting as a function of the number of edges  205 

The previous results indicated that twin identification accuracy was correlated with the 206 

number of nodes of functional networks, and hence with the number of edges. To further 207 

investigate the relationship between the number of edges in connectome fingerprinting 208 

and twin identification accuracy, we performed identification analyses using randomly 209 

selected subsets of edges, with 100 random selections per subset size (Byrge & Kennedy, 210 

2018). Our results show that it is possible to identify an individual with high accuracy 211 

using a random subset of edges (Figure 2), with accuracy above 80% using only 500 212 

random edges (a similar finding is reported at Byrge & Kennedy, 2018). However, 213 

monozygotic twin identification only reaches near 50% accuracy using 10,000 random 214 

edges, while dizygotic twin identification accuracy is equal to 8% on average with the 215 

same subset size. Noteworthy, monozygotic twin identification accuracy with 500 216 

random edges was on average equal to approximately 20%, similar to the prediction 217 

accuracy using the medial frontal network (29 nodes and 406 unique edges). On the other 218 

hand, prediction accuracy reached 32% with 1,000 random edges and 46% with 5,000 219 

random edges. At a similar level, the prediction accuracy of the subcortical-cerebellum 220 

network (90 nodes and 4,005 unique edges) was 28.6%.  221 

Therefore, our findings suggest that while it is possible to identify twin pairs above 222 

chance, differences seen across functional networks in twin pair identification may be 223 

mostly driven by differences in the number of nodes/edges. However, the fact that twin 224 

identification accuracy with subsets of random edges could outperform functional 225 

networks with a similar amount of edges suggests that edges might be differently 226 

influenced by genetic factors. 227 
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 228 

Figure 2 - Identification accuracy as a function of the number of edges. Identification 229 

accuracy as a function of subsets of randomly selected edges. Mean identification accuracy and 230 

standard deviation are illustrated as a function of the number of edges (we only evaluated 7 231 

different subset sizes: 10, 50, 100, 500, 1,000, 5,000, and 10,000 edges). Mean and standard 232 

deviation were determined across 100 random edge selections per subset size.  233 

Intra and intersubject variability in the functional connectome  234 

In order to characterize the intra and intersubject variabilities (i.e. among unrelated 235 

individuals, monozygotic and dizygotic twin pairs) for the whole-brain connectome and 236 

each functional network, we arranged the correlation coefficients in four groups 237 

according to their relationship: 1) same individual - SI (n=380); 2) monozygotic twins - 238 

MZ (n=246); 3) dizygotic twins - DZ (n=134) and 4) unrelated individuals - UN 239 

(n=143,640). The distributions of correlations across all these pairs for the whole-brain 240 

and functional networks are illustrated in Figure 3 (Supplementary Figure 1).  241 
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 242 

Figure 3 - Distribution of correlation coefficients between pairs of functional connectivity 243 

matrices for the whole-brain and individual functional networks. Pearson’s correlation scores 244 

were determined from pairs of connectivity matrices (REST1 × REST2), and they were grouped 245 

based on individuals’ genetic relationship. Hence, violin plots show the distribution of the 246 

correlation scores between pairs of matrices of the same individual (SI), monozygotic twin (MZ), 247 

dizygotic twin (DZ) and unrelated individuals (UN).  248 

As one could expect, the mean of the distributions of correlation scores from the SI group 249 

is notably higher than the ones from the remaining groups. This is observed not only for 250 

the whole-brain connectome but also for most of the functional networks, especially for 251 

the medial frontal and frontoparietal functional networks. In order to characterize the 252 
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importance of the distance between these distributions - that is, the effect size - to 253 

identification analyses, we determined identification accuracy as a function of effect size, 254 

Cliff’s delta (Cliff, 1993) (Figure 4, Supplementary Figure 2 and Supplementary Table 255 

3). In Figure 4, we observe that high prediction accuracy is associated with high effect 256 

size, while low prediction accuracy was associated with low effect size. This suggests 257 

that high intersubject variability (which is related to low correlation between unrelated 258 

individuals’ connectivity matrices) and low intrasubject variability (high correlation 259 

between the connectivity matrices of the same individual in different sessions) are crucial 260 

for high prediction accuracy. Additionally, the higher similarity between monozygotic 261 

twins in comparison to unrelated individuals (medium to high effect sizes) suggests that 262 

a portion of this intersubject variability is heritable and differs across functional networks.  263 

 264 

Figure 4 - Dependence of connectome-based predictions on effect size. Mean prediction 265 

accuracies from all functional networks (whole-brain included) as a function of the effect size of 266 

the difference between the group of interest (same individual – SI, monozygotic twins – MZ, or 267 

dizygotic twins – DZ) and unrelated individuals. 268 

Narrow-sense heritability of functional connections 269 

To further investigate these functional networks, we performed heritability analyses using 270 

a multivariate ACE modeling approach with bootstrapping. High dimensionality is a 271 
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common hurdle when multivariate processing is considered for regression or inference 272 

methods. Hence, univariate analyses are usually preferred to avoid the necessity of 273 

increasing computational resources and time due to high dimensional multivariate 274 

analyses trade-off, despite the fact that multivariate analyses tend to be more suitable for 275 

complex data that includes several thousand of covariates. In neuroscience, the 276 

heritability of functional networks is usually determined as the average heritability of 277 

individual functional connections (edges) over their constituent brain regions (nodes) 278 

(Colclough et al., 2017; Elliott et al., 2019; Ge et al., 2017). Here, we propose a lower-279 

dimensional multivariate ACE modeling approach with bootstrapping that allows one to 280 

generate a distribution of means for each variance component (Figure 5).  281 

 282 
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Figure 5 – Multivariate ACE model with bootstrapping. A) The lower triangles of mean 283 

functional connectivity matrices were vectorized, and the effect of age and sex were regressed out 284 

from each edge. In an iterative process, 10 edges were randomly selected and used as variables to 285 

fit a multivariate ACE model. This procedure was repeated with reposition for 8,000 times for the 286 

whole-brain network (or 1,000 times for each functional network). B) This approach provides 287 

distributions of means for each variance component (A, C and E) by taking the average of the 288 

heritability estimates across edges at each iteration. C) Null distributions were similarly obtained 289 

by randomly shuffling monozygotic and dizygotic twin statuses at each iteration. 290 

This multivariate approach involved the random selection of 10 edges (within the 291 

functional network of interest) that were used as variables to fit a multivariate ACE model 292 

(Figure 5A). The multivariate ACE model decomposes the variance of each edge into 293 

additive genetic influences (A, or narrow-sense heritability (Mayhew & Meyre, 2017)), 294 

shared environment (C) and external sources of variability (E). Then, we determined the 295 

mean of A, C and E components across edges. This procedure was repeated with 296 

reposition for 8,000 times for the whole-brain network and 1,000 times for each functional 297 

network, which resulted in the final distributions of means for each component (A, C and 298 

E) (Figure 5B). Finally, null distributions were similarly obtained by randomly shuffling 299 

monozygotic and dizygotic twin statuses at each iteration (Figure 5C).  300 

The heritability distributions with their respective null distributions for all functional 301 

networks are illustrated in Figure 6A (Supplementary Figure 3). As expected, the mean 302 

heritability of all null distributions was virtually equal to zero. Apart from that, all 303 

heritability estimates distributions were significantly different from their respective null 304 

distributions (independent t-test, p<.001). Among all functional networks, the visual II 305 

has shown to be the most heritable with mean heritability of 0.37 (37% of the variance of 306 

the phenotype is attributed to additive shared genetics; Supplementary Table 4), while the 307 
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subcortical-cerebellum was the least heritable with mean heritability of 0.20 (Figure 6B 308 

and Supplementary Table 4, 5 and 6). Additionally, we compared the mean heritability 309 

found for all functional networks using our approach with the mean estimates based on 310 

univariate models (Figure 6C). As expected, the mean heritability found using our 311 

approach is nearly equal to the classic univariate heritability (Supplementary Table 7), 312 

which is based on averaging estimates across all functional connections within each 313 

functional network. Finally, heritability estimates were not significantly correlated with 314 

number of nodes (r = -0.34, p-value = 0.38) nor monozygotic twin identification accuracy 315 

(r = -0.33, p-value = 0.39). 316 

 317 

Figure 6 – Heritability distributions for each functional network. A) Heritability estimates 318 

and null distributions for each functional network. B) Heritability estimates distributions 319 
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displayed from the most heritable (visual II) to the least heritable (subcortical-cerebellum). C) 320 

Comparison of the mean heritability found with multivariate ACE models versus univariate ACE 321 

models for all functional networks. 322 

Discussion 323 

Here, we found that the functional connectivity profiles of twin pairs were more similar 324 

than of unrelated individuals, although the degree of similarity varied across functional 325 

networks. Indeed, we demonstrated that functional networks have distinct discriminatory 326 

power in connectome fingerprinting analyses, in both individual and twin identifications, 327 

although in the latter differences in identification performances may be mostly driven by 328 

differences in the number of nodes/edges. We also found that high intersubject variability 329 

(i.e. variability of a trait between individuals) is crucial for connectome fingerprinting. 330 

Finally, our multivariate ACE modeling approach suggests that the heritability of 331 

functional networks are consistent throughout the brain, although our findings suggest 332 

that functional networks are differentially influenced by additive genetic factors. 333 

Altogether, we were able to establish the influence of genetic factors to intersubject 334 

variability of functional networks by leveraging a multivariate ACE model in addition to 335 

the multivariate connectome fingerprinting approach. 336 

Intra and intersubject variability trade-off in connectome fingerprinting 337 

Evidence suggests that the different levels of inter and intrasubject variability in 338 

functional networks contribute to their distinctiveness, such that high intersubject 339 

(Gratton et al., 2018; Mueller et al., 2013) and low intrasubject (Laumann et al., 2015; 340 

Poldrack et al., 2015) variability in higher-order associative networks are often related to 341 

their high discriminability (Finn et al., 2015; Jalbrzikowski et al., 2020; Kaufmann et al., 342 

2017; Miranda-Dominguez et al., 2018, 2014; Mueller et al., 2013) and the opposite 343 
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pattern to the low discriminability of primary sensory and motor networks (Gratton et al., 344 

2018; Laumann et al., 2015; Mueller et al., 2013; Poldrack et al., 2015). We confirmed 345 

that higher-order associative networks were the most discriminatory, while visual 346 

networks were the least discriminatory, although they showed similar levels of 347 

intrasubject variability. This finding was similarly seen in twin pair identifications, 348 

although in the latter the prediction accuracy was positively correlated with the number 349 

of nodes defining each functional network. To further investigate the inter and 350 

intrasubject variability trade-off in connectome fingerprinting, we determined the 351 

prediction accuracy as a function of the difference between the similarity scores of 352 

functional networks derived from the same individual - in different resting-state sessions 353 

- and unrelated individuals. We found that high identification accuracy requires high 354 

intersubject variability, suggesting that although the stability of idiosyncratic functional 355 

connectivity patterns is relevant and seen across all functional networks, fingerprinting 356 

seems to rely prominently on high intersubject variability. 357 

Genetic influence on functional networks 358 

To investigate the impact of additive genetic factors in determining stable patterns of 359 

intersubject variability, we performed an alternative approach to the univariate ACE 360 

model. In our multivariate ACE model, a fixed number of edges were randomly and 361 

iteratively selected to fit the model, and the mean heritability estimate was determined by 362 

averaging individual edges heritability at each of those iterations. Therefore, 8,000 363 

models were fitted to estimate the heritability of the whole-brain network, as opposed to 364 

fitting 35,778 univariate models. In addition to that, 1,000 models were generated for 365 

each functional network, totaling 16,000 models (8,000 models for the whole-brain 366 

network + 8 * 1,000 models), which is still far less than fitting 35,778 univariate models. 367 

We also observed a gain in statistical power with our approach (this is illustrated by the 368 
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narrower confidence intervals of the multivariate model – Supplementary Table 4 – as 369 

opposed to the univariate version – Supplementary Table 7). Additionally, our modeling 370 

approach provides a straightforward way for building null distributions by randomly 371 

shuffling twin statuses at each iteration as the final step before heritability estimation. 372 

Therefore, we believe that the contribution of this method is twofold: it reduces the 373 

number of models to be fitted for the estimation of the heritability of functional networks 374 

and it also provides a straightforward way for building null distributions. 375 

We found that the functional networks that were the most influenced by additive genetic 376 

factors were not the ones that best performed on twin identifications. This is particularly 377 

prominent for the visual II and subcortical-cerebellum functional networks. The first has 378 

shown to be highly influenced by additive genetic factors, but it had a poor performance 379 

on monozygotic twin identification and individual identification. This indicates that the 380 

intersubject variability was low, thus being difficult to discriminate between pairs of 381 

connectomes from UN/Twin/SI groups. However, a great portion of this low intersubject 382 

variability might be due to additive genetic factors. On the other hand, the subcortical-383 

cerebellum network has shown lower heritability but the best performance on twin 384 

identification (after whole-brain network). A possible explanation for this finding is that 385 

a high intersubject variability allowed a better discrimination between unrelated 386 

individuals versus twin pairs, even though a smaller portion of its intersubject variability 387 

was due to additive genetic factors. Nonetheless, our findings also suggest that twin 388 

identification accuracy of functional networks varies with the number of edges, indicating 389 

that the inconsistency seen between twin identification accuracy and heritability is 390 

perhaps an artefact associated with the confounding effect of number of edges on twin 391 

identification.  392 
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Finally, heritable patterns of functional connectivity strength of individual edges may 393 

emerge from underlying brain anatomy. Anatomical features of the brain have been 394 

shown to be highly heritable (Panizzon et al., 2009; Roshchupkin et al., 2016; Strike et 395 

al., 2015; Thompson et al., 2001). This suggests that the similarity of brain anatomy in 396 

twins might lead to better alignment of their brain structure to a template space as opposed 397 

to unrelated individuals. Therefore, when functional units of the brain are determined by 398 

a group-based parcellation, variability in functional connectivity strength partly reflects 399 

how well a template parcel matches the actual functional unit of a given individual. For 400 

example, a given region A in a group-based parcellation could not only overlap with 401 

distinct regions across unrelated individuals, but also consistently overlap with a similar 402 

area in twins (Anderson et al., 2020). This could lead to the greater similarity of individual 403 

edges between twins and higher inter-subject variability across unrelated individuals just 404 

because regions being selected are ultimately different. We believe that assessing 405 

heritability of functional connectivity patterns using individualized parcellations (Glasser 406 

et al., 2016; Kong et al., 2019) might shed some light into this issue.  407 

Parcellation schema 408 

The individual and twin identification analyses resulted in high prediction accuracy using 409 

both parcellation schemas, "Shen" and "Gordon". Notably, individual identification 410 

accuracies using "Shen" parcellation schema is about the same as in previous studies 411 

(Finn et al., 2015; Waller et al., 2017), even though we have a more homogenous sample. 412 

At the network-level, higher-order associative networks were particularly better at 413 

discriminations. This result further supports that associative networks accommodate 414 

higher intersubject variability in comparison to sensorimotor networks (Gratton et al., 415 

2018). Despite that, we observed that the default mode network (DMN) defined by both 416 

parcellation schemas differed in performance during identification analyses. For 417 
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“Gordon” parcels, the DMN figured among the most distinctive networks, similarly to 418 

other associative networks. However, this pattern was not observed using "Shen" parcels, 419 

in which the defined DMN figured among the worst functional networks on individual 420 

predictions. This distinction could be due to the different number of nodes attributed to 421 

DMN in both schemas. Another finding is that the heritability level of functional networks 422 

differed between parcellations, although the mean heritability of the whole-brain 423 

functional network was 0.18 using “Gordon” parcels and 0.24 using “Shen” parcels 424 

(Supplementary Table 4).  This suggests that different brain areas definition greatly 425 

impact on heritability estimates, which is a potential topic for further investigation. 426 

Using “Gordon” parcellation, we found that the cingulo parietal and retrosplenial 427 

temporal networks were the most influenced by additive genetic factors, whilst the 428 

somato-sensory mouth and salience networks were the least ones. On the other hand, 429 

Miranda-Dominguez et al. (2018) found that the retrosplenial temporal and somato-430 

sensory mouth were the most heritable, and the visual and salience networks the least 431 

heritable. Additionally, their heritability estimates ranged from 0.11 to 0.14, with the 432 

heritability of the whole-brain network being equal to 0.20 (Miranda-Dominguez et al., 433 

2018); while our estimates ranged from 0.47 to 0.12. These differences are likely due to 434 

differences in heritability estimation approaches; whilst we used the conventional ACE 435 

modeling approach, they used three-way repeated-measures ANOVAs. Although the 436 

heritability estimates we obtained using “Shen” parcels were more homogeneous, we 437 

were still able to capture the different levels of heritability of functional networks, 438 

suggesting that our approach is suitable for capturing such differences. Additionally, 439 

using a similar methodology, Colclough et al. (2017) found that the heritability of the 440 

connectivity strength averaged over parcels was 0.17 for the whole-brain network, and 441 

Elliot et al. (2019) found a value of about 0.20. This suggests that, although heritability 442 
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estimates of functional networks vary depending on the parcellation being used, the 443 

whole-brain functional network heritability seems to be reasonably consistent across 444 

studies using different methodologies and parcellations. 445 

Limitations 446 

The effect of head motion on rsfMRI functional connectivity has been assessed over the 447 

last decade, and evidence suggests that head motion parameters systematically affect 448 

functional connectivity estimates. Van Dijk, Sabuncu, & Buckner (2012) found that 449 

increasing mean motion was significantly associated with decreased functional 450 

correlation strength among regions in the DMN and the frontoparietal control network, 451 

even after regressing out six parameters from the rigid body head motion correction at the 452 

preprocessing stage. On the other hand, high levels of head motion were associated with 453 

increased local functional connectivity. Finally, their findings suggested that aspects of 454 

head motion may behave as trait, which was further investigated by Couvy-Duchesne and 455 

colleagues. In Couvy-Duchesne et al. (2014), the influence of additive genetics and 456 

environment factors on three head motion parameters have been estimated, and their 457 

findings suggest that head motion is partially heritable. These findings effectively suggest 458 

that head motion not only systematically affects functional connectivity but it is also 459 

partially heritable, indicating that head motion may bias heritability estimates of 460 

functional connectivity strength. 461 

The effect of additional preprocessing steps on the confounding effect of head motion in 462 

functional connectivity has been systematically investigated (Siegel et al., 2017). 463 

Researchers found that extra preprocessing steps to the HCP minimally preprocessed 464 

dataset have substantially reduced the correlation of head motion with functional 465 

connectivity. Here, we have similarly added extra preprocessing steps to the HCP 466 

minimally preprocessed dataset, including CompCor, temporal band-pass filtering, and 467 
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participants’ movement parameters were used as first-level covariates to regress out their 468 

linear components from the BOLD time series. However, it is important to note that 469 

complete removal of the spurious effect of motion through regression is difficult (if not 470 

impossible). Thus, we believe that the field would benefit from more studies that 471 

systematically assess the effect of removing motion parameters at different stages on 472 

heritability estimates of functional connectivity.  473 

Future directions 474 

Our multivariate ACE model suggests that part of the intersubject variability seen in 475 

functional networks is due to genetic factors. Transcriptomics and genomics approaches 476 

have indicated that many brain disorders are, at least partly, determined by the genetic 477 

background (Gandal et al., 2018; Kasten et al., 2018; Prata, Costa-Neves, Cosme, & 478 

Vassos, 2019; Sims, Hill, & Williams, 2020). Additionally, disruptions in the human 479 

functional and structural connectomes have been associated with neurological conditions, 480 

such as  amyotrophic lateral sclerosis (ALS) (Chenji et al., 2016), Parkinson’s disease 481 

(Gratton et al., 2019; Hall et al., 2019), and epilepsy (Lee et al., 2018).  Specifically, 482 

neurotoxic accumulation of amyloid plaques in Alzheimer’s disease has been located in 483 

areas consistent with cortical hubs, indicating that while cortical hubs are fundamental 484 

for information processing, they also bring vulnerability to the human brain (Buckner et 485 

al., 2009). Also, many compelling studies have linked psychiatric disorders to 486 

fundamental connectome disruptions (van den Heuvel & Sporns, 2019). Despite their 487 

unique functional and structural connectivity patterns, these conditions also exhibit some 488 

shared patterns that differ from healthy connectomes. The common features of many of 489 

these disorders make it difficult to diagnose them and to determine the mechanisms 490 

behind their onset, particularly for psychiatric disorders. Thus, detailed scrutiny of the 491 

human connectome and genome may lead to a promising new era for precision medicine 492 
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in psychiatry and neurology. Connectome fingerprinting in addition to heritability 493 

analyses may allow for the search of connectome features that bring general and specific 494 

vulnerabilities to the human brain, which may be highly heritable, and are central factors 495 

among brain disorders (van den Heuvel & Sporns, 2019). 496 

Finally, it is important to acknowledge that although we found differences in heritability 497 

estimates across functional networks, such estimates of heritability could be susceptible 498 

to different models of heritability. For example, heritability could be better explained with 499 

an AE model, in which variance is decomposed into additive genetic factors (A) and 500 

external sources of variability (E) only. Additionally, the low reliability of individual 501 

edges’ connectivity strength (Noble, Scheinost, & Constable, 2019; Noble et al., 2017) 502 

and higher reliability of the connectome as whole suggests that common (shared among 503 

edges) and specific (non-shared) sources of genetic variance may differ. The multivariate 504 

ACE model used here has been used before to estimate the genetic correlation between 505 

two traits, cortical surface area and cortical thickness (Panizzon et al., 2009). However, 506 

we believe that a common pathway model would be the most suitable model to study 507 

common sources of genetic variance of many edges (Couvy-Duchesne et al., 2014). 508 

Therefore, although we found differences in how additive genetic factors may be 509 

influencing intersubject variability of functional networks, such estimates are not definite. 510 

Critically, different models’ assumptions may potently lead to inconsistent findings of 511 

heritability estimates for large-scale functional networks, and future refinements of such 512 

estimates (using meta-analysis, for instance) should consider them. 513 
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Materials and Methods 514 

Database and participant information 515 

In this study, we used the dataset from the "1200 subjects data release" of the Human 516 

Connectome Project – HCP (Van Essen et al., 2013). We restricted our analysis to 517 

monozygotic (MZ) and dizygotic (DZ) individuals as indicated by genotyping 518 

information. So, we initially selected all MZ and DZ individuals from the original sample. 519 

From this subsample, we excluded the participants who did not have both resting-state 520 

fMRI sessions (ICA-FIX versions) available, and who did not have the twin within the 521 

group. Therefore, our final sample size was n=380. Table 1 summarizes the demographic 522 

data. 523 

 524 

Table 1 - Demographic information. 525 

 

Monozygotic 

(n=246) 

Dizygotic 

(n=134) 

Age, y   

Mean ± SD 29.4 ± 3.3 29.1 ± 3.5 

Range (min-max) 22 – 36 22 – 35 

Sex, n (%)   

Female 144 (58.5) 78 (58.2) 

Male 102 (41.5) 56 (41.8) 

 526 
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Data acquisition 527 

The acquisition protocol has been previously described (Van Essen et al., 2013). In 528 

summary, functional and structural data were acquired in a 3T Siemens Skyra scanner 529 

using a 32-channel head coil. Resting-state data were collected in two separated sessions 530 

(REST1 and REST2) in different days, each session containing two runs of 15 minutes. 531 

In this protocol, participants had to keep their eyes open with a relaxed fixation on a 532 

projected bright cross-hair in a dark background. Each run within a session is 533 

distinguished by the oblique axial acquisition, of which one run used phase encoding in 534 

a right-to-left (RL) direction and the other used phase encoding in a left-to-right (LR) 535 

direction.  536 

Data pre-processing 537 

Pre-processing pipeline 538 

For this study, we used the spatial and temporal pre-processed rs-fMRI timecourses 539 

(Glasser et al., 2013; Smith et al., 2013), which have undergone the steps of artifact 540 

removal, motion correction, and registration to standard space. Furthermore, we applied 541 

additional pre-processing steps by using the CONN toolbox (v.17.f) (Whitfield-Gabrieli 542 

& Nieto-Castanon, 2012), which included: structural segmentation, functional outlier 543 

detection (intermediate setting: 5 for z-score scan-to-scan global signal changes and 0.9 544 

mm for scan-to-scan head-motion composite changes), and functional smoothing. 545 

Following that, a component-based noise correction method (CompCor) (Behzadi, 546 

Restom, Liau, & Liu, 2007) and a temporal band-pass filtering (preserving frequencies 547 

between 0.01 and 0.10Hz) were applied. For spatial smoothing, a Gaussian with the full 548 

width at half maximum (FWHM) equal to 6mm was used. We also included participant 549 
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movement parameters as first-level covariates to regress out their linear components from 550 

the BOLD time series.  551 

Parcellations and functional networks 552 

Timecourses were calculated as the mean signal within the regions of interest (ROIs) 553 

defined by different parcellation schemas used: “Gordon” (Gordon et al., 2014) and 554 

“Shen” (Shen et al., 2013). Both "Gordon" and "Shen" schemas are data-driven 555 

parcellation schemas. The first defines 333 ROIs clustered in 12 functional networks 556 

(Supplementary Table 1), in addition to 47 ROIs not assigned to any specific network. 557 

The latter defines 268 ROIs clustered in 8 networks (Supplementary Table 1). 558 

Functional connectivity matrices 559 

Finally, for the two resting-state sessions, data from both the left-right (LR) and right-left 560 

(RL) phase-encoding runs were used to calculate the connectivity matrices. To obtain the 561 

connectivity matrices, ROI-to-ROI bivariate correlation connectivity measures were 562 

computed for all ROIs defined by both parcellation methods, obtaining two symmetric 563 

connectivity matrices for each session for each participant. 564 

Individual identification  565 

The identification analysis was based on previous work (Finn et al., 2015) with few 566 

alterations. Initially, two databases were created containing the functional connectivity 567 

matrices for each session (REST1 and REST2). The individual identification was 568 

determined by computing the Pearson’s correlation of each individual connectivity matrix 569 

from one database with all the other connectivity matrices from the second database 570 

(RESTX × RESTY, where X and Y ∈ {1, 2} and X≠Y). For a pair of functional 571 

connectivity matrices linearly transformed in a column vector (vectorization), Ti and Dn, 572 

where Ti is the connectivity matrix of a target participant i, and Dn is the connectivity 573 
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matrix of a participant (n=1, ..., 380) from the other database, the Pearson’s correlation 574 

coefficient r is: 575 

𝑟𝑖,𝑁 =
∑𝑒

𝑗=1 (𝑇𝑖𝑗
−𝑇𝑖)(𝐷𝑁𝑗

−𝐷𝑁)

√∑𝑒
𝑗=1 (𝑇𝑖𝑗

−𝑇𝑖)2√∑𝑒
𝑗=1 (𝐷𝑁𝑗

−𝐷𝑁)2
   Equation 1 576 

where e is the number of edges. In order to predict the identity of the target participant, 577 

the maximal Pearson’s correlation coefficient was selected (Figure 1A). Additionally, we 578 

also investigated the contribution of single networks to identification accuracy by sub-579 

sectioning the functional connectivity matrices into sub-matrices of single networks. To 580 

perform this, we selected only connection within a specified network. Then, we calculated 581 

the Pearson’s correlation coefficients, similarly to the previous approach. Results are 582 

reported as mean ± SD. 583 

Twin identification 584 

The twin pair identification algorithm was based on the previous individual identification 585 

analysis. At this stage, we removed the correlations corresponding to the same individual 586 

in different sessions, that is the diagonal of individuals × individuals matrices, and then 587 

performed a new set of identification analyses. In this condition, if the chosen maximum 588 

correlation value belonged to the target subject’s twin, the prediction was considered 589 

correct. Monozygotic and dizygotic twins were analyzed separately, and all conditions 590 

(RESTX × RESTY, where X and Y ∈ {1, 2}) were tested. Results are reported as mean 591 

± SD. 592 

Statistical significance assessment 593 

To assess the statistical significance of twin identification analyses, we performed a 594 

permutation testing. To ensure the independence of the dataset, we permuted the twin 595 

pairs’ identities, such that for each row of the ‘individuals vs. individuals’ matrix (Figure 596 
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1A) a new twin pair identity was assigned. The permutation process was repeated 1,000 597 

times for each functional network. 598 

Effect size 599 

The distribution of correlation scores between pairs of connectivity matrices (i.e. 600 

correlation among the vectorized form of the connectivity matrices) was determined by 601 

grouping these scores based on familial relationship: 1) same individual - SI; 2) 602 

monozygotic twins - MZ; 3) dizygotic twins - DZ and 4) unrelated individuals - UN. 603 

Following that, the effect size of the differences between the distributions of correlation 604 

values was measured through the calculation of Cliff’s delta. This a non-parametric effect 605 

size measure based on all pairwise differences (Cliff, 1993), which gives how often values 606 

from one distribution are larger than the ones from a second distribution (Equation 2). 607 

 608 

   𝐷𝑒𝑙𝑡𝑎 (𝑑) =
𝑆𝑢𝑚(𝑥1>𝑥2)−𝑆𝑢𝑚(𝑥1<𝑥2)

𝑛1𝑛2
    Equation 2 609 

 610 

Therefore, the number of times that values from one group are higher than the ones from 611 

a second group is calculated for all possible combinations of values between the two 612 

groups (n1n2, where n1 and n2 are the number of values within the distribution 1 and 2, 613 

respectively). The final Cliff’s delta value is the difference between the previous 614 

calculations divided by all possible combinations. Thus, a positive and high value of d 615 

(dmaximum = 1) mean that values within distribution 1 are mostly higher than the ones within 616 

distribution 2, a negative and high absolute value of d (dminimum = -1) means the other way 617 

round, that values within distribution 1 are mostly lower than the ones within distribution 618 

2, and d = 0 means that the distribution 1 and 2 are equal. 619 
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Heritability analyses 620 

Functional connectivity measures from two different days (REST1 and REST2) were 621 

averaged, giving a functional connectivity matrix per participant. As mentioned before, 622 

whole-brain functional connectivity matrices were determined by using two distinct 623 

parcellation schemas: "Shen" (Shen et al., 2013) (268 nodes, 71,824 edges) and "Gordon" 624 

(Gordon et al., 2014) (333 nodes, 110,889 edges). The first step involved the vectorization 625 

of functional connectivity matrices’ lower triangle (“Shen” - 35,778 edges; “Gordon” – 626 

55,278 edges). The heritability analyses were performed using the umx package (Bates, 627 

Maes, & Neale, 2019), after regressing out the effect of age and sex using 628 

‘umx_residualize’.  629 

Heritability of functional networks was estimated using a multivariate ACE model,  630 

‘umxACEv’ from umx package (Bates et al., 2019), with bootstrapping. Specifically, 631 

‘umxACEv’ model allocates observed phenotypic variability of each variable and 632 

between variables (variance/covariance matrix) into three latent factors: A (additive 633 

genetic factors – h2), C (shared environment – c2) and E (measurement error or external 634 

sources of variability – e2) (Neale & Cardon, 1992; Panizzon et al., 2009). This model 635 

outputs a variance/covariance load matrix for each component (A, C and E). In each 636 

component matrix, the diagonal represents the proportion of variance that that factor 637 

explains of each variable’s phenotypic variability, while off-diagonal terms give the 638 

proportion of the covariance between variables. Here, we only focused on the partitioning 639 

of variance for the estimation of network heritability, doing so by averaging the estimates 640 

in the diagonal of each model fit.  641 

In each iteration of model fitting, a subset of 10 edges was randomly selected and used to 642 

fit the previously described ACE model. This procedure was repeated with reposition for 643 

8,000 times (or 12,000 times when “Gordon” parcels was used) for whole-brain, and 644 
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1,000 times for each functional network. The number of iterations was determined such 645 

that every edge would be selected at least twice (i.e. 8,000 iterations * 10 edges = 80,000). 646 

This approach provides distributions of means of each component (A, C and E) for each 647 

functional network. Finally, null distributions were similarly obtained by randomly 648 

shuffling monozygotic and dizygotic twin statuses at each iteration (Colclough et al., 649 

2017). Independent t-student tests were performed separately to evaluate whether each 650 

functional network’s heritability distribution significantly differed from their respective 651 

null distribution. 652 

Code availability 653 

All source codes will be available at 654 

https://github.com/felenitaribeiro/fingerprinting_twinStudy and 655 

https://github.com/frcsantos/heritability upon publication of this manuscript.  656 

Citation diversity statement 657 

Recent work in neuroscience and other fields identified a bias in citation practices such 658 

that papers from women and other minorities are under-cited relative to the number of 659 

such papers in the field (Caplar, Tacchella, & Birrer, 2017; Dion, Sumner, & Mitchell, 660 

2018; Dworkin et al., 2020; Maliniak, Powers, & Walter, 2013; Mitchell, Lange, & Brus, 661 

2013). Here we sought to proactively consider choosing references that reflect the 662 

diversity of the field in thought, form of contribution, gender, and other factors. Gender 663 

of the first and last author of each reference was predicted by using databases that store 664 

the probability of a name being carried by a man or a woman (Dworkin et al., 2020). By 665 

this measure (and excluding self-citations to the first and last authors of our current 666 

paper), our references contain 10.31% woman(first)/woman(last), 18.36% man/woman, 667 
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21.55% woman/man, and 49.78% man/man. We look forward to future work that could 668 

help us to better understand how to support equitable practices in science. 669 
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