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High costs and technical limitations of cell sorting and single-cell techniques currently re-1

strict the collection of large-scale, cell-type-specific DNA methylation data for a large num-2

ber of individuals. This, in turn, impedes our ability to tackle key biological questions that3

pertain to variation within a population, such as identification of disease-associated genes4

at a cell-type-specific resolution. Here, we show mathematically and experimentally that5

cell-type-specific methylation levels of an individual can be learned from its tissue-level bulk6

data, as if the sample has been profiled with a single-cell resolution and then signals were7

aggregated in each cell population separately. Thus, our proposed approach provides an8
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unprecedented way to perform powerful large-scale epigenetic studies with cell-type-specific9

resolution using relatively easily obtainable large tissue-level data. We revisit previous stud-10

ies with methylation and reveal novel associations with leukocyte composition in blood and11

multiple novel cell-type-specific associations with rheumatoid arthritis (RA). For the latter,12

further evidence demonstrates correlation of the associated CpGs with cell-type-specific ex-13

pression of known RA risk genes, thus rendering our results consistent with the possibility14

that contributors to RA pathogenesis are regulated by cell-type-specific changes in methyla-15

tion.16

1 Introduction17

Each cell type in the body of an organism performs a unique repertoire of required functions.18

Hence, disruption of cellular processes in particular cell types may lead to phenotypic alterations19

or development of disease. This presumption in conjunction with the complexity of tissue-level20

(“bulk”) data has led to many cell-type-specific genomic studies, in which genomic features, such21

as gene expression levels, are assayed from isolated cell types in a group of individuals and studied22

in the context of a phenotype or condition of interest (e.g., 1–4).23

In fact, in order to reveal cellular mechanisms affecting disease it is critical to study cell-24

type-specific effects. For example, it has been shown that cell-type-specific effects can contribute25

to our understanding of the principles of regulatory variation 5 and the underlying transcriptional26

landscape of heterogeneous tissues such as the human brain 6, it can provide a finer characterization27

of tumor heterogeneity 7, 8, and it may reveal disease-related pathways and mechanisms of genes28
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that were detected in genetic association studies 9, 10. Moreover, these findings are typically not29

revealed when a heterogeneous tissue is studied. For example, in 9 it has been shown that the30

FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor31

cells. Particularly, in that study it is shown that the developmental regulators IRX3 and IRX5 had32

genotype-associated expression in primary preadipocytes, while genotype-associated expression33

was not observed in whole-adipose tissue, indicating that the effect was cell-type specific and34

restricted to preadipocytes.35

In spite of the clear motivation to conduct studies with a cell-type-specific resolution, while36

developments in genomic profiling technologies have led to the availability of many large bulk data37

sets with hundreds or thousands of individuals (e.g., 11–13), cell-type-specific data sets with a large38

number of individuals are still relatively scarce. Particularly, cell-type-specific studies are typically39

drastically restricted in their sample sizes owing to high costs and technical limitations imposed by40

both cell sorting and single-cell approaches. This restriction is especially profound for epigenetic41

studies with single-cell DNA methylation - while pioneering works on single-cell methylation have42

demonstrated significant advances (e.g. 14–17), profiling methylation with single-cell resolution is43

still limited in coverage and throughput and currently cannot be practically used to routinely obtain44

large-scale data for population studies (the most eminent recent studies included data from only a45

few individuals). This, in turn, substantially limits our ability to tackle questions such as identifi-46

cation of disease-related altered regulation of genes in specific cell types and mapping of diseases47

to specific manifesting cell types.48
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Technologies for profiling single-cell methylation are currently still under development, and49

some of these attempts will potentially allow sometime in the future for the analysis of cell-type-50

specific methylation across or within populations. However, even if such technologies emerge in51

the near future, the large number of existing bulk methylation samples that have been collected52

by now are still an extremely valuable resource for genomic research (e.g., more than 100,00053

bulk profiles to date in the Gene Expression Omnibus (GEO) alone 18). These data reflect years of54

substantial community-wide effort of data collection from multiple organisms, tissues, and under55

different conditions, and it is therefore of great importance to develop new statistical approaches56

that can provide cell-type-specific insights from bulk data.57

Here, we introduce Tensor Composition Analysis (TCA), a novel computational approach for58

learning cell-type-specific DNA methylation signals (a tensor of samples by methylation sites by59

cell-types) from a typical two-dimensional bulk data (samples by methylation sites). Conceptually,60

TCA emulates the scenario in which each sample in the bulk data has been profiled with a single-61

cell resolution and then signals were aggregated in each cell population separately.62

We demonstrate the utility of TCA by applying it to data from previously published epigenome-63

wide association studies (EWAS). Particularly, we apply TCA to a previous large methylation study64

with rheumatoid arthritis (RA), in which DNA methylation profiles (CpG sites) were collected65

from cases and controls and tested for association with RA status 19. Our analysis reveals novel66

cell-type-specific associations of methylation with RA without the need to collect cost prohibitive67

cell-type-specific data for a large number of individuals. Finally, we used independent data sets of68
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cell-sorted methylation data to test the replicability of our results, and we provide additional inde-69

pendent evidence suggesting that some of the associated CpGs act as cell-type-specific regulators70

of expression in RA risk genes, thus shedding light on the cell-type specificity of RA pathogenesis.71

2 Results72

Different cell types are known to differ in their methylation patterns. Therefore, an individual bulk73

sample collected from a heterogeneous tissue represents a combination of different signals coming74

from the different cell types in the tissue. Since cell-type composition varies across individuals,75

testing for correlation between bulk methylation levels and a phenotype of interest may lead to76

spurious associations in case the phenotype is correlated with the cell-type composition 20. A77

widely acceptable solution to this problem is to incorporate the cell-type composition information78

into the analysis of the phenotype by introducing it as covariates in a regression analysis. This79

approach results in an adjusted analysis which is conceptually similar to a study in which the cases80

and controls are matched on cell-type distribution. Even though this procedure is useful in order81

to eliminate spurious findings, it does not leverage the cell-type-specific signal, and thus results in82

a sever power loss as explained below.83

Given no statistical relation between the phenotype and the cell-type composition, associa-84

tion studies typically assume a model with the following structure:85

y = xβ + ε (1)

Here, y represents the phenotype, x and β represent the bulk methylation level at a particular86
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site under test and its corresponding effect size, and ε represents noise. This standard formulation87

assumes that a single parameter (β) describes the statistical relation between the phenotype and the88

bulk methylation level. We argue that this formulation is a major oversimplification of the nature89

of the underlying biology. In general, different cell types may have different statistical relations90

with the phenotype. Thus, a more realistic formulation would be:91

y =
k∑

h=1

xhβh + ε (2)

Here, x1, ..., xk are the methylation levels in each of the k cell types composing the studied tissue92

and β1, ..., βk are their corresponding cell-type-specific effects.93

Applying a standard analysis to bulk data may fail to detect even strong cell-type-specific94

associations with a phenotype. For instance, consider the scenario of a case/control study, where95

the methylation of one particular cell type is associated with the disease. In this scenario, due to96

the signals arising from other cell types, the observed bulk levels may obscure the real association97

and not demonstrate a difference between the cases and controls; importantly, in general, merely98

taking into account the variation in cell-type composition between individuals does not allow the99

detection of the association (Figure 1). Thus, allowing analysis with a cell-type-specific resolution100

(i.e. obtaining x1, ..., xk) - beyond its importance for revealing disease-manifesting cell types - is101

also crucial for the detection of true signals.102

We consider a new model for DNA methylation. We attribute some of the methylation vari-103

ation to factors which are known to alter methylation status (e.g., age 21 and sex 22), and we regard104

the rest of the variability as individual-specific intrinsic variability, which we assume to come105
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Figure 1: Observed bulk methylation levels may obscure cell-type-specific signals. Neither the

observed methylation levels nor the observed levels after adjusting for the variability in cell-type

composition can demonstrate a clear difference between cases and controls, in spite of a clear

(hidden) difference in cell type 3. Methylation levels are represented by a gradient of red color,

and adjusted observed levels were calculated for each sample by removing the cell-type-specific

mean levels, weighted by its cell-type composition.

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/437368doi: bioRxiv preprint 

https://doi.org/10.1101/437368
http://creativecommons.org/licenses/by/4.0/


from a distribution. We summarize and illustrate the model in Figure 2. Based on this model,106

we developed Tensor Composition Analysis (TCA), a method for learning the unique cell-type-107

specific methylomes for each individual sample from its bulk data. TCA requires knowledge of108

the cell-type composition of the individuals in the data. In cases where the cell-type composition109

is unknown, it can be computationally estimated using standard methods 23–27. As we later show,110

TCA performs well even in cases where only noisy estimates of the cell-type composition are111

available.112

Applying TCA for detecting cell-type-specific associations in epigenetic studies In order to113

empirically verify that TCA can learn cell-type-specific methylation levels, we first leveraged114

whole-blood methylation data collected from sorted leukocytes 28 to simulate heterogeneous bulk115

methylation data. While the bulk data captured the cell-type-specific signals to some extent, as116

expected, TCA performed substantially better (Supplementary Figures S1 and S2). We further117

observed that TCA effectively captures effects of methylation altering covariates (Supplementary118

Figure S3 and ??).119

We next evaluated the performance of TCA in detecting cell-type-specific associations by120

simulating bulk methylation and corresponding phenotypes with cell-type-specific effects. Our121

experiments verify that TCA yields a substantial increase in power under different scenarios when122

compared to a standard regression analysis of the bulk levels. Particularly, in its worst performing123

scenario, TCA achieved a median of 2.4 fold increase in power (across all tested effect sizes) over124

the standard approach and a median of 12.1 fold increase in power in the best performing scenario125
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Figure 2: A summary of the TCA model for bulk DNA methylation data, presented as a four-

steps generative model. Step 1: methylation altering covariates (e.g., age and sex) of a particular

individual i can affect the methylation distribution of individual i. Step 2: the cell-type-specific

methylomes of individual i are generated for each of the k cell types in the studied tissue. Step

3: the cell-type-specific methylomes of individual i (3.1) are combined according to the cell-

type composition of the individual (3.2). Step 4: the true signal of the heterogeneous mixture

(4.1) is distorted due to additional variation introduced by different sources of noise such as batch

effects and other experiment-specific artificial variability (4.2); this results in the observed data.

Methylation levels are represented by a gradient of red color
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(Figure 3). Remarkably, TCA improved the most upon the power of the standard approach in126

a scenario where all cell types have the exact same effect size, although the standard analysis127

conceptually assumes all cell types to have the same effect size (Figure 3).128

Surprisingly, in spite of the high power given by TCA, we found it to be conservative (i.e.129

less false positives than expected; Supplementary Figure S5). This results from the optimization130

of the model (Supplementary Note). Finally, we performed an additional power analysis stratified131

by cell types, which, once again, showed that TCA robustly outperforms the alternative standard132

regression approach (Supplementary Figures S6 and S7).133

Cell-type-specific differential methylation in immune activity In general, the methylation lev-134

els in a particular cell type are not expected to be related to the tissue cell-type composition.135

Therefore, in the analysis of sorted-cell or single-cell methylation, there is no need to account for136

cell-type composition. In contrast, it is now widely acknowledged that in analysis of bulk methyla-137

tion one has to account for cell-type composition 20. Thus, for a phenotype that is highly correlated138

with the cell-type composition, the correction for cell-type composition on bulk methylation data139

will inevitably mask the signal, potentially resulting in no findings (i.e. false negatives). As op-140

posed to bulk, cell-type specific analysis would not mask the signal in this case. To demonstrate141

this, we consider an extreme case where the phenotype is the cell-type composition. Specifically,142

we defined the level of immune activity of an individual as its total lymphocyte proportion in143

whole-blood, and aimed at finding methylation sites that are associated with regulation of immune144

activity.145
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Figure 3: An evaluation of power for detecting cell-type-specific associations with DNA methyla-

tion. Performance was evaluated using two approaches: TCA and a standard linear regression with

the observed bulk data (OBS). The numbers of true positives (TPs) were measured under three

scenarios using a range of effect sizes: different effect sizes for different cell types (Scenario I),

the same effect size for all cell types (Scenario II), and only a single effect size for a single cell type

(Scenario III); each of the scenarios was evaluated under the assumption of three constituting cell

types (k=3) and six constituting cell types (k=6). The colored areas reflect results across multiple

simulations, and the colored dots reflect the results of TCA under different initializations of the

cell-type composition estimates, where the color gradients represent the mean absolute correlation

of the initial estimates with the true values (across all cell types).
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Since bulk methylation data is a composition of signals that depend on to the cell-type pro-146

portions, a standard regression approach with whole-blood methylation is expected to fail to distin-147

guish between false and true associations with immune activity. We verified this using whole-blood148

methylation data from a previous study by Liu et al. (n = 658) 19 (Figure 4a). Importantly, ac-149

counting for the cell-type composition in this case would eliminate any true signal in the data, as150

the immune response phenotype is perfectly defined by the cell-type composition.151

We next performed cell-type-specific analysis using TCA, which resulted in 8 experiment-152

wide significant associations (p-value<9.87e-07; Figure 4b and Supplementary File 1). Impor-153

tantly, 6 of the associated CpGs reside in 5 genes that were either linked in GWAS to leukocyte154

composition in blood or that are known to play a direct role in regulation of leukocytes: CD247,155

CLEC2D, PDCD1, PTPRCAP, and DOK2 (Supplementary File 1). The remaining associated156

CpGs reside in the genes SDF4 and SEMA6B, which were not previously reported as related to157

leukocyte composition. Using a second large whole-blood methylation data set (n=650) 29, we158

could replicate the associations with 4 out of the 7 genes (PTPRCAP, DOK2, SDF4 and SEMA6B;159

p-value<0.0063; Supplementary File 1). Our results are therefore consistent with the possibility160

that methylation modifications in these genes are involved in regulation of immune activity.161

Cell-type-specific differential methylation in rheumatoid arthritis RA is an autoimmune chronic162

inflammatory disease which has been previously related to changes in DNA methylation 30, 31. In163

order to further demonstrate the utility of TCA, we revisited the largest previous whole-blood164

methylation study with RA by Liu et al. (n = 650) 19. As a first attempt to detect associations165
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Figure 4: Results of the association analysis with level of immune activity and with rheumatoid

arthritis, presented by Manhattan plots of the -log10 P-values for the association tests. Horizontal

red lines represent the experiment-wide significance threshold. (a-b) Shown are results with im-

mune activity using standard regression analysis and TCA analysis. (c-d) Shown are results with

RA using regression analysis and TCA analysis under the assumption of a single effect size for all

cell types. (e-f) Shown are results with RA using regression analysis with cell-sorted methylation

and TCA cell-type-specific analysis with whole-blood methylation. Horizontal red dotted lines

represent the significance threshold adjusted for three experiments corresponding to the three cell

types.
13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/437368doi: bioRxiv preprint 

https://doi.org/10.1101/437368
http://creativecommons.org/licenses/by/4.0/


between methylation and RA status, we applied a standard regression analysis, which yielded 6166

experiment-wide significant associations (p-value<2.33e-7 ;Figure 4c and Supplementary File 2),167

overall in line with previous studies that analyzed this data set 24, 32. Since the standard analysis168

conceptually assumes a single effect size for all cell types, we next applied TCA under the as-169

sumption of a single effect size for all cell types. Remarkably, TCA found 15 experiment-wide170

significant CpGs, which altogether highlighted RA as an enriched pathway (p-value=1.45e-07;171

Figure 4d and Supplementary File 2).172

The presumption that only some particular immune cell-types are related to the pathogen-173

esis of RA, have led to studies with methylation collected from sorted populations of leukocytes174

(e.g., 33–35). In a recent study by Rhead et al., some of us investigated differences in methylation175

patterns between RA cases and controls using data collected from sorted cells 35. Particularly,176

methylation levels were collected from two sub-populations of CD4+ T cells (memory cells and177

naive cells; n=90, n=88), CD14+ monocytes (n=90), and CD19+ B cells (n=87). Although this178

study involved a considerable data collection effort in attempt to provide insights into the methy-179

lome of RA patients at a cell-type-specific resolution, it does not allow the detection of experiment-180

wide significant associations (Figure 4e), possibly owing to the limited sample size.181

In order to overcome the sample size limitation, we applied TCA on the larger whole-blood182

data by Liu et al. Unlike the previous analysis, where we assumed that all cell types have the183

same effect size, in this analysis we tested for associations specifically with methylation levels184

in CD4+, CD14+, and CD19+ cells, without the restriction of a single effect size. Overall, this185
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analysis reported 15 novel cell-type-specific associations with 11 CpGs: 4 associations in CD4+,186

5 in CD14+, and one association in CD19+cells (p-value<2.33e-07; Figure 4f and Supplementary187

File 2). Considering a more stringent significance threshold in order to account for the three sepa-188

rate experiments we conducted for the three cell types resulted in 10 cell-type-specific associations189

with 7 CpGs (p-value<7.78e-08). Importantly, we found these CpGs to be enriched for involve-190

ment in the RA pathway (p-value=9.47e-07); particularly, 4 of these CpGs reside in HLA genes191

(or in an intergenic HLA region) that were previously reported in GWAS as RA genetic risk loci:192

HLA-DRA, DRB5, DQA1, and DQA2 (Supplementary File2).193

Using the sorted-cell methylation data by Rhead et al. together with another data set with194

CD4+ methylation from an RA study by Guo et al. (n=24), we were able to validate two of the195

CD4+ associations and two of the CD14+ associations (Supplementary File 2). The lack of replica-196

tion evidence for the rest of the associated CpGs may be explained in part by the small sample size197

available for replication (n≤90), as the p-values of many of them tended to be small (Supplemen-198

tary File 2), or by the fact that each data set was collected from a different population; specifically,199

Liu et al. studied a Swedish population, Rhead et al. studied a heterogeneous European population,200

and Guo et al. studied a Han Chinese population.201

In order to shed light on potential mechanisms related to these associations, we leveraged202

data from a previous study in a multi-ethnic cohort of unaffected individuals with both methylation203

and gene expression levels collected from sorted CD14+ (n=1,202) and sorted T cells (n=214) 36.204

For each of the 5 CpGs reported by TCA as CD14+ specific associations with RA, we evaluated205
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its correlation in CD14+ with CD14+ expression levels. Similarly, for each of the 4 CpGs reported206

by TCA as CD4+ specific associations with RA, we evaluated its correlation in T cells with T cell207

expression levels. In 5 of 9 of the cases, we found the methylation levels to be significantly corre-208

lated with the expression of groups of genes that are enriched for the RA pathway (p-value<2e-04209

; Supplementary File 3). Of particular interest is cg13081526, which was validated in the sorted210

data as a CD14+ specific association. We found this CpG to be highly correlated (or highly neg-211

atively correlated) with the CD14+ expression of 23 genes, 16 of which reside in the HLA region212

(Supplementary File 3).213

Finally, we further investigated the potential relation of gene expression with the combined214

effect of cg13081526 and two additional CpGs (cg13778567 and cg18816397) that were reported215

by TCA as CD14+ specific associations and were found to be enriched for correlation with genes in216

the RA pathway. Interestingly, we found these 3 CpGs to be strongly associated with the CD14+217

specific expression of 35 genes; particularly, these 3 CpGs could explain most of the variation218

in the CD14+ expression levels of three known RA risk genes: HLA-DRB1, DRB4, and DRB6219

(R2 > 0.5, p-value<1.64e-192 for all 3 genes; Supplementary File 3). Altogether, our evidence220

from multiple data sets is consistent with the possibility that cell-type-specific variation in the221

methylation of the associated CpGs play a role in cell-type-specific regulation of the expression of222

genes that are known to be related to RA pathogenesis.223
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3 Discussion224

We proposed a methodology that can reveal novel cell-type-specific associations from bulk methy-225

lation data, i.e., without the need to collect cost prohibitive cell-type-specific data. This method-226

ology is particularly useful in light of the large number of bulk samples that have been collected227

by now, and due to the fact that currently single-cell methylation technologies are not practically228

scalable to large population studies. Importantly, we found that TCA is substantially superior to a229

standard regression analysis of bulk data, even in the case where all cell types share the same effect230

size. We therefore suggest that TCA should always be preferred in analysis of bulk methylation231

data.232

Notably, a recent attempt to provide cell-type-specific context in genetic studies aims at233

identifying trait-relevant tissues or cell types by leveraging genetic data and known tissue or cell-234

type-specific functional annotations 37, 38. This approach yielded some promising results in relating235

trait-associated genetic loci to relevant tissues and cell types. However, it is limited to only one236

particular task and it is bounded by design to consider only genetic signals, whereas non-genetic237

signals are often also of interest in genomic studies. Moreover, this approach can only suggest238

an implicit cell-type-specific context by binding known annotations with heritability. In contrast,239

the approach taken in TCA allows the extraction of explicit cell-type-specific signals, which can240

potentially allow many opportunities and applications in biological research.241

A potential limitation of TCA is the need for rarely available cell-type proportions as an242

input. We alleviate this issue by allowing TCA to get estimates of the cell-type proportions using243

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/437368doi: bioRxiv preprint 

https://doi.org/10.1101/437368
http://creativecommons.org/licenses/by/4.0/


standard methods 23, 27 and then re-estimating them following the TCA model. As we showed, this244

allows TCA to provide good results even when just moderately reasonable initial estimates of the245

cell-type proportions are available. In practice, obtaining such estimates can be done using either246

a reference-based approach 23 or a semi-supervised approach 27, in case a methylation reference is247

not available for the studied tissue.248

Our experiments and mathematical results show that TCA can extract cell-type-specific sig-249

nals from abundant cell types better compared with lowly abundant cell types. Another potential250

limitation is expected to be in the case where the proportion of one cell type strongly covary with251

the proportion of a second cell type. In case of a true association in just one of the two cell types,252

performing a marginal association test on each cell type separately might fail to effectively distin-253

guish between the signals of the two cell types and report an association in both cell types. In light254

of these limitations, future studies are likely to benefit from including small replication data sets255

from sorted or single cells.256

Finally, in this paper we focus on the application of TCA to epigenetic association studies.257

However, TCA can be formulated as a general statistical framework for obtaining underlying three-258

dimensional information from two-dimensional convolved signals, a capability which can benefit259

various domains in biology and beyond.260
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4 Methods261

Here we summarize the model and mathematical methods. Further details are provided in the262

Supplementary Note. Since TCA can most naturally be described as a generalization of matrix263

factorization, we further provide a brief technical overview of matrix factorization (Supplementary264

Note).265

The model Let Zi
hj denote the value coming from cell type h ∈ 1, ..., k at methylation site266

j ∈ 1, ...m in sample i ∈ 1, ...n, we assume:267

Zi
hj|µhj, σhj ∼ N(µhj, σ

2
hj) (3)

In theory, the methylation status of a given site within a particular cell is a binary condition.268

However, unlike in the case of genotypes, methylation status may be different between different269

cells (even within the same individual, site and, cell type). We therefore consider a fraction of270

methylation rather than a fixed binary value. In array methylation data, possibly owing to the large271

number of cells used to construct each individual signal, we empirically observe that a normal272

assumption is reasonable. Admittedly, normality may not hold for values near the boundaries,273

however, in practice, we typically ignore sites with mean levels that are near the boundaries (i.e.274

sites whose values are consistently methylated or consistently unmethylated). This, in conjunction275

with the relatively low variability demonstrated by the vast majority of methylation sites, makes276

the normality assumption reasonable and therefore widely accepted in the context of statistical277

analysis of DNA metylation.278
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Let W ∈ Rk×n be a non-negative constant weights matrix of k cell types for each of the n279

samples (i.e. cell-type proportions; each column sums up to 1), we assume the following model280

for site j of sample i in the observed heterogeneous methylation data matrix X:281

Xij =
k∑

h=1

whiZ
i
hj + εij, εij ∼ N(0, τ 2) (4)

where whi is the proportion of the h-th cell type of sample i in W , and εij represents an additional282

component of measurement noise which is independent across all samples. We therefore get that283

Xij follows a normal distribution with parameters that are unique for each individual i and site j.284

Put differently, we assume that the entries of X are independent but also different in their means285

and variances.286

Tensor Composition Analysis (TCA) Following the assumptions in (3) and in (4), the condi-287

tional probability of Zi
j =

(
Zi

1j, ..., Z
i
kj

)T given Xij can be shown (Supplementary Note) to satisfy288

Pr(Zi
j = zij|Xij = xij, wi, µj, σj, τ) ∝ exp

(
−1

2
(aij − zij)TS−1

ij (aij − zij)
)

(5)

where289

Σj = diag(σ2
1j, ..., σ

2
kj) (6)

Sij =

(
wiw

T
i

τ 2
+ Σ−1

j

)−1

(7)

aij = Sij

(xij
τ 2
wi + Σ−1

j µj

)
(8)

Essentially, our suggested method, TCA, leverages the information given by the observed290

values {xij} for learning a three-dimensional tensor consisted of estimates of the underlying values291
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{zihj}. This is done by setting the estimator ẑij to be the mode of the conditional distribution in (5):292

ẑij = aij =

(
wiw

T
i

τ 2
+ Σ−1

j

)−1 (xij
τ 2
wi + Σ−1

j µj

)
(9)

TCA requires the cell-type proportionsW as an input. GivenW , the parameters τ, {µj}, {σj}293

can be estimated from the observed data under the assumption in (4). In practice, the cell-type pro-294

portions are typically unknown. In such cases, W can be estimated computationally using standard295

methods (e.g., 23, 27) and then re-estimated under the TCA model in an alternating optimization296

procedure with the rest of the parameters in the model. The TCA model can further account for297

covariates, which may either directly affect Zi
j (e.g., age and sex) or affect the mixture Xij (e.g.,298

batch effects). For more details and a full derivation of the conditional distribution of Zi
j , while ac-299

counting for covariates, and for information about parameters inference see Supplementary Note.300

In order to see why TCA can learn non-trivial information about the {zihj} values, consider301

a simplified case where τ = 0, µhj = 0, σhj = 1 for each h and a specific given j. In this case, it302

can be shown (Supplementary Note) that303

Zi
hj|Xij = xij ∼ N

(
whixij∑k
l=1w

2
li

, 1− w2
hi∑k

l=1w
2
li

)
(10)

That is, given the observed value xij , the conditional distribution of Zi
hj has a lower variance304

compared with that of the marginal distribution of Zi
hj (σ2

hj = 1), thus reducing the uncertainty305

and allowing us to provide non-trivial estimates of the {zihj} values. This result further implies306

that in the context of DNA methylation, where the weights matrix W corresponds to a matrix307

of cell-type proportions, we should expect to gain better estimates for the {zihj} levels in more308
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abundant cell types compared with cell types with typically lower abundance. For more details see309

Supplementary Note.310

Applying TCA to epigenetic association studies We next consider the problem of detecting311

statistical associations between DNA methylation levels and biological phenotypes. Let X ∈312

Rn×m be an individuals by sites matrix of methylation levels, and let Y denote an n-length vector313

of phenotypic levels measured from the same n individuals, typical association studies usually314

consider the following model for testing a particular site j for association with Y :315

Yi = Xijβj + ei, ei ∼ N(0, σ2) (11)

where Yi is the phenotypic level of individual i, βj is the effect size of the j-th site, and ei is a316

component of i.i.d. noise. For convenience of presentation, we omit potential covariates which can317

be incorporated into the model. In a typical EWAS, we fit the above model for each feature, and318

we look for all features j for which we have a sufficient statistical evidence of non-zero effect size319

(i.e. βj 6= 0).320

In principle, one can use TCA for estimating cell-type-specific levels, and then look for cell-321

type-specific associations by fitting the model in (11) with the estimated cell-type-specific levels322

(instead of directly using X). However, an alternative one-step approach can be also used. This323

approach leverages the information we gain about zihj given that Xij = xij for directly modeling324

the phenotype as having cell-type-specific effects. Specifically, consider the following model:325

Yi = Zi
ljβlj + ei, ei ∼ N(0, φ2) (12)
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where βlj denotes the cell-type-specific effect size of some cell type of interest l. Provided with

the observed information xij , while keeping the assumptions in (3) and in (4), it can be shown

(Supplementary Note) that:

Yi|Xij = xij ∼ N

(
βlj

(
µlj +

wliσ
2
ljx̃ij

τ 2 +
∑k

h=1w
2
hiσ

2
hj

)
, φ2 + β2

lj

(
σ2
lj −

w2
liσ

4
lj

τ 2 +
∑k

h=1w
2
hiσ

2
hj

))

(13)

x̃ij = xij −
k∑

h=1

whiµhj (14)

This shows that directly modeling Yi|Xij effectively integrates the information over all possible326

values of Zi
lj . Given W,µj, σj, τ (typically estimated from X; Supplementary Note), we can esti-327

mate φ and the effect size βlj using maximum likelihood. The estimate β̂lj can be then tested for328

significance using a generalized likelihood ratio test. Similarly, we can consider a joint test for the329

combined effects of more than one cell type. A full derivation of the statistical test is described in330

the Supplementary Note. In this paper, whenever association testing was conducted, we used this331

direct modeling of the phenotype given the observed methylation levels.332

Finally, we note that in principle one can also use the model in equation (4) for testing for333

cell-type-specific associations by treating the phenotype of interest as a covariate and estimating334

its effect size. However, TCA provides a way to deconvolve the data into cell-type-specific levels,335

which is of independent interest beyond the specific application for association studies. Moreover,336

model directionality often matters, and the TCA framework allows us to directly model the phe-337

notype rather than merely treat it as another covariate. Particularly, in the context of this paper, it338

is known that methylation levels are actively involved in many cellular processes such as regula-339
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tion of gene expression 39, thus, making DNA methylation a potential contributing determinant in340

disease (which further justifies the modeling of the phenotype as an outcome).341

Implementation of TCA TCA was implemented in Matlab and is available from github at http:342

//github.com/cozygene/TCA. TCA requires for its execution a heterogeneous DNA methylation343

data matrix and corresponding cell-type proportions for the samples in the data. In case where344

cell counts are not available, TCA can take estimates of the cell-type proportions, which are then345

optimized with the rest of the parameters in the model.346

For the real data experiments, we used GLINT 40 for generating initial estimates of the cell-347

type proportions for the whole-blood data sets. GLINT provides estimates according to the House-348

man et al. model 23, using a panel of 300 highly informative methylation sites in blood 41 and a349

reference data collected from sorted blood cells 28. Given these estimates, we used the TCA model350

to re-estimate the cell-type proportions using the top 500 sites selected by the feature selection351

procedure of ReFACTor 24.352

Data simulation We simulated data following our model and similarly to an approach that we353

previously described in details elsewhere 27. Briefly, we estimated cell-type-specific means and354

standard deviations in each site using reference data of methylation levels collected from sorted355

blood cells 28. Since we expected cell-type-specific associations to be mostly present in CpG356

sites that are highly differentially methylated across different cell types, we considered cell-type-357
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specific means and standard deviations from sites which demonstrated the highest variability in358

cell-type-specific mean levels across the different cell types.359

Using the estimated parameters of a given site, we generated cell-type-specific DNA methy-360

lation levels using normal distributions, conditional on the range [0, 1]. In cases where covariates361

were simulated to have an effect on the cell-type-specific methylation levels, the means of the362

normal distributions were tuned for each sample to account for its covariates and the correspond-363

ing effect sizes (shared across samples; Supplementary Note). We generated cell-type proportions364

for each sample using a Dirichlet distribution with parameters that were estimated from blood365

cell counts elsewhere 27. Specifically, the Dirichlet distribution modeled the distribution of 6 cell366

types: granulocytes, monocytes and 4 sub-types of lymphocytes (CD4+, CD8+, NK and B cells).367

In the case of three constituting cell types (granulocytes, monocytes, and lymphocytes), we set the368

Dirichlet parameter of lymphocytes to be the sum of the parameters of all the lymphocyte sub-369

types. Eventually, for each sample, we composed its methylation level at each site by taking a370

linear combination of the simulated cell-type-specific levels of that site, weighted by the cell com-371

position of that sample, and added an additional i.i.d normal noise conditional on the range [0, 1]372

to simulate technical noise (τ = 0.01). In cases where covariates were simulated to have a global373

effect on the methylation levels (i.e. non-cell-type-specific effect, such as batch effects), we further374

added an additional component of variation for each sample according to its global covariates and375

their corresponding effect sizes.376
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Data sets We used 3 methylation data sets that were previously collected in RA studies with the377

Illumina 450K human DNA methylation array: a whole-blood data set by Liu et al. of 354 RA378

cases and 332 controls (GEO accession GSE42861) 19, a CD4+ methylation data set of 12 RA cases379

and 12 controls with matching age and sex (for each RA case a control sample with matching age380

and sex was collected) by Guo et al. (GEO accession GSE71841) 34, and cell-sorted methylation381

data collected from 63 female RA patients and 31 female control subjects in CD4+ memory cells,382

CD4+ naive cells, CD14+ monocytes, and CD19+ B cells; these sorted-cell data were originally383

described by Rhead et al. 35.384

We further used data from a previous study by Reynolds et al. with both 450K methylation385

array data (GEO accessions GSE56581 and GSE56046) and Illumina HumanHT-12 expression ar-386

ray data (GEO accessions GSE56580 and GSE56045) collected from CD14+ monocytes (n=1,202)387

and from T cells (n=214) 36. In addition, for replicating the association results with immune ac-388

tivity, we used another 450K methylation array data set that was previously studied by Hannum et389

al. in the context of aging rates (n=656; GEO accession GSE40279) 29. Finally, for the simulation390

experiments we used methylation reference of sorted leukocyte cell types collected in 6 individuals391

from the Gene Omnibus Database (GEO accession GSE35069) 28.392

We preprocessed the Liu et al. data and the Hannum et al. data according to a recently393

suggested normalization pipeline 42. The full preprocessing details for these two data sets were394

previously described by us elsewhere 27. Since IDAT files were not available for the Guo et al.395

data set, we used the methylation intensity levels published by the authors. Following recommen-396
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dations by Lenhe et al., we performed a quantile normalisation of the methylation intensity values,397

subdivided by probe type, probe sub-type and color channel. The normalized levels were then398

used to calculate beta normalized methylation levels (according to the recommendation by Illu-399

mina). The full preprocessing details for the the Rhead et al. data are described elsewhere 35; here,400

we further excluded a small batch consisted of only 4 individuals. Finally, for the association ex-401

periments with methylation, we further discarded consistently methylated probes and consistently402

unmethylated probes from the data (mean value higher than 0.9 or lower than 0.1, respectively).403

Power simulations We simulated data and sampled for each site under test a normally distributed404

phenotype with additional effects of the cell-type-specific methylation levels of the site. We set405

the variance of each phenotype to the variance of the site under test, in order to eliminate the406

dependency of the power in the variance of the tested site (and therefore allow a clear quantification407

of the true positives rate under a given effect size). Particularly, when simulating an effect coming408

from a single cell type, we randomly generated a phenotype from a normal distribution with the409

variance set to the variance of the site under test in the specific cell type under test. Similarly,410

when simulating effects coming from all cell types, we randomly generated a phenotype from a411

normal distribution with the variance set to the total variance of the site under test (i.e. across all412

cell types).413

We performed the power evaluation using simulated data with 3 constituting cell types (k=3)414

and using simulated data with 6 constituting cell types (k=6). We considered three scenarios across415

a range of effect sizes as follows: different effect sizes for different cell types (using s joint test),416

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/437368doi: bioRxiv preprint 

https://doi.org/10.1101/437368
http://creativecommons.org/licenses/by/4.0/


the same effect size for all cell types (using a joint test, under the assumption of the same effect417

for all cell types), and a scenario with only a single associated cell type (a marginal test). In the418

first scenario, effect sizes for the different cell types were drawn from a normal distribution with419

the particular effect size under test set to be the mean (with standard deviation σ = 0.05), and420

in the third scenario we evaluated the aggregated performance of all the marginal tests across all421

constituting cell types in the simulation. We further repeated the marginal test while stratifying422

the evaluation by cell type (i.e. the marginal test was performed under the third scenario for423

each cell type separately). In each of these experiment, we calculated the true positives rate of424

the associations that were reported as significant while adjusting for the number of sites in the425

simulated data.426

For each scenario and for each number of constituting cell types, we simulated 10 data sets,427

each included 500 samples and 100 sites. Importantly, throughout the simulation study, we con-428

sidered for each simulated data set the case where only noisy estimates of the cell-type proportions429

are available (and therefore need to be re-estimated together with the rest of the parameters in430

the TCA model). Specifically, for each sample in the data we replaced its cell-type proportions431

with randomly sampled proportions coming from a Dirichlet distribution with the original cell-432

type proportions of the individuals as the parameters. For each level of noise, these parameters433

were multiplied by a factor that controlled the level of similarity of the sampled proportions to the434

original proportions. Finally, for evaluating false positives rates, we followed the above procedure,435

however, without adding additional effects coming from methylation levels. We evaluated the false436

positives rate by considering the fraction of sites with p-value<0.05.437
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Analysis of immune activity We used the Liu et al. data 19 as the discovery data (n=658) and438

the Hannum et al. data 29 as the replication data (n=650). Since we expected to observe associ-439

ations with regulation of cell-type composition in CpGs that demonstrate differential methylation440

between different cell types, we considered for this analysis only CpGs that were reported as dif-441

ferentially methylated between different whole-blood cell types 20. Specifically, we considered the442

sites in the intersection between the set of Bonferroni-significant CpGs that were reported as dif-443

ferentially methylated in whole-blood and the available CpGs in both the discovery and replication444

data sets; this resulted in a set of 50,123 CpGs that were available for this analysis.445

We performed a standard linear regression analysis using GLINT 40 and a TCA analysis446

under the assumption of the same effect size in all cell types. In the analysis of the Liu et al. data447

we controlled for RA status, gender, age, smoking status, and known batch information, and in448

the analysis of the Hannum et al. data we controlled for gender, age, ethnicity and the first two449

EPISTRUCTURE principal components 43 in order to account for the population structure in this450

data set. In both data sets, in order to take into account potentially unknown technical confounding451

effects, we further included the first ten principal components calculated from the intensity levels452

of a set of 220 control probes in the Illumina methylation array, as suggested by Lenhe et al. 42 in an453

approach similar to the remove unwanted variation method (RUV) 44. These probes are expected454

to demonstrate no true biological signal and therefore allow to capture global technical variation455

in the data.456

In the replication analysis, we applied a Bonferroni threshold in reporting significance, con-457
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trolling for the number of genome-wide significant associations that were reported in the discovery458

data. The results are summarized in Supplementary File 1, where additional description for the as-459

sociated genes is provided from GeneCards 45, the GWAS catalog 46, and GeneHancer 47.460

Analysis of rheumatoid arthritis We used the Liu et al. data 19 as the discovery data (n=658,461

214,096 Cpgs). We applied a standard logistic regression analysis with the RA status as an outcome462

using GLINT 40 and TCA analysis: under the assumption of a single effect for all cell types (joint463

test), and for each of CD4+, CD14+, and CD19+, under the assumption of a single associated464

cell type (marginal test). In every analysis, we accounted for the same variables described in the465

immune activity analysis with this data set. In order to test the associations reported by TCA466

for enrichment for the RA pathway, we used missMethyl 48, an R package that allows to run467

enrichment analysis for disease directly on CpGs (while accounting for gene length bias).468

In the replication analysis with the Rhead et al. data, we applied a standard logistic regres-469

sion analysis using GLINT 40 on each of the CD14+ (n=90) and CD19+ (n=87) data sets, while470

accounting for age, smoking status, and batch information. Since the Rhead et al. data included471

sorted-cell methylation from two sub-types of CD4+, for the replication analysis of CD4+ (n=81)472

we performed for each site a logistic regression analysis using both its CD4+ naive cells methyla-473

tion levels and CD4+ memory cells methylation.474

Taking a standard approach in the analysis of the Guo et al. CD4+ sorted methylation data475

resulted in a severe inflation in test statistic. Since the cases and controls in the sample were476
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matched for age and sex, we suspected that technical variation might have led to this inflation. In477

order to test that, we calculated the first principal component of control probes, similarly to the478

approach taken in the analysis of the Liu et al. data. However, since IDAT files were not available479

for the Guo et al .data, and therefore the same set of 220 control probes that were used in the Liu et480

al. data were not available, we used the methylation intensity levels of the 220 sites with the least481

variation in the data as control probes. Indeed, we found that the first PC of the control probes482

corresponds to the case/control status in the data almost perfectly (r=0.91, p-value=6.29e-10). As483

a result, p-values obtained using a standard analysis of the Guo et al. data set are not reliable. We484

therefore considered the following non-parametric procedure. We ranked the sites according to485

their absolute difference in mean methylation levels between cases and controls, and considered486

a simple enrichment test, wherein the p-value of a site was determined as its rank divided by the487

total number of sites in the ranking.488

We considered a Bonferroni correction for reporting significance in the replication analysis,489

controlling for the number of genome-wide significant associations that were reported by the cell-490

type-specific analysis of TCA in the discovery data. Since two independent data sets were available491

for testing the replicability of the CD4+ specific associations (Rhead et al. and Guo et al.), we492

considered sites with replication p-value<0.05 in both data sets as successfully replicated. The493

results are summarized in Supplementary File 2, where additional description for the associated494

genes is provided from GeneCards 45, the GWAS catalog 46, and GeneHancer 47.495

Finally, in the analysis of the Reynolds et al. data with both methylation and expression496
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levels, we first looked for significant correlations between methylation and the log-transformed497

expression levels, while accounting for the total number of hypotheses (the number of genes times498

the number of CpGs that were reported by TCA for CD+4 and CD14+). Enrichment test for the499

RA pathway was performned for the set of significantly correlated genes (for each of the tested500

CpGs separately) using clusterProfiler 49. In order to find the genes whose expression can be well501

explained by the 3 CD14+ specific associations that were reported by TCA and were found to502

be enriched for correlation with RA pathway genes (cg13081526, cg13778567 and cg18816397),503

we fitted a linear model for the log-transformed expression levels of each gene in the CD14+504

expression data using the 3 CpGs and the pairwise interactions between these 3 CpGs. The results505

with the Reynolds are summarized in Supplementary File 3.506
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