Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Distinct waking states for strong evoked responses in primary visual cortex and optimal visual detection performance

Garrett T. Neske, David A. McCormick
doi: https://doi.org/10.1101/437681
Garrett T. Neske
1Department of Neuroscience, Yale School of Medicine, New Haven, CT
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. McCormick
1Department of Neuroscience, Yale School of Medicine, New Haven, CT
2Institute of Neuroscience, University of Oregon, Eugene, OR
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Variability in cortical neuronal responses to sensory stimuli and in perceptual decision making performance is substantial. Moment-to-moment fluctuations in waking state or arousal can account for much of this variability. Yet, the nature of this variability across the full spectrum of waking states is often not completely characterized, leaving the characteristics of the optimal state for sensory processing unresolved. Using pupillometry in concert with extracellular multiunit and intracellular whole-cell recordings, we found that the magnitude and reliability of visually evoked responses in primary visual cortex (V1) of awake, passively behaving male mice increase as a function of arousal and are largest during sustained locomotion periods. During these high-arousal, sustained locomotion periods, cortical neuronal membrane potential was at its most depolarized and least variable. Contrastingly, behavioral performance of mice on two distinct visual detection tasks was generally best at a range of intermediate arousal levels, but worst during locomotion. These results suggest that large, reliable responses to visual stimuli in V1 occur at a distinct arousal level from that associated with optimal visual detection performance. Our results clarify the relation between neuronal responsiveness and the continuum of waking states, and suggest new complexities in the relation between primary sensory cortical activity and behavior.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted October 08, 2018.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Distinct waking states for strong evoked responses in primary visual cortex and optimal visual detection performance
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Distinct waking states for strong evoked responses in primary visual cortex and optimal visual detection performance
Garrett T. Neske, David A. McCormick
bioRxiv 437681; doi: https://doi.org/10.1101/437681
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Distinct waking states for strong evoked responses in primary visual cortex and optimal visual detection performance
Garrett T. Neske, David A. McCormick
bioRxiv 437681; doi: https://doi.org/10.1101/437681

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4087)
  • Biochemistry (8762)
  • Bioengineering (6479)
  • Bioinformatics (23341)
  • Biophysics (11750)
  • Cancer Biology (9149)
  • Cell Biology (13248)
  • Clinical Trials (138)
  • Developmental Biology (7417)
  • Ecology (11369)
  • Epidemiology (2066)
  • Evolutionary Biology (15087)
  • Genetics (10399)
  • Genomics (14009)
  • Immunology (9121)
  • Microbiology (22040)
  • Molecular Biology (8779)
  • Neuroscience (47368)
  • Paleontology (350)
  • Pathology (1420)
  • Pharmacology and Toxicology (2482)
  • Physiology (3704)
  • Plant Biology (8050)
  • Scientific Communication and Education (1431)
  • Synthetic Biology (2208)
  • Systems Biology (6016)
  • Zoology (1249)