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Abstract

The growth and virulence of the bacteria Bacillus thuringiensis depends

on the production of Cry toxins, which are used to perforate the gut of

its host. Successful invasion of the host relies on producing a threshold

amount of toxin, after which there is no benefit from producing more toxin.

Consequently, the production of Cry toxin appears to be a different type of

social problem compared with the public goods scenarios that bacteria often

encounter. We show that selection for toxin production is a volunteer’s

dilemma. We make the specific predictions that: (1) selection for toxin

production depends upon an interplay between the number of bacterial

cells that each host ingests, and the genetic relatedness between those

cells; (2) cheats that do not produce toxin gain an advantage when at low

frequencies, and at high bacterial density, allowing them to be maintained

in a population alongside toxin producing cells. More generally, our results

emphasise the diversity of the social games that bacteria play.
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1. Introduction

The growth and virulence of many bacteria depends upon successfully co-

operating in public goods games with other bacteria. Bacteria produce and

secrete a range of molecules, which provide a benefit to the local group of

cells, and so act as public goods. For example, iron scavenging siderophores,5

or protein digesting proteases (West et al.West et al., 20072007). Individual cells pay the

metabolic cost of producing these molecules, but their benefits are then

shared as public goods with the local population of cells. Consequently, pro-

ducing cells could potentially be out-competed by non-producing, cheats,

who gain the benefits, without paying the costs. There is a large theoretical10

and empirical literature examining how various factors such as interactions

between genetically identical cells (kin selection), can stabilise the produc-

tion of public goods in bacteria (Brown and JohnstoneBrown and Johnstone, 20012001; Diggle et al.Diggle et al.,

20072007; FrankFrank, 2010a2010a,bb; Griffin et al.Griffin et al., 20042004; West and BucklingWest and Buckling, 20032003).

In contrast, the growth and virulence of the bacteria Bacillus thuringiensis15

may depend upon a different type of social game (Raymond et al.Raymond et al., 20122012).

The life cycle of this bacteria depends upon two steps in the host. First,

after an insect host ingests a number of spores, the bacterial cells use a

costly crystal (Cry) toxin to perforate the host gut, and invade the host

(Höfte and WhiteleyHöfte and Whiteley, 19891989; Ibrahim et al.Ibrahim et al., 20102010; Raymond et al.Raymond et al., 20122012). The20

toxin is a large protein, up to 147 kilodaltons, that may form up to 35% of

a bacteria’s dry mass (Loferer-Krößbacher et al.Loferer-Krößbacher et al., 19981998). Second, the bacte-
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ria multiply within the host and invest in Cry toxin production, causing

host death and the release of bacterial spores (Raymond et al.Raymond et al., 20102010). In

contrast to a public goods scenario the benefit of producing Cry toxin is25

all or nothing — you either produce enough to invade the host, or you

do not. As producing a certain total amount of toxin is key, the strat-

egy that will be favoured by evolution could also depend upon the num-

ber of spores that are inside a host (ArchettiArchetti, 20092009; Cornforth et al.Cornforth et al., 20152015;

Raymond and BonsallRaymond and Bonsall, 20132013).30

We examine the evolutionary stability and dynamics of Cry toxin pro-

duction using two different modelling approaches. First, we use a game

theoretic approach to examine under what conditions the production of Cry

toxin is favoured (Taylor and FrankTaylor and Frank, 19961996). This approach assumes only

small variations in toxin production (weak selection), and looks for a single35

equilibrium. In contrast, in nature there is large variation in toxin produc-

tion, between cells that produce (cooperators) or do not produce (cheats)

Cry toxin (Deng et al.Deng et al., 20152015; Raymond et al.Raymond et al., 20122012, 20102010). Furthermore,

factors such as population density and cooperator frequency can fluctu-

ate over short timescales (Gokhale and HauertGokhale and Hauert, 20162016; Raymond et al.Raymond et al., 20122012;40

SchoenerSchoener, 20112011), and studies of the density of spores in the wild have shown

that group sizes are very low suggesting that stochastic effects could be

important (Collier et al.Collier et al., 20052005; Maduell et al.Maduell et al., 20022002; Raymond et al.Raymond et al., 20102010).

Therefore, our second approach is to model the dynamics of a system that

contains both co-operators and cheats, to examine how these dynamics are45

influenced by bacterial density, and the frequency of cooperators.
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2. Model I: Equilibrium Model

We use a game theoretic approach to express the fitness of a bacterial cell

as a function of: the probability it infects a host, β(z); and, the number of

spores it generates, f(y) — where, z is the group average strategy and y50

is the individual cells strategy. We assume an infinitely sized population

of bacteria distributed into finitely sized patches of n bacteria. There are

non-overlapping generations and the bacterial spores disperse randomly

to other patches.

We assume that the probability that a bacteria in a group of n cells55

successfully infects a host, β, is a function of their average investment,

z. We model this probability using a sigmoidal curve as a continuously

differentiable approximation of a step function:

β(z) =
1

1+ e−(nz−k)
, (1)

where, the group production of toxin nz is compared to k, which is the

threshold at which the chance of infection would be 0.5 (Cornforth et al.Cornforth et al.,60

20122012). When the total toxin production is low (nz << k) then the chance

of infection is close to 0 as toxin production increases 0 6 nz 6 k then the

function is accelerating and then past the threshold (k < cz) the function is

decelerating and asymptotes to 1.

We assume there is a linear trade-off between the energy a bacteria puts65

into producing toxin, y, and the energy available for growth, f— as both

require the generation of protein:

f(y) = 1− ay . (2)
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The fitness function of a focal bacterium will be the product of the probabil-

ity it invades a host and the growth of the bacterium once it has successfully

invaded (β(z) · f(y)):70

ω(y, z) =
1− ay

1+ e−(nz−k)
. (3)

Equation (33) illustrates that producing the Cry toxin has a cost to the indi-

vidual by reducing its growth, f(y). However, it is beneficial to the group,

including our focal individual, as it increases the chance of successful

invasion, β(z).

We seek an evolutionarily stable strategy (ESS), which is the individual75

strategy at fixation which cannot be invaded by some rare alternative

strategy. Following Taylor and FrankTaylor and Frank (19961996), we construct an expression

for the change in inclusive fitness, ∆ωIF, and solve for a monomorphic

population that is at equilibrium:

∆ωIF

∣∣∣
y=z=z∗

= 0

z∗ =
1

a
−

1

r(n− 1) + 1
−
W(a, k,n, r)

n
, (4)

where,W is a Lambert-W function which is strictly positive (see Appendix BAppendix B)80

and r is the relatedness between the different bacterial cells infecting the

host. We define r as the probability that two individuals share the same

gene at a locus relative to the population average (GrafenGrafen, 19851985). This

measure is obtained by replacing the regression of the recipients pheno-

type on the focal individuals genotype (R in Taylor and FrankTaylor and Frank (19961996)) with:85

R = 1
n + n−1

n r. Where 1/n is the chance the other individual is oneself and
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n− 1/n is the chance of a social partner with other’s only relatedness r to

the focal individual (PepperPepper, 20002000).

The equilibrium at z∗ is a maximum however it may be unreachable.

To test whether a population under weak selection would converge to90

equilibrium (convergence stability), we examined whether the second order

terms at the equilibrium were negative (Otto and DayOtto and Day, 20112011). We found

that:

∆ω ′IF

∣∣∣
y=x=z∗

< 0 (5)

if: a > 0, 0 6 r 6 1, n > 1, andW > 0 .

So the equilibrium at z∗ is a candidate ESS. To determine uninvadibility we

implement an extension to the Taylor and FrankTaylor and Frank (19961996) approach, by inter-95

preting the second derivative of the fitness equation in terms of inclusive

fitness effects, therefore establishing a condition for the candidate equi-

librium to be a local maximum (Cooper and WestCooper and West, 20182018). In Appendix AAppendix A

we show that z∗ is an uninvaidable strategy as well as being convergently

stable.100

2.1. The effect of relatedness

We found that increasing relatedness (r) increases individual toxin produc-

tion. Examining the derivative of the equilibrium toxin production (z∗)

with respect to relatedness (r) we found that:

∂z∗

∂r
> 0 ∀r; r ∈ [0, 1] . (6)

So as relatedness (r) within the group increases the ESS of toxin also in-105

creases (z∗) (Appendix CAppendix C). Increasing relatedness increases the indirect
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Figure 1: The equilibrium toxin production depends on group size (n) and relatedness (r).

a) When r > 0, as we increase group size, toxin production initially increases and then

decreases. b) The total amount of toxin produced by the group, nz∗, increases with group

size, therefore, the chance of infecting the host is always higher in larger groups. These

graphs assume k = 2 and a = 2
3 (Appendix DAppendix D).

benefit from toxin production as the group chance of invasion, β(z), has a

greater chance of being shared with kin. However, even when relatedness

is low (r = 0) toxin production is favoured as it is essential to reproductive

success (fig. 11).110

2.2. The effect of group size

As groups increase in size individual toxin production initially peaks and

then declines — when relatedness is non-zero (fig. 11a). This is due to the

efficiency gained when close to the accelerating section of the sigmoidal

β(z) function (near the threshold). As the benefits (β(z)) are accelerating,115

small increases in toxin production lead to large increases in infection

chance. Past the peak toxin production, the greater number of individuals
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in the patch allow for individual bacteria to reduce their investment but the

group remains at a high chance of successfully invading (see Appendix DAppendix D).

2.3. The effect of the threshold120

The derivative of toxin production, z∗, with respect to the threshold is

always positive or zero:

∂z∗

∂k
=

W

(
ne

n

(
1
a− 1

r(n−1)+1

)
−k

(n−1)r+1

)

n

(
W

(
ne

n

(
1
a− 1

r(n−1)+1

)
−k

(n−1)r+1

)
+ 1

)

∂z∗

∂k
> 0 if : a > 0, k > 0, n > 1, 0 6 r 6 1. (7)

Therefore, in the absence of other limits if more toxin is required to in-

vade the host (higher k) individuals will be selected to increase their toxin

production (z∗).125

3. Model II: Cooperator-Cheat Dynamics

In nature the density and fraction of spores, that either do (coopera-

tors) or don’t (cheats) produce Cry toxins, can be very variable over

short temporal and spatial scales (Collier et al.Collier et al., 20052005; Maduell et al.Maduell et al., 20022002;

Raymond and BonsallRaymond and Bonsall, 20132013). We capture this ecological variation with130

a model which allows us to compare individuals that produce toxin at

a fixed level (cooperator) against individuals which do not produce any

toxin (cheats). We look at the relative fitness between these two types to

determine how ecological parameters affect the relative fitnesses.

8
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We assume a population of bacteria whose spores freely mix and are135

taken up at random by a host. We assume that the host ingests P bacterial

spores. In the environment a proportion (c) of bacteria are cooperators and

(1− c) are cheats. For a focal individual in a group of P− 1 social partners

there are i cooperators which are distributed:

Pr(i) ∼ Binomial(P, c) =
P−1∑
i=0

(
P− 1

i

)
ci (1− c)P−1−i . (8)

From eq. (33) given i cooperators in a group the payoff, π, for the focal140

bacteria producing y toxin will be:

πi(y, z) =
1− ay

1+ e−(iz+y−k)
. (9)

Therefore, the overall fitness of a focal bacteria producing y toxin in a

population of cooperators producing z toxin will be:

ω(y, z) =
P−1∑
i=0

(
P− 1

i

)
ci (1− c)P−1−i

1− ay

1+ e−(iz+y−k)
. (10)

This allows us to express the fitness of a cooperator in the population

as ω(z, z) and that of a cheat as ω(0, z). The relative fitness of cheats to145

cooperators in the population is:

νD =
ω(0, z)
ω(z, z)

(11)

3.1. Frequency dependence

As the proportion of cheats increases we find that the relative fitness of

cheats decreases (fig. 22a). As cheats become more common, groups become

9
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Figure 2: (a) The relative fitness of cheats is negatively frequency dependent as cheats

become more common they are more often aggregated together and so suffer in relative

fitness to cooperators. (b) As group size increases there is a positive density dependent

effect on cheat fitness, the larger the group the more chance that sufficient toxin is produced

by the group

dominated by cheats and the chance that a group produces enough toxin150

decreases. Why do we find frequency dependence when, in the simplest

possible case, a public goods dilemma leads to selection being frequency

independent (Ross-Gillespie et al.Ross-Gillespie et al., 20072007)?

The result of frequency independence requires either: (1) that the effect

on public good production is linear or, (2) that the trait is under weak selec-155

tion. Either of these two assumptions make a linear approximation, using a

first order Taylor expansion, valid. And, such expansions, are frequency in-

dependent (Lehmann and RoussetLehmann and Rousset, 20142014; RoussetRousset, 20042004). This argument is

similar to the justification for frequency independent selection of a trait that

the selection gradient, s(z) = ∂ω/∂y+ r∂ω/∂z, is constant with respect to160

allele frequency (Gore et al.Gore et al., 20092009; HamiltonHamilton, 19641964; Lehmann and RoussetLehmann and Rousset,
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20142014).

However, in our model we find that the relative fitness of a cheat is

frequency dependent. This is because we relax both of the assumptions

made by Ross-Gillespie et al.Ross-Gillespie et al. (20072007). We have a non-linear synergistic effect165

between cooperators which means that each cooperator or defector does

not have a linear effect on the fitness of the focal individual, due to the step

like benefit function (β(z)). Addition or subtraction of a cooperator has a

large effect when a group is close to the the threshold but a much smaller

effect when the group toxin production is already very low or very high; the170

benefit of a cooperator is dependent on the compisition of the group which

is itself dependent on the frequency of cooperators. This synergy introduces

a frequency dependent term into the first order effects of our selection

gradient (Lehmann and RoussetLehmann and Rousset, 20142014). Secondly, we consider a game with

strong selection which makes approximating the gradient using only first175

order terms inappropriate. The large difference between cooperator and

cheat strategies causes higher order terms of the relative fitness to matter

and these higher order terms will include frequency dependent terms

(HamiltonHamilton, 19641964; Ross-Gillespie et al.Ross-Gillespie et al., 20072007).

These two effects lead to a frequency dependent relative fitness found180

here — unlike the frequency independence found in earlier models

(Ross-Gillespie et al.Ross-Gillespie et al., 20072007). The synergistic game causes the first order

term of the Taylor expansion to be frequency dependent. The strong se-

lection causes higher order terms to become more substantial. These two

effects are sufficient but not necessary conditions for frequency dependence185

to arise.
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3.2. Density dependence

Increasing the density of the population, by increasing the group size

(P), increases relative cheat fitness. In more dense populations there is a

greater chance that a group will have a sufficient number of cooperators to190

invade a host successfully (fig. 22b). The mean number of cooperators in a

group increases with density allowing cheats to exploit more cooperators.

In the limit, as P increases, the chance of infection for all patches in the

population is one, (β(z∗) = 1). Therefore, the fitness of cheats is 1 and

the fitness of all cooperators is 1− az. The relative fitness of cheats then195

approaches, 1/(1− az).

3.3. Population Aggregation

The above model assumes patches form randomly from the population

with no structuring beyond random chance. We now imagine a scenario

where similar strategies are clumped together, as would be expected if200

they had emerged from the same host (van Leeuwen et al.van Leeuwen et al., 20152015). We use a

modified Poisson binomial distribution to model the initial member of a

group biasing subsequent draws towards its own type. As initial founders

are randomly distributed, a fraction c of the groups are clumped around a

cooperator and a fraction d around a cheat (c+ d = 1).205

So given that the patch is started by a cooperator then the distribution

of number of cooperators among such patches is:

c

P−1∑
i=0

(
P− 1

i− 1

)
︸ ︷︷ ︸
less founder

(c+ δ1)
i−1︸ ︷︷ ︸

Pr (i cooperators)

(1− (c+ δ1))
P−i︸ ︷︷ ︸

Pr (P-i cheats)

, (12)
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and similarly for cheats:

d

P−1∑
i=0

(
P− 1

i

)
︸ ︷︷ ︸
less founder

(1− (d+ δ2))
i︸ ︷︷ ︸

Pr (i cooperators)

(d+ δ2)
P−i−1︸ ︷︷ ︸

Pr (P-i-1 cheats)

. (13)

The binomial coefficient is C(P − 1, i− 1) for cooperators as the founder

individual counts for the first group member and the first cooperator.210

For the defector patches the founder only accounts for the first group

member, hence C(P− 1, i). The two variables, δ1 and δ2, are terms that bias

the distributions based on the founder. The larger their values the more

strongly the two types aggregate. These two distributions represent an

underlying distribution — that of the simpler model. We define φ ∈ [0, 1]215

as the level of aggregation and define the bias parameters as: δ1 = φc ;

δ2 = δ1
c
d . When φ is one then patches of all cooperators and all cheats form

and when it is zero then there is no bias and patches form as they would

in a binomial distribution. By expressing the bias parameters (δ1 and δ2),

in terms of φ, c and d, we ensure that the sum over both distributions is220

equal to one, and the terms are weighted probabilities.

The distribution of the number of cooperators in a patch is weighted

by the fitness of the focal individual in such a group (the sum of the above

two distributions), giving:

ωS(y, z) =
P−1∑
i=0

(
c

(
P− 1

i− 1

)
(c+ δ1)

i−1 (1− (c+ δ1))
P−i +

(1− c)

(
P− 1

i

)
(1− ((1− c) + δ2))

i ((1− c) + δ2)
P−i−1

)
πi(x, i · y) , (14)

and from this we calculate a structured relative fitness: νDS = ωS(0, z)/ωS(z, z)225

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/437913doi: bioRxiv preprint 

https://doi.org/10.1101/437913
http://creativecommons.org/licenses/by-nc-nd/4.0/


c = 0.01 c = 0.5 c = 0.99

0.0 0.2 0.4 0.6 0.8 1.0

1.000

1.005

1.010

1.015

1.020

1.025

Aggregation (ϕ)

R
e

la
ti
v
e

F
it
n

e
s
s
(ν

D
S
) P=5

(a)

c = 0.01 c = 0.5 c = 0.99

0.0 0.2 0.4 0.6 0.8 1.0
0.97

0.98

0.99

1.00

1.01

1.02

Aggregation (ϕ)

R
e

la
ti
v
e

F
it
n

e
s
s
(ν

D
S
) P=10

(b)

Figure 3: Graphs ofωS, eq. (1414), using parameters: k = 2, a = 2/3 and z = 0.17. (a) When

group size is low, P = 5 increasing aggregation leads to decreasing relative fitness for

cheats regardless of the initial cooperator frequency (b) At higher group sizes (P = 10)

the pattern is also decreasing at high cooperator frequencies however at middling and

low densities we see a non monotonic pattern with an intermediate aggregation causing a

maximum relative fitness in cheats.

At maximum aggregation (φ = 1) cheats will do very poorly against

cooperators as groups formed of all cheats have almost zero chance of

invading the host. In the absence of aggregation (φ = 0), cheats will be

performing as if the population were unstructured, as in the previous

model. As aggregation increases cheats are more likely to find themselves230

in groups composed mostly of cooperators or mostly of cheats and very

rarely a group close to an unbiased distribution.

Intermediate levels of aggregation can, with intermediate frequencies of

cooperators and high densities, lead to an increase in cheat relative fitness

(fig. 33). When group sizes are large the benefit to all members of a group of235

cooperators will approach one. At that point any additional cooperators
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Figure 4: (a) Frequency dependence is still present in the base case of no aggregation

as aggregation increases a critical point is reached at full aggregation where frequency

dependence disappears (b) Increasing density increases cheat fitness as long as aggregation

is again less than one. At full aggregation the density dependent effect disappears.

will perform much worse than additional cheats as they will be paying

the cost of producing toxin and gaining no marginal benefit from this

additional toxin (infection chance can’t be greater than one). Therefore, at

intermediate levels of aggregation, enough cooperators will be on patches240

to infect a host and be exploited by cheats. Conversely in the defector

biased groups the threshold will never be reached and cooperators perform

poorly as they are paying a cost for little benefit and any generated benefit

is being exploited by cheats. This leads to high density scenarios with

intermediate levels of aggregation increasing cheat relative fitness.245

The above method of looking at the relative fitness of cheats to co-

operator shows whether a cheat will be increasing or decreasing in the

population. This gives a static view of the dynamics occurring in the pop-

ulation. Our analysis shows how cheats can have a high enough relative
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fitness to invade a population and some predictions on what would hap-250

pen as environmental and demographic parameters change. However they

cannot establish over the long term whether cheating is a stable strategy in

a population — in Appendix EAppendix E we show that cheat-cooperator co-existence

can be reached dynamically from our model (ArchettiArchetti, 20182018; Peña et al.Peña et al.,

20142014).255

4. Discussion

We found that the production of toxin by the bacteria B. thurigiensis is

diferent from classical public goods games. The threshold nature of the

toxin production leads to a volunteer’s dilemma where for each individual

it would be optimal if another were to volunteer to produce the good260

instead of them. In our analysis, we used a game theory approach to

examine the conditions that favour toxin production. We found that the ESS

level of toxin production: (1) increases when the cells infecting a host host

are more related, and (2) peaks at intermediate numbers of cells infecting

a host (fig. 11). We then developed a stochastic model of the dynamics265

of cooperators that produce toxin, and cheats that do not produce toxin.

We found the relative fitness of cheats was greater when: (1) they were

less common (lower frequencies), (2) more cells infect each host (higher

densities) (fig. 22), (3) cells tended to be aggregated with the same cell types

(relatives) (fig. 33). Our results show how ecological conditions can influence270

the relative fitness of cheats and cooperators, in ways that could feedback

into the population dynamics of B. thurigiensis and its invertebrate hosts.
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4.1. The volunteer’s dilemma for public goods.

Our finding that toxin production resembles a volunteer’s dilemma game

leads to some different predictions compared with most other social traits in275

bacteria, which represent public goods games (Brown and JohnstoneBrown and Johnstone, 20012001;

Ross-Gillespie et al.Ross-Gillespie et al., 20092009; Ross-Gillespie et al.Ross-Gillespie et al., 20072007; West and BucklingWest and Buckling,

20032003). We found that individual investment (toxin production) is highest at

intermediate group sizes, that the fitness of cheats can depend upon their

frequency in the population (frequency dependence) in well mixed popula-280

tions, and that intermediate levels of aggregation can increase the relative

fitness of cheats (ArchettiArchetti, 20092009; dos Santos and Peñados Santos and Peña, 20172017). In contrast, in

public goods games, toxin production is not frequency dependent in well

mixed populations, and intermediate levels of aggregation decrease the

relative fitness of cheats (Brown and JohnstoneBrown and Johnstone, 20012001; Ross-Gillespie et al.Ross-Gillespie et al.,285

20092009; Ross-Gillespie et al.Ross-Gillespie et al., 20072007; West and BucklingWest and Buckling, 20032003).

Our result that cheater fitness is dependent upon the frequency in the

population contrasts with HamiltonHamilton (19641964) ”gift from god” that coopera-

tor fitness should be independent of frequency. Our analyses differ from

Hamiltons in two ways. Firstly, in the volunteer’s dilemma, each addi-290

tional player has a non-linear effect (non-additivity) on the benefit, which

means that even when looking at first order terms frequency is present

as a varaible (RoussetRousset, 20042004). Secondly, in our models we assume that the

cheater produces no toxin and the cooperator produces a large quantity,

leading to strong selection, which means that linearising the relative fitness295

is no longer appropriate as higher order terms have large effects (Gore et al.Gore et al.,

20092009; Lehmann and RoussetLehmann and Rousset, 20142014; Ross-Gillespie et al.Ross-Gillespie et al., 20072007).
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4.2. Bt in the wild

Our results are supported by both observational and experimental data

from field populations of B. thurigiensis. Consistent with our prediction that300

frequency dependent selection can lead to to cooperators and cheats coexist-

ing, natural populations show variation in the level of cry toxin production,

with both producers and non-producers coexisting (Raymond and BonsallRaymond and Bonsall,

20132013; Raymond et al.Raymond et al., 20122012, 20102010). Also, as predicted by our our model,

experimental manipulations have found that the relative fitness of cheats is305

higher when they are at lower frequencies in the populations, and at higher

densities (frequency and density dependent selection) (Raymond et al.Raymond et al.,

20122012).

Our model also makes novel testable predictions. For example, we

predicted that cheater fitness depends upon an interaction between ag-310

gregation and density (fig. 44), and that toxin production should peak at

intermediate group sizes (fig. 11). These predictions could be tested with

field manipulations and experimental evolution. Our results also suggest

the possibility for interactions between evolutionary and ecological (popu-

lation) dynamics, that require further theoretical and empirical work. For315

example, low cell cell densities at the start of a season would favour cooper-

ators, which would lead to an increase in cell densities. This would favour

cheats, which could reduce cell densities and now favour cooperators again.

Furthermore, these changes in cell densities and the frequency of toxin pro-

ducers would also impact on the population dynamics of their invertebrate320

hosts, which could also influence the number of cells infecting each host

(Raymond et al.Raymond et al., 20122012). These dynamics could potentially lead to seasonal

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/437913doi: bioRxiv preprint 

https://doi.org/10.1101/437913
http://creativecommons.org/licenses/by-nc-nd/4.0/


patterns and/or intermittent epidemics of B. thurigiensis. The interplay of

evolutionary and ecological dynamics between cheats and cooperators has

previously been demonstrated over the production of an enzyme to beak325

down sucrose in yeast (Gore et al.Gore et al., 20092009; Sanchez and GoreSanchez and Gore, 20132013).
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Appendix A.435

We construct a measure of the change in inclusive fitness caused by chang-

ing the focal actors strategy. This is done by expanding the total derivative

of the fitness function with respect to a dummy variable for the underlying

gene, which yields the expanded derivative (Taylor and FrankTaylor and Frank, 19961996):

dω(x,y)
dg

=
∂ω

∂x

dx

dg
+
∂ω

∂y

dy

dg
(A.1)

Following from Taylor and FrankTaylor and Frank (19961996) we make the substitutions of the440

phenotypic derivatives for regression coefficients and then simplify to get

an expression of change in inclusive fitness:

∆ωIF =
∂ω

∂x
· 1 +

∂ω

∂y
R (A.2)

In the paper we then analyse the behaviour of ∆ωIF and ∆ω ′IF to charac-

terise the equilibrium as maximal and convergent. Cooper and WestCooper and West (20182018)

method is used to determine if the equilibrium is unavailable. In brief, we445

consider the second derivative of the total derivative taken to obtain the

inclusive fitness effects (Taylor and FrankTaylor and Frank, 19961996). This expands into a long

chain rule where we drop all higher order terms (∂g2 etc.) as negligible and

substitute the regression coefficients as before, leaving us with:

d2ω(x,y)
dg2

≈ ∂
2ω

∂x2
+ 2

∂2ω

∂x∂y
R+

∂2ω

∂y2
R2 . (A.3)

When this expression is less than zero we can say the equilibrium found is450

uninvaidable.
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Appendix B.

W is a Lambert-W function which is strictly positive. The Lambert-W

function or ProductLog function is the inverse of the functions in form XeX:

Y = XeX ↔ X =W(Y) (B.1)

In this case the function in full is:455

W(a,n, r,k) =W

(
nen(

1
a+

1
−nr+r−1)−k

(n− 1)r+ 1

)
(B.2)

From the above we can see that — assuming: a > 0, 0 6 r 6 1, n > 1,k > 0

— then the function within the brackets will be positive and therefore the

value of the function will be a positive real number.

Appendix C.

∂z∗

∂r
=

∂

∂r

(
1

a
+

1

r−nr− 1
−
W(a,n,k, r)

n

)
= −(r−nr− 1)−2(1−n) −n−1 ∂

∂r
(W(a,n,k, r))

= −(r−nr− 1)−2(1−n) −
(n− 1)2(r− 1)W(a,n, r,k)

n(1+ (n− 1)r)2(1+W(a,n,k, r))
(C.1)

The expression obtained in eq. (C.1C.1) is indeed always greater than or equal460

to zero forall values of r in the internal [0, 1]. We can see this by first

remembering that the functionW is always positive for any parameter set

which is biologically reasonable — a > 0, 0 6 r 6 1, n > 1,k > 0. We

then see that the first term is positive in the denominator (a squared term)
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and negative or zero in the numerator (1− n where n > 1), negating a465

negative is of course positive so the first term has positive effect on slope.

The second term is also negative in the numerator as r− 1 is always zero

or negative. Again it has a positive effect as it is negated from the slope.

Therefore as long as the parameters are biologically reasonable the effect of

increasing r is to increase investment in the toxin an individual produces.470

Appendix D.

In the paper we assume a cost of two-thirds and a threshold of two in

all scenarios. This was done so that in the case of two individuals total

investment by both is necessary to reach the threshold value in β(z). The

reason that the cost was set to 2
3 was to represent the fact that the tradeoff475

is against future investment not current investment. In fig. D.1D.1 we can see

a greater range of parameters which are presented here to show that the

patterns found are generally true across a reasonable range of parameter

space.

Appendix E. Gain function and interior rest points480

A property of the payoff ω(z,y) (eq. (1010)) is that it is a polynomial in

Bernstein form (Peña et al.Peña et al., 20142014, 20152015). This allows us to draw general

conclusions about the shape and behaviour of this function by looking at

a simple gain function. In essence we can calculate ai as the payoff for

cooperating when i others cooperate, and bi as the payoff when defecting485
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and i others cooperate.

ai =
1

1+ e−(y+iy−k)
(1− ay) (E.1)

bi =
1

1+ e−(iy−k)
(E.2)

These are used to generate a measure of the gain from switching given i

cooperators:

d(i) = ai − bi (E.3)

Which gives a gain sequence:

d = (d0,d1, ...,dn) (E.4)

Now the purpose of this process is that the signs of the elements in the490

gain sequence, d, tell us the stability of the two trivial rest states of the

system and the number and stability of any interior rest points; assuming

evolution occurs in an infinitely large well-mixed population (Peña et al.Peña et al.,

20142014). We are interested in three properties of the sequence:

1. If the sign of the first element (d0) is negative then the rest state of full495

defection is stable.

2. If the last element of the sequence (dn) is positive then the rest point

of full cooperation is stable.

3. If there is one sign change in the sequence then there exists a unique

interior rest point, furthermore, if the first element is positive then500

both trivial rest cases (all defect, all cooperate) are unstable and the

interior point is stable.
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Figure E.1: This figure shows the dynamics of a population of cooperators and defectors

as described by eq. (1010). Each point represents a poulation with n group size and cooper-

ators that produce z toxin. Using the criteria for the gain sequence for each population

we cklassify it as either a defector only equilibrium a cooperator only one or a mixed

equilibrium where the two strategies coexist. The graph was drawn using the parameters,

a = 2
3 and k = 2
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Figure E.1E.1 shows the case with the parameters: a = 2
3 , n = 10, and k =

2. There exists a parameter range for the cooperating strategy between

z = (0.1, 0.5] where there is a stable interior rest point — cooperators and505

defectors co-exist. When the trait is sufficently low then there is stable point

when the population is all cooperators and when the trait value is higher

than 0.5 the only stable scenario is all defectors. From the equilibrium

game before we might expect the toxin production value to be around

z∗ = 0.107 (3s.f.). This gives an initial element to the gain vector of, d0 =510

0.00237 (3s.f.), and a final element of, d0 = 0.000457 (3s.f.), with no sign

change in between. This indicates that the ESS solution to the static game

would give a fully cooperative equilibrium in the dynamic game given

these parameters.
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