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Abstract11

Cerebral lateralisation for language can vary from task to task, but it is unclear if this reflects error12

of measurement or independent lateralisation of different language systems. We used functional13

transcranial Doppler sonography to assess language lateralisation in 37 adults (7 left-handers) on14

six tasks, each given on two occasions. Tasks taxed different aspects of language function. A15

preregistered structural equation analysis was used to compare models of means and covariances.16

For most people, a single lateralised factor explained most of the covariance between tasks. A17

minority, however, showed dissociation of asymmetry, giving a second factor. This was mostly18

derived from a receptive task, which was highly reliable but not lateralised. The results suggest19

that variation in strength of language lateralisation reflects true individual differences and not just20

error of measurement. Inclusion of several tasks in a laterality battery makes it easier to detect21

cases of atypical asymmetry.22
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Introduction23

Hemispheric dominance for language is often assumed to be unidimensional and consistent across24

language domains, but this assumption can be questioned (Bishop, 2013; Bradshaw, Thompson,25

Wilson, Bishop, & Woodhead, 2017). Discrepant laterality across different language tasks (e.g.26

Gaillard et al., 2004; Stroobant, Buijs, & Vingerhoets, 2009; Tailby, Abbott, & Jackson, 2017) could27

be simply due to measurement error (Ramsey, Sommer, Rutten, & Kahn, 2001); alternatively, task28

differences may represent meaningful individual variation in the hemispheric organization of29

different language networks. It has been difficult to distinguish these possibilities, because, while30

we have ample evidence that the left hemisphere is heavily implicated in language function at the31

group level, relatively little is known about the reliability of lateralization in individuals. It is32

evident that a standard model based on average brain activation may give a misleading impression33

of uniformity (Seghier & Price, 2018). Furthermore, there is evidence that there may be subgroups34

of people with distinct laterality profiles, related to handedness (Mazoyer et al., 2014). Such35

variability in cerebral lateralisation may have functional significance, for example in terms of36

impaired language abilities (Bishop, 2013). In clinical neurosurgical contexts, it is important to37

know whether a single indicator of an individual’s language laterality is sufficient, or whether a38

battery of measures is needed to capture laterality in multiple language domains (Gaillard et al.,39

2004; Stroobant et al., 2009; Tailby et al., 2017). Before we can make headway in answering such40

questions, we need to have reliable measures.41

Here we report a study using functional transcranial Doppler sonography (fTCD; Knecht et al.,42

1998) to measure speed of blood flow in left and right middle cerebral arteries (a proxy for neural43

activity in language-related areas of the brain) during six different language tasks (tasks A-F). The44

fTCD data were used to derive laterality indices (LIs), which quantify the balance of activation in45

left and right hemispheres. All participants were tested on the whole battery in two separate46

sessions on different days in order to estimate the reliability of the LIs and the extent to which47

lateralization of different tasks could be explained in terms of a common factor.48

Laterality at the level of the population and the individual49

The question of whether language lateralisation is a unitary function has two distinct50

interpretations: (a) whether there are differences in extent of lateralisation across different51

language functions or (b) whether there are individual differences in how the strength of52

lateralisation varies across language functions. We first review existing literature on these53
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questions and then present simulated data to show how predictions made by the two accounts54

are independent and additive, but can be tested within a common framework (structural equation55

modelling, SEM).56

Task-related variation in extent of language lateralisation57

Most theories of language lateralisation have focused on how language functions are lateralised in58

the brain in typical humans. Such theories are not concerned with individual differences, but make59

theoretical statements about the properties of language that are associated with lateralised60

activity. An influential example of such a theory is Hickok and Poeppel’s dual route model of61

speech processing (Hickok & Poeppel, 2007). This contrasts a dorsal stream from superior62

temporal to premotor cortices via the arcuate fasciculus, which is associated with sensorimotor63

integration of auditory speech sounds and articulatory motor actions; and a ventral stream from64

temporal cortex to anterior inferior frontal gyrus, which is involved in access to conceptual65

memory and mapping of sound to meaning (Rauschecker, 2018). Hickok and Poeppel proposed66

that the dorsal stream is left lateralized, whereas the ventral stream is bilateral. This kind of67

theory makes predictions about task-related differences that can be assessed by comparing mean68

LIs in a sample. Thus, the prediction from the dual route model is that mean LIs for tasks involving69

the dorsal stream will show left-lateralisation, whereas LIs from tasks primarily involving the70

ventral stream will not be lateralised.71

Hickok and Poeppel’s model contrasts with other theoretical accounts. For instance, Dhanjal et al72

proposed that left lateralization was a characteristic of tasks involving lexical retrieval (Dhanjal,73

Handunnetthi, Patel, & Wise, 2008). Evidence came from an fMRI study investigating propositional74

speech (e.g. sentence generation) and non-propositional speech (e.g. reciting memorized speech):75

articulatory jaw and tongue movements and non-propositional speech co-activated bilateral76

dorsal areas, including the superior temporal planes, motor and premotor cortices. Only the lexical77

retrieval component of propositional speech resulted in left lateralized activity (in the inferior78

frontal gyrus and premotor cortex).79

Yet other accounts have focused on the complexity of the speech stimulus (Peelle, 2012), or80

argued that lateralization is specifically linked to aspects of complex syntactic processing (Bozic,81

Tyler, Ives, Randall, & Marslen-Wilson, 2010; Friederici, 2011).82

Individual differences in cerebral lateralisation83
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Discussions about the nature of language lateralization are complicated by individual differences;84

although most people show the typical pattern of language laterality, some individuals show the85

reverse pattern – right-hemisphere language. In a large-scale comparison of left- and right-86

handers, Mazoyer et al (2014) reported that strong right-hemisphere bias for a sentence87

generation task was seen exclusively in left-handers, though milder departures from left88

hemisphere dominance were seen in right- as well as left-handers. A subset of people with89

bilateral language has also been described for many years (Milner, Branch, & Rasmussen, 1966),90

but this category is ambiguous. These could be people who engage both hemispheres equally91

during language tasks, or people who are strongly lateralized for different tasks, but in different92

directions. This latter scenario would provide strong evidence against a unitary hypothesis, by93

demonstrating that a person’s language laterality could not be predicted by a single dimension.94

Individual differences in cerebral lateralisation have previously been observed in the comparison95

between left lateralised verbal functions versus right lateralised nonverbal functions. This might96

suggest complementarity of the two functions within the brain; however, where individual97

differences in these biases have been assessed, several studies have found them to be dissociated98

(Badzakova-Trajkov, Corballis, & Häberling, 2016; Groen, Whitehouse, Badcock, & Bishop, 2012;99

Rosch, Bishop, & Badcock, 2012; Whitehouse & Bishop, 2009; Zago et al., 2015; cf: Cai, Van der100

Haegen, & Brysbaert, 2013; Vingerhoets et al., 2013). Again, handedness has been noted as an101

important factor, with right-handers showing less evidence of complementarity of verbal and102

visuospatial functions than left-handers (Zago et al., 2015). Here, we consider whether similar103

dissociations might be found within the domain of language. Although previous investigators have104

considered association or dissociation in average patterns of activation for different tasks (Hesling,105

Labache, Jobard, & Leroux, 2018; Pinel & Dehaene, 2010), there has been little previous research106

documenting individual differences in task-related variation. Inconsistent LIs from task to task107

could simply reflect noisy measurement, making dissociations hard to interpret. Thus, in order to108

throw light on individual differences in language laterality, we need to include repeated measures,109

so that reliability of LIs from different tasks can be assessed.110

Simulated data to illustrate predictions111

It is possible to integrate models of task variation in lateralisation with a model of individual112

differences in the kind of framework shown in Figure 1. For simplicity, this shows simulated data113

on just two tasks, A and B, to contrast predictions from different models of the structure of114

language lateralisation. The Population Bias model is the simplest: it shows a population bias to115
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left-sided language laterality (i.e. positive LI values) that does not depend on the task. There are116

no consistent individual differences: any variation in laterality is just caused by random error. This117

is not a very plausible model, but provides a useful starting point from which to build more118

complex scenarios. Formally, the function for predicting an individual’s LI is as follows:119

LIij = a + eij120

where i indexes the task, and j the individual, a is an intercept term corresponding to population121

bias, and e is random error.122

In the Population Bias model, the mean LIs for different language tasks (shown by the horizontal123

and vertical red dotted lines) are all the same and equal to a (in this case set to 1). Note that124

because there are no stable individual differences, the correlations between LIs for the same task125

measured on different occasions (left hand panel), and between different tasks measured on the126

same occasion (right hand panel) are zero.127

The second model is the Task Effect model. This incorporates consistent task-specific variation,128

without any stable individual differences. Formally,129

LIij = a + ti + eij130

where ti is a task-specific term. The only difference from the Population Bias model is that the131

means differ for different tasks – i.e. tasks A and B have mean LIs of 1 and 2 respectively. Again,132

variation in individuals’ LI scores is due to random error (e), rather than any systematic individual133

differences, as evidenced by zero test-retest correlations.134

The next model is a Person Effect model. This includes stable individual differences: a person’s135

score on any test occasion depends on an intrinsic lateral bias, which is constant from task to task136

but varies from person to person, i.e.137

LIij = a + ti + pj + eij138

where pj is the person-specific term. This model predicts significant correlations between the139

same task tested on different occasions, and different tasks tested on the same occasion. An140

important point is that these correlations depend solely on the relative contribution of individual141

difference (p) vs random noise (e) to the LI. It does not matter whether there are also task-related142

effects (t) on the LI. Thus, in the example, we have one task that is lateralised (mean LI of 2) and143
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one that is not (mean LI of 0), yet on this model, the test-retest correlation for either task will be144

the same, and equivalent to the cross-task correlation.145

The final model incorporates a Task by Person Effect: i.e., there are stable individual differences146

that show up as significant test-retest reliability on any one task, but the rank ordering of147

lateralisation varies from task to task, so cross-task correlations are low. Formally:148

LIij = a + ti + pj + xij + eij149

where xij reflects a contribution that is specific to the task and the individual. The depicted150

scenario in Figure 1 is an extreme one, with no relationship between a person’s laterality on tasks151

A and B; in practice, there could be significant cross-task correlations, but if the within-task152

correlations are higher than cross-task correlations, then this would be evidence that individual153

differences in laterality are to some extent task-specific.154

A key point illustrated by these simulations is that testing the multivariate model of language155

laterality at the population level requires different evidence – i.e. testing between means – than a156

multivariate model of individual differences, which requires us to consider correlations within and157

between tasks. Furthermore, predictions from these two types of model are independent,158

because correlations are not influenced by mean values. We can use structural equation159

modelling (SEM) to evaluate the relative fit of these four models to data on language lateralisation160

for participants who have LIs assessed on a range of tasks on two occasions.161
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162

Figure 1. Simulated data of different theoretical models of variance across sessions (1 and 2) and163

tasks (A and B) in language lateralization. Red dotted lines show the mean lateralization index (LI)164

for the task / session.165

166
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Hypotheses167

We preregistered a set of hypotheses that were tested through SEM model comparison, as168

described in the Methods below.169

We first tested two hypotheses concerning the group mean LI values. First, we tested the dorsal170

stream hypothesis (Hickok and Poeppel, 2007), which predicts that strength of lateralization171

depends on the extent to which tasks map on to the dorsal versus ventral speech processing172

streams (dorsal = stronger left lateralization). Second, following Dhanjal et al (2008), we tested173

the lexical retrieval hypothesis, which maintains that lateralization depends on the extent to which174

tasks require lexical retrieval (more lexical retrieval = stronger left lateralization).175

A second set of hypotheses concerned individual differences in LI value. We predicted that a Task176

by Person Effect model, whereby covariances between tasks were modelled by two latent factors,177

would give a better fit to the data than a Person Effect model, where covariances were modelled178

by only one factor.179
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Methods180

Preregistration181

This project was preregistered on Open Science Framework prior to data collection182

(https://osf.io/tkpm2/). A number of changes were made to the analysis plan after collection of183

the data – an updated protocol is documented here: https://osf.io/bjsv8/. Departures to the184

original protocol are explained in the Departures from pre-registered methods section below.185

Design186

A test-retest, within-subject design was used. Lateralisation of brain activity was measured using187

Functional Transcranial Doppler Sonography (fTCD) during six language tasks: (A) List Generation,188

(B) Phonological Decision, (C) Semantic Decision, (D) Sentence Generation, (E) Sentence189

Comprehension, and (F) Syntactic Decision. Participants were tested on two sessions spaced by190

between 3 days and 6 weeks. Hence, each participant provided data from six tasks tested twice191

(A1-F1, A2-F2).192

Participants193

A sample size of n=30 was determined by simulations of data from six tasks administered on two194

occasions, to determine the smallest sample size that would reliably distinguish data generated195

from a two factor vs single factor model, and give acceptable fit indices (see laterality_simulations196

files, https://osf.io/tkpm2/ ). The simulations were based on the models of covariances, as the197

factor structure of the measures is our primary interest, and this gave a more conservative power198

estimate. We note that the sample size is small relative to those usually recruited for SEM199

analyses. However, because all measures were taken twice, with no practice effects expected (on200

the basis of previous studies with this method), there are several estimates of most parameters.201

For instance, the correlation between LIs for tasks A and B is estimated from A1B1, A1B2 and202

A2B2. Thus the repeated measures give low degrees of freedom relative to the number of203

measures.204

In our original study pre-registration we did not plan to select participants according to205

handedness. However, both prior literature and our own preliminary data indicated that it would206

be advisable to treat right- and left-handers separately, as the pattern of associations between207

language tasks appeared to differ according to handedness, so combining handedness groups208

could give a misleading picture. We became concerned that results from our pre-registered209
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analysis on 30 participants (7 left-handers) were potentially misleading, as the factor structure210

that emerged seemed driven by a few left-handers. We therefore tested additional participants to211

give a total sample of 30 right-handers and seven left-handers, and we report analysis based on212

this larger sample as exploratory results.213

All participants gave written informed consent. Procedures were approved by the University of214

Oxford’s Medical Sciences Interdivisional Research Ethics Committee (approval number215

R40410/RE004). Subjects were recruited using the Oxford Psychology Research Participant216

Recruitment Scheme (https://opr.sona-systems.com) and by poster advertisements. The inclusion217

criteria were: aged 18-45 years; English native language speakers; and with normal or corrected to218

normal hearing and vision. Exclusion criteria were: a history of significant neurological disease or219

head injury; or a history of developmental language disorder.220

It was not possible to record a Doppler signal via the temporal window in three participants. In221

these cases the participant was reimbursed but not tested further, and another participant was222

recruited in their place. One participant had excessive motion artifacts in his first session, so223

another participant was recruited in his place. The initial group of 30 participants (17 female and 7224

left-handed) had a mean age of 26.0 years (SD = 7.2 years; range: 19.2 to 45.1 years). The final225

group, including seven additional right-handers (2 females) had mean age 25.9 years (SD = 6.8226

years) with the same age range.227

Procedure228

The order of the six language tasks was counterbalanced between subject and session. At each229

session, fifteen trials of each task type were conducted with breaks in between tasks.230

Language tasks231

The six tasks were designed to be matched in trial structure, as far as feasible, so that differences232

in laterality should reflect as far as possible the linguistic task demands. The first five tasks had a233

visual stimulus on each trial presented against a grey background, to keep the visual demands as234

similar as possible; the sixth task involved presentation of written words. All stimulus materials235

are available on Open Science Framework (https://osf.io/8s7vn/).236

The rest period prior to stimulus presentation was used for baseline correction to equate the left237

and right channels. Trials were 33 seconds long, and followed the structure shown in Figure 2.238

Trials started with the word ‘CLEAR’ on screen for 3 seconds, indicating that participants must239
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clear their mind in preparation for the next trial. The language task followed, lasting for 20240

seconds. Procedures for each task type are detailed below, and examples of stimuli are shown in241

Figure 3. Note that for tasks B, C, E and F, participants made responses to a series of stimuli on242

each trial to ensure the participant was engaged in language processing throughout the activation243

interval. Rapid presentation of multiple stimuli in a trial has been shown by Payne et al (Payne,244

Gutierrez-Sigut, Subik, Woll, & MacSweeney, 2015) to maximise lateralised activation in fTCD.245

After the task, ‘REST’ appeared on screen for 10 seconds, during which participants were required246

to clear their minds.247

248

249

Figure 2. Timings within a single trial for all six task types.250

251

252

Figure 3. Example stimuli for the language tasks. From left to right: picture stimulus for List253

Generation task (A; recite months of the year); a matching picture pair (‘book’ / ‘hook’) for the254

Phonological Decision task (B); a matching picture pair for the Semantic Decision task (C); picture255

stimuli for the Sentence Generation task (D); and a picture pair for the Sentence Comprehension256

task (E; ‘The dog chases the girl who is jumping’).257

258

A. List Generation259
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This task was based on the reference task used by Mazoyer et al (2014). Participants were asked to260

recite an automatic sequence of words (non-propositional speech) in response to a picture. In261

each trial, a line drawing was displayed on a grey background for 3 seconds. Participants were262

trained to produce different sequences for different pictures: reciting the numbers from 1-10, the263

letters from A-J, the days of the week or the months of the year. A fixation cross was then264

presented in the center of the screen for 11 seconds, during which the participant recited the265

words covertly (silently) in their head. Following this, a ‘REPORT’ prompt was shown for 6 seconds,266

indicating that participants should say the sequence aloud. The list generation task involves267

generation of phonological output, and so should index the dorsal stream, but because it involves268

repeated, overlearned material, it does not implicate the ventral stream; nor does it place269

demands on lexical retrieval. Thus the two specific theories of interest make contrasting270

predictions about this task.271

B. Phonological Decision272

Participants were required to make a rhyme judgement on pairs of words represented by pictures.273

The pictures were easily nameable line drawings of single syllable words, mostly taken from the274

International Picture Naming Project (IPNP) database275

(https://crl.ucsd.edu/experiments/ipnp/index.html, Szekely et al., 2004). The pictures were276

arranged into 45 rhyming and 45 non-rhyming pairs (based on pairings devised by Bishop &277

Robson, 1989). Rhyming and non-rhyming pairs did not differ significantly on orthographic278

similarity (assessed using MatchCalc software,279

http://www.pc.rhul.ac.uk/staff/c.davis/Utilities/MatchCalc/). For each trial, a series of 6 picture280

pairs was presented, each for 3.33 seconds (totaling 20 seconds). For each pair, the participant281

decided whether the words represented by the pictures rhymed or not, and responded by button282

press.283

This task involves implicit generation of lexical items and their phonology, but does not require284

access to conceptual meaning. Both the dorsal-ventral stream theory and lexical retrieval theory285

predict it should be strongly lateralized.286

C. Semantic Decision287

This task involved a semantic category judgement on objects represented in a pair of pictures.288

The design of this task closely matched that of the phonological decision task. The pictures were289

mostly taken from the IPNP database, as described above. The stimuli were matched for word290
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familiarity, orthographic neighbourhood, imageability, number of phonemes and frequency. Six291

picture pairs were presented, each for 3.33 seconds. For each pair, the participant decided292

whether the objects were from the same semantic category or not (e.g. both types of food) and293

responded by button press. For this task, it is necessary to access conceptual meaning, but294

generation of word names is not implicated. This, then, can be regarded as indexing the ventral295

stream. Both the dorsal-ventral stream theory and the lexical retrieval theory predict weak296

lateralization for this task.297

D. Sentence Generation298

This task required participants to generate spoken sentences in response to line drawings,299

following methods described by Mazoyer and colleagues (Mazoyer et al., 2014), but using pictures300

that were more culturally appropriate for UK participants.301

For each trial, a black line drawing was displayed on a grey background for 3 seconds. This was302

followed by a fixation cross for 11 seconds, during which the participant was required to covertly303

generate a sentence. Participants were trained in advance to generate sentences beginning with a304

subject (e.g. “the boy”), followed by a description of the subject (“with marbles”), a verb (“plays”)305

and ending with a detail about the action (“on the floor”). A “REPORT” prompt was then presented306

for six seconds, and participants were required to say their sentence aloud.307

This task implicates both dorsal and ventral streams, and so might be expected to show weaker308

lateralization than purely dorsal tasks. In contrast, the lexical retrieval theory predicts strong309

lateralization.310

E. Sentence Comprehension311

This task required participants to decide which of two pictures corresponded to a spoken312

sentence. Each trial comprised six picture pairs, each presented for 3.33 seconds, along with a313

spoken sentence that matched one of the two pictures. The sentences were spoken at a rapid314

pace and included some involving complex grammar with long-distance dependencies, such as315

‘the shoe on the pencil is blue’, or ‘the cow that is brown is chasing the cat’. Participants indicated316

which of the two pictures matched the sentence by button press.317

This task would appear to stress the ventral more than the dorsal stream, and so be relatively318

weakly lateralized. The task is hard to categorise in terms of lexical retrieval: it is necessary to hold319
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word meanings in memory while working out the meaning, though overt word generation is not320

required.321

F. Syntactic Decision322

This task was designed to isolate syntactic processing with minimal involvement of semantics. This323

task uses ‘Jabberwocky’ stimuli, based on a study by Fedorenko and colleagues (Fedorenko, Hsieh,324

Nieto-Castañón, Whitfield-Gabrieli, & Kanwisher, 2010), where content words of sentences are325

replaced by plausible non-words. Half of the stimuli were ‘sentences’, where function words, word326

order and morphological cues were preserved to make the stimuli recognisable as syntactically-327

valid sentences (e.g. ‘The tarben yipped a lev near the kruss’). The other half had a pseudorandom328

word order and were not perceived as sentences (e.g. ‘Kivs his porla her tal ghep in with’).329

Each trial contained three Jabberwocky stimuli of 8 words. Words were presented sequentially at330

the same time as an audio recording of the spoken word. As all spoken words were recorded331

separately, there were no prosodic cues to whether the stimulus is a ‘sentence’ or not. Each word332

was presented for 0.7 seconds, and the sequence was followed by a question mark for 1 second333

(making a total of 6.7 seconds for each Jabberwocky stimulus). The participant was required to334

respond by button press following the ‘?’ prompt.335

In terms of the dorsal-ventral stream account, this task is predicted not to show lateralization, as it336

is a purely receptive task. This was the only task involving nonwords, and should not be lateralized337

according to a lexical retrieval account.338

Behavioural Analysis339

For tasks A and D, the average number of words generated for each trial was calculated. For tasks340

B, C, E and F, percentage accuracy and average reaction time for correct trials (excluding trials341

where reaction time was greater than 2 standard deviations away from the mean) were342

calculated. The number of events where no response was received was also recorded for each task343

– these events were scored as incorrect.344

fTCD Analysis345

Our analysis of fTCD data departed from the method we preregistered in three respects; sections346

describing the altered methods are shown in italics, with a description and explanation of the347

change shown in the section ‘Departures from pre-registered methods’.348
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The dependent measures derived from the fTCD analysis were the Laterality Indices (LI) from tasks349

A to F at sessions 1 and 2. fTCD uses ultrasound probes positioned bilaterally over the temporal350

windows to measure cerebral blood flow velocity (CBFV) in the left and right middle cerebral351

arteries (MCA). The probes emit ultrasound pulses and detect reflected ultrasound signal. The352

frequency of the reflected ultrasound signal depends on the speed of the blood moving in the353

MCA, due to Doppler shift. Hence the difference in frequency of the emitted and reflected354

ultrasound signals can be used to determine the speed of blood flow. The data is recorded as CBFV355

(cm/s) in the left and right hemispheres.356

The fTCD data were analysed using a custom script in R Studio (RStudio Team, 2015). The script357

can be found on OSF (https://osf.io/tkpm2/). The CBFV data was first down-sampled from 100 Hz358

to 25 Hz by taking every 4th datapoint. The data was segmented into epochs of 33 seconds,359

beginning 7 seconds before the presentation of the ‘CLEAR’ stimulus at the start of the trial (-7360

seconds peri-stimulus time). Spiking or dropout datapoints were identified as being outside of the361

0.0001 - 0.9999 quantiles of the CBFV data. If only a single artifact datapoint was identified within362

an epoch, it was replaced with the mean for that epoch. If more than one datapoint was363

identified, the epoch was rejected. The CBFV was then normalized (by dividing by the mean and364

multiplying by 100) such that the values for CBFV become independent to the angle of insonation365

and the diameter of the MCA. Heart cycle integration was used to normalize the data relative to366

rhythmic modulations in CBFV. Each epoch was baseline corrected using the interval from -5 to 2367

seconds peri-stimulus time. Finally, artifacts were identified as values below 60% and above 140%368

of the mean normalised CBFV – any epochs containing such artifacts were rejected.369

If a participant in one session had fewer than 12 acceptable epochs for any task (i.e. more than 3370

of the 15 epochs were rejected), the data for that task were excluded. If a participant had more371

than one task excluded, all data for that participant were excluded.372

The CBFV from left and right sensors was averaged over all epochs at each timepoint, and the373

mean difference (left minus right) within the period of interest was taken as the laterality index374

(LI). The period of interest for tasks B, C, E and F was from 6 to 23 seconds peri-stimulus time. For375

tasks A and D, the period of interest ended at 17 seconds to avoid activity related to overt speech376

production following the ‘REPORT’ prompt.377

The LI value at each trial was also recorded, and used to calculate a standard error, which378

indicated how variable the lateralization was over trials. Outlier standard error values were379
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identified using Hoaglin and Iglewicz’s procedure (Hoaglin & Iglewicz, 1987). The standard error380

values for every LI measurement (across all subjects, tasks and sessions; 360 values in total) were381

concatenated. The difference between the first and third quartiles of the data was calculated (Q3-382

Q1). In this dataset, outliers were defined as having standard error value more than 2.2 times this383

difference above the third quartile (Q3); e.g., the threshold limit = Q3 + 2.2*(Q3-Q1). Hence, if the384

LI value showed exceptionally high variability across trials, it was deemed to be unreliable and385

therefore omitted from the final analysis.386

Departures from pre-registered methods387

1. Baseline interval. The baseline interval was 2 seconds longer than that planned in the388

preregistered protocol (-5 to 0 seconds), i.e. extending into the ‘Clear mind’ period. As shown in389

Supplementary Materials (https://osf.io/g8mkv/), this baseline gives more stable estimates of LI390

than the original interval.391

2. Definition of laterality index. In our pre-registered protocol, we planned to use a peak-based392

method of measuring the Laterality Index (LI) developed by Deppe et al (Deppe, Knecht,393

Henningsen, & Ringelstein, 1997), which has been standard in fTCD studies of cerebral394

lateralization. This involves finding the absolute peak in the difference wave within the period of395

interest and averaging the value of the difference over a 2 second time window centered on this396

peak. The major limitation of this approach is that it creates a non-normal distribution of LI values,397

which contributed to poor model fit in our SEM analyses, which assume normality. The mean-398

based method that we report here gives LI values that are highly correlated with the traditional399

peak-based LI (Spearman r = 0.97), but with a normal distribution (see Supplementary Materials,400

https://osf.io/g8mkv/, for further details).401

3. Outlier detection. In our pre-registered document, there was an error in our description of this402

process; we mistakenly stated we would remove outliers based on LI scores, rather than the403

standard error of the LI scores. Removing LI outliers would not be sensible in the context of this404

study, where the focus is on individual differences: it would, for instance, lead us to exclude those405

with atypical right-sided language laterality, who are of particular interest for our hypothesis. Our406

goal in outlier removal was to exclude participants with noisy data, and the LI standard error is the407

appropriate measure to use to achieve this goal.408

4. SEM modelling. In addition to testing the models specified in the pre-registration document,409

we also tested model fit of the best-fitting model using a leave-one-out procedure, which allowed410
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us to check whether the parameter estimates were unduly influenced by specific data-points. As411

described in Supplementary Materials (https://osf.io/g8mkv/), our decision to test further right-412

handers was prompted by discovering that there was undue influence from one left-hander, with413

the factor solution changing when her data were omitted. Accordingly, we present here414

additional analyses with 30 right-handers only, and with the full sample of 37 participants. We also415

computed the factor scores from the final model and plotted these to aid interpretation of the416

factor structure. The SEM bifactor model requires one variable to have fixed paths of 1 and 0417

respectively to the two factors. The fit of the model does not depend on which measure is used for418

this purpose, but the specific path estimates will vary. Given that List Generation task was the only419

task with poor test-retest reliability, we present here results using Sentence Generation for the420

fixed paths. This follows recommendations that the strongest indicator for a specific factor should421

be used for the fixed paths (Lewis, 2017).422

Structural Equation Modelling423

Structural Equation Modelling (SEM), as implemented in OpenMx (https://openmx.ssri.psu.edu/),424

was used to test our hypotheses. We distinguish between two sets of hypotheses: models of task425

effects, which concerned predictions about means, and models of person effects, which426

concerned covariances. As noted above, these are independent from one another. The models427

used to test each hypothesis are described below, and can be seen in Figure 4.428

We will briefly describe this approach, as it not widely used in laterality research. The aim is to test429

how well a prespecified model fits an observed dataset. Typically SEM is used to model430

covariances, but it can also be used with means. Boxes denote observed variables, two-headed431

arrows show variances and covariances. A triangular symbol denotes a mean value, typically set to432

one, with the path from the box to the triangle corresponding to the mean value for that variable.433

Means can be set to be equivalent by giving their paths the same label. We use capital letters for434

paths to means. For instance, in the Population Bias model (Figure 4), all paths to the mean are set435

to be the same, whereas in the Task Effect model (Figure 4), the means differ from task to task,436

but within a task are the same from test session 1 to test session 2.437

An oval symbol corresponds to a latent variable linking two observed variables: covariance438

between two observed variables is computed as the sum of the product of the paths to those439

variables that are linked by an oval. Paths to latent variables are shown as lower case letters. The440

difference between modeling of means and covariances can be appreciated by comparing the Task441
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Effect model and the Person Effect model in Figure 4. These look similar, but the former depicts442

the situation where the means for a task are constant across sessions, but covariances are not443

considered. Thus even if means are stable, tasks may be unreliable in the sense that individual444

differences are just due to noise, and the rank order of LIs of individuals is unstable. In contrast,445

the Person Effect model takes into account covariances, and is a test of the reliability of the446

measures, assessing how far individuals are consistent in their LI across occasions.447

We report goodness of fit for each model relative to a ‘saturated’ model where all variables are448

unconstrained, using the Comparative Fit Index (CFI): a high CFI indicates good model fit, and it is449

generally recommended that CFI needs to exceed .95 for the model to be regarded as a good fit to450

the data. We also report the Root Mean Square Error of Approximation (RMSEA), which is a451

measure of badness of fit, and should ideally be below .08 (Kline, 2011).452

Comparison of model fit to determine the most appropriate model is achieved using likelihood453

ratio testing. Such comparisons are valid when we have nested models. For each hypothesis, we454

compare two nested models computing the difference in -2 log likelihoods, and evaluated in terms455

of the difference in degrees of freedom between the two models. The difference in log likelihoods456

follow a ߯ଶdistribution, so a ߯ଶ test can be used to evaluate whether there is a statistical457

difference between the models. If a significant difference is found, then one model will be a better458

fit to the data.459

In general, when comparing a model against another more complex model, good model fit460

corresponds to a non-significant p-value, which indicates that the more parsimonious model fits as461

well as the more complex model, despite fewer degrees of freedom. Models that estimate many462

parameters (and so have fewer degrees of freedom) will tend to fit the data better, and so relative463

fit of models is considered using indices that take this into account. Several indices that penalize464

the likelihood ratio test are available, for example, Akaike’s Information Criterion (AIC) or Bayesian465

Information Criterion (BIC). Both these indices provide a value for each nested model and the466

lowest value among all the models is the preferred model.467

Step 1: Testing Stability of LI Values468

We began with a Fully Saturated model that modeled means and variances as totally independent,469

as shown in Figure 4 (top left). No correlations between LI values were modelled at this stage: the470

triangular symbol denotes that the paths reflect the mean for each observed variable. As an initial471

sanity check, we computed a Task Effect model where the LI value means and variances for each472
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task (A-F) were fixed to be the same at each testing session (i.e. the means and variances for A1 =473

A2, B1 = B2, etc.). We predicted that the latter model would not deteriorate compared to the Fully474

Saturated model, indicating that we would not need to specify separate means for different test475

occasions.476

Step 2: Testing Models of Means477

Our first hypothesis proposed that a significant task effect on LI value would be observed; i.e., that478

the mean LI values would vary between the six different tasks (tasks A-F). This was assessed by479

comparing the two models shown in row 2 of Figure 4: the Population Bias model and the Task480

Effect model.481

The Task Effect model was then used as a baseline comparison model to test two more specific482

sub-hypotheses regarding which tasks would show the strongest lateralisation. In each case we483

divided tasks into three subsets, and fixed the means and variances for the tasks within each484

subset to be the same. We adopted this approach to test the Dorsal Stream hypothesis and the485

Lexical Retrieval hypothesis.486

Step 3: Testing Models of Covariances487

Two models of covariance were compared (Figure 4, bottom). First, a person effect model was488

computed where covariance was predicted by a single factor, i.e. was similar across all language489

tasks. This was compared with a person by task effect model, with two covariance factors. The490

Person Effect (single factor) model is nested within the Task x Person Effect (bifactor) model, and491

so their relative fit can be assessed by subtraction of negative log likelihoods.492

All analyses were conducted in R (R Core Team. & R Development Core Team, 2013). Data and493

analysis script are available on Open Science Framework.494
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495

Figure 4:496

Step 1 (top): Simple model of means and variances. In the ‘Fully Saturated’ model the means for all497

tasks could vary independently (tasks A-F, tested at sessions 1 and 2). This was compared to the498

‘Task Effect’ model, where the means for each task were fixed to be the same for each session.499

The triangle symbol denotes that this is a model of means: covariances between values are not500

included in the model.501

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/437939doi: bioRxiv preprint 

https://doi.org/10.1101/437939
http://creativecommons.org/licenses/by/4.0/


22

Step 2 (middle): To test hypotheses relating to the LI means, the ‘Population Bias’ model (with502

means for all tasks set to be the same) was compared to the ‘Task Effect’ model (where means503

varied by task).504

Furthermore, to test the ‘Dorsal Steam’ hypothesis, a model with means for subsets of dorsal (A,505

B), ventral (C) and mixed tasks (D, E, F) were fixed (labelled as X, Z and Y). For the ‘Lexical Retrieval’506

hypothesis, a model with means for subsets of tasks with lexical retrieval (B, D) and tasks without507

(A, C, F) were fixed (labelled as X and Y respectively).508

Step 3 (bottom): The oval symbol denotes a common factor that determines the covariance509

between observed variables. To test the hypothesis relating to LI covariances, a single factor510

‘Person Effect’ model, was compared to a two factor ‘Task x Person Effect’ model. To achieve511

model identification, one of the paths from Factor 1 to a task had to be fixed to 1, and the path512

from Factor 2 to that task was fixed to zero. In our preregistration this fixed path was planned to513

be task A, but due to the low reliability of that task, it was changed in the final analysis to be task514

D. The covariance between Factor 1 and Factor 2 was also set to zero. Note that the means were515

also modelled as shown in the task effect model, but this was omitted from the model diagrams516

here for simplicity.517
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Results518

All data are available on OSF (https://osf.io/s9kx6/). Results from the pre-registered analysis519

protocol (i.e., using the first 30 participants only) are shown in Supplementary Materials520

(https://osf.io/g8mkv/). As noted above, the factor solution from this sample was unstable and521

unduly influenced by one left-hander. We report here the results based on the final sample of 30522

right-handers and 7 left-handers, which gives a stable solution, and we include exploratory523

analyses relating the findings to handedness. The LI values reported here are based on the mean524

difference between left and right CBFV, as this gives normally distributed variables, but the results525

are highly similar when the non-normal peak-based LIs are used instead. The analysis script526

provided on OSF (https://osf.io/q8zka/) facilitates comparisons between different analytic527

pathways.528

Behavioural results529

We did not have specific predictions for the behavioural results, but present them here for530

completeness. For List Generation (A) and Sentence Generation (D), the number of words spoken531

per trial was recorded. The number of words spoken in both tasks and sessions were very similar:532

for task A, session 1, mean = 9.5, SD = 0.42, session 2, mean = 9.6, SD = 0.29; for task D, session 1,533

mean = 9.2, SD = 1.21, session 2, mean = 9.4, SD = 1.24. A repeated measures ANOVA showed no534

significant effects of task (F(1,36) = 1.22, p = 0.278) on the number of words spoken, but there was535

a significant effect of session (F(1,36) = 5.73, p = 0.022). Trials where participants failed to536

respond, or responded too early were excluded from analysis: these constituted less than 0.1% of537

trials.538

For decision making tasks (B, C, E and F), the accuracy and RT of each response, and the number of539

omitted responses, were recorded (Table 1). Note that for task F participants were required to540

wait until the end of the word sequence before responding, and had only a second to respond;541

this accounts for the fast reaction times and relatively high number of omitted responses in task F.542

The Phonological Decision and Sentence Comprehension tasks (tasks B and E) showed evidence of543

practice effects, as both accuracy and reaction times improved, and the number of omitted544

responses fell from Session 1 to Session 2.545

546

Table 1547
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Behavioural data for tasks B, C, E and F. The table shows mean percentage accuracy and reaction548

times (with SD), and results of t-tests comparing Session 1 with Session 2 for each measure. The549

number of omitted responses is reported as a percentage of all events. B = Phonological Decision;550

C = Semantic Decision; E = Sentence Comprehension; F = Syntactic Decision.551

552

Measure Session Task B Task C Task E Task F
Accuracy
(%)

1 91.3 (5.55) 95.9 (3.08) 92.5 (4.81) 89.6 (8.31)

2 93.3 (4.28) 95.0 (3.06) 94.2 (3.79) 89.4 (8.28)

1 vs 2 t=-3.27, p=.002 t=1.61, p=.115 t=-2.70, p=.011 t=-0.07, p=.944

Reaction
times (s)

1 1.66 (0.22) 1.14 (0.2) 2.17 (0.12) 0.33 (0.08)

2 1.49 (0.21) 1.05 (0.2) 2.11 (0.15) 0.33 (0.07)

1 vs 2 t=8.73, p<.001 t=4.77, p<.001 t=3.27, p=.002 t=0.64, p=.528

Omitted
responses
(%)

1 2.34 0.84 2.79 4.20

2 0.78 0.60 1.62 4.44

553

Lateralisation results554

Three outlier LI values were excluded where the standard error across trials was above the upper555

cut-off. Six LI values were excluded because a subject had less than twelve useable trials for a556

given task in a given session. The remaining data for these participants were retained in the557

analysis. Excluded datapoints are shown as red dots in Figure 5.558

Figure 5 shows the distribution of LIs as a pirate plot (Phillips, 2017). Task D (Sentence Generation)559

showed the strongest left lateralisation. Shapiro-Wilks normality tests showed that LI values for all560

12 conditions were normally distributed. One sample t-tests (testing for mean > 0) showed that all561

conditions were significantly left lateralised, except task F (Syntactic Decision; Session 1: t (33) =562

0.77, p = 0.224; Session 2: t (36) = 0.33, p = 0.373).563
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564

Figure 5565

Pirate plot of LI values for all tasks (A-F) and sessions (blue = Session1, pink = Session2). Excluded566

data-points are shown in red. Asterisks show results of Wilcoxon tests comparing the LI values of567

the group (omitting excluded data-points) to zero (* p<.05; ** p<.01; *** p<.001).568

569

Figure 6 shows a correlation matrix of LI values for all tasks and sessions. Test-retest correlations570

varied between tasks. Task A (List Generation) had poor test-retest reliability (Pearson’s r = 0.13),571

and low correlations with other tasks. Test-retest reliability for other tasks ranged from r = 0.57 to572

0.84. Tasks B, C, D and E were strongly intercorrelated. Task F (Syntactic Decision) had high test-573

retest reliability (r = 0.76) but relatively low correlations with other tasks.574
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575

Figure 6576

Correlation matrix for LIs from the six language tasks given on two occasions.577

578

Structural Equation Modelling579

The LI data were entered into the SEM analysis to test hypotheses about the group mean LI values580

and covariances in LI values across subjects. Table 2 summarises the SEM results.581

Step 1: Testing Stability of LI Values582

As shown in Table 2, the fit of all the means-only models was very poor. This is to be expected, as583

these models ignore covariances, and, as indicated in Figure 6, there are substantial correlations584

both between and within tasks. Our interest at this point, however, is in the relative fit of different585

models of means, rather than overall model fit. The Fully Saturated model (with free means and586

variances) was compared to the Task Effect model, which fixed the means and variances for each587

task to be stable over sessions (i.e. A1 = A2, B1 = B2, etc.). The Task Effect model fit did not588
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deteriorate significantly from that of the Fully Saturated model, supporting the hypothesis that LI589

means for each task were stable across sessions.590

591

Table 2592

Model fit statistics from structural equation models and model comparisons. -2LogL = -2 log593

likelihoods; df = degrees of freedom; BIC = Bayesian Information Criterion; CFI = Comparative Fit594

Index; RMSEA = Root Mean Square Error of Approximation.595

Model Description -2LogL df BIC CFI RMSEA
Chi Square test

Compared to p

Fully Saturated Model
Free means and

variances
1574.4 411 90.4 NA NA - NA

Task Effect Model
Stable means and

variances
1580.8 423 53.4 0.022 0.292 Fully Saturated Model 0.896

Population Bias

Model

Equal means and

variances
1715.5 433 151.9 -0.474 0.337 Task Effect Model <0.001

Dorsal Stream Model
Means for tasks

AB > DEF > C
1664.8 429 115.7 -0.288 0.323 Task Effect Model <0.001

Lexical Retrieval

Model

Means for tasks

BD > ACF
1631.6 429 82.5 -0.156 0.306 Task Effect Model <0.001

Person Effect Model
Covariances have

one factor structure
1378.4 417 -127.4 0.805 0.136 Task Effect Model <0.001

Task x Person Effect

Model

Covariances have

bifactor structure
1337.8 412 -149.9 0.947 0.073 Person Effect Model <0.001

596

597

Step 2: Testing Models of Means598

To demonstrate whether LI means differed between tasks, the Task Effect model (with different599

means for each task) was compared to the Population Bias model (with means fixed to be the600

same for all tasks). This may be seen as a null hypothesis that treats all tasks as equivalent601

measures of laterality. The Population Bias model gave significantly worse fit (see Table 2),602

supporting the hypothesis that LI means differed between tasks.603

Two further models were compared to the Task Effect model. The Dorsal Stream model604

categorised the language tasks according to the involvement of the dorsal or ventral stream. Tasks605

A and B were categorised as involving strong dorsal stream activity, task C as strong ventral stream606

activity, and tasks D, E and F as intermediate (hence, means for AB > DEF > C). This model gave607

significantly poorer fit than the Task Effect model – as is evident from Figure 5, which shows608

relatively weak lateralisation for tasks A and B compared to task D. The Lexical Retrieval model did609

not fare any better. This categorised tasks B and D as involving strong lexical retrieval, whereas610

tasks A, C and F did not involve lexical retrieval, and task E was difficult to classify and so was611

considered as independent of the other measures (BD > ACF). Again, this model gave a worse fit612
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than the Task Effect model, indicating that, while laterality varied between tasks, it did not fit the613

either of the predicted patterns. Note, however, that the pre-registered tests specified for both614

theories have some limitations, as discussed further below.615

Step 3: Testing Models of Covariances616

At Step 3 we tested whether the covariances between tasks had a single factor structure (Person617

Effect model) or a bifactor structure (Task by Person Effect model). Not surprisingly, given the618

strong correlations in Figure 6, both within and across tasks, the Person Effect model gave619

substantially better fit than the Task Effect model (see Table 2); nevertheless, the overall fit of this620

model was poor. The Task by Person Effect model gave a significantly improved fit. A plot of the621

two factors is shown in Figure 7: note that, although the model fit is not affected by task selection,622

the factor scores depend on which task has fixed paths to the factors. The paths for the case when623

Sentence Generation is fixed are shown in Table 3. It can be seen that List Generation has only a624

weak loading on Factor 1, whereas Phonological Decision, Semantic Decision and Sentence625

Comprehension have moderate loadings on both factors. Syntactic Decision has a strong loading626

on Factor 2 but does not load on Factor 1, reflecting the weak correlation of this task with627

Sentence Generation.628

629

Table 3630

Path weightings (and 95% confidence intervals) from each latent factor (Factor 1 and Factor 2) to631

each task (A to F) from the winning bifactor model.632

633

Task
Factor 1 Factor 2

Path 95% CI Path 95% CI

A: List Generation 0.18 0.05 to 0.31 -0.02 -0.27 to 0.24

B: Phonological Decision 0.61 0.40 to 0.81 0.55 0.21 to 0.89

C: Semantic Decision 0.53 0.36 to 0.69 0.52 0.23 to 0.81

D: Sentence Generation 1.00 Fixed 0.00 Fixed

E: Sentence Comprehension 0.56 0.30 to 0.82 0.95 0.54 to 1.37

F: Syntactic Decision 0.13 -0.13 to 0.40 1.16 0.75 to 1.56

634

In our original analysis with 30 participants, a similar factor structure was observed, but there was635

a concern that this depended solely on a single left-handed participant (see Supplementary636

Material, https://osf.io/g8mkv/). With the larger sample of 37 participants, the bifactor (Task by637
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Person Effect) model was superior in all runs of a leave-one-out analysis. The bifactor model was638

also the best-fitting model when only the 30 right-handers were included in the analysis.639

Nevertheless, it is clear from Figure 7 that the two factors were highly intercorrelated, and the640

impression is that the bifactor solution is heavily affected by some influential cases. Cook’s641

distance identified four bivariate outliers, marked with circles in Figure 7: all four outliers were642

left-handers. When the analysis was re-run omitting these cases, the single factor model gave a643

better model fit when all N=33 subjects were included (single factor BIC=-142.7, bifactor BIC=-644

138.6), and in all but one run of the leave-one-out analysis.645

We can conclude from this analysis that, although univariate normality was satisfactory, our data646

did not meet conditions of multivariate normality; this leads to the conclusion that the sample is647

not homogeneous, but contains a mixture of laterality patterns. We discuss the implications of this648

finding below.649

650

Figure 7651

Correlation between two factors from the bifactor (Task by Person Effect) model, with left-652

handers shown in red, and bivariate outliers as circles.653

654
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Discussion655

The question of whether cerebral lateralisation is a unitary function may be interpreted at two656

levels: at the population level, we may ask whether all language tasks show a similar degree of657

lateralisation, and at the individual level, whether people show consistent differences in laterality658

profiles across tasks.659

Although we used formal modelling to address these questions, a good insight into the answers660

can be obtained by viewing figures 5 and 6. Figure 5 shows clear differences from task to task in661

strength of cerebral lateralisation, whereas Figure 6 shows moderate-to-good test-retest reliability662

for all but one task, coupled with significant cross-task correlations.663

The SEM analyses allowed us to explore these patterns further. Regarding means, as expected, a664

null hypothesis of no difference between tasks could be convincingly rejected. However, the665

specific patterns that we predicted should be seen on the basis of two existing models – the Dorsal666

Stream model and the Lexical Retrieval model – did not give a good fit. It could be argued that the667

data are, in fact, consistent with the Dorsal Stream model, insofar as the three tasks that involved668

implicit or explicit generation of speech – List Generation, Phonological Decision and Sentence669

Generation – were the ones that showed the strongest lateralisation (see Figure 5). The poor fit of670

the Dorsal Stream model was in part due to the fact that Sentence Generation was judged to671

implicate both streams, and was not therefore predicted to be as strongly lateralised as tasks with672

weaker semantic demands. However, it clearly makes demands on the phonological-articulatory673

system, and with hindsight it could be argued that in terms of articulatory complexity it was more674

demanding than the other tasks. A key question is whether blood flow measured using fTCD675

reflects the average of activity in a lateralised dorsal stream and a bilateral ventral stream, or676

whether the absolute dorsal stream activity is the main factor affecting the LI. In future we plan677

studies to address this question using fMRI.678

More generally, based on the pattern of results observed in this study, it appears that whole-679

hemisphere lateralisation as measured by fTCD is driven most strongly by generation of680

meaningful, connected speech (e.g. Sentence Generation). Lateralization for this task was stronger681

than for automatic, non-propositional speech (List Generation) or implicit sub-vocalisation682

(Phonological Decision). By contrast, lateralisation was non-significant for the Syntactic Decision683

task.684
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We would, however, emphasise the need for caution in treating any one task as an indicator of a685

particular language function: it is evident that even minor modifications to task demands may686

affect laterality, particularly when sample size is relatively small. For instance, in a related study687

with a different sample of people, we recently found that List Generation was not lateralised688

(Woodhead, Rutherford, & Bishop, 2018). In that study we interleaved a simple number689

generation (counting) task with trials of Sentence Generation, whereas in the current study, List690

Generation was administered in a separate block, with the type of list (numbers, days of the week,691

months of the year) varied to engage the participants’ attention throughout the block. Although692

the counting task used by Woodhead et al (2018) was not significantly lateralised, it had good693

split-half reliability and was significantly correlated with Sentence Generation, whereas the List694

Generation task used in the current study was the only task to show poor test-retest reliability and695

relatively weak correlations with other tasks. Furthermore, our Semantic Decision task was696

designed to tap into similar semantic processes as the Pyramids and Palm Trees test (Howard &697

Patterson, 1992), but resulted in weaker LIs than seen in a study by Bruckert (Bruckert, 2016) using698

the Pyramids and Palm Trees task. It could be that the two-alternative forced choice task used in699

that study was more demanding than our match/no-match decision, but this kind of difference700

cautions us about relying on a single test to indicate a type of linguistic processing.701

One convincing point to emerge from the analysis of mean data is that most language tasks (B, C,702

D, E and F) showed stable lateralisation measured in different sessions, but they differed in terms703

of the strength of left-lateralisation.704

We turn next to the findings concerning covariances. It has been argued that fTCD is not useful for705

studying cerebral lateralisation because it is unreliable (Cai et al., 2013), but our data support706

those of Stroobant and Vingerhoets (Stroobant & Vingerhoets, 2001) in demonstrating that there707

is significant individual variation in language laterality between people that cannot just be708

attributed to noise. Furthermore, by moving from a definition of laterality based on a peak in the709

L-R difference wave to a definition based on mean L-R difference within a period of interest, we710

avoid the problem that can arise when laterality is forced into a non-normal distribution (see also711

Woodhead et al., 2018). As shown in Figure 5 and our tests of normality, when mean L-R712

difference is used, the distribution of LI values is normal.713

The SEM also tested whether a single factor could explain individual differences in language714

lateralisation. At first glance, the results suggested this was not the case: the bifactor (Task by715

Person Effect) model showed superior fit over a single factor (Person Effect) model. This was the716
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conclusion suggested by our initial pre-registered analysis, based just on a sample of 30717

individuals. A leave-one-out analysis, however, made us cautious about accepting that result at718

face value, because the factor structure changed when a single left-hander with strongly719

complementary laterality on two tasks was excluded. For this reason we collected more data,720

adding seven right-handers to the sample. With this larger sample, we again found superiority for721

a bifactor solution, regardless of whether we included only right-handers or the full sample722

including left-handers. Yet there remained misgivings about the generalisability of the result, not723

least because the two factors were highly correlated (Pearson’s r = 0.84). A scatterplot of the two724

factors revealed a number of bivariate outliers and, as with our initial analysis, the pattern of725

results relied on which participants were included. Of course, it is not surprising that removing726

participants with the strongest dissociation between factors changes the factor structure: the727

point we wish to make is not that the results can alter in this way, but rather that the pattern of728

our SEM findings appears driven by heterogeneity within the sample, reflected in the presence of729

bivariate outliers.730

The answer to the question of whether laterality is a unitary function is that, clearly, there are731

some individuals in whom laterality is different for different aspects of language. It is not,732

however, the case that there are two factors that act independently in the general population.733

Rather, the majority of people appear to have language laterality driven by a single process734

affecting all types of task, with a minority showing fractionation of language asymmetry.735

The pattern of results is consistent with accounts of laterality that postulate qualitative rather736

than just quantitative differences between individuals. Theoretical accounts have mostly focused737

on a single dimension, arguing for laterality subgroups on the basis of non-normal distributions of738

scores (e.g. Mazoyer et al., 2014). Our results suggest that atypical laterality may be easier to739

identify when more than one language measure is considered, as detection of bivariate outliers740

can be effective with smaller samples than those required for detecting mixtures of distributions.741

An association between atypical laterality and left-handedness has been established for many742

years, ever since early observations were made of superior recovery from aphasia after gun-shot743

wounds in left-handers (Subirana, 1958). However, most of the emphasis has been on atypical744

laterality in the sense of having language mediated by the right hemisphere. Although the number745

of left-handers in our sample is too small for numeric analysis, the fact that three of the four746

bivariate outliers were left-handers is a striking departure from chance (Fisher exact probability =747
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0.016) and compatible with the idea that language lateralisation is more likely to be multifactorial748

in left-handers than right-handers.749

Further studies are needed to establish the key characteristics of tasks that index the two factors750

seen in some people, but we offer here some speculations. The main contributor to the second751

factor was the Syntactic Decision task, which differed from the other tasks in several regards. It752

used unfamiliar, nonword stimuli, and required the listener to identify syntactic errors. It was one753

of two receptive language tasks that involved processing of auditory language: the other was754

sentence comprehension, which had moderately strong loadings on the second factor. Perhaps755

the most surprising finding from this study is the fact that the one task that loaded on to the756

second factor (Syntactic Decision) was not lateralised, yet showed high test-retest reliability757

(R=0.67). We had anticipated that a lack of lateralisation on a task might be a consequence of758

noisy data giving poor test reliability – or alternatively a lack of individual variation if both759

hemispheres contributed equally in most people. Our data suggest that individuals do vary in the760

hemisphere used when doing the syntactic judgement task, and that this bias is reliable, but that it761

is not systematic across the population. This is perhaps the best evidence to date that strength as762

well as direction of lateralisation for a task is a stable trait.763

Limitations764

As noted above, the principal limitation of fTCD is that it does not allow one to localise lateralised765

activity within a hemisphere. In future work, we plan to extend this line of investigation to766

consider whether similar patterns of lateralisation can be seen using comparable tasks with fMRI.767

The benefit of fTCD is that it is relatively inexpensive and quick to administer, and so enables us to768

gather data that can be used as a basis for developing a more hypothesis-driven approach that can769

then be extended and validated with fMRI.770

A further limitation is that we lacked statistical power or range of measures that would be needed771

to evaluate more complex models. The bifactor model that gave the best fit in our study must be772

interpreted with caution. It will need to be replicated in larger samples and shown to generalise to773

new tasks - it remains a possibility that using a different set of tasks would reveal different or774

further fractionation of language lateralisation. Furthermore, although we have shown a bifactor775

model is a better fit than a single factor model, it is possible that more than two factors are776

needed to explain the full range of patterns of language lateralisation.777

Summary778
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In summary, these results indicate that there are meaningful differences in language lateralisation779

between tasks, and meaningful individual variability in lateralisation that is not simply due to780

measurement error. Even when a language-related task is not left-lateralised, there are stable781

individual differences in the contribution of the two hemispheres. Structural equation modelling782

of individual variability indicated that although a two-factor model gave a better fit than a single783

factor model, the effect was driven by a small subset of participants with discrepant laterality, and784

a single factor could account for variation in the majority of participants. Overall, our findings785

suggest there are qualitative as well as quantitative differences between people in laterality across786

tasks, and that consideration of asymmetry profiles on several tasks together can help identify787

cases of atypical laterality.788
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